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Theory and Praxis of Map Analysis in CHEF
Part 1: Linear Normal Form

Leo Michelotti
October 14, 2008

Every other man spoke a language entirely his own, which
he had figured out by private thinking; he had his own ideas and
peculiar ways. If you wanted to talk about a glass of water, you had
to start back with God creating the heavens and the earth; the apple;
Abraham; Moses and Jesus; Rome; the Middle Ages; gunpowder;
the Revolution; back to Newton; up to Einstein; then war and Lenin
and Hitler. After reviewing this and getting it all straight again you
could proceed to talk ... .. “I'm fainting, please get me a little water.”
You were lucky even then to make yourself understood.

— Saul Bellow
Seize the Day

1 Introduction

This memo begins a series which, put together, could comprise the “CHEF Documentation Project” if there were such a
thing. The first - and perhaps only - three will telegraphically describe theory, algorithms, implementation and usage of the
normal form map analysis procedures encoded in CHEF's collection of libraries. [1] This one will begin the sequence by
explaining the linear manipulations that connect the Jacobian matrix of a symplectic mapping to its normal form. Itis a
“Reader’s Digest” version of material | wrote intermediate Classical Dynami¢ECD) [2] and randomly scattered
across technical memos, seminar viewgraphs, and lecture notes for the past quarter century. Much of its content is old,
well known, and in some places borders on the triviblevertheless, completeness requires their inclusion. The primary
objective is the “fundamental theorem” on normalization written on page 8. | plan to describe the nonlinear procedures in
a subsequent memo and devote a third to laying out algorithms and lines of code, connecting them with equations written
in the first two. Originally this was to be done in one short paper, but | jettisoned that approach after its first section
exceeded a dozen pages.

The organization of this document is as follows. A brief description of notation is followed by a section containing a
general treatment of the linear problem. After the “fundamental theorem” is proved, two further subsections discuss the
generation of equilibrium distributions and issue of “phase.” The final major section reviews parametrizations — that is,

INotwithstanding, it is worth remembering that a few decades ago (almost?) everyone in accelerator physics routinely preferred a language carried
over from the early days of cyclotrons.
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lattice functions — in two and four dimensions with a pasgjtance at the six-dimensional version. Appearances to the
contrary, for the most part | have tried to restrict consadien to matters needed to understand the code in CHEF's
libraries.

2 Preliminaries on notation

| shall use the notation of ICD [2]: a collection of phase spagordinates is indicated with an underlined letter, agjn “
and a matrix with double underlines, as M This is not meant to imply that phase space is a vector space. It is niot, bu
locally it looks like one, because it is coordinatiZess an open subset BN, for someN, containing the origin. In any
case, the linear part of a mapping subsists in a vector sffectangent space attached to some point of the manifold.

For reasons that might become more evident later, | pref@rtmge phase space coordinates so that the “position
and “momentum” sectors are separated. (As a result, thmvisthey have always been ordered internally in CHEF's
software.) Most others prefer to keep individual “positiand “momentum” coordinates together, which in accelarato
physics leads to grouping according to “horizontal,” “¥eat,” and “longitudinal” sectors. For example, for a
four-dimensionalR* phase space,

X X
I would use: z= Y while many others use z= r;/X . Q)
X
Py Py

Both choices possess advantages in different contextfotimer is convenient for carrying out matrix multiplicati®in
2 x 2 blocks; the latter, for performing horizontal and vertigajections. When it is necessary to refer to this conwamti
and a few others to be given later, | shall write that the cates are “sensibly ordered.”

We deal with discrete dynamical systems, whose orbits gresented by indexed sequences,

{ a273527232713203215223233 } .

Eachz_ is an array of coordinates on a phase space chart. They nebd neal and generally are not. Nonetheless, we
shall assume wstart withreal coordinates, i., € RV, for someN = 2n.# If the system is deterministic, then there is an
indexed collection of “transition functions,” or “mappisg Tk, such thag, , = Tk(z); if itis also autonomous, then alk
are the same, and we write

Z,,=T(z), or T:z+ 2z, oOrsometimesjustT:Z—2Z, z—T(2) .

Of course, the application to accelerator physics is initplice transition represents a single turn in a periodic Imze

3 The linear sector

The goal of this section is to fix the definition of normal caoates for linear systems, with special attention paid & th
normalization appropriate when the transition is symjdestich as one arising from a Hamiltonian flow. Our key reisult
the “fundamental theorem” written in Eq.(10). Followindosections treat quadratic statistics for invariant disitions
and the calculation of “phase advance” in a ring.

2|f there is such an abominable word.
3This is a biassed characterization, of course, but | havaltdtsomething
4The restriction to an even-dimensional phase space couiftégbfor greater generality, e.g. to include spin, but hete and not now.



3.1 Generic linear normal form coordinates

Regardless of symplecticity, if the system is autonomdes) its linear part is described by a squiare N matrix, M,
such that

2.1=M-z+0(Z) forallk .

I'll immediately drop the O(gﬁ)" notation from all following equations and write more simpl
%1 =M-z or z—M-z.
If there exists a square matixand a diagonal matrii such that

M-B=BA. ()
then the phase space decomposeshhtadependent, one-dimensional, possibly complex, inmasabspace3The
columns ofB contain eigenvectors &fl, with each/jj being the corresponding eigenvalue. We define the “(lineamnal
form coordinates,&, according to

z=B-a. 3)

Which brings us to the eternal question of which “pictureattopt. To abuse slightly familiar terminology from
guantum mechanics, in the “Schrodinger picture,” statedve while the operators remain fixed; in the “Heisenberg
picture,” states remain fixed — at their initially specifiexlues — and operators evolve. The choice here is,

M-z = M- (Ba) = .

Iy}

Heisenberg
Schrodinger.

M
B-A)-a

(M-B)-a
= (:

B-(A-a),
Put another way, do we interpret- M -zasa— A-a (i.e.a — A &) orasB+— B-A? We shall eschew the choice and
adopt “both-and” rather than “either-or” in different ainbstances as convenience dictates. In fact, a third chibiee,
“interaction picture,” is frequently used. We shall takajitin Section 3.4.

If M is not orthogonal, its eigenvalues, eigenvectors and th@aldform coordinates generally are complex. Further,
becausM is real, eigenvalues must come in complex conjugate paiesextend the notion of “sensible ordering” to the
columns ofB andA: they are “sensibly ordered” ;i = Ai;n i+n WhenevefJA; # 0. (Note: index arithmetic is done
modulo 2.) This induces a corresponding order on the columri d&igenvectors associated with complex conjugate
eigenvalues need not themselves be complex conjugatestobézer, as an eigenvector can be multiplied by any complex
number and remain an eigenvector (with the same eigenvalba} is, for any diagonal matri¥/,

1> 1>

=B-W-A

so thatB - W also satisfies Eq.(2) and could be used insted8l &o, we enforce the condition and assert that the columns
of B have been scaled in such a way that, hket satisﬁesBi’;_: Biin i+n WheneverB; # 0. As a consequence, half of

the the normal form coordinates will be complex conjugafab® other half. These conditions can be written as matrix
equations by introducing the extended “Pauli matrix”:

. @)

=110
N———
[
I
o
la
X
>
I
>
a

SWere we to require phase space coordinates to remain realstme invariant subspaces would be two-dimensionalohe.complex coordinate
subsumes two real coordinates. Enforcing such a requirepneduces no advantage. The notation used here is the ooduned in Ref. [3]
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Figure 1: Commutative diagram connecting real and nornrah fmoordinates.

whereg 1 is written in 2x 2 block form: 0 is then x nzero matrix and 1then x nidentity matrix.

NOTE: This equation does not exhaust the requirements arggeng the columns @. Permutations could still be
carried out within the & x n submatrices: i.e. the first and second blocka oblumns. There are two more conditions
which will be introduced later, when they are neefed.

The attentive reader already has noticed some difficutieefining normal form coordinates via Eq.(3). We have
tacitly assumed that the dynamical system is reversiblé&ghwineans thaB is invertible: no eigenvalue is zero, and the
null space oM is trivial. Further, degeneracy — two or more identical eiggues — would produce additional ambiguity;
corresponding eigenvectors can be superposed to prodieedt ones. Most importantly for us, a final normalization
must be chosen. In principle, this is not important as longresremains consistent within a particular calculation, bu
shall specify a preferred normalization for symplecticteyss in the next section.

COMMENTS

1. All of this is very basic and requires no further explaoatiBoth eigenvalues and eigenvectors are generally comple
so normal form coordinates will be too. In principle, thegimial “phase space” could have been complex by defining
orbits as sequences o\@l'.

2. Not all matrices can be diagonalized. In such cases, pgdtie non-existence & is an ill-posed problem. We'll say
no more about that; let's move on.

3. Algebraists express Eq.(2) graphically as a “commutatiagram,” like the one shown in Figure 1. As we shall see in
the next memo, it can be extended surprisingly naturallpéortonlinear sector, where it helps to organize one’s thionki

61f you want to peek ahead, see Eq.(9) and Eq.(26).



3.2 Symplectic systems

While this is a somewnhat restrictedefinition, we shall understand the linear system; M -z to be “symplectic” when
M satisfies o

no

1
1.MmT —
M-J-M' =J, where J_—< 1 O)' (5)

Here,J is written in block form; it looks as it does because dynamgoardinates are “sensibly ordered,” as in Eq.(1).
Before continuing, it is worth noting Eq.(5) could also betten,

MT.Q.MZQ, (6)

as the two expressions are interchangeable. Since this$ feegoently asserted, we shall pause to do so, and even
generalize the observation to complex matrices, usingt*‘.l]aILnotationMJr = M*T

ASSERTION: Let O be a unitary matrix: that iQ"-O = 0-0O" = 1. LetM be a matrix satisfyind1 - O-M" = O. Then,
M'O-M=0.

PROOF: Clearly, bothQ andM are square and not singular. TH\A§1 exists; in factM ™ 1 =0 MT -g, for

M-

IIO
I=
o

T'QT: 'QT:]- )

Then, sincéM™)~1 = (M~1)T, we have

0 = MY MOoM) MY
= (@M-0)(©- @MY
= Q(MTQM) g‘r )

Finally, multiplying on the left b)(:)Jr and right byO provides the result

M"0-M=

IIO

The application to Eqg.(6) is immediate upon noting th&t a real, orthogonal matrix and, therefore, unitary.

As already noted, eigenvalues and eigenvectors of anpMealist come in complex conjugate pairsMfis
symplectic, they also can be associated in reciprocal pairs

ASSERTION: If A is an eigenvalue of a symplectic matrM, then so aré™ and J/A.
PROOF HINT : This simple proof can be found in many books, but as a hintifersecond part: notice that

M-t =-J-MT-JwhenM is symplectic, and manipulate the characteristic polyrabfor M~*, de{M*—A1) =0.
o

"The restriction comes from assuming the coordinates arenizad. It is sometimes useful to exploit symplecticity vitoncanonical coordinates.



COMMENTS

4. Obviously the first assertion above works as well in theotlirection: simply substitulg’r for M throughout
its proof.

5. The reciprocal of an eigenvalue is generally not its c@xpbnjugate. However, if orbits are bounded (i.e. linearly
stable), then all eigenvalues must lie on the unit circle |A3}= 1 for allA — and therefore satisfy* = 1/A. Though it
is not always essentiah everything that follows we shall tacitly assume this tdhmecase when it either simplifies or
validates a calculationln the language of accelerator physics, this means thatifresonance) stopbands, such as
Vx = Vy Or 2vx = integer, have been avoided.

J-MT =det(M) J. In higher
dimensions, its implications are more involved (see beltw) clearlydet(M) = +1. In fact, as the determinant is the
product of the eigenvalues, any symplectic matrix must li@terminant-1, because of the reciprocal property asserted
above.

6. ForN = 2, the symplectic condition, Eq.(5), is tantamountiet(M) = 1, becauséM - J

7. The symplectic condition is equivalent to invariance oirfearé’s differential two-formp, which is evaluated using a
canonical coordinate chart as follows. lleandv be arbitrary tangent vectors.

wuv) = <k§dxk/\dp<> (W) = k” g (u)d pe(v) — d pe(u)dxe(v)
—1 =1
= (dX dE)(u) g ( dE )(v)
= dZ'(u)-J-dZv) . (7)

8. Asis well known, symplectic matrices form a group. Wedlyano more about thagxceptto mention in passing a
lovely theorem which states that the entire group can bergettby the two subgroups of matrices of the form

(67) = (k1)

wheresis any real number arldl is any symmetricn x nmatrix. Again using the language of accelerator physiesfithst
subgroup corresponds to drift spaces, and the second cipiear kicks, a generalization of thin quadrupoles. If yo
are interested in reading a proof, one can be found in Guilemd Sternberg [4].

=IO

(=1
IRl

9. Symplecticity does not guarantee diagonalizabilitye Tost trivial (one parameter) symplectic subgroups thanct
be diagonalized are first learned in high school and weradyreritten above:

t%), teR

This is the time-evolution operator of unaccelerated nmti@rticles travelling in straight lines at constant véles. So,
in what follows, we musassumehat Eq.(2) is satisfied.

ol
=

The eigenvector matri8, defined in Eq.(2), which transforms real canonical coaatéia into normal form
coordinates, does not satisfy Eq.(5) and, therefore, isyraplectic. What remains of this section is devoted to prgvi



that, when orbits are bounded, the columnB8poéan always be normalized to satisfy the analogous comdlitio

BT .J-B=1J. This fixes the normalization of normal coordinates so they ttan be associated unambiguously with
action-angle coordinates and, eventually, veitheast onedefinition of the emittance of a bunch. Because this ressdo
not normally appear in textbooks, I'll write a proof thatgsehrough a sequence of lemmas. If you have no interest in
proofs, skip what follows and begin again with the commealieving the “fundamental theorem” on page 8.

LEMMA : LetM-B=B-A, where all matrices are square and sensibly ordéfieid,real and symplectic, al is
diagonal, non- degenerate with all non-zero elements @uitiit circle. TherBT J B-J is a diagonal matrix.

PROOF: Using the previous lemma, symplecticity ldfis writtenM T J-M= M-Q-MT = J, from which we obtain,

B"-JB = B'-(M"-3M)-B
-~ (M-B)"-3-(MB)
= (B0 3 (B
= AT-(B"2B) A

We note in passing tha:tT =/, asAis diagonal. In terms of components, this is written:
forall i,j: (B"-J-B)ij = (Ailjj)(

which means

Because of the hypotheses abfuthe only non-zero elements gf -J- B must be in the same position as the non-zero

elements of. Thus,gT -J-B-Jis a diagonal matrix.
a

Without loss of generality, we express this matrix-dB, whereD is diagonal, so that we can write

BT-J-B=iD-J, whereD is diagonal.

Il

Our goal now is reduced to proving that the columnBafin be ormallzed such that= 1. To that end, | offer a final
intermediate lemma for purposes of meditation: nam{a@g =

LEMMA : If Bis symplectic and sensibly ordered, then

~

).

PROOF: BecauseB is sensibly ordered, we can write it in block form as follows.

B, B:
— =1 =1
§‘< B, B >

B

ol

||L.
IIUJ
T
I
i
VRS
Qo

where then x nblock D’ is a real, diagonal matrix.



A simple calculation then gives us,

B} -B;-B/-B;, B]-B,—B]B

BT3B - = =225 ®)
= === t.B*_B.B* t t
B, B-B'B;, B B-B'B

We have seen already that this is diagonal, so the the didglmtks are themselves diagonal matrices, and the
off-diagonal blocks must vanish. This means that

T _ nT T
El '52_ @1 'Ez)

That is, BT -B, is a symmetric matrix, which is interesting but not to therpoMore to the point is that the (diagonal)
diagonal blocks are anti-Hermitian and negative complejuggates of each other. This means

—-iD" 0 :
82-( ¢ )=

B

||<_-
IIUJ
N

whereD' is a real, diagonal matrix.
a

We have shown not only that is real and diagonal, but that its upper left and lower rigatks are identical. That will be
useful in establishing the final result, which follows beldefore entering into its proof, we must introduce another
preordering condition on the columns@f referring to the notation of Eq.(8),

forall i: O(B]-Bj)i >0 . (9)

Effectively, this means that the diagonal elementB afill all be positive. A few moments reflection will convincey
that such an ordering is always possible. FirstDpawill vanish, as that would imply ddd = 0, which is impossible.
Second, if it happens that Eq.(9) is violated for sdpswitching columns andi + n of B will fix it, as B already satisfies
Eq.(4). With that done, we can proceed. B B

FUNDAMENTAL THEOREM : The columns 02 can be normalized so that
B"-J-B=iJ . (10)

PROOF: We multiply B on the right by a diagonal matriyy, and use the previous lemmas to calculate.
B-W)T-J-(BW) = W'-(B"-J-B)-W

Il
[S; 1= |
=10 |
1[=
~ 1l
=1

Again, do this calculation in 2 2 block form.

v (3 ) (% ) (5)
(B 2) (Ll k)
= = =2 1 =
- '(—Qf.\%_vl.v_v2 > v_\(/_)l-v:v2>



To maintain Eq.(4), we must ha\lki!2 W* Thus, all that is necessary to obtain the desired resultéhoose diagonal
components for the submatNM so that |

forall i, (D)i |(W,)ilP=1.

This is always possible because, by our preordering asaeEq.(9), alD’);i are positive.

COMMENTS

10. There remains a phase ambiguity. Detbe any unitary matrix satisfyin@ - o 1 That is,

exp(—iyp) 0
g:< 0 exp(iy) ) ’ (11)

wherey is an arbitrary real, symmetrio,x n matrix. ThenQ is itself symplectic — i.egT J-Q=J - sothat

I
lla
IIKD

(B-Q)"J-(B:

However, unless there are degeneracies, to keep Eq.(2),iptahould be diagonal, not just symmetric. Even with

degeneracy, it must be diagonal in order to avoid mixing therevectors.

In words, the normalization is not changed by multiplyinggvcolumn inB by a phase while retaining its sensible
ordering. Thus, to finish specifyirByunambiguously requires one final and more or less arbitramyention. The two
most obvious ones are: N

“B-convention”: fork =1...n, By, 4, is real and positive
“y-convention”: fork = 1...n, By, 4, is real and positive

o
o
S
o

)=Qa"-B"

I
IIUJ
IIK)

= Qi

||.'O
n<

The first is popular, the second is not, for a reason that wiltlear soon, if it is not already.

11. Referring back to Eq.(7), notice that with the correanmalization,

d7 (u)-3-dzv) = da' (u)-(id)-dalv) .

Written in the language of two-forms, and using the fact Bi&t sensibly ordered, this becomes

n n n
dek/\de: iZdakAdakH, = iZdak/\da; (12)
=1 K=1 K=1

12. When phase space is two-dimensional and Eq.(10) ifiedfithen Eq.(8) provides the simple numerical condition,
B2B; — B1B5 = 2iJ(BB;) = —i. If the phase is chosen such thatis real, then this becom&; ((B) = —1/2. We shall
see two examples of this in the next section.

13. With this normalization, the connection between norcoalrdinates and action-angle coordinafés| ), was written
in the second chapter of ICD [2] — esp. p.24; EQ.(2.9) — aneldped further in subsequent chapters: viz.

*

fork=1,...n: ac=i/lxe ¥, a ,=ai= PrEACE (13)



+2 Im(a)

T
+2 Re(a)

Figure 2: Normal coordinates rescaled so their real andiimaag parts present the visually correct phase space atea. T
angle variabled, is measured clockwise from théa axis.

We can partly justify this identification here by extendihg thain of equivalences begun in Eqg.(12). Within each two
dimensional-invariant subspaaksy /ax = dlx/2lx — id ¢y, so that

|a|? (dl/2lk — id k) A (dli/2lk+iddy)

(lax|?/21k)(—i ddx Adlc+idl Addy)
= —i dq)k/\dlk .

dacAdag

Putting this into Eq.(12) and summing extends the chainecols.

n n n
S dxAdpe =iy danda = 3 dpeadi
k=1 k=1 k=1

14. A complex normal form coordinate can be separated istieedl and imaginary parts, say= uk + ivk, whereuy and
vk are real coordinates for the two-dimensional invarianspaloe. However, the (oriented) phase space area element on
this subspace isiot duy A dw. Instead,

dAdpe = idagAda = i(duc+idvi) A (duc—idvk) = 2ducAdw = d(vV2u) Ad(V2v)

Put another way, real coordinates that preserve phase apecard+/20(a),/20(a)), and the corresponding polar
“radius” coordinate is/2|a| = v/2I. (See Figure 2.)

10



3.3 Equilibrium distributions of particles

Quadratic statistics for a distribution of particles sgb#i the covariance matrix.

If the system is linear and the distribution is in equilibritthen(z) = 0, and this expression is reduced to its first term; if
there are nonlinearities or the distribution is not in eipuilim, then the second term must be retained. In this sgotie
shall assume the former and write,

C=(zZ)=B(aa) B, (14)

where | have used Eq.(3) and the obvious equaBtya) =(B- al.

We now evaluate the central matrix. Equilibrium is achielgdlistributing particles so that (1) action and angle
coordinates are independent and (2) angle coordinatessaributed uniformly. That this works is obvious if one
envisions the ensemble rotating in normalized phase spareioates. Under these conditions,

(a-a' ) = (aa)) = (VId] @) = (/i) ) (%) = (1) §; .
Now put this back into Eq.(14) and write in terms of composent

2n n

Cij = > BiBj(lk) = Z (BikBiy) (2Ik) (15)
k=1

The diagonal elements are particularly simple.

Gi = 0 = 3 [Bi(2k) (16)

k=1

COMMENTS

15. From what was said in previous sections about phase spaagwe can make an obvious identification between the
expectation value of actions and “emittances” for the itistron.

n
=T1(2ly), so thatCi; = ZD(BikBTk)Sk/T[ a7
k=1

This is valid even when the motion is coupled in all degredsegfdom, although the “emittances” are easier to interpret
geometrically without coupling.

16. These expressions are not restricted to uncoupled madidsaussian distributions, or by the number of degrees of
freedom. The quadratic statistics of an equilibrium bumcBn-dimenional phase space are completely determined by
numbers characterizing the bunch’s “size,” contained é@wmilues ok, andn® real numbers comprising the elements of
the eigenvector matri. If the system is symplectic, then omy —n(n—1)/2 = n(n+1)/2 of the latter are

independent. These become the “lattice parameters,” tiic#efunctions,” of the machine, whose definitions are
somewhat arbitrary. However, such parametrization$iardamentallyunnecessary, albeit sometimes convenient. The
separation between “beam parameters” and “machine pageshbas already taken place; indeed it was already inherent
in the definition of normal coordinates.

17. The phase ambiguity in the definition®fs irrelevant for this calculation. Ifa- a') is diagonal, then changirto

11



B-Qin Eq.(14), whereQ is a diagonal unitary matrix, results in the same covarianagix providedthe distribution is in
equilibrium.

18. Using normal coordinates — or, equivalently, actiogtaiwoordinates — to populate an invariant distributioraisily
generalized to nonlinear dynamics. Normal coordinatedescalculated to any order desirable, after which one pogsila
them just as in the linear case: uniformly in angle and usihgtever distribution seems appropriate in the action
coordinate. We shall return to this in a subsequent memo.

3.4 Phase

This brings us to the ever obnoxious issue of “phase advabheeM M . represent the (linearized) transition “from point
b to a different point” in the ring, and leM , andM _ be the one > turn transit matrices at those two points. Bedhese
system is assumed to be autonomous, these obey the masiéprgu
MC'MC b Mch Mb' (18)
If this is not clear, think about it for twenty seconds, andiit become obvious. Also so obvious as to be barely worth
mentioning is the crucial fact that, from this equati@b andM . Must possess the same eigenvalues.
Now, letB  andB _be the eigenvector matrices at those powith all normalization and ordering conventions

intact. Multiply Eq.(18) on the right byB , to get,

MM, ,B)=M M B, =M,
If we assume no degeneracy —i.e., all eigenvalues are distind therefore the eigenvectors are not rearranged or

superposed — then it must be tMt ' B,=B. D whereD is some diagonal matrix. However, becaM;e bis
itself symplecticD does not change the normallzatlon viz.

T _ T _ T _
(Mwb'gb) 'i'(Mch@b) - = (Mc b Q'Mwb)'gb =By, JB,=1
Therefore, itmustbe tha _ -B, andB _are related by a phase matrix,
M B, =B -Q (29)

—c—b =b =Cc =c—b’

whereQ is of the form given in Eq.(11), witkp diagonal.

The (diagonal) matrix elements & provide only the fractional part of the “phase advance.” itai the integral
part, Eq.(19) must be applied repeatedly at intervals semalligh thatAyy < 2rtfor all k, and the incremental (fractional)
phases accumulated and stored. The integral part increpse® every time an accumlated phase crossesrthe 2
boundary.

We have yet to connect the normal coordinatasatdc.

Mcﬁb'zbzzc = Mcﬁb'gb'gbzgc'gcﬁbigbzgclgc = gc%b.gbZQC

This is correct but violates the sometimes useful scientieffithat orbits continuously “behave like a harmonic
oscillator,” which would requir@, +— a,e '2™«/C = a,.e ™® nota, — a.e%. (Note:C = path length of closed orbit.)
This is recovered by rewriting Eq.(19),

M%b-gb = Ec-g-exp(igeyexp(—ige) = gc-exp(—i(i—ge))-exp(—ige) ,

12



and redefiningg =B exp—i(p—v6)) =B -exp(—i) with d=exp(—iv6)-a asthe normal coordinate. This
restores the desired science fiction by providing a thirdttpie,” intermediate between Schrodinger’s and Heiseydan
which both the state and the operators evolve. Again abugiagtum mechanical terminology, we can call it the
“interaction picture.”

COMMENTS

19. The numbers stored in the matrix elementQof ~ will depend on the conventions used to normaliz&eferring
to the nomenclature of Comment 20, below Eq. (11) Rrenvention and thg-convention — and anything in between —
lead to different but equally legitimate values for “phadgance.” Obviously, the popular one arises from the
B-convention. We will briefly return to this point later.

20. EQ.(18) has the fornk - X — X -G = C, with C = 0. Under a certain condition o andG, there is a unigue solution

for X given anyC. 8 One-turn transit matrices do not sat|sfy that conditioniclis just as weII sinceX =M =0
would then be the only solution. It is obvious from physicahsiderations thatl o_p Cannot be determined froM “and
M_ alone. o

21. Eq.(19)is contingent upon Eq.(18), which means thesttian matrix,M by must model a segment of the periodic
structure in which bottv b andM  are embedded as one-turn matriceg If |s an arbitrary symplectic matrix — e.g.
linearly modeling transit between two points in a transiiee - thenQ - need not be unitary. Put another way, the

columns ofB, which are no longer eigenvectotsan lose their normallzatlon.

If M, is thecompletetransition matrix associated with a transfer line conmertine ring to another, and if
Eq.(19) is satisfied, witM p, andM _ being the one-turn matrices of the two rings at the extradiud injection points,
andQ unitary, then the transfer line is “matched.” The task ofifigdsuch a line is the “matching problem” (normally
expressed as “matching the lattice functions”).

4 Parametrizations: “lattice functions”

For the case of linear(ized) dynamics, decompositionsHig3) or Eq.(15) effect a separation between machine
parameters, subsisting Biand/\, and the state information containedainAny physically meaningful calculation

relating observables can be formulated and done withoutdaoting additional notation. For example, the answer to
“What is the contribution of ‘vertical emittance’ @,?” is “| Bya, |282/T[." (This begs the question: in any situation where
Bxa, # 0, do you understand whap means?)

“Parametrization” begins from the observation that syrmojidity createsN(N — 1) /2 quadratic relationships among
the elements o1 or of B. TheirN? elements can thus (generally) be expressed in teri§Mf+ 1) /2 = n(2n+ 1) real
variablesn of which are the phase angles (ma) 2Within the context of accelerator physics these are d4litice
functions.”

4.1 Harmonic oscillator

Before looking at parametrizations in accelerator physipause to consider the harmonic oscillator, because i@jhe
universal archetype of all stable physical systems, antb(explain why | use the symbols | do. Finding the harmonic

8Proofs can be found in textbooks on linear algebra and neatrisuch as Bellman [5]. A loosely stated, insufficient ptgisinterpretation of the
required condition is that matricé&sandG must contract phase space, making the origin an attractor.

9At least not legitimate eigenvector§ Given any diagonatima\, one can always artificiallgefinea matrixM according toM = B-A-B~1 so that
the columns oB become eigenvectors bf. a B o
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oscillator’s eigenvector matri)8, was done in ICD [2], Sec.2.1.1, pp.22-24. From there wel §ftainly the two
expressions relevant here.
The correspondence betwenp) and the complexa,a*) coordinates is given by

(3)- (202 ) (2)-0(2).

wheremandw are, respectively, the mass and radial frequency parasegsociated with the oscillator. It is trivially
verified that Eq.(10) is satisfied. The inverse form of thiwigiten,

a\_g1(x)_ Vmw/2 i/vV2mw (X

a ) = p/) \ vVmw/2 —i/v2mw p/)’
validating that these are correctly normalized so that]assical mechanics gives way to quantum mechanics, they
become (apart from factorslofthe annihilation and creation operataasanda’, of the harmonic oscillator system.

4.2 Transverse accelerator coordinates: one degree of frdem

For accelerator problems in one degree of freedom, thetitvadl parametrization connects matrix elementB @fith
Courant-Snyder “lattice functions.” There are severalsvayproceed; | choose one here that begins from the
identification given in Eq.(13) and the definition of Eq.(8)peends with (something like) familiar “Courant-Snyder”
expressions.
As already mentioned in Comment 22 below Eq.(12), for a tivoethsional phase space, the correct normalization
follows from requiring the product,
[(B21Bjy) = ~1/2 . (20)

The most general matrix satisfying this can be written aeed in terms of two real parameters and a phase, not
surprisingly notated here as B, ande ¢

\/%_[3 < —iB—a i£301)<eoilTJ e'o‘p)

Itis easy to verify directly that that Eq.(10) is satisfied &my choice of phasd].
We now justify this notation by establishing the connectioth familiar expressions. First use Eq.(3) and Eq.(13) to
relate the normal coordinates with the original coordinate

(i)‘ﬁ < W i—ch)<eoqu éoq”)(l—\f;elt)

I am using here a notation employed regularly in celestiathmaics, whereby the canonical momenta to coordinates
(x,Y,2) are written(X, Y, Z). This temporarily leaves it vague whethérefers tox' = dx/ds= py/p; = tanb or to
Px/ Pref = SiNB. Within the eikonal (paraxial) approximatisequiredfor the linear sector — i.é> <1 — the two are
equivalent. We shall return to this point when discussirgrtbnlinear sector in a subsequent memo.

Expanding the top row provides the following.

x = VB2V (e _d @0y — /2BT sin@+9) = VB (vV20(e V) (21)

lloo
Il
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Anticipating our final result, instead of using the second as written, we expandx+ BX.

@er(x)
e iba

- \/iz—ﬁ(—iﬁ ) S )
= VB (\/QD(e*i‘La))
VBT cos B+ )

All of which can be encapsulated into a single phasor equatio

x+i(ax+pX) = /2B e ¥a (22)

This completes our justification of this notation and preddhe expressions used by CHEF to calculate “lattice
functions” from matrix elements of the eigenvector matBxA “meta-algorithm” for doing so is written below; the
matrix elements oB are expressed, in pseudo-Dirac fashion, by the coorditiagsonnect rather than the (arbitrary)
integers1and 2.

ox+ BX

B = 2|Bxa|2
e = B/|Bul

As a consistency condition (or test of correctness), tHeviahg must be satisfied as well.
1 == —2 Im(Bxa* BXa)
This merely recaptures the symplectic condition, as suriz@ain Eq.(20).

COMMENTS

22. Different, equivalent parametrizations follow upodegning the phasel). As one (and only one) example, if we
choose to make the second row real and positive, rather ttegfir$t, we could write,

N N I s N (e G A

where €% = (i—a)/|i —a|, and By—a? = 1. Instead of Eq.(22), we then would get,

X—i(aX+y) = /2y e a , (24)
with n = {+&. The interpretation of this choice is too obvious to dwell npere.

23. Injust one degree of freedom, Eqg.(16) and Eq.(17) aralisi connected with the more familiar relation,
02 = |Bxa |?€1/T = Be1/2m . (25)

This expression relating a directly measurable beam walthe emittance and the form of Eq.(21), as opposed Eq.(24)
(X cannot be measured directly) are, with virtual certaintyythe 3-convention is overwhelmingly preferred.
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4.3 Transverse accelerator coordinates: two degrees of gdom

In going beyond one degree of freedom, we should make oneagasttion regarding the order of the columngoft is
not at all essential, but we (at least, 1) would like coortiséa;, az) = (az,a;*) to refer to “mostly horizontal” motion
and(ap,as) = (ap,ap*), to “mostly vertical.1° This arrangement can be accomplished in several ways. Bonge, one

could assert
| szak | + | sz+nak+n | = mJaX( | szaj | + | sz+naj+n | ) . (26)

The reader can come up with many other variations, all of whiould lead to the same respitovided the coupling is
weak.For strong coupling, this ambiguity may be much more diftigfihot impossible, to resolve.

In the four dimensional phase space of transverse motianpasrametrizations found favor at Fermilab: one devised
many years ago by Edwards and Teng [6], the other, more fgcbpti_ebedev and Bogacz [7]. The latter is written as
follows.

ol &' By’ i e vz By
i 1/2 1/2 _j 1/2 1/2
B= /L ¢t By By e By By

2| (mi1-u) —an)By’? €% (—iu—ax)By’’  (i(1—u)—aw)By’® V2 (iu—an)Bs
&V (—iu— o)y’ (—i(1—u) — 0By’ €M (u—ay)By e (I(1—u) - ozy)By

This uses the notation of Ref.[7] but the normalization of(E@), which introduces an extig1/2. Eq.(9) is satisfied, the
[B-convention is used in both planes, and the notation is ddvis mimic the two-dimensional case as closely as possible.
The eleven parameteric symbols in this matrix are three taoymd-5/2 = 10= 8+ 2 column phases, which have been
suppressed. Thus, the symplectic condition provides tddé@ional equations that can be used to eliminvate,, andu,
leaving[B|a](1j2xy @s the preferred set of eight independent parameters.dibgrjuations relating the three dependent
parameters to this set can be found in Ref.[7]. CHEF doess®those expressions; if, for some reason, the values are
desired, they can be obtained directly fr&n

eivl = Byal/|Byal|
€2 = Bya/|Bxa

u - 1+ D(Bxal BXal)

The other eight are calculated in manners similar to whatdea® in the two-dimensional case, Eq.(23).

The Edwards-Teng approach did not use the eigenvectonnatitectly but decomposed the one-turn transit matrix
into three factors. Their description is made easier byraaaing phase space coordinates. Rather than splittimgalo
“position” and “momentum” sectors as we have been, we shallgthe coordinates into “horizontal” and “vertical”
sectors, that is(,zl,Zl;zz,Zz)T instead of(zl,zz;Zl,Zz)T. Then, in place of our starting point, Eq.(2), the Edwardegle
decomposition is writteA!

. ( cosel —sinpD™* \ cospl singD '\ (H 0

=\ singD cospl ~ \ —singD cospl oV )’
whereD is a 2x 2 unimodular matrix (three parameters) dh@ndV have the form of uncoupled two-dimensional
one-turn transit matrices (three parameters each, imgualiphase). This has a structure similar to Eq.(2), but atiogs

1070 anticipate, this notation might produce confusion whenget around to discussing CHEF’s code, as programmingeadiegin with zero, not
one. Thus(as,az) will become (a[0],a[2]), and so forth.
11This is not the form taken in the original paper. | have sHiftae matrix to the left hand side to highlight the corresgme with Eq.(2).
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are real. It provides a similarity transformation relatiMdo its block-diagonal form, operating on tweal
two-dimensional invariant subspaces, the ones spanneoibglex conjugate normal coordinates.

Reference [6] contains a procedure for obtaining the patenrsiebut they also can be generated from the matrix
elements oB by combining complex conjugate columns to form real baseth®invariant subspaces. CHEF still
provides them, but its usage has been deprecated.

4.4 Accelerator coordinates: three degrees of freedom

If a non-accelerating cavity is used to confine longitudimation, then the transit matrix of the linearized system jis@
and there are twenty-one independent parameters, of whnieh are phase angles and the other eighteen can be
interpreted as “lattice functions.” CHEF currently doe$ pimvide such a parametric set. It nonetheless may be worth
comparing the familiar relation,

0% = Bxex/2m+D%03, , (27)
which relates horizontal beamwidth to horizontal emitgrdispersion and momentum spread, with Eq.(16) and Eq.(17)
031 = |Bya |281/TH‘ |Bzya, |282/TH' |Bzyag |283/T[
0%3 = | BZSal |281/T[+ | BZaaz |2£2/T[+ | BZsaa |283/T[

As was done in Eq.(25), we defiflg/2 = | B, 4, |. If we assume;, = 0, thenez can be eliminated to get,

( Bx/2 — |Bzay /Bzag |2 ) -€1/T0 + ( |Bzyag |2/| Bzas |2 ) '033 . (28)

A direct comparison between Eq.(28) and Eq.(27) would bégesuin its own right, because the physical situations are
different. To begin with, the value /2 may not be the same, as could the values of the “horizontitleeToe.” Further,
Eq.(27) assumes thap/p remains constant for each particle in the bunch, so thatiipeesion D, is well defined as the
closed orbit at that momentum offset. Eq.(28) assudpgp oscillates at something close to the synchrotron frequency
and “dispersion” has not even been defined. | shall postpiscesking this to another day, after we have been forced to
pin down physical interpretations for transverse and ltuttinal coordinates.
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