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Every other man spoke a language entirely his own, which
he had figured out by private thinking; he had his own ideas and
peculiar ways. If you wanted to talk about a glass of water, you had
to start back with God creating the heavens and the earth; the apple;
Abraham; Moses and Jesus; Rome; the Middle Ages; gunpowder;
the Revolution; back to Newton; up to Einstein; then war and Lenin
and Hitler. After reviewing this and getting it all straight again you
could proceed to talk . . . . “I’m fainting, please get me a little water.”
You were lucky even then to make yourself understood.

— Saul Bellow
Seize the Day

1 Introduction

This memo begins a series which, put together, could comprise the “CHEF Documentation Project” if there were such a
thing. The first - and perhaps only - three will telegraphically describe theory, algorithms, implementation and usage of the
normal form map analysis procedures encoded in CHEF’s collection of libraries. [1] This one will begin the sequence by
explaining the linear manipulations that connect the Jacobian matrix of a symplectic mapping to its normal form. It is a
“Reader’s Digest” version of material I wrote inIntermediate Classical Dynamics(ICD) [2] and randomly scattered
across technical memos, seminar viewgraphs, and lecture notes for the past quarter century. Much of its content is old,
well known, and in some places borders on the trivial.1 Nevertheless, completeness requires their inclusion. The primary
objective is the “fundamental theorem” on normalization written on page 8. I plan to describe the nonlinear procedures in
a subsequent memo and devote a third to laying out algorithms and lines of code, connecting them with equations written
in the first two. Originally this was to be done in one short paper, but I jettisoned that approach after its first section
exceeded a dozen pages.

The organization of this document is as follows. A brief description of notation is followed by a section containing a
general treatment of the linear problem. After the “fundamental theorem” is proved, two further subsections discuss the
generation of equilibrium distributions and issue of “phase.” The final major section reviews parametrizations – that is,

1Notwithstanding, it is worth remembering that a few decades ago (almost?) everyone in accelerator physics routinely preferred a language carried
over from the early days of cyclotrons.
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lattice functions – in two and four dimensions with a passingglance at the six-dimensional version. Appearances to the
contrary, for the most part I have tried to restrict consideration to matters needed to understand the code in CHEF’s
libraries.

2 Preliminaries on notation

I shall use the notation of ICD [2]: a collection of phase space coordinates is indicated with an underlined letter, as in “z,”
and a matrix with double underlines, as in “M.” This is not meant to imply that phase space is a vector space. It is not, but
locally it looks like one, because it is coordinatized2 as an open subset ofRN, for someN, containing the origin. In any
case, the linear part of a mapping subsists in a vector space,the tangent space attached to some point of the manifold.

For reasons that might become more evident later, I prefer toarrange phase space coordinates so that the “position”
and “momentum” sectors are separated. (As a result, this is how they have always been ordered internally in CHEF’s
software.) Most others prefer to keep individual “position” and “momentum” coordinates together, which in accelerator
physics leads to grouping according to “horizontal,” “vertical,” and “longitudinal” sectors. For example, for a
four-dimensional,R4 phase space,

I would use : z=









x
y
px

py









while many others use: z=









x
px

y
py









. (1)

Both choices possess advantages in different contexts: theformer is convenient for carrying out matrix multiplications in
2×2 blocks; the latter, for performing horizontal and vertical projections. When it is necessary to refer to this convention,
and a few others to be given later, I shall write that the coordinates are “sensibly ordered.”3

We deal with discrete dynamical systems, whose orbits are represented by indexed sequences,

{ . . . ,z−3,z−2,z−1,z0,z1,z2,z3, . . . } .

Eachzk is an array of coordinates on a phase space chart. They need not be real and generally are not. Nonetheless, we
shall assume westart withreal coordinates, i.e.zk ∈ RN, for someN = 2n. 4 If the system is deterministic, then there is an
indexed collection of “transition functions,” or “mappings,” Tk, such thatzk+1 = Tk(zk); if it is also autonomous, then allTk

are the same, and we write

zk+1 = T(zk), or T : zk 7→ zk+1, or sometimes justT : Z→ Z, z 7→ T(z) .

Of course, the application to accelerator physics is implicit: the transition represents a single turn in a periodic machine.

3 The linear sector

The goal of this section is to fix the definition of normal coordinates for linear systems, with special attention paid to the
normalization appropriate when the transition is symplectic, such as one arising from a Hamiltonian flow. Our key resultis
the “fundamental theorem” written in Eq.(10). Following subsections treat quadratic statistics for invariant distributions
and the calculation of “phase advance” in a ring.

2If there is such an abominable word.
3This is a biassed characterization, of course, but I have to call it something.
4The restriction to an even-dimensional phase space could belifted for greater generality, e.g. to include spin, but nothere and not now.
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3.1 Generic linear normal form coordinates

Regardless of symplecticity, if the system is autonomous, then its linear part is described by a squareN×N matrix,M,
such that

zk+1 = M ·zk +O(z2
k) for all k .

I’ll immediately drop the “O(z2
k)” notation from all following equations and write more simply,

zk+1 = M ·zk or z 7→M ·z .

If there exists a square matrixB and a diagonal matrixΛ such that

M ·B = B·Λ , (2)

then the phase space decomposes intoN independent, one-dimensional, possibly complex, invariant subspaces.5 The
columns ofB contain eigenvectors ofM, with eachΛii being the corresponding eigenvalue. We define the “(linear)normal
form coordinates,”a, according to

z= B ·a . (3)

Which brings us to the eternal question of which “picture” toadopt. To abuse slightly familiar terminology from
quantum mechanics, in the “Schrödinger picture,” states evolve while the operators remain fixed; in the “Heisenberg
picture,” states remain fixed – at their initially specified values – and operators evolve. The choice here is,

M ·z = M · (B·a) = (M ·B) ·a
= (B ·Λ) ·a, Heisenberg

= B· (Λ ·a), Schrodinger.

Put another way, do we interpretz 7→M ·zasa 7→ Λ ·a (i.e. ai 7→ Λii ai) or asB 7→ B·Λ? We shall eschew the choice and
adopt “both-and” rather than “either-or” in different circumstances as convenience dictates. In fact, a third choice,the
“interaction picture,” is frequently used. We shall take itup in Section 3.4.

If M is not orthogonal, its eigenvalues, eigenvectors and the normal form coordinates generally are complex. Further,
becauseM is real, eigenvalues must come in complex conjugate pairs. We extend the notion of “sensible ordering” to the
columns ofB andΛ: they are “sensibly ordered” ifΛ∗ii = Λi+n i+n wheneverℑΛii 6= 0. (Note: index arithmetic is done
modulo 2n.) This induces a corresponding order on the columns ofB. Eigenvectors associated with complex conjugate
eigenvalues need not themselves be complex conjugates of each other, as an eigenvector can be multiplied by any complex
number and remain an eigenvector (with the same eigenvalue). That is, for any diagonal matrixW,

M ·B·W = B·Λ ·W = B·W ·Λ

so thatB·W also satisfies Eq.(2) and could be used instead ofB. So, we enforce the condition and assert that the columns
of B have been scaled in such a way that, likeΛ, it satisfiesB∗ii = Bi+n i+n wheneverℑBii 6= 0. As a consequence, half of
the the normal form coordinates will be complex conjugates of the other half. These conditions can be written as matrix
equations by introducing the extended “Pauli matrix”:

σ
1
≡
(

0 1
1 0

)

; B∗ = B·σ
1

; Λ∗ = Λ ·σ
1

, (4)

5Were we to require phase space coordinates to remain real, then some invariant subspaces would be two-dimensional: i.e.one complex coordinate
subsumes two real coordinates. Enforcing such a requirement produces no advantage. The notation used here is the one introduced in Ref. [3]

3



Figure 1: Commutative diagram connecting real and normal form coordinates.

whereσ
1

is written in 2×2 block form: 0 is then×n zero matrix and 1, then×n identity matrix.

NOTE: This equation does not exhaust the requirements on preordering the columns ofB. Permutations could still be
carried out within the 2n×n submatrices: i.e. the first and second blocks ofn columns. There are two more conditions
which will be introduced later, when they are needed.6

The attentive reader already has noticed some difficulties in defining normal form coordinates via Eq.(3). We have
tacitly assumed that the dynamical system is reversible, which means thatB is invertible: no eigenvalue is zero, and the
null space ofM is trivial. Further, degeneracy – two or more identical eigenvalues – would produce additional ambiguity;
corresponding eigenvectors can be superposed to produce different ones. Most importantly for us, a final normalization
must be chosen. In principle, this is not important as long asone remains consistent within a particular calculation, but I
shall specify a preferred normalization for symplectic systems in the next section.

COMMENTS:

1. All of this is very basic and requires no further explanation. Both eigenvalues and eigenvectors are generally complex,
so normal form coordinates will be too. In principle, the original “phase space” could have been complex by defining
orbits as sequences overCN.

2. Not all matrices can be diagonalized. In such cases, proving the non-existence ofB is an ill-posed problem. We’ll say
no more about that; let’s move on.

3. Algebraists express Eq.(2) graphically as a “commutative diagram,” like the one shown in Figure 1. As we shall see in
the next memo, it can be extended surprisingly naturally to the nonlinear sector, where it helps to organize one’s thinking.

6If you want to peek ahead, see Eq.(9) and Eq.(26).
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3.2 Symplectic systems

While this is a somewhat restricted7 definition, we shall understand the linear system,z 7→M ·z, to be “symplectic” when
M satisfies

M ·J ·MT = J, where J≡
(

0 1
−1 0

)

. (5)

Here,J is written in block form; it looks as it does because dynamical coordinates are “sensibly ordered,” as in Eq.(1).
Before continuing, it is worth noting Eq.(5) could also be written,

MT ·J ·M = J , (6)

as the two expressions are interchangeable. Since this is not frequently asserted, we shall pause to do so, and even
generalize the observation to complex matrices, using the usual notation,M† = M∗T

ASSERTION: Let O be a unitary matrix: that is,O† ·O = O·O† = 1. Let M be a matrix satisfyingM ·O·M† = O. Then,
M† ·O·M = O.

PROOF: Clearly, bothO andM are square and not singular. ThusM−1 exists; in fact,M−1 = O·M† ·O†, for

M ·O·M† ·O† = O·O† = 1 .

Then, since(M†)−1 = (M−1)†, we have

O = (M−1) · (M ·O·M†) · (M−1)†

= (O·M† ·O†) · (O) · (O·M† ·O†)†

= O· (M† ·O·M) ·O† .

Finally, multiplying on the left byO† and right byO provides the result

M† ·O·M = O .

2

The application to Eq.(6) is immediate upon noting thatJ is a real, orthogonal matrix and, therefore, unitary.

As already noted, eigenvalues and eigenvectors of any realM must come in complex conjugate pairs. IfM is
symplectic, they also can be associated in reciprocal pairs.

ASSERTION: If λ is an eigenvalue of a symplectic matrix,M, then so areλ∗ and 1/λ.

PROOF HINT : This simple proof can be found in many books, but as a hint forthe second part: notice that
M−1 =−J ·MT ·J whenM is symplectic, and manipulate the characteristic polynomial for M−1, det(M−1−λ1) = 0.

2

7The restriction comes from assuming the coordinates are canonical. It is sometimes useful to exploit symplecticity with noncanonical coordinates.
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COMMENTS:

4. Obviously the first assertion above works as well in the other direction: simply substituteM† for M throughout
its proof.

5. The reciprocal of an eigenvalue is generally not its complex conjugate. However, if orbits are bounded (i.e. linearly
stable), then all eigenvalues must lie on the unit circle —|λ|= 1 for all λ — and therefore satisfyλ∗ = 1/λ. Though it
is not always essential,in everything that follows we shall tacitly assume this to bethe case when it either simplifies or
validates a calculation.In the language of accelerator physics, this means that linear (resonance) stopbands, such as
νx = νy or 2νx = integer, have been avoided.

6. ForN = 2, the symplectic condition, Eq.(5), is tantamount todet(M) = 1, becauseM ·J ·MT = det(M) J. In higher
dimensions, its implications are more involved (see below), but clearlydet(M) =±1. In fact, as the determinant is the
product of the eigenvalues, any symplectic matrix must havedeterminant+1, because of the reciprocal property asserted
above.

7. The symplectic condition is equivalent to invariance of Poincaré’s differential two-form,ω, which is evaluated using a
canonical coordinate chart as follows. Letu andv be arbitrary tangent vectors.

ω(u,v) =

(

n

∑
k=1

dxk∧dpk

)

(u,v) =
n

∑
k=1

dxk(u)dpk(v)−dpk(u)dxk(v)

= (dx dp)(u) ·J ·
(

dx
dp

)

(v)

= dzT(u) ·J ·dz(v) . (7)

8. As is well known, symplectic matrices form a group. We’ll say no more about that,exceptto mention in passing a
lovely theorem which states that the entire group can be generated by the two subgroups of matrices of the form

(

1 s1
0 1

)

and

(

1 0
K 1

)

,

wheres is any real number andK is any symmetric,n×n matrix. Again using the language of accelerator physics, the first
subgroup corresponds to drift spaces, and the second comprise linear kicks, a generalization of thin quadrupoles. If you
are interested in reading a proof, one can be found in Guillemin and Sternberg [4].

9. Symplecticity does not guarantee diagonalizability. The most trivial (one parameter) symplectic subgroups that cannot
be diagonalized are first learned in high school and were already written above:

M(t) =

(

1 t1
0 1

)

, t ∈ R.

This is the time-evolution operator of unaccelerated motion, particles travelling in straight lines at constant velocities. So,
in what follows, we mustassumethat Eq.(2) is satisfied.

The eigenvector matrix,B, defined in Eq.(2), which transforms real canonical coordinates into normal form
coordinates, does not satisfy Eq.(5) and, therefore, is notsymplectic. What remains of this section is devoted to proving
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that, when orbits are bounded, the columns ofB, can always be normalized to satisfy the analogous condition,
BT ·J ·B = iJ. This fixes the normalization of normal coordinates so that they can be associated unambiguously with
action-angle coordinates and, eventually, withat least onedefinition of the emittance of a bunch. Because this result does
not normally appear in textbooks, I’ll write a proof that steps through a sequence of lemmas. If you have no interest in
proofs, skip what follows and begin again with the comments following the “fundamental theorem” on page 8.

LEMMA : Let M ·B = B·Λ, where all matrices are square and sensibly ordered,M is real and symplectic, andΛ is
diagonal, non-degenerate, with all non-zero elements on the unit circle. ThenBT ·J ·B·J is a diagonal matrix.

PROOF: Using the previous lemma, symplecticity ofM is writtenMT ·J ·M = M ·J ·MT = J, from which we obtain,

BT ·J ·B = BT · (MT ·J ·M ) · ·B
=

(

M ·B
)T ·J ·

(

M ·B
)

=
(

B·Λ
)T ·J ·

(

B·Λ
)

= ΛT ·
(

BT ·J ·B
)

·Λ

We note in passing thatΛT = Λ, asΛ is diagonal. In terms of components, this is written:

for all i, j : ( BT ·J ·B)i j = (Λi i Λ j j )( BT ·J ·B)i j

which means
either ( BT ·J ·B)i j = 0 or Λi i Λ j j = 1.

Because of the hypotheses aboutΛ, the only non-zero elements ofBT ·J ·B must be in the same position as the non-zero
elements ofJ. Thus,BT ·J ·B·J is a diagonal matrix.

2

Without loss of generality, we express this matrix as−iD, whereD is diagonal, so that we can write

BT ·J ·B = i D ·J, where D is diagonal.

Our goal now is reduced to proving that the columns ofB can be normalized such thatD = 1. To that end, I offer a final
intermediate lemma for purposes of meditation: namely,[D, σ

1
] = 0.

LEMMA : If B is symplectic and sensibly ordered, then

BT ·J ·B·J =−i

(

D ′ 0
0 D ′

)

,

where then×n blockD ′ is a real, diagonal matrix.

PROOF: BecauseB is sensibly ordered, we can write it in block form as follows.

B =

(

B
1

B∗
1

B
2

B∗
2

)
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A simple calculation then gives us,

BT ·J ·B·J =





BT
2
·B∗

1
−BT

1
·B∗

2
BT

1
·B

2
−BT

2
·B

1

B†
2
·B∗

1
−B†

1
·B∗

2
B†

1
·B

2
−B†

2
·B

1



 (8)

We have seen already that this is diagonal, so the the diagonal blocks are themselves diagonal matrices, and the
off-diagonal blocks must vanish. This means that

BT
1
·B

2
= (BT

1
·B

2
)T .

That is,BT
1
·B

2
is a symmetric matrix, which is interesting but not to the point. More to the point is that the (diagonal)

diagonal blocks are anti-Hermitian and negative complex conjugates of each other. This means

BT ·J ·B·J =

( −iD ′ 0
0 −iD ′

)

≡−iD ,

whereD ′ is a real, diagonal matrix.
2

We have shown not only thatD is real and diagonal, but that its upper left and lower right blocks are identical. That will be
useful in establishing the final result, which follows below. Before entering into its proof, we must introduce another
preordering condition on the columns ofB: referring to the notation of Eq.(8),

for all i : ℑ(BT
1
·B∗

2
)ii > 0 . (9)

Effectively, this means that the diagonal elements ofD will all be positive. A few moments reflection will convince you
that such an ordering is always possible. First, noDii will vanish, as that would imply detD = 0, which is impossible.
Second, if it happens that Eq.(9) is violated for somei, switching columnsi andi +n of B will fix it, as B already satisfies
Eq.(4). With that done, we can proceed.

FUNDAMENTAL THEOREM : The columns ofB can be normalized so that

BT ·J ·B = iJ . (10)

PROOF: We multiplyB on the right by a diagonal matrix,W, and use the previous lemmas to calculate.

(B·W)T ·J · (B·W) = WT · (BT ·J ·B) ·W
= W · ( iD ·J) ·W
= iD ·W ·J ·W

Again, do this calculation in 2×2 block form.

iD ·W ·J ·W = i

(

D ′ 0
0 D ′

)

·
(

W
1

0
0 W

2

)

·
(

0 W
2

−W
1

0

)

= i

(

D ′ 0
0 D ′

)

·
(

0 W
1
·W

2
−W

2
·W

1
0

)

= i

(

0 D ′ ·W
1
·W

2
−D ′ ·W

1
·W

2
0

)
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To maintain Eq.(4), we must haveW
2
= W∗

1
. Thus, all that is necessary to obtain the desired result is tochoose diagonal

components for the submatrixW
1

so that

for all i, (D ′)ii |(W1
)ii |2 = 1 .

This is always possible because, by our preordering assertion, Eq.(9), all(D ′)ii are positive.
2

COMMENTS:

10. There remains a phase ambiguity. LetΩ be any unitary matrix satisfyingΩ ·σ
1
= σ

1
·Ω∗. That is,

Ω =

(

exp(−iψ) 0

0 exp(iψ)

)

, (11)

whereψ is an arbitrary real, symmetric,n×n matrix. Then,Ω is itself symplectic – i.e.ΩT ·J ·Ω = J – so that

(B·Ω)T ·J · (B ·Ω) = ΩT ·BT ·J ·B·Ω = ΩT · iJ ·Ω = iJ .

However, unless there are degeneracies, to keep Eq.(2) intact, ψ should be diagonal, not just symmetric. Even with

degeneracy, it must be diagonal in order to avoid mixing the eigenvectors.
In words, the normalization is not changed by multiplying every column inB by a phase while retaining its sensible

ordering. Thus, to finish specifyingB unambiguously requires one final and more or less arbitrary convention. The two
most obvious ones are:

“β-convention”: fork = 1. . .n, Bxk ak is real and positive
“γ-convention”: fork = 1. . .n, Bpk ak is real and positive

The first is popular, the second is not, for a reason that will be clear soon, if it is not already.

11. Referring back to Eq.(7), notice that with the correct normalization,

dzT(u) ·J ·dz(v) = daT(u) · ( iJ ) ·da(v) .

Written in the language of two-forms, and using the fact thatB is sensibly ordered, this becomes

n

∑
k=1

dxk∧dpk = i
n

∑
k=1

dak∧dak+n = i
n

∑
k=1

dak∧da∗k (12)

12. When phase space is two-dimensional and Eq.(10) is satisfied, then Eq.(8) provides the simple numerical condition,
B2B∗1−B1B∗2 = 2iℑ(B2B∗1) =−i. If the phase is chosen such thatB1 is real, then this becomesB1ℑ(B2) =−1/2. We shall
see two examples of this in the next section.

13. With this normalization, the connection between normalcoordinates and action-angle coordinates,(ϕ, I), was written
in the second chapter of ICD [2] – esp. p.24; Eq.(2.9) – and developed further in subsequent chapters: viz.

for k = 1, . . .n : ak = i
√

Ik e−iϕk, ak+n = a∗k =−i
√

Ik eiϕk . (13)

9



Figure 2: Normal coordinates rescaled so their real and imaginary parts present the visually correct phase space area. The
angle variable,ϕ, is measured clockwise from theℑa axis.

We can partly justify this identification here by extending the chain of equivalences begun in Eq.(12). Within each two
dimensional-invariant subspace,dak/ak = dIk/2Ik− idϕk, so that

dak∧da∗k = |ak |2 (dIk/2Ik− idϕk )∧ (dIk/2Ik + idϕk )

= ( |ak |2/2Ik)(−i dϕk∧dIk + i dIk∧dϕk )

= −i dϕk∧dIk .

Putting this into Eq.(12) and summing extends the chain correctly.

n

∑
k=1

dxk∧dpk = i
n

∑
k=1

dak∧da∗k =
n

∑
k=1

dϕk∧dIk

14. A complex normal form coordinate can be separated into its real and imaginary parts, sayak = uk + ivk, whereuk and
vk are real coordinates for the two-dimensional invariant subspace. However, the (oriented) phase space area element on
this subspace isnot duk∧dvk. Instead,

dxk∧dpk = idak∧da∗k = i (duk + idvk )∧ (duk− idvk ) = 2duk∧dvk = d(
√

2uk)∧d(
√

2vk)

Put another way, real coordinates that preserve phase spacearea are(
√

2ℜ(a),
√

2ℑ(a)), and the corresponding polar
“radius” coordinate is

√
2|a|=

√
2I . (See Figure 2.)

10



3.3 Equilibrium distributions of particles

Quadratic statistics for a distribution of particles subsist in the covariance matrix.

C = 〈z·zT 〉− 〈z〉 · 〈zT 〉

If the system is linear and the distribution is in equilibrium, then〈z〉= 0, and this expression is reduced to its first term; if
there are nonlinearities or the distribution is not in equilibrium, then the second term must be retained. In this section, we
shall assume the former and write,

C = 〈z·zT 〉 = B· 〈a ·a† 〉 ·B† , (14)

where I have used Eq.(3) and the obvious equality(B ·a)T = (B·a)† .
We now evaluate the central matrix. Equilibrium is achievedby distributing particles so that (1) action and angle

coordinates are independent and (2) angle coordinates are distributed uniformly. That this works is obvious if one
envisions the ensemble rotating in normalized phase space coordinates. Under these conditions,

〈a·a† 〉k j = 〈aka
∗
j 〉 = 〈

√

IkI j ei(ϕ j−ϕk) 〉 = 〈
√

IkI j 〉〈ei(ϕ j−ϕk) 〉 = 〈 Ik 〉δk j .

Now put this back into Eq.(14) and write in terms of components.

Ci j =
2n

∑
k=1

Bi kB∗j k 〈 Ik 〉 =
n

∑
k=1

ℜ(Bi kB∗j k)〈2Ik 〉 (15)

The diagonal elements are particularly simple.

Ci i = σ2
i =

n

∑
k=1

|Bi k |2 〈2Ik 〉 (16)

COMMENTS:

15. From what was said in previous sections about phase spacearea, we can make an obvious identification between the
expectation value of actions and “emittances” for the distribution.

εk = π 〈2Ik〉, so thatCi j =
n

∑
k=1

ℜ(Bi kB∗j k)εk/π (17)

This is valid even when the motion is coupled in all degrees offreedom, although the “emittances” are easier to interpret
geometrically without coupling.

16. These expressions are not restricted to uncoupled motion, to Gaussian distributions, or by the number of degrees of
freedom. The quadratic statistics of an equilibrium bunch in 2n-dimenional phase space are completely determined byn
numbers characterizing the bunch’s “size,” contained in the values ofεk, andn2 real numbers comprising the elements of
the eigenvector matrix,B. If the system is symplectic, then onlyn2−n(n−1)/2= n(n+1)/2 of the latter are
independent. These become the “lattice parameters,” or “lattice functions,” of the machine, whose definitions are
somewhat arbitrary. However, such parametrizations arefundamentallyunnecessary, albeit sometimes convenient. The
separation between “beam parameters” and “machine parameters” has already taken place; indeed it was already inherent
in the definition of normal coordinates.

17. The phase ambiguity in the definition ofB is irrelevant for this calculation. If〈a·a† 〉 is diagonal, then changingB to
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B·Ω in Eq.(14), whereΩ is a diagonal unitary matrix, results in the same covariancematrixprovidedthe distribution is in
equilibrium.

18. Using normal coordinates – or, equivalently, action-angle coordinates – to populate an invariant distribution is easily
generalized to nonlinear dynamics. Normal coordinates canbe calculated to any order desirable, after which one populates
them just as in the linear case: uniformly in angle and using whatever distribution seems appropriate in the action
coordinate. We shall return to this in a subsequent memo.

3.4 Phase

This brings us to the ever obnoxious issue of “phase advance.” Let M
c←b

represent the (linearized) transition “from point
b to a different pointc” in the ring, and letM

b
andM

c
be the one turn transit matrices at those two points. Becausethe

system is assumed to be autonomous, these obey the master equation,

M
c
·M

c←b
= M

c←b
·M

b
. (18)

If this is not clear, think about it for twenty seconds, and itwill become obvious. Also so obvious as to be barely worth
mentioning is the crucial fact that, from this equation,M

b
andM

c
must possess the same eigenvalues.

Now, letB
b

andB
c

be the eigenvector matrices at those points,with all normalization and ordering conventions
intact. Multiply Eq.(18) on the right byB

b
to get,

M
c
· (M

c←b
·B

b
) = M

c←b
·M

b
·B

b
= (M

c←b
·B

b
) ·Λ .

If we assume no degeneracy – i.e., all eigenvalues are distinct, and therefore the eigenvectors are not rearranged or
superposed – then it must be thatM

c←b
·B

b
= B

c
·D, whereD is some diagonal matrix. However, becauseM

c←b
is

itself symplectic,D does not change the normalization: viz.

(M
c←b
·B

b
)T ·J · (M

c←b
·B

b
) = BT

b
· (MT

c←b
·J ·M

c←b
) ·B

b
= BT

b
·J ·B

b
= iJ .

Therefore, it must be thatM
c←b
·B

b
andB

c
are related by a phase matrix,

M
c←b
·B

b
= B

c
·Ω

c←b
, (19)

whereΩ is of the form given in Eq.(11), withψ diagonal.

The (diagonal) matrix elements ofΩ provide only the fractional part of the “phase advance.” To obtain the integral
part, Eq.(19) must be applied repeatedly at intervals smallenough that∆ψk < 2π for all k, and the incremental (fractional)
phases accumulated and stored. The integral part increasesby one every time an accumlated phase crosses the 2π
boundary.

We have yet to connect the normal coordinates atb andc.

M
c←b
·z b = z c =⇒ M

c←b
·B

b
·ab = B

c
·Ω

c←b
·ab = B

c
·ac =⇒ Ω

c←b
·ab = ac

This is correct but violates the sometimes useful science fiction that orbits continuously “behave like a harmonic
oscillator,” which would requireak 7→ ake

−i2πνks/C = ake
−iνkθ, notak 7→ ake

−iψk. (Note:C = path length of closed orbit.)
This is recovered by rewriting Eq.(19),

M
c←b
·B

b
= B

c
·Ω ·exp(iνθ) ·exp(−iνθ) = B

c
·exp(−i(ψ−νθ)) ·exp(−iνθ) ,
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and redefiningB̃
c
≡ B

c
·exp(−i(ψ−νθ))≡ B

c
·exp(−iψ̃) with ã≡ exp(−iνθ) ·a as the normal coordinate. This

restores the desired science fiction by providing a third “picture,” intermediate between Schrödinger’s and Heisenberg’s, in
which both the state and the operators evolve. Again abusingquantum mechanical terminology, we can call it the
“interaction picture.”

COMMENTS:

19. The numbers stored in the matrix elements ofΩ
c←b

will depend on the conventions used to normalize B. Referring
to the nomenclature of Comment 20, below Eq.(11), theβ-convention and theγ-convention – and anything in between –
lead to different but equally legitimate values for “phase advance.” Obviously, the popular one arises from the
β-convention. We will briefly return to this point later.

20. Eq.(18) has the form,F ·X−X ·G = C, with C = 0. Under a certain condition onF andG, there is a unique solution
for X given anyC.8 One-turn transit matrices do not satisfy that condition, which is just as well, sinceX = M

c←b
= 0

would then be the only solution. It is obvious from physical considerations thatM
c←b

cannot be determined fromM
b

and
M

c
alone.

21. Eq.(19) is contingent upon Eq.(18), which means the transition matrix,M
c←b

, must model a segment of the periodic
structure in which bothM

b
andM

c
are embedded as one-turn matrices. IfM

c←b
is an arbitrary symplectic matrix – e.g.

linearly modeling transit between two points in a transfer line – thenΩ
c←b

need not be unitary. Put another way, the

columns ofB, which are no longer eigenvectors,9 can lose their normalization.
If M

c←b
is thecompletetransition matrix associated with a transfer line connecting one ring to another, and if

Eq.(19) is satisfied, withM
b

andM
c

being the one-turn matrices of the two rings at the extraction and injection points,
andΩ unitary, then the transfer line is “matched.” The task of finding such a line is the “matching problem” (normally
expressed as “matching the lattice functions”).

4 Parametrizations: “lattice functions”

For the case of linear(ized) dynamics, decompositions likeEq.(3) or Eq.(15) effect a separation between machine
parameters, subsisting inB andΛ, and the state information contained ina. Any physically meaningful calculation
relating observables can be formulated and done without introducing additional notation. For example, the answer to
“What is the contribution of ‘vertical emittance’ toσx?” is “|Bxa2 |2 ε2/π.” (This begs the question: in any situation where
Bxa2 6= 0, do you understand whatε2 means?)

“Parametrization” begins from the observation that symplecticity createsN(N−1)/2 quadratic relationships among
the elements ofM or of B. TheirN2 elements can thus (generally) be expressed in terms ofN(N +1)/2= n(2n+1) real
variables,n of which are the phase angles (mod 2π). Within the context of accelerator physics these are called “lattice
functions.”

4.1 Harmonic oscillator

Before looking at parametrizations in accelerator physics, I pause to consider the harmonic oscillator, because (a) itis the
universal archetype of all stable physical systems, and (b)to explain why I use the symbols I do. Finding the harmonic

8Proofs can be found in textbooks on linear algebra and matrices, such as Bellman [5]. A loosely stated, insufficient physical interpretation of the
required condition is that matricesF andG must contract phase space, making the origin an attractor.

9At least not legitimate eigenvectors. Given any diagonal matrix, Λ, one can always artificiallydefinea matrixM according toM ≡ B ·Λ ·B−1 so that
the columns ofB become eigenvectors ofM.
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oscillator’s eigenvector matrix,B, was done in ICD [2], Sec.2.1.1, pp.22-24. From there we shall lift only the two
expressions relevant here.

The correspondence between(x, p) and the complex(a,a∗) coordinates is given by

(

x
p

)

=

(

1/
√

2mω 1/
√

2mω
−i
√

mω/2 i
√

mω/2

)

·
(

a
a∗

)

= B·
(

a
a∗

)

,

wherem andω are, respectively, the mass and radial frequency parameters associated with the oscillator. It is trivially
verified that Eq.(10) is satisfied. The inverse form of this iswritten,

(

a
a∗

)

= B−1 ·
(

x
p

)

=

( √

mω/2 i/
√

2mω
√

mω/2 −i/
√

2mω

)

·
(

x
p

)

,

validating that these are correctly normalized so that, as classical mechanics gives way to quantum mechanics, they
become (apart from factors of ¯h) the annihilation and creation operators,a anda†, of the harmonic oscillator system.

4.2 Transverse accelerator coordinates: one degree of freedom

For accelerator problems in one degree of freedom, the traditional parametrization connects matrix elements ofB with
Courant-Snyder “lattice functions.” There are several ways to proceed; I choose one here that begins from the
identification given in Eq.(13) and the definition of Eq.(3) and ends with (something like) familiar “Courant-Snyder”
expressions.

As already mentioned in Comment 22 below Eq.(12), for a two-dimensional phase space, the correct normalization
follows from requiring the product,

ℑ(B21B
∗
11) =−1/2 . (20)

The most general matrix satisfying this can be written as follows in terms of two real parameters and a phase, not
surprisingly notated here asα, β, ande−iψ̃.

B ≡ 1
√

2β

(

β β
−i−α i−α

)(

e−iψ̃ 0
0 eiψ̃

)

It is easy to verify directly that that Eq.(10) is satisfied for any choice of phase,̃ψ.
We now justify this notation by establishing the connectionwith familiar expressions. First use Eq.(3) and Eq.(13) to

relate the normal coordinates with the original coordinates.

(

x
X

)

=
1
√

2β

(

β β
−i−α i−α

)(

e−iψ̃ 0
0 eiψ̃

)

·
(

i
√

I e−iϕ

−i
√

I eiϕ

)

I am using here a notation employed regularly in celestial mechanics, whereby the canonical momenta to coordinates
(x,y,z) are written(X,Y,Z). This temporarily leaves it vague whetherX refers tox′ = dx/ds= px/pz = tanθ or to
px/pref = sinθ. Within the eikonal (paraxial) approximationrequiredfor the linear sector – i.e.θ2≪ 1 – the two are
equivalent. We shall return to this point when discussing the nonlinear sector in a subsequent memo.

Expanding the top row provides the following.

x =
√

β/2 i
√

I (e−i(ψ̃+ϕ)−ei(ψ̃+ϕ) ) =
√

2β I sin(ψ̃+ ϕ) =
√

β
(√

2ℜ(e−iψ̃a)
)

(21)
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Anticipating our final result, instead of using the second row as written, we expandαx+ βX.

αx+ βX = (α β) ·
(

x
X

)

=
1
√

2β
(−iβ iβ) ·

(

e−iψ̃a
eiψ̃a∗

)

=
√

β
(√

2ℑ(e−iψ̃a)
)

=
√

2β I cos(ψ̃+ ϕ)

All of which can be encapsulated into a single phasor equation.

x+ i(αx+ βX ) =
√

2β e−iψ̃a (22)

This completes our justification of this notation and provides the expressions used by CHEF to calculate “lattice
functions” from matrix elements of the eigenvector matrix,B. A “meta-algorithm” for doing so is written below; the
matrix elements ofB are expressed, in pseudo-Dirac fashion, by the coordinatesthey connect rather than the (arbitrary)
integers 1 and 2.

β = 2|Bxa|2

α = −2Re(Bxa∗BXa) (23)

e−iψ̃ = Bxa/|Bxa|

As a consistency condition (or test of correctness), the following must be satisfied as well.

1 =−2Im(Bxa∗BXa)

This merely recaptures the symplectic condition, as summarized in Eq.(20).

COMMENTS:

22. Different, equivalent parametrizations follow upon redefining the phase,̃ψ. As one (and only one) example, if we
choose to make the second row real and positive, rather than the first, we could write,

B =
1

√

2β

(

β β
−i−α i−α

)(

e−iψ̃ 0
0 eiψ̃

)

=
1√
2γ

(

i−α −i−α
γ γ

)(

e−i(ψ̃+ξ) 0
0 ei(ψ̃+ξ)

)

,

where eiξ = (i−α)/| i−α |, and βγ−α2 = 1. Instead of Eq.(22), we then would get,

X− i(αX + γx) =
√

2γ e−iηa , (24)

with η = ψ̃+ ξ. The interpretation of this choice is too obvious to dwell upon here.

23. In just one degree of freedom, Eq.(16) and Eq.(17) are trivially connected with the more familiar relation,

σ2
x = |Bxa1 |2 ε1/π = βε1/2π . (25)

This expression relating a directly measurable beam width to the emittance and the form of Eq.(21), as opposed Eq.(24)
(X cannot be measured directly) are, with virtual certainty, why theβ-convention is overwhelmingly preferred.
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4.3 Transverse accelerator coordinates: two degrees of freedom

In going beyond one degree of freedom, we should make one lastassertion regarding the order of the columns ofB. It is
not at all essential, but we (at least, I) would like coordinates(a1,a3) = (a1,a1∗) to refer to “mostly horizontal” motion
and(a2,a4) = (a2,a2∗), to “mostly vertical.”10 This arrangement can be accomplished in several ways. For example, one
could assert

|Bzk ak |+ |Bzk+nak+n |= max
j

( |Bzk a j |+ |Bzk+na j+n |) . (26)

The reader can come up with many other variations, all of which would lead to the same resultprovided the coupling is
weak.For strong coupling, this ambiguity may be much more difficult, if not impossible, to resolve.

In the four dimensional phase space of transverse motion, two parametrizations found favor at Fermilab: one devised
many years ago by Edwards and Teng [6], the other, more recently, by Lebedev and Bogacz [7]. The latter is written as
follows.

B ≡
√

1
2















β1/2
1x eiν2 β1/2

2x β1/2
1x e−iν2 β1/2

2x

eiν1 β1/2
1y β1/2

2y e−iν1 β1/2
1y β1/2

2y

(−i(1−u)−α1x)β
−1/2
1x eiν2 (−iu−α2x)β

−1/2
2x (i(1−u)−α1x)β

−1/2
1x e−iν2 (iu−α2x)β

−1/2
2x

eiν1 (−iu−α1y)β
−1/2
1y (−i(1−u)−α2y)β

−1/2
2y e−iν1 (iu−α1y)β

−1/2
1y (i(1−u)−α2y)β

−1/2
2y















This uses the notation of Ref.[7] but the normalization of Eq.(10), which introduces an extra
√

1/2. Eq.(9) is satisfied, the
β-convention is used in both planes, and the notation is devised to mimic the two-dimensional case as closely as possible.
The eleven parameteric symbols in this matrix are three too many: 4·5/2= 10= 8+2 column phases, which have been
suppressed. Thus, the symplectic condition provides threeadditional equations that can be used to eliminateν1, ν2, andu,
leaving[β|α][1|2][x|y] as the preferred set of eight independent parameters. Explicit equations relating the three dependent
parameters to this set can be found in Ref.[7]. CHEF does not use those expressions; if, for some reason, the values are
desired, they can be obtained directly fromB.

eiν1 = Bya1/|Bya1|
eiν2 = Bxa2/|Bxa2|

u = 1+ ℑ(Bxa1 BX a1)

The other eight are calculated in manners similar to what wasdone in the two-dimensional case, Eq.(23).
The Edwards-Teng approach did not use the eigenvector matrix directly but decomposed the one-turn transit matrix

into three factors. Their description is made easier by rearranging phase space coordinates. Rather than splitting along
“position” and “momentum” sectors as we have been, we shall group the coordinates into “horizontal” and “vertical”
sectors, that is,(z1,Z1;z2,Z2)

T instead of(z1,z2;Z1,Z2)
T . Then, in place of our starting point, Eq.(2), the Edwards-Teng

decomposition is written,11

M ·
(

cosφ 1 −sinφ D−1

sinφ D cosφ 1

)

=

(

cosφ 1 sinφ D−1

−sinφ D cosφ 1

)

·
(

H 0
0 V

)

,

whereD is a 2×2 unimodular matrix (three parameters) andH andV have the form of uncoupled two-dimensional
one-turn transit matrices (three parameters each, including a phase). This has a structure similar to Eq.(2), but all matrices

10To anticipate, this notation might produce confusion when we get around to discussing CHEF’s code, as programming indices begin with zero, not
one. Thus,(a1,a3) will become (a[0],a[2]), and so forth.

11This is not the form taken in the original paper. I have shifted one matrix to the left hand side to highlight the correspondence with Eq.(2).
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are real. It provides a similarity transformation relatingM to its block-diagonal form, operating on tworeal
two-dimensional invariant subspaces, the ones spanned by complex conjugate normal coordinates.

Reference [6] contains a procedure for obtaining the parameters, but they also can be generated from the matrix
elements ofB by combining complex conjugate columns to form real bases for the invariant subspaces. CHEF still
provides them, but its usage has been deprecated.

4.4 Accelerator coordinates: three degrees of freedom

If a non-accelerating cavity is used to confine longitudinalmotion, then the transit matrix of the linearized system is 6×6,
and there are twenty-one independent parameters, of which three are phase angles and the other eighteen can be
interpreted as “lattice functions.” CHEF currently does not provide such a parametric set. It nonetheless may be worth
comparing the familiar relation,

σ2
x = βxεx/2π +D2σ2

δp/p , (27)

which relates horizontal beamwidth to horizontal emittance, dispersion and momentum spread, with Eq.(16) and Eq.(17).

σ2
z1

= |Bz1 a1 |2 ε1/π + |Bz1a2 |2 ε2/π + |Bz1a3 |2 ε3/π

σ2
z3

= |Bz3 a1 |2 ε1/π + |Bz3a2 |2 ε2/π + |Bz3a3 |2 ε3/π

As was done in Eq.(25), we defineβx/2≡ |Bz1 a1 |2. If we assumeε2 = 0, thenε3 can be eliminated to get,

(

βx/2 − |Bz3a1 /Bz3a3 |2
)

· ε1/π +
(

|Bz1a3 |2/|Bz3 a3 |2
)

·σ2
z3

. (28)

A direct comparison between Eq.(28) and Eq.(27) would be a subject in its own right, because the physical situations are
different. To begin with, the value ofβx/2 may not be the same, as could the values of the “horizontal emittance.” Further,
Eq.(27) assumes thatδp/p remains constant for each particle in the bunch, so that the dispersion,D, is well defined as the
closed orbit at that momentum offset. Eq.(28) assumesδp/p oscillates at something close to the synchrotron frequency
and “dispersion” has not even been defined. I shall postpone discussing this to another day, after we have been forced to
pin down physical interpretations for transverse and longitudinal coordinates.
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