
ReSS: a Resource Selection Service for the Open
Science Grid.

Gabriele Garzoglio1, Tanya Levshina1, Parag Mhashilkar1, Steve Timm1
�

1 Fermi National Accelerator Laboratory

Pine st. And Kirk Rd.
60510 Batavia, IL, USA

{garzogli, tlevshin, parag, timm}@fnal.gov

Abstract. The Open Science Grid offers access to hundreds of computing and
storage resources via standard Grid interfaces. Before the deployment of an
automated resource selection system, users had to submit jobs directly to these
resources. They would manually select a resource and specify all relevant
attributes in the job description prior to submitting the job. The necessity of a
human intervention in resource selection and attribute specification hinders
automated job management components from accessing OSG resources and it is
inconvenient for the users.

The Resource Selection Service (ReSS) project addresses these shortcomings.
The system integrates condor technology, for the core match making service,
with the gLite CEMon component, for gathering and publishing resource
information in the Glue Schema format. Each one of these components
communicates over secure protocols via web services interfaces.

The system is currently used in production on OSG by the DZero Experiment,
the Engagement Virtual Organization, and the Dark Energy. It is also the
resource selection service for the Fermilab Campus Grid, FermiGrid. ReSS is
considered a lightweight solution to push-based workload management.

This paper describes the architecture, performance, and typical usage of the
system.

Keywords: Resource Selection, Large Distributed Computing, Open Science
Grid

FERMILAB-PUB-08-016-CD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71319024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The Open Science Grid (OSG) [1]s a consortium of US National Laboratories and
Universities that provides a US-wide Data Grid to address the computing needs of
scientific communities. OSG makes available to its collaborators hundreds of
computing and storage resources. For such large distributed system, the selection of
an appropriate set of resources to run user applications can become a complex
problem. Even when such selection occurred, the Grid middleware and the application
environment often need to be informed about the characteristics of the selected
resource, in order to dispatch and run the application appropriately.

In September 2005, the Resource Selection Service (ReSS) Project [2] was charged
with developing and integrating an end-to-end solution to these problems for the
OSG. The project was sponsored by the DZero experiment [3] and the Fermilab
Computing Division in collaboration with the Open Science Grid, FermiGrid [4], the
CEMon gLite Project (PD-INFN), and the Glue Schema Group.

There were five main goals that the project set for itself:
• Implement a light-weight cluster selector for push-based job handling services
• Enable users to express requirements on the resources in the job description
• Enable users to refer to abstract characteristics of the resources in the job

description
• Provide registration for clusters and mechanisms for automatic expiration of

the registration
• Use the standard characterizations of the resources via the Glue Schema
Being the sponsoring Virtual Organization (VO), DZero provided most of the

initial requirements. However, the resulting system is now adopted on the Open
Science Grid as a general service and used by the DZero experiment, the Engagement
VO, and the Dark Energy Survey. In addition, the ReSS system is the resource
selector for the FermiGrid Campus Grid.

This paper presents the Architecture of ReSS, the Resource Selection model
utilized, the current deployments of the system, and discusses the results of different
studies and evaluations.

2 Architecture

The ReSS system is composed by two components:
1. an information provider and publisher service, deployed at the resources
2. an information repository and resource selector, deployed semi-centrally.
Figure 1 shows a diagram of the system architecture.
(1) Information providing and publishing is implemented by the CEMon service, a
component of the gLite software. CEMon collects information at the resource by
invoking local commands, logically grouped using the abstraction of "Sensors". The
sensor developed for OSG invokes and parses the output of the Generic Information
Providers (GIP), a suite of scripts that present resource information organized
according to the Glue Schema [5]. For each sensor, the information can be presented
in different formats, currently, LDIF, XML, new classad, and old classad. Each

format is implemented according to the specifications of Glue Schema mapping
documents. The ReSS project has driven the definition of the Glue Schema to old
classad format mapping. ReSS uses the old classad format, to use Condor software for
resource selection.
CEMon can publish information synchronously or asynchronously. Clients can access
information synchronously, by invoking web services interfaces directly, or they can
subscribe to CEMon in order to receive periodic asynchronous events. Alternatively,
administrators can configure CEMon with a pre-defined list of subscribers, so that
specified clients can be periodically notified with asynchronous events.

Fig. 1. The architectural diagram of the Resource Selection Service.

(2) ReSS uses asynchronous event notification to publish resource information to the
central information repository. The Condor [6] Information Collector implements this
repository, which is used by the Condor Match-Making service to implement resource
selection.
Information is routed from CEMon to the Condor Collector by the Information
Gatherer (IG) component. Effectively, IG acts as an interface adapter between the two
services. In ReSS, IG is deployed as a central stateless service. The service can be
configured to apply simple transformations to the incoming information. This feature
is used to add attributes containing expressions that, when evaluated, validate the
semantics of the attributes for the OSG use case. These expressions check, for
example, the presence of "critical" attributes, the consistency of attribute values (e.g.
the number of nodes in a cluster cannot be negative), etc.
Since resource selection is implemented using Condor components, the infrastructure
provides for a seamless integration of condor-based job scheduling services, like
Condor-G. In addition, Condor provides interfaces to query the central information
repository, in case users prefer to adopt ad-hoc algorithms for selecting resources.

2.1 Glue Schema to old classad mapping

The Glue Schema is a resource description model adopted by commercial companies
and Grid organizations. Resources are described in terms of entities, such as Clusters
or Storage Areas, and their logical relationships, like association or aggregation, are
expressed using UML diagrams.
In order to use readily available match-making services for resource selection, ReSS
describes resources in old classad format, an unstructured list of [attribute , value]
pairs. The project therefore faced the problem of mapping the Glue Schema structure
into a set of unstructured classads. The activity was conducted in collaboration with
the Glue Schema group and resulted in a mapping document [7] and its
implementation in CEMon.
In the Glue Schema, a computational resource is described by a "Cluster", which is
part of a computing center or "Site". A Cluster is composed by one or more groups
("Subclusters") of homogeneous computing nodes ("Hosts"). Hosts are characterized
by parameters related to the processor type, memory, operating system, etc. Access to
the Cluster can be achieved by one or more gateways or queues ("Computing
Elements" or CE). The Computing Element is described by informational parameters,
such as the gateway address, state parameters, such as the number of running or idle
jobs, policy parameters, such as the maximum wall clock time allowed by the local
scheduler, etc. In addition to total values for these parameters, like the total number of
running jobs at the CE, the model also allows for VO-specific values ("VOView"),
like the number of running jobs for a specific VO.

Fig. 2. Mapping the Glue Schema “ tree” (left) into a set of “ flat” classads (right): the algorithm
navigates through all possible combinations of (Cluster, Subcluster, CE, VO)

Figure 2 shows a schematic UML representation of a computational resource. The
mapping between this structure and a set of old classads is built considering all
possible combinations of inter-related CE, Cluster, and Subclustrer entities. In other
words, each combination (classad) contains a single CE, Cluster, and Subcluster
entity. In addition, if VO-specific parameters are available to characterize the CE (VO
View entity), these are used instead of the general CE attributes.

Each resulting classad can be thought of as a virtual homogeneous cluster with one
access gateway, described from the point of view of the VO. The ReSS system
matches each job to one of these "virtual" computational resources.
Storage descriptions are "flattened" using similar rules and are added to their
associated Cluster classad.
Being combinatorial, this algorithm could in principle produce a very large number of
classads for each site. In practice, typical OSG installations consist of one storage
resource and one cluster, considered homogeneous for simplicity (i.e. one Subcluster),
with a few Computing elements and up to a couple dozen supported VOs. In the
current system, complex sites advertise 48 classads, while simple sites advertise 1.
With this multiplicity, we expect the system to scale up to a few hundreds sites before
incurring into scalability limitations of the condor system. This limit is deemed
acceptable considering that the current number of OSG sites is about 80 and the
annual growth is typically of a few sites per year.

2.2 Typical Uses of the System

ReSS provides a direct and indirect mechanism to access resource information from
the system.
The direct mechanism consists in querying the ReSS information repository. Queries
are a set of constraints on the resource attributes (e.g. "List all clusters that support the
DZero VO"). Filters can be applied to display specific information only. Resources
that meet the specified criteria are returned to the user in bulk, appropriately
formatted according to the given filters. The user can then run ad hoc algorithms to
narrow down her selection and submit the job using standard Grid interfaces.
The indirect mechanism consists in accessing the ReSS information repository
through the Condor-G system. Users specify their resource requirements and rank
criteria using the condor job description language. Attributes can be dereferenced to
enhance the job environment or to send directives the job handling middleware.
Fig 3 show an example of a simple job description and how it references attributes
from a resource classad.
A popular way of using the ReSS system is a hybrid between the direct and indirect
methods described above. A VO queries the ReSS information repository directly,
getting an initial coarsely-selected list of resources. Each classad in this list is
enhanced with VO-specific attributes. For example, the Engagement VO of OSG adds
parameters from test jobs run periodically at resources. The enhanced list is then
uploaded to a Condor matchmaker, controlled by the VO. Users of the VO configure
the schedulers of their Condor-G deployments to point to the VO match maker. Thus,
users can access the VO matchmaker indirectly, specifying resource and VO-specific
attributes in the condor job description language.
The DZero experiment adopts a direct mechanism to submit jobs to OSG resources.
DZero jobs are logically grouped in units of computation. In general, these units
consist of several jobs. An example of such computation, called data processing,
applies a data transformation algorithm to an input dataset, consisting of multiple
files. Because of the typically long processing time, each file is input to a single job.
The jobs that process a whole input dataset define the unit of computation.

Fig. 3. Attributes in the resource description (right) are referenced in the job description (top-
left).

By policy, jobs belonging to the same unit of computation are executed at the same
cluster. Resources are selected for the whole unit by querying directly the ReSS
system. For each cluster, the resource-ranking algorithm computes the ratio of the
number of Idle jobs (jobs queued at the cluster’s local scheduler) over the number of
Running jobs. The whole unit of computation is submitted to the resource with the
lowest ranking value or, in other words, to the resource that has the least Idle jobs per
Running job. The algorithm also strongly penalizes clusters with Idle jobs, but no
Running jobs.
Variations of this simple algorithm are used in production by DZero to select OSG
resources.

3 ReSS deployments

The ReSS system has been deployed at two major Grid infrastructures: the Open
Science Grid and FermiGrid, the Fermilab campus Grid.

ReSS central services are deployed for OSG and FermiGrid on Xeon 3.2 GHz 4-
CPU machines with 4 GB of RAM. These machines run the services at a very low
load (<1).

On FermiGrid, the ReSS publishing services (CEMon) have been deployed on 8 of
the campus clusters, advertising a total of almost 750 classads for a total of more than
12,000 job slots. The campus grid can be accessed through a single gateway via the

GRAM protocol. Jobs are locally queued up using Condor-G, before being routed to
the resource that meets the job requirements.

On OSG, CEMon is deployed at about 64 sites, producing short of 2000 classads.

4 Validations and Evaluations

The ReSS project has undergone 2 independent evaluations processes:
1. a study of the resources utilized by CEMon when running on a typical OSG

machine: this study compared CEMon to other popular information publishing
services (MDS2) [8]

2. an evaluation of the use of ReSS to meet the Workload Management
requirements of the US-CMS VO: this evaluation compared several workload
management technologies [9].

In (1), we studied the resource requirements of two information-publishing
services, CEMon and GRIS/MDS2, on a typical OSG node under two different
conditions. The first condition simulated a heavily loaded environment, where
information on resources was required continuously by several external services. The
idea was investigating the difference in resource utilization between the CEMon
model, where information is pushed to a central collector, versus the MDS2 mode,
where information is pulled directly from the site monitoring services by external
services. The second condition compared the two publishing services queried at the
same slow frequency, one every 10 minutes.

The machine characteristics studied were load, percentage of CPU utilized, and
memory consumption. The conclusions of the study are

• running only CEMon does not generate more load than running only GRIS, or
CEMon and GRIS together.

• CEMon uses less %CPU than a GRIS that is queried continuously, simulating a
heavily loaded environment (0.8% vs. 24%). On the other hand, CEMon uses
more memory (%4.7 vs. %0.5). This is not surprising because CEMon offers
web services interfaces, a technology well known to be memory intensive.

• The average load to the machine is smaller when running CEMon alone (avg.
0.5) than when running a GRIS that is queried continuously (avg. 1.1). Both
servers generate lesser load than when running the Generic Information
Providers (GIP) scripts by hand continuously (avg. 1.8): this is expected
because both servers cache data.

Fig 4 shows a typical load average profile, running only CEMon.
In (2), US CMS evaluated several Workload Management Technologies. The goal

was measuring characteristics such as scalability and robustness, in order to select a
technology that could meet the requirements of the VO. The study evaluated Condor-
G and ReSS on a large test system, submitting thousands of jobs running the sleep
command for a random time between 30 minutes and 6 hours. The test system
consisted of 4 Grid sites that agreed to run the sleep jobs on the same nodes where
"production" jobs where also running, virtually doubling their job slot capacity. Each
cluster provided about 2000 slots for the sleep jobs.

Fig. 4. The load average of the machine vs. time; the measurements of the load resulting from
running the CEMon process vs. time (top) are compared to the load when no user processes are
running on the machine (bottom). The spikes on the bottom plot result from periodic processes
being run for monitoring purposes.

Condor-G was evaluated submitting 40,000 jobs at a rate of about 8 Hz to 4

Condor-G schedulers. The system scaled well to this limit and resulted robust with a
0.5% failure rates. This rate could be in principle reduced by automatically
resubmitting failed jobs. In some cases, it was observed crashes of the gateways.
Gateway crashes resulted in discrepancies between the status of the jobs at the site
and at the Condor-G scheduler.

Configuring the Condor-G scheduler to interact with the ReSS system did not
change the scalability or robustness properties.

The conclusion of the study was that ReSS is a lightweight, scalable, and robust
infrastructure. A criticism was that ReSS does not handle out-of-the-box user fair
share among the VO, leaving this responsibility to site batch systems. Also, the ReSS
model, which consists in pushing jobs to resources, does not allow for changes in user
priorities after the job has been submitted. To overcome these limitations, US CMS
decided to adopt the GlideIn Factory WMS technology and integrate it with ReSS for
global-level resource selection.

5 Acknowledgements

We want to thank the developers of CEMon, in particular Massimo Sgaravatto and
Luigi Zangrango, for their collaboration and promptness in addressing our concerns;
the members of the OSG Integration Test Bed for their help in the validation of ReSS;
the members of the Virtual Data Toolkit for their help in packaging CEMon; Igor
Sfiligoi and Burt Holzman from US CMS for their evaluation of ReSS; University of
Oklahoma, in particular Karthikeyan Arunachalam and Horst Severini, for
spearheading the study on CEMon resource utilization; Marco Mambelli, UChicago,
and MatsRynge, Renci, John Weigand, Fermilab, for their feedback.; the Glue
Schema Group for their help with the Glue Schema to old classad document;
FermiGrid for their interest in and contribution to the ReSS project. This paper was
written at Fermilab, a US National Laboratory operated by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the United States Department of
Energy.

6 Conclusions

The Resource Selection Service (ReSS) project provides cluster-level resource
selection for the Open Science Grid and FermiGrid Campus Grid. The system uses
the Glue Schema model to describe resources and the Condor classad format to
publish information. ReSS integrates the Condor match making service, for resource
selection, with gLite CEMon, for information gathering and publishing. The system
naturally interfaces with the Condor-G scheduling system.

ReSS is a lightweight, scalable, and robust infrastructure for resource selection of
push-based job handling middleware.

References

1. The Open Science Grid home page: http://www.opensciencegrid.org
2 The Resource Selection home page:

https://twiki.grid.iu.edu/twiki/bin/view/ResourceSelection
3 The D0 Collab., “The D0 Upgrade: The Detector and its Physics” , Fermilab Pub-96/357-E.
4 D.R. Yocum et al.: “FermiGrid” , FERMILAB-CONF-07-125-CD, May 2007. 5pp.

Presented at TeraGrid '07: Broadening Participation in TeraGrid, Madison, Wisconsin, 4-8
Jun 2007.

5 The GLUE schema home page: http://glueschema.forge.cnaf.infn.it
6 J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, “Condor-G: A Computation

Management Agent for Multi-Institutional Grids” , in Proceedings of the 10th International
Symposium on High Performance Distributed Computing (HPDC-10), IEEE CS Press, Aug.
2001.

7 The Glue Schema to Old Classad Mapping document:
http://glueschema.forge.cnaf.infn.it/SpecV13/OldClassAd

8 K. Arunachalam, G. Garzoglio, “Performance Measurements of CEMon on an OSG Test
Environment” , OSG White Paper OSG-doc-521-v1

https://twiki.grid.iu.edu/twiki/bin/view/ResourceSelection/CEMonPerformanceEvaluation
9 I. Sfiligoi, B. Holzman, “Evaluation of Workload Management Systems for OSG” , Talk at

the OSG council meeting on Mar 07
https://indico.fnal.gov/contributionDisplay.py?contribId=65&sessionId=13&confId=468

