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ABSTRACT 

 
Advanced sensor technology is identified as a key component for advanced power systems 
for future energy plants that would have virtually no environmental impact.  This project 
intends to develop a novel high temperature corrosion sensor and subsequent measurement 
system for advanced power systems.  Fireside corrosion is the leading mechanism for boiler 
tube failures and has emerged to be a significant concern for current and future energy plants 
due to the introduction of technologies targeting emissions reduction, efficiency 
improvement, or fuel/oxidant flexibility.  Corrosion damage can lead to catastrophic 
equipment failure, explosions, and forced outages.  Proper management of corrosion requires 
real-time indication of corrosion rate.  However, short-term, on-line corrosion monitoring 
systems for fireside corrosion remain a technical challenge to date due to the extremely harsh 
combustion environment.   
 
The overall goal of this project is to develop a technology for on-line fireside corrosion 
monitoring.  This objective is achieved by the laboratory development of sensors and 
instrumentation, testing them in a laboratory muffle furnace, and eventually testing the 
system in a coal-fired furnace.  This project successfully developed two types of sensors and 
measurement systems, and successful tested them in a muffle furnace in the laboratory.  The 
capacitance sensor had a high fabrication cost and might be more appropriate in other 
applications.  The low-cost resistance sensor was tested in a power plant burning eastern 
bituminous coals.  The results show that the fireside corrosion measurement system can be 
used to determine the corrosion rate at waterwall and superheater locations.  Electron 
microscope analysis of the corroded sensor surface provided detailed picture of the corrosion 
process.  
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INTRODUCTION 
 

 

Background and Significance 
 

Revolutionary sensor technology is a key component for DOE’s approach for 
developing next generation energy plants that would have virtually no environmental impact.  
Relying on fossil fuels for a major share of our energy needs well into the 21st century and a 
diverse mix of energy resources, As the culmination of DOE power and fuels research and 
development directed at resolving energy and environmental issues, one of the focuses is to 
develop the critical technologies that underlie the components and subsystems ("modules") 
that are the building blocks of future energy plants.  The key elements of the approach 
include: focusing on key technologies, stressing innovation and revolutionary improvements, 
producing early benefits, and emphasizing flexibility to meet market needs.  One of the 
identified crosscutting technologies that are expected to be important, regardless of the actual 
configurations of future energy plants is the development of advanced sensors for highly 
integrated advanced energy systems. 

Fireside corrosion is the external tube metal loss (wastage) caused by chemical 
reactions on water tubes exposed to the combustion environment in a furnace [1].  Corrosion 
is the leading mechanism for boiler tube failures [2, 3].  The direct economic cost of 
corrosion, through parts and labor to replace corroded equipment are often minor compared 
to the loss of production while the plant is under repair.  For example, the cost of replaced 
power from the shutdown of a needed power plant can run into millions of dollars per day.  
Fireside corrosion typically occurs in high temperature, harsh combustion environment found 
in boilers and chemical recovery systems.  The corrosion of boiler tubes can lead to the 
thinning of the tube reached more than 80% of the original thickness.  Such excessive 
corrosion can lead to tube leakage or rupture, which can then lead to significant equipment 
damage and possible injuries to personnel, and in Kraft recovery boilers, smelt-water 
explosions.  

Proper management and control of high temperature corrosion requires real-time 
information of corrosion rate [4].  Future trends in energy plant development tend to increase 
fireside corrosion due to introduction of technologies targeting emissions reduction, 
efficiency improvement, or fuel/oxidant flexibility.  The availability of an on-line instrument 
capable of quantifying fireside corrosion rates would be a valuable new tool for plant 
operators who must meet environmental targets while minimizing the deterioration of 
valuable heat exchanger surfaces.  Additionally, knowledge of localized corrosion rates 
provides critical information so that informed decisions can be made for maintenance and 
ongoing life extension of the plant [5-7]. 

This project attempts to develop high temperature corrosion sensors and associated 
measurement system for advanced power systems.  The focus is the short-term determination 
of fireside corrosion in a combustion environment.  A novel sensor concept was developed 
and examined previousely, and the intent of this project was to develop a complete 
measurement system and evaluate its feasibility at the laboratory and pilot scale.  The 
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investigation includes laboratory development of sensors, the probe and the measurement 
system, followed by the evaluation and improvement of the system in the laboratory, and the 
eventual testing of the complete system at a pulverized coal (PC) combustion furnace.  The 
challenge of the proposed work is the design, fabrication and testing of the system that can 
function in a high temperature harsh combustion environment.  The overall goal of the 
proposed research is to develop and prove the technology feasibility. 

 

Current Knowledge and Technology  
 

Current methods for corrosion measurement or monitoring fall into three main 
groups: downtime inspection, metal loss types, and electrochemical types [8-37].  The result 
of downtime inspection is of limited value for pro-active corrosion management because it 
provides only historical data.  The simplest metal loss type is the weight-loss coupon, which 
is the most commonly used technique in corrosion research.  A sample of the material of 
interest, of known weight, is exposed to the process for a known period.  When it is removed, 
carefully cleaned and weighed, the change in weight is used to calculate the metal loss that 
may then be expressed as an annualized rate of loss (mils or millimeters per year).  The 
coupon requires a relatively long exposure, for instance, 3 to 6 months, to the combustion 
process to yield accurate results.  The constraints imposed by the time of exposure naturally 
limit the number of data points that can be obtained from a location, and ultimately do not 
detect process changes quickly.   

Electrochemical techniques measure the corrosivity of an environment independent of 
actual material loss.  Linear Polarization Resistance (LPR) is the most widely used technique 
of this type.  It measures the DC current through the metal/fluid interface when the electrodes 
are polarized by a small electrical potential.  As this current is related to the corrosion 
current, that in turn is directly proportional to corrosion rate, the method provides an 
instantaneous measurement of corrosion rate.  This has advantages over metal loss methods, 
but is limited in the scope of its application by the requirement that the fluid be conductive, 
which in practice usually limits it to aqueous solutions.  Other electrochemical techniques 
include Potentiostatic, Galvanostatic, Potentiodynamic, Galvanodynamic and AC Impedance 
Spectroscopy.  None of these approaches have been successfully developed for field use as 
continuous monitors due to a variety of technical difficulties.  

Electrochemical Noise (ECN) is a passive electrochemical technique that requires no 
polarizing current, but measures the naturally occurring electrochemical potential and current 
disturbances that result from corrosion.  Electrical current noise is based on current variations 
between two nominally similar working electrodes, whereas potential noise is based on 
alterations between a working electrode and a stable, reference electrode.  ECN is capable of 
giving accurate indications of general corrosion, pitting, and stress cracking when it is 
properly applied, but requires both expertise and complex data processing to be effective.  
Because ECN requires monitoring of very small signal fluctuations, this approach to 
corrosion monitoring is also affected by extraneous sources of signal noise in the plant.  ECN 
is a relatively new technique and has applied the technology in coal combustion application 
by REI recently.  
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Metal loss type sensors can be combined with electrical measurements to determine 
the loss of metal and to provide an on-line monitoring capability.  The most commonly used 
low-temperature corrosion probe is based on electrical resistance measurement.  Because the 
electrical resistance of a current path increases as its cross sectional area is reduced, metal 
loss due to corrosion of the sample can be detected by an electrical resistance-measuring 
instrument.  An Electrical Resistance (ER) sensor is often comprised of a sensing element 
that is basically a wire, strip or tube made of the alloy of concern, which is used to conduct 
the electric signal.  When exposed to a corrosive environment, the cross-sectional area of the 
element is reduced.  This increases the resistance of the sensing element, which can be 
measured and recorded as a function of time.  Unlike electrochemical methods, ER sensors 
continue to function in the presence of non-conductive scales and are valuable tools for 
detecting under-deposit corrosion.  As a simple and relatively inexpensive technique, ER is 
often the mainstay of a monitoring program in low-temperature applications, especially in the 
petroleum industry.  In high-temperature combustion applications, however, ER sensors are 
significantly affected by instrumental and thermoelectric noise.  The challenge is to minimize 
the persistent noise, whether due to thermal or electrical interference, in the power plant and 
combustion environment.    

In summary, different corrosion monitoring technologies available for low-
temperature applications are being adapted for on-line fireside corrosion monitoring.  
However, these technologies are either in development stage or create significant concerns 
for uncertainties or interferences inherent in the harsh combustion environment, which 
include high temperature, temperature fluctuations and ash deposition.  It is necessary to 
development a fireside corrosion monitoring system with demonstrated power plant 
operation and verifiable measurement result. 

 

The Capacitance Sensor  
 

A new sensor concept was developed and examined in the previous study.  The 
concept is based on a new measurement principle that has not been previously applied for 
corrosion measurement.  The technique uses a metal-loss type approach, which involves 
exposing a sensing element to a corrosive environment and measure the thickness decrease of 
the element as a function of exposure time.  As all online approaches to corrosion 
measurement, the challenge is to measure a thickness change of the order of 1 micrometer or 
so without destroying or removing the element from the corroding environment.  The new 
concept converts the thickness measurement to area measurement.  The technique employs 
thin-film coating of the material to be corroded on a substrate.  The thickness of the coating 
varies continuously, for instance, from 0 to 40 micrometers over a length of 4 cm.  When the 
sensor element is exposed to the corrosive environment and corrodes away a layer of a 
certain thickness, the decrease in thickness will be proportional to the coating area recession 
or decrease.  Thus, the design converts the depth (thickness) change of 1 micrometer to an 
equivalent length change of 1 mm, which is much easier to determine.   

The change in size or area of the metal coating can be measured on-line by electrical 
capacitance.  A thin ceramic plate substrate with metal coatings on both sides constitutes an 
electrical capacitor.  The capacitance is a function of the overlapping area of the metal 
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coatings, and the thickness and dielectric properties of the ceramic.  The change of 
capacitance is directly proportional to the change in the overlapping area of the metal 
coatings.  The sensor design can include a front side coating area with linear thickness 
variation exposed to combustion environment, and a uniform-thickness backside coating not 
exposed to combustion environment.  The decrease of coating area on the front side due to 
corrosion will be reflected proportionally by a decrease in capacitance. 

This innovative concept represents a departure from existing approaches to metal loss 
type of corrosion monitoring technology.  It can potentially result in a significant 
advancement in corrosion sensing technology.  The ER method is currently under 
development for combustion environments.  ECN or other electrochemical techniques may 
present problems in interpreting the data when there is ash or slag deposition on the sensor 
element.  The new concept may be better suited for a suite of applications, including the 
combustion environment where ash deposition and temperature fluctuation are common and 
almost unavoidable.     

 

Technical Issues and Challenges 
 

Although the capacitance concept has shown promise, clear technical challenges 
remain.  The obvious challenge, beyond the preliminary study, is to develop a system and 
prove its feasibility in laboratory, pilot combustor, and power plant testing.  The capacitance 
or resistance technology has to be proven at a full-scale boiler before it can be developed into 
a commercial product.  For corrosion monitoring in a combustion environment, proof-of-
concept testing at coal-fired furnace is a necessary step.  Therefore, the following technical 
issues must be addressed to further develop the concepts and the technology. 

(1) Options for Sensor Design and Fabrication.  

We need to have answers to questions such as: what is the best design to achieve high 
sensitivity and low cost, or what is the best initial element thickness (or slope).  For example, 
the element needs to be thick enough to have a long service life, yet also thin enough to 
provide a high signal-to-noise ratio.  These answers will have to come from research and 
development at the laboratory scale.  The sensor designs need to take into account fabrication 
options.  A compromise may have to be reached between an ideal design and practical 
requirements for fabrication.  The designs will also have to be tested in coal-fired furnaces to 
see if they can survive and achieve the sensing objective.   

(2) Complete Monitoring System Development and Improvement  

The proof-of-concept step requires building of a complete system and demonstrating 
its feasibility at a full-scale furnace.  There are many questions to be answered in designing 
and building the complete system, which needs to match the appropriate sensor designs from 
laboratory tests with robust probe design.  A rugged, portable electronic measurement and 
control system that can function in the industrial environment need to be built.  The 
measurement system also needs to automatically acquire and store data, and upload the data 
through (preferably) wireless communication.  

(3) System Evaluation and Testing in a Coal Combustion Furnace 
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The corrosion monitoring system needs to be tested at a full-scale furnace to reveal 
areas that require improvement or modification.  In addition, the probe and ancillary 
instrumentation need to be tested for long-term performance to determine the service life of 
the sensor.  Such tests will provide information on the stability and long-term performance of 
the new technology for fireside corrosion monitoring.   

Although in theory the change in sensor capacitance is proportional to its change in 
thickness, the degree of deviation from the linear correlation has to be experimentally 
determined.  Such an evaluation and the data resulting from the evaluation may provide a 
more accurate estimation of error range and confidence level of the corrosion rate determined 
by the ER method.  

(4) Calibration of Results with Metrology Analysis 

The corrosion rate determined from the novel sensor needs to be compared to true 
metal-loss measurement, either on the same element or on a separate weight-loss coupon.  
Industry accepts the amount of metal loss measured by coupon exposure as an absolute and 
correct measure of corrosion averaged over a period of time.  Calibration of the corrosion 
rate measured by the new method provides confidence in the quantitative result from the 
sensor.  Such comparisons will ultimately verify the result of the new sensor for fireside 
corrosion measurement and promote the acceptance of the technology in industry.  

 

Anticipated Benefits 
 

The sensor and supporting measurement system developed by this project can be used 
in multiple end-use sectors to increase the overall efficiency of current and future energy 
plants.  Having the availability of a real-time fireside corrosion monitor can help to bring 
about one or more of the following: (1) quick diagnosis of corrosion problems; (2) 
monitoring the effect of operating condition changes on corrosion; (3) providing advance 
warning of system upsets that could lead to corrosion damage; (4) determining the need to 
invoke process controls; (5) establishing a realistic inspection or maintenance schedule; and 
(6) an accurate estimation of the useful service life of equipment.  Because fireside corrosion 
has a significant negative economic impact on energy plant availability, corrosion 
management can reduce such effects and increase the overall efficiency of the plant.  The 
loss of electricity production due to plant downtime for repairing corroded waterwall tubes 
can run into millions of dollars per day.  If the corrosion monitoring technology developed by 
this project leads to the reduction of downtime for an average of one day each year for each 
boiler that is monitored, the overall efficiency increase for that boiler is a fraction of one 
percent.  However, the total amount of saving could be in hundreds of millions per year due 
to the large number of units in the U.S. that would benefit from the application of this 
technology.  In addition to economics, the effects of corrosion can also lead catastrophic 
explosions that endanger life and safety, which is an especially serious concern for Kraft 
recovery boilers in the pulp and paper industry.  This research can help to reduce such risks 
by providing a timely assessment of corrosion rates and can help operators determine the 
most efficient modes of operation.  The increase in plant efficiency from corrosion 
management can directly reduce the emissions per unit of production.  Since corrosion is an 
inherent process for metals exposed to a chemically reactive environment, corrosion 
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management and control is an important way to reduce its negative impact on plant 
availability for current and future energy systems.   

 

Research Objectives and Scope 
 

The overall goal is to develop an on-line fireside corrosion technology.  This project 
is to design and build a system and prove its feasibility at a coal combustor.  The specific 
objectives are to:  

(1) Develop the sensor and electronic measurement system;  
(2) Evaluate and improve the system in a laboratory muffle furnace; and 
(3) Evaluate and improve the system through tests conducted in a coal combustor. 

 
The scope of work includes a comprehensive experimental program to be carried out 

in the laboratory and at a coal combustor.  A corrosion monitoring system will be designed, 
tested, and improved in the laboratory and tested at coal combustor.  The experimental effort 
focuses on designing and building a compete system including the sensor, temperature 
controlled probe, and electronic measurement and data acquisition.  The system will be tested 
and improved through evaluations using a laboratory muffle furnace.  A coal-fired combustor 
will be used to evaluate the technology in a coal combustion environment.  Such evaluation 
is crucial because many technologies fail during this stage of development due to rapidly 
varying combustion conditions, the aggressive industrial environment, and high levels of 
ambient electrical noise.  The technology will be evaluated to ensure that (1) it works in a 
combustion environment, (2) the result can be confirmed by metal-loss measurements, and 
(3) the system is rugged enough for the plant environment. 
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EXECUTIVE SUMMARY 
 

 

Advanced sensor technology is identified as a key component for advanced power 
systems for future energy plants that would have virtually no environmental impact.  This 
project intends to develop a novel high temperature corrosion sensor and associated 
measurement system for advanced power systems.  Fireside corrosion should be properly 
managed with real-time corrosion rate information because it could lead to catastrophic 
equipment failure, explosions, and forced outages.  However, short-term, on-line corrosion 
monitoring systems for fireside corrosion remain a technical challenge to date due to the 
extremely harsh combustion environment.  The overall objective of this project is to develop 
a technology for short-term, on-line corrosion monitoring based on laboratory development 
and experiment, and coal-fired furnace testing.   

The specific objectives of the project are to: (1) develop the sensor and electronic 
measurement system, (2) evaluate and improve the system in a laboratory muffle furnace, (3) 
evaluate and improve the system through tests conducted in a coal combustor.  The scope of 
work includes an experimental program to be carried out in the laboratory and at a coal 
combustor.  The on-line corrosion monitoring system to be developed includes the sensor, 
temperature-controlled probe, and electronic measurement and data acquisition.  The system 
will be tested and improved through evaluations using a laboratory muffle furnace.  A coal 
combustor will be used to evaluate and further improve the technology in a coal combustion 
environment.  There are three main tasks in the project. The first task is to design and build a 
complete system during the first year.  Task 2 is to evaluate and improve the system 
performance in a laboratory muffle furnace.  Task 3 evaluates and improves the system in a 
coal combustor. 

These tasks are successfully completed, namely, the development of the sensors, 
probes and the measurement systems in the laboratory, the testing of the system in a muffle 
furnace, and the testing of the system in a power plant.  The completed work included the 
preparation and design of a corrosion probe, on which the corrosion sensor can be mounted.  
The first probe, which is slightly smaller in diameter, was redesigned with improvements to 
accommodate ceramic connectors for electrical connection.  The probe temperature 
measurement and control was developed based on our experience, in addition to a probe 
temperature control system that was already available.  They are portable and rugged, 
suitable for operation at ambient temperatures in a power plant environment.  The probe 
temperature, or the temperature of the sensing element, is controlled with compressed air 
cooling.  The electronic measurement with computer data acquisition was also developed in 
the laboratory.  The data acquisition software was developed to allow the user to select data 
logging rate, the temperature for the sensor, and options for various measurement sequences.  
It was successfully tested to automatically log and save the data for days or weeks without 
the need for operator intervention.  The probe temperature control was also tested in 
laboratory muffle furnace to control the air cooling parameters and fluctuation range of the 
probe temperature.      

In addition to the capacitance sensor system, a development effort on the resistance 
sensor system is also pursued due the high cost of the capacitance sensor fabrication.  The 
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resistance based system initially had difficulty in data processing due to persistent noise.  
Further investigation of the resistance sensor design led us to create a new sensor design that 
could minimize the noise.  The advantage of this new design of resistance sensor is its 
significantly, more than 100 times, lower cost in comparison to the capacitance sensors.  We 
can fabricate resistance sensor in the laboratory easily, whereas the capacitance sensors 
requires custom modification of the commercial sputtering facility, a job that sputtering 
service companies usually would not do.  Also, because the sputtering coating of iron only 
has limited thickness, the resulting capacitance sensor cannot produce reliable corrosion rate 
data, although may be more appropriate for other applications.  Therefore, we focused our 
testing effort at a power plant on the resistance sensor.  

The plant measurements were conducted at two locations: waterwall and superheater, 
at 500 oC sensor temperature.  The waterwall location was one floor above the biomass 
injection port of the tangentially-fired 65 MW boiler.  The superheater location was in-
between the primary and secondary superheaters.  The switchgrass co-firing was maintained 
at 5% heating value of the overall fuel heating value.  The results at the superheater location 
show that biomass co-firing has two scenarios regarding its impact on fireside corrosion.  
When a fresh coupon was exposed to biomass co-firing, the corrosion rate was about twice as 
much as that for 100% coal firing.  On the other hand, if the fresh coupon was exposed to 
100% coal firing first and biomass co-firing next, the corrosion rate for biomass co-firing 
was slightly less than that for coal.  The waterwall corrosion rate for coal was similar to and 
less than that at the superheater location.  Also, the waterwall corrosion rate appeared to be 
higher at higher boiler load for coal.  The biomass co-firing did not produce meaningful 
results for waterwall. 

Further analysis of the corroded sensor surface by SEM with EDS showed a more 
detailed picture of the corrosion process at the sensor surface.  A corrosion product layer of a 
few to ten micrometers thick was formed on top of metal surface.  The metal surface had a 
granular type of surface roughness of about one to two micrometers.  The corrosion product 
layer also appeared to be granular, with a thin melt layer covering on top.  Based on the 
findings, a three-layer model was proposed with metal at the bottom, corrosion product layer 
in the middle, and ash deposit layer at the top.  The cracking and peeling off of the corrosion 
product layer exposed the metal to further corrosion.  
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EXPERIMENTAL 
 
 

Sensor Principle 
 

The principle of the novel capacitance sensor is based on the electrical capacitance 
technique, which has never been used for corrosion measurement. The sensor consists of a 
ceramic substrate with metal coatings on both sides, which forms a classical electrical 
capacitor, as shown in Figure 1.  The capacitance of the sensor is a function of the 
overlapping area of the metal coatings, the thickness of the ceramic substrate and the 
dielectric constant of the ceramic.  The front side coating exposed for corrosion has a linearly 
varying thickness, or wedge-shaped.  When the sensor element is exposed to the corrosive 
environment and corrodes away a layer of a certain thickness in wedge-shaped coating, this 
thickness decrease will be reflected on and proportional to the coating area reduction.  This 
design converts very small change in the depth (or thickness) to substantial change in length, 
which is much easier to measure. Therefore, any loss of the metal by corrosion will result in 
a reduction of the coating area.  The change in the area of the metal coating can be measured 
by electrical capacitance, which is directly proportional to the change of the overlapping area 
of the metal coatings.  The thickness reduction due to corrosion is therefore quantified by the 
capacitance change.  The corrosion rate can be determined based on the decrease in electrical 
capacitance over the time.  The capacitance is measured using a four-wire method, applying 
100 kHz AC current and measuring the AC voltage drop across the capacitor to determine 
the impedance, which can be used to calculate the capacitance.  

Another technique tested, the electrical resistance method also uses a sacrificial metal 
coupon exposed to the corrosive environment.  The relative change of the coupon thickness 
is determined based on the measurement of the coupon DC electrical resistance change.  
Because the electrical resistance of a current path increases when the cross sectional area of 
the conductor is reduced, the metal loss due to corrosion can be detected by an electrical 
resistance-measuring instrument.  The sensing coupon is made of a circular disk of the alloy 
of concern with four electrical connections.  A DC constant current is applied through the 
two opposite electric connections and the voltage between the other two electric connections 
is measured, as shown in Figure 2, which is also a four-wire measurement similar to the 
capacitance measurement. 

The corrosion of coupon material will reduce the thickness of the coupon, and lead to 
an increase of measured resistance or impedance.  Since the electric current is maintained at 
constant, the voltage between the test poles 1 & 2 will increase as the thickness decreases. 
Figure 3 shows the theoretical relationship between the measured DC voltage and the coupon 
thickness in relative percentages for the resistance technique.  Figure 3 was calculated using 
a commercial finite element package to model the geometry effect of a specific coupon size 
and the location of the four electric connections.  The curve for partial corrosion was 
calculated to account for the fact that there is little corrosion on the rim of the coupon due to 
sealing o-ring. Figure 3 shows an approximate linear relationship when the change of 
resistance is not significant. 
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Sensor Design 

 Substrate Material Selection 
 

The physical and chemical properties of the sensor substrate materials are important 
factors affecting the sensor design and performance. Since the sensor developed in this 
research will be used for corrosion monitoring in high temperatures and corrosive 
combustion environments, the substrate material needs to have properties of high thermal 
conductivity, low thermal expansion, good electrical insulation, corrosion-resistance and 
stability at high temperature environments. 

The substrate of the sensor is a ceramic plate with high thermal conductivity and low 
thermal expansion coefficients. There are a few commonly used ceramic materials available 
for the sensor substrate. These materials include Beryllium Oxide (BeO), Aluminum Nitride 
(AlN) and Alumina (Al2O3). The comparisons of main properties of these materials are 
provided in Table 1 and Figure 4.  Because of the presence of water vapor in combustion, 
AlN is not considered in this case.  

Beryllium Oxide (BeO) is a ceramic material that combines excellent electrical 
insulating properties with high thermal conductivity. It is also corrosion resistant.  Although 
beryllium oxide powders are toxic when inhaled or ingested, and the cost of machining is 
high, there are many applications that exploit its singular properties.  BeO is a unique 
material for electrical and mechanical applications, which require dielectric property, 
mechanical strength and high thermal conductivity. It is particularly well suited for a heat 
sink and heat dissipation medium in integrated circuitry.  

Therefore, BeO is distinguished by thermal conductivity comparable to that of 
electrical conductors, while retaining dielectric constant, loss factor and dielectric strength in 
the range of the most efficient electrical insulators. This unique combination of properties in 
conjunction with good mechanical strength and thermal shock resistance enable BeO to be 
the best substrate material of the sensor in this research.  

Aluminum Oxide (Al2O3) or Alumina is the second choice for the sensor substrate 
although its thermal conductivity is not as high as BeO.  The high volume resistivity, 
chemical stability at aggressive and high temperature environments, high dielectric constant 
coupled with low dielectric loss and excellent electrical insulation lead to its wide 
applications in electronics as substrates.  More importantly, Alumina costs much less than 
BeO. 

 

              Table 1 Properties for BeO and Alumina (99.6 % Al2O3) . 

Property BeO 99.6% Al2O3 

Electrical  
  

Dielectric constant @1 MHz 6.7 9.8 
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Dielectric loss @1 MHz 0.0002 0.0001 
Dielectric Strength (KV/mm) >9.5 35 
Electrical  resistivity (Ohm-cm) >1014 >1014 

Mechanical 
  

Density (g/cm3) 2.88 3.75 
Youngs Modulus (GPa) 340 390 

Thermal Properties 
  

CTE(×10-6/°C) (25~400°C) 6.7 6.9 
Thermal Conductivity (W/Mk) 290 30 

 
Because the dielectric constant of the sensor substrate is the usually a function of 

temperature and there are temperature fluctuations during the measurement.  It is important 
to determine the relationship between the dielectric constant and temperature because the 
measured capacitance becomes temperature-dependent through the dielectric constant of the 
ceramic substrate.  A change in sensor capacitance could be caused by two reasons, corrosion 
of the front coating or sensor temperature change.  To eliminate the capacitance change from 
the sensor temperature variations and obtain the corrosion rate, a temperature compensation 
technique is used to process test data based on measured sensor temperature and the 
relationship between the temperature and dielectric constant.  The compensation can remove 
the influence of temperature variations on capacitance measurement.   

For the resistance sensor, a specially designed holder was used as a sandwich 
structure for the sacrificial plate of low carbon steel 1010.  This is a common carbon steel 
used for boiler tubes in small boilers and its chemical composition of which is shown in 
Table 2.  High temperature ceramic adhesive was used to glue the sandwich structure 
together.  Electrodes are spot welded on the metal plate, as well as the thermocouple for 
temperature control and measurement.  Ceramic connectors were used to easy sensor 
replacement during the plant testing. 

 

Table 2 Chemical composition of the low carbon steel for coupon (%). 
 

Carbon, max .25 
Manganese, max .90 
Phosphorous, max .025 
Sulfur, max .025 
Nickel, max .20 
Chromium, max .15 
Molybdenum, max .06 
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Sensor Fabrication 

Sputtering Deposition Technology for Sensor Fabrication 
 

The key for sensor fabrication is the forming a wedge-shaped front side coating to be 
exposed to combustion, with linear thickness variation.  The sensor element design is shown 
in Figure 5.  The backside coating not exposed to combustion has a uniform thickness and is 
relatively easy to make.  The coating materials are different for the two coating deposition. 
Since backside coating should have no corrosion, it is better to select a material that does not 
corrode in air environment.  

 Sputtering deposition is a technique by which atoms and ions of Argon or other gases 
from the plasma bombard a target, thereby knocking atoms off of the target. These material 
atoms travel to a substrate where they are deposited and form a thin film. It is necessary to 
provide a uniform and abundant supply of ions over the surface of the target. This is achieved 
by maintaining a charge differential facilitating the movement of the sputtered atoms across 
the gap between the target and the substrate.  

DC magnetron sputtering deposition technology was used for one type of the sensor 
coating deposition. The fabrication included the design and machining of accessory parts for 
substrate installation during the coating, target material preparation and the coating 
fabrication. A Denton DVI-SJ-24 multi-cathode DC/RF magnetron sputtering deposition 
system in the department, as shown in Figure 6, was utilized to deposit the iron coating on 
corrosion side and titanium coating on other side of the substrate. The DVI-SJ-24 is based on 
a “box coater” that provides easy access to substrates, sources, and instrumentation while 
maintaining excellent pumping characteristics. This system is designed to simplify the 
geometries necessary for the coordination of multiple source depositions. The system’s 
inherent flexibility allows for the operation of three sputter sources and the ability to heat, RF 
bias, and rotate the substrate. In a con-focal cathode arrangement, the cathodes are focused 
on a central area of the substrate table. Table rotation during sputtering permits co-
deposition, provides continuous substrate exposure to the cathodes, and results in excellent 
coating uniformity. With this arrangement, the cathodes can be smaller than the substrate and 
still provides uniformity of the coating.  

We used a slow moving shutter for the specific purpose of depositing the linearly 
increasing thickness on the front side for corrosion.  A special substrate holder with mask 
was designed and machined to support the sensor substrate during the sputtering. The 
substrate holder was adjustable in x, y, z directions to keep the mask and substrate in the 
appropriate position. Since the coatings on the two side of the sensor consisted of different 
target materials, the deposition rate and sputtering time were different for the coating on two 
sides. To achieve the required coating slope, experimental coatings were conducted to 
provide information on deposition rates.  The needed exposure time of the substrate in 
plasma and shutter moving speed were calculated before the sputtering operation. The 
wedge-shaped coating was deposited by gradually moving the shutter over the coating area 
of the substrate during the sputtering. The area with longest exposure time had maximum 
coating thickness. The deposited coating had a gradual linearly changing thickness.   

Low carbon steel 1010 was used as target materials to create wedge-shaped coatings. 
It took 7.5 hours for this deposition to complete, with total 45 steps along total length of 15 
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mm at 10-minute interval for each step. The maximum coating thickness measured by the 
profilometer was about 1.7 μm, because deposition rate for this material is very low.  The 
whole process was extremely labor intensive because of the slow moving shutter, at the 
speed of about 1 inch per 7.5 hours, was manually operated moving stage with controls 
through the high vacuum chamber.  Later, as the sputtering system was not available in the 
department due to the departure of a faculty member, the fabrication was done at a NASA 
facility through a technical collaborator.  No commercial sputtering service company is able 
to fabricate our design for a limited number of pieces with reasonable cost. 

For the backside coating, all unmasked area of the substrate had the same exposure 
time and the sensor holder rotated continuously during the sputtering. Since Titanium has a 
relatively higher deposition rate than low carbon steel 1010, the backside coating thickness 
achieved 2 μm during 1.5 hours of the deposition.  

 

Plasma Spray Technology for Sensor Fabrication 
 

Plasma spray process is basically the spraying of molten or heat softened material 
onto a surface to form a coating. Material in the form of powder is injected into a very high 
temperature plasma flame, where it is rapidly heated and accelerated to a high velocity. The 
hot material impacts on the substrate surface and rapidly cools down forming a coating. Such 
a plasma spray process carried out correctly is called a "cold process" (relative to the 
substrate material being coated) as the substrate temperature can be kept low during 
processing avoiding damage, metallurgical changes and distortion to the substrate material. 

A plasma spray system in Plasma Process Inc., in Huntsville, Alabama was tested to 
fabricate the front and back side coatings.  The front side wedge-shaped coating thickness 
varies from the thinnest to the thickest of 50 μm over a total length of 61mm. The backside 
coating has a uniform coating thickness of 100 μm. The target material was a low carbon 
steel “Atomet 95”. In addition, a layer of Titanium coating was sprayed around the holes for 
electrical connection of the sensor.  The purpose of Titanium was to prevent the coating 
oxidation (or corrosion) at electrical connection areas. 

The linear thickness change is not guaranteed because it is a manual spray gun 
operation.  Our sample is too small and it is almost impossible to produce a linear slope of 
thickness change.  For our sensor, such non-linear thickness variation is detrimental to the 
metal loss measurement because the measured capacitance is not proportional to the 
corrosion anymore.  Qualitatively, manual plasma spray can generate a coating thick on one 
side and thinner on the other side.  The deviation from the linear thickness change can only 
be determined by the measurement of each sensor.  We did not pursue further on the plasma 
spray technique for the fabrication of the capacitance sensor.    

 

Probe Design  
 

The probe for the application in coal-fired furnace was re-designed to accommodate 
the ceramic connectors for the sensor element.  The requirement for the probe includes 
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mounting of the sensor element at the end, the temperature control of the sensor element with 
compressed air cooling, and the flange mount for insertion to the combustor.  The existing 
probe is shorter and slightly smaller in diameter.  The new probe is longer, which can be used 
to access superheater section of the boiler.  The new design incorporated features for more 
ruggedness and future applications in power plants. 

 

Probe Temperature Control and Data Acquisition 
 
 The temperature control system and the data acquisition systems were developed.  
We previously used this temperature control system in pilot furnace experiments and had 
good experience with it.  It was proved to be rugged and precise for the similar furnace probe 
applications.  Our original temperature control system can control the probe temperature 
precisely.  However the size of the control cabinet is large and not as convenient.  Both 
systems would be evaluated in our experiments. 

 The computer data acquisition with a LCZ meter was developed.  The 4-wire 
measurement technique was applied to measure capacitance, similar to the resistance 
measurement.  One pair of leads supplied test current to the sensor and a separate pair of 
leads made the voltage measurement.  The method can prevent the voltage drop in current 
carrying wires from affecting the voltage measurement. The 4-wire method were also 
arranged to eliminate the impedance from the electrical leads as source of error, and thus 
improved the measurement accuracy.  The data can be converted to corrosion rate 
information on a continuous online basis.  An OMEGA thermometer/controller connected to 
a thermocouple transfers the temperature of the sensor element to the computer. Data 
acquisition software was developed to perform automatic data collection by the computer to 
obtain the test data from the SR175LCR meter and thermometer respectively.  The rate of 
data acquisition could be adjusted by program. The data acquisition computer could acquire 
and display the measured capacitance and temperature of the sensor on real time basis, and 
the measurement results were programmed to be automatically saved every four hours for 
further data processing and analysis.  The data acquisition software can run continuously 
until it receives the stop command. 

 For the resistance method, the four-wire measurement technique with a constant DC 
current source was used with a high precision digital voltmeter.  A measurement of the 
resistance takes several steps.  First the voltage is measured without applying the current.  
The reading is the background noise to be subtracted from the voltage signal with current on.  
Then the current is turned on and the voltage is measured.  The same procedure is then 
applied to a standard resistor.  The sensor resistance is comparative obtained from the known 
standard resistor.  Such a procedure can remove significant noise, including the thermocouple 
effect from the wiring. 

 

Plant Measurement 
 
 The plant has two tangentially-fired boilers of 65 MW each.  The primary fuel is 
pulverized Eastern U.S. bituminous coal.  The corrosion rate measurement was performed on 
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unit #2, which had switchgrass co-firing.  Switchgrass was separately milled and burned by 
direct injection above the coal burners into the furnace at 5% heating value of the overall fuel 
heating value.  The corrosion measurement was carried out at two locations of the boiler. 
One location was on the waterwall corner above the burners, and the other in between the 
primary and secondary superheaters. 

 During a measurement campaign, the boiler load was held constant at 540,000 lb 
steam per hour (approximately 65 MW), or 320,000 lb/hour.  Switchgrass was burned from 
early morning (typically 6-6:30 am) to afternoon (typically 3-4 pm) on test days.  The 
remaining time was on coal only.  The composite fuel, fly ash, and bottom ash were sampled 
daily during the campaign (typically five days).  In addition, the plant CEM and boiler load 
data are available.  

 At the start of each campaign, a fresh coupon is installed and the probe is inserted 
into the furnace.  The cooling air is initially at full flow rate and then on PID control based on 
the coupon temperature.  Computer data acquisition records the coupon temperature and 
coupon resistance data with time stamp at every few seconds.  The data file is automatically 
saved in every four hours into the hard drive, which is usually downloaded daily for the 
monitoring of coupon resistance change.  The data is then processed to generate coupon 
corrosion rate.  The operation is also pictured and the probe inside the furnace is 
photographed from a port on the other side of the furnace corner.  The used coupons were 
carefully pictured and stored for future analysis on the residue layer on the surface.  The used 
coupons can also be cleaned and measured for thickness change.  
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RESULTS AND DISCUSSION 

 

Two types of sensors based on the capacitance or resistance method, as well as the 
corresponding measurement systems, were developed in the laboratory.  Both systems 
worked well in the laboratory muffle furnace, where the temperature and air environment are 
not as harsh as the coal flames and ash deposits.  However, the coating thickness of the 
capacitance sensor was limited by the sputtering method; the capacitance sensor could not 
function well in the coal combustion environment.  The resistance sensor, on the other hand, 
was made at a much lower cost and worked well in the coal combustion environment.  The 
power plant experiments with the resistance sensor showed interesting results for a boiler 
with biomass co-firing with an eastern bituminous coal.  Analysis of the samples showed the 
detailed mechanism of the fireside corrosion process. 

 

Laboratory Development and Testing 
 

The tasks for the first two years were to design and build the corrosion sensor, probe 
and measurement system, and test in a muffle furnace in the laboratory.  These goals were 
successfully achieved with the development of two types of sensors and measurement 
systems.  The completed work also included the preparation and design of a second corrosion 
probe for more flexible plant test.  The schematic diagram for the laboratory experimental 
setup for the capacitance probe is shown in Figure 7. The schematic for the resistance system 
is very similar to the capacitance system, as shown in Figure 13.   

The wedge-shaped coating of the sensor element is shown in Figure 9.  The picture 
shows the front of the sensor with the wedge coating, where the right side of the coating is 
thicker and the left side is thinner.  Four connection bolts are also shown in the picture.  
Figure 8 shows the resistance sensor and how the sensor is mounted on the tip of the probe.  
The resistance sensor, after many versions of design, has a sandwich structure and a 
supporting ring.  Four connectors are welded on the sensor piece.  A hollow screw cap is 
used to tightly press the supporting ring of the sensor on the probe tip.  For quick sensor 
change, the connectors are plugging-in type of ceramic thermocouple connectors.  

The probe temperature measurement and control components were developed based 
on our experience in pilot and plant furnaces, shown in Figure 11.  The existing probe 
temperature control system that was already developed has a cabinet.  These two control 
systems are rugged and suitable for operation in a power plant environment.  The probe 
temperature, or the temperature of the sensing element, is controlled with compressed air 
cooling.  These temperature control units have been tested in a muffle furnace in the 
laboratory and in a coal-fired furnace.  Both functioned well as designed.  Both can control 
the sensor temperature for extended period without the need for intervention, and the 
temperature data are automatically logged into the computer. 

The electronic measurement with computer data acquisition was also developed and 
tested successfully in the laboratory.  For capacitance, the laboratory setup for the probe, 

 17



temperature and measurement system is shown in Figure 12.  A muffle furnace is used and 
the sensor end of the probe is inserted into the muffle furnace.  The compressed air cooling, 
and temperature control system is connected.  A desktop computer or a laptop computer can 
be used for data acquisition and control.  The data acquisition software was developed to 
allow the user to select data logging rate, the set temperature for the sensor, and options for 
various measurement sequences.  In the muffle furnace test, the system automatically logged 
and saved data for days or weeks without the need for operator intervention.   

For power plant measurement, two air-cooled probes were designed and fabricated.  
The design of the probe is shown in Figure 14, and the schematic probe installation is shown 
in Figure 14.  The sacrificial sensor coupon (diameter 43 mm, sandwich structure with 
ceramic and a metal holder) is installed at the end of the probe, which can be inserted into the 
furnace and exposed to the combustion environment.  Figure 14 is a picture of the assembled 
probe, ready to be inserted into the superheater location.  In our experiment, the view port or 
manhole on the furnace wall were modified for the probe insertion.  The probe tip, where the 
sensor is mounted, is about flush with the water tubes.  Compressed air is used to cool the 
coupon to a constant temperature.  The air-conditioned instrument cabinet with computer 
data acquisition, and the installed probe on the view port on the waterwall, are shown in 
Figure 14.  Figure 147 is close-up picture of the probe inserted through a manhole at the 
superheater location.  A door of the manhole was modified with a connection flange for the 
probe insertion. 

While both capacitance and resistance systems performed well in the muffle furnace 
in the laboratory, however, the fabrication of the capacitance sensor turned out to be very 
difficult and costly.  Initially, we used the sputtering system available in the department.  We 
modified the system to enable a graduate student to operate manually the slow moving 
shutter in 8 hours of sputtering time for one side of the sensor substrate.  The procedure is 
labor intensive and requires special modification of the sputtering system.  Later, the 
sputtering system was not available in the department anymore, and the sensor fabrication 
was done in a similar system at NASA through a collaborator.  When the NASA system is 
down, we looked for commercial sputtering companies to fabricate the sensor.   But no 
commercial sputtering service company is able to fabricate our design at a reasonable cost.  
Furthermore, the sputtering deposition of iron is very slow, less than 2 μm per 8 hours.  
Ideally, the sensor should have a coating of a linear thickness variation of a 0-40 μm slope on 
the front side.  Thicker coating minimizes the effect of initial higher corrosion rate of a fresh 
metal surface.  The corresponding sputtering time, however, would be 176 hours for one side 
of the substrate, making the fabrication process extremely costly.  

As the fabrication of the capacitance sensor turned out to be difficult, the experiments 
on the resistance sensor system made significant progress.  The resistance based system was 
previously tested under industrial support and had difficulty in data processing due to 
persistent noise.  Our further investigation of the resistance sensor design led us believe that 
problems could be solved by a new design of the sensor element.  Another advantage of the 
new design of resistance sensor is its significantly lower cost in comparison to the 
capacitance sensors.  The cost of the capacitance sensor is hundreds times more than the 
resistance sensor without mass production facility.  We can fabricate resistance sensors in the 
laboratory easily, whereas making the capacitance sensors requires custom modification of 
the commercial sputtering facility, a high cost job that many sputtering service companies 
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would not consider.  Therefore, using the similar temperature control, data acquisition, and 
high temperature probe, we focused the power plant experiments on the new type of 
resistance sensor.    

We have gained significant experience at a coal-fired power plant through the 
interaction with plant operators and preliminary testing of the resistance sensor and 
measurement system.  The experience led to design modifications for the practical 
constraints in a plant environment.  Based on our experience in the pilot-scale furnace and 
the power plant, it was concluded that it is easier to directly conduct power plant test because 
the plant operates all the time, and have less changes in operation condition.  We decided to 
focus on power plant trials in the final phase of the project, instead of pilot-scale furnace 
testing.  Power plant testing of the system can also accelerate the pace of bringing the 
technology to practical application by demonstrating the measurement system at full-scale.  
Therefore, we focused effort on the testing of the resistance-based system at a coal-fired 
power plant. 

The result of plant tests indicated that the system could determine metal corrosion 
rate in a relatively short period.  The data was verified with metrology measurement.  It 
should be noted there were many lessons learned from the unique plant environment.  For 
instance, the AC power at the plant is not always stable and could be quite noisy, which 
caused unexpected software shutdowns and fluctuations in recorded data.  The moisture 
content of the compressed air is sometimes high and caused cooling system problems.  The 
dust in the plant environment has caused the computer failures.  The boiler workers for the 
superheater repair knocked down the data acquisition equipment and damaged some parts.  
The boiler repair, probably the use of power tools, generated noises in the data.  The probe in 
the superheater location was one time totally buried under fly ash due to soot blowing.  
Unlike relative clean laboratory, there are many unexpected factors that can affect the 
measurement result.  Diagnosing and solving these problems that are unique in plant 
environment, we have improved the measurement system and had successful measurement 
campaigns.  

  

Plant Measurement Results 

Superheater Corrosion 
 

There were four coupon measurements finished with good results at the superheater 
location. Two coupons started with 100% coal burn first, then was exposed to biomass co-
firing.  The other two coupons started with biomass co-firing, then 100% coal.  It was found 
that the response of coupon resistance was dependent on whether the coupon was first 
exposed to the biomass co-firing or 100% coal firing.  For a fresh coupon, the corrosion rate 
for biomass co-firing is twice as much as that for 100% coal.  If the fresh coupon is first 
exposed to 100% coal firing for about 10 hours, then to biomass co-firing, the corrosion rate 
for biomass co-firing is in a range similar to or slightly below that for 100% coal firing. 

 
Coupon A: 100% coal first, then biomass  
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During this test, the load was held at 530,000 lb/hr during day time. (0-10, and 24-34 
hr), and it was not held constant during other times (night time).  The probe was inserted at 
6:27 am. The coupon resistance and temperature change are shown in Figure 18. The raw 
data for resistance and temperature are shown in (a) and (b), and (c) shows the resistance 
after noise filtering and temperature compensation.  From the resistance change, the 
corrosion rates of coupon were obtained, 13.9 μm/day in the coal-burn period (0~10 hr), and 
9.9 μm/day during the biomass burned period (24~34 hr), as showed in Fig. 3c. 

 
Coupon B: 100% coal first, then biomass  

 
Different from coupon A, the constant steam load of 530,000 lb/h was held all the 

time during this campaign.  The measurement started at 16:26 pm. The coupon resistance and 
temperature change are shown in Figure 18.  From the resistance change, the corrosion rates 
of coupon were calculated to be 14.8 μm/day for the coal-firing period (0~14 hr), and 7.2 
μm/day for the biomass co-firing period (14~24 hr). These corrosion rates are quite similar to 
the previous results for coupon A, which are 13.4 and 9.9 μm/day, respectively.  After 
biomass co-firing, the corrosion rate for 100% coal is 5.7 μm/day.  This rate is smaller than 
that for 100% for the first 0-14 hours.  

 
Coupon C: Biomass first  

 
The biomass burn started at about 6:30 am, and the corrosion probe was put into the 

boiler at 9:38 am. The steam load was held at constant 530,000 lb/h. The coupon resistance 
and temperature changed are shown in Figure 18.  

The corrosion rate of the coupon was calculated from first 7 hour data, when it is all 
biomass co-firing on the fresh coupon. The rate is 27.3  μm/day.  This number is about twice 
as much as that for 100% coal firing on a fresh coupon. 

 
Coupon D: Biomass first 

 

This measurement was a repeat for the previous coupon C.  The steam load was held 
at constant 530,000 lb/h. The fuel was biomass co-fired with coal.  The coupon resistance 
and temperature change are shown in Figure 21. The corrosion rate of coupon was obtained 
as 28.2 μm/day, which is close to the previous result of coupon C, 27.2  μm/day.  This result 
confirms that for biomass co-firing, the corrosion rate is about double that for 100% coal 
firing on a fresh coupon.  

 

Waterwall Corrosion 
 
Coupon E: 100% coal firing at low load 
 

During this campaign, the steam load of boiler was held at 320,000 lb/h during the 
day from 6:00 am to 4:00 pm, and the load was not held constant at night. The fuel was 
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100% coal.  The coupon resistance is shown in Figure 22.  From the resistance change, the 
corrosion rate was calculated to be 7.24 μm/day for the first 20 hrs.  This result can be used 
to compare with the corrosion rate for a higher steam load to show the effect of load on 
corrosion rate. 

 
Coupon F: Biomass first, then 100% coal 
 

The corrosion rate in the coal burning period was about 9.11 μm/day (from 10 to 24 
hr).  The raw data had many spikes, which correspond to the use of power tools by the 
construction or repair workers at the time of the measurement.  These spikes were mostly 
filtered out.  In general, the data at waterwall location have more noise and fluctuation in 
comparison to the data from the superheater location. 

 
Coupon G: 100% coal first, then biomass  
 

In the case of 100% coal burning, the corrosion rate in the first 14 hours was 17.3 
μm/day. Because the high fluctuation of the data in the first 14 hours, the corrosion rate 
calculation has a high uncertainty level.  After 24 hours, the fuel was shifted to 100% coal 
again.  The sensor resistance kept increasing, and the corrosion rate was obtained at 
10.9 μm/day from the resistance change of 32~64 hour. 

Table 3 summarizes the results of the successful measurements.  The superheater 
measurement has confident results on the comparative rates on a fresh coupon for biomass 
co-firing and 100% coal, where the biomass has about double the corrosion rate.  However, if 
the coupon has exposed to 100% coal firing first for about 10 hours, then the corrosion rate 
for biomass co-firing is lower than that for either 100% coal or biomass co-firing on the fresh 
coupon.   

For waterwall, the measured data have more noise and fluctuations.  The corrosion 
rate of 100% coal firing appeared to be similar, but smaller than that for the superheater.  The 
boiler load also seems to have a slight influence on the corrosion rate: higher corrosion rate 
for higher steam load.  

 
 

Table 3. Corrosion rate summary 

Corrosion rate (μm/day) 
No Location Fuel sequence Steam 

(lb/h) 100% Coal Biomass 

A Superheater 
100% coal 

Biomass+coal 
100% coal 

530,000 13.9 (0-10 hr) 9.9 (24-34 hr) 

B Superheater 
100% coal 

Biomass+coal 
100% coal 

530,000 14.8  (0-14 hr) 
5.7  (24-40 hr) 7.2 (14-24 hr) 
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C Superheater Biomass+coal 530,000  27.2 (1-6.5 hr) 

D Superheater Biomass+coal 530,000  28.2 (1-7hr) 

E Waterwall 100% coal 320,000 7.24 (0-20hr)  

F Waterwall Biomas+coal 
100% coal 530,000 9.11 (10-24 hr)  

G Waterwall 
100% coal 

Biomass+coal 
100% coal 

530,000 17.3* (0-14 hr) 
10.9(32-72 hr)  

 
* high uncertainty 

 

Waterwall and Superheater Surface Temperature Estimation 

 
For all the results, the coupon temperature was set at 500 oC.  The reason for the set 

temperature selection was mostly based on the previous experience at the plant.  If the 
temperature is too low, it requires a longer exposure period to obtain confident corrosion rate 
data.  At the time, the temperature of the waterwall was measured by an IR thermometer, and 
500 oC was selected by the team.  However, the true metal surface temperature for the 
waterwall and superheater is lower than 500 oC.  Therefore, the true corrosion rate for the 
waterwall and superheater should be lower than the measured value reported in this project. 

The waterwall and superheater surface temperature on the furnace side is estimated 
here to provide guidance for the correct interpretation of the corrosion results.  The given 
boiler data include: saturated pressure (gauge): 875 psig (6.03 MPa), steam temperature: 860 
oF (460 oC) at steam load 500,000 lb/hour.  The conductivity of carbon steel, based on the 
handbooks, is 45 W/m-oC at 300 oC (572 oF), and 42 W/m-oC at 400 oC (752 oF).  The 
estimated heat flux on the waterwall is about 0.2 MW/m2 (based on Steam), and the 
estimated thickness of the waterwall is 5 mm.  The saturated water inside the waterwall can 
be found from the steam table at 278 oC (532 oF).  Therefore, the outside surface temperature 
of the waterwall is 
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For the primary superheater, the parameters are: the steam temperature of secondary 
super heater, 460 0C (860 0F); the steam temperature of primary super heater, 373 0C (703 
0F).  The outside surface temperature is about 30 oC higher than the steam temperature, and 
for the measurement location in between the primary and secondary superheater, 
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Therefore, the corrosion rate for the true metal surface should be assessed at about 
300 oC for the waterwall and 400 oC for the superheater.  The set temperature of the 
measurement is 200 oC and 100 oC higher than these estimated metal surface temperatures, 
respectively.  The measured corrosion rates should be much higher than the true corrosion 
rate because of the higher set temperatures.  More experiment on the temperature effect on 
the corrosion rate in plant conditions would provide answers and correlations to predict the 
corrosion rate at different temperatures.  There are reports on laboratory studies on 
temperature effect on corrosion.  But we did not find any report on the temperature effect on 
fireside corrosion for power plant experiments. 

 

Measurement Uncertainty Estimation 
 

The measured data has high noise and high fluctuation levels.  The noise is averaged 
and filtered out mostly.  The fluctuation is still quite significant.  Currently, we do not have a 
thorough understanding for the reasons for these fluctuations.  Further study in a base-load 
unit, or a unit with minimum or no change of operation conditions, is needed to establish the 
understanding of the reasons for the fluctuations.  However, based on our experiments and 
experience from previous measurements, the fluctuations seem to correlate with the changes 
of boiler load, and CEM data.   

In general, the coupon resistance is highly dependent on coupon temperature.  
Because the resistance is measured for the whole coupon surface, the temperature 
distribution on the whole coupon surface should be ideally held at a constant value.  In 
reality, the temperature distribution on the coupon surface can vary significantly.  For 
instance, in the pilot combustor experiment, the temperature at differently locations of the 
coupon surface can vary above 10 oC, based on IR camera measurement, with the air cooling 
to the set temperature.  The thermocouple that measures the coupon temperature is weld on 
the center of the coupon and is used for coupon temperature control.  The automatic control 
can only ensure the center of the coupon is at the set temperature.  The temperature in other 
areas on the coupon, on the other hand, is dependent on factors such as corrosion product 
formation and ash deposition.  A very thin layer of ash can change the radiative properties of 
the surface and thus heat flux to the coupon.  The temperature in the area is then changed.  
The speculation is that the fluctuation, i.e., the dependence of coupon resistance on many 
operational and other factors, has significant contributions from the non-uniform temperature 
distribution on the coupon surface.  As shown in Figure 23, the ash deposition on the sensor 
surface increases with time at the waterwall location.  In the future, some type of soot 
blowing mechanism should be incorporated into the probe system to minimize the effect of 
ash deposition. 

The overall uncertainly in corrosion rate is mostly controlled by the fluctuations of 
the resistance data.  The instrument measurement uncertainty of resistance and time 
contribute almost nothing to the overall uncertainty.  The uncertainty for each measurement 
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can be analyzed individually based on the data, which is a time consuming task.  However, it 
can be roughly estimated that the corrosion results have about 20-30% uncertainty level. 

 

Corrosion Rate Change with Exposure Time 
 
It is generally believed that the corrosion is faster initially, and slows down when a 

layer of corrosion product establishes and functions as a diffusion barrier.  The corrosion rate 
of the fresh coupon is higher for the first half hour, as evidenced by the data curve.  Usually 
there is an initial jump of the resistance in the data curve, which is more apparent in Figures 
18 & 19  To eliminate such effect, the calculation of corrosion rates excluded the data for the 
first half hour. 

Currently, there is no detailed understanding on exactly how long this initial period is 
and when the corrosion reaches steady-state in the literature.  Generally, the nature of the 
corrosion and corrosion product or deposit on the surface would determine the length of the 
initial period.  Our observation of the first half hour is primarily based on the data collected, 
and it should be good for the data being analyzed.  There may still be slight decrease of 
corrosion rate after the first half hour, which is not possible to assess from the data measured 
in this study.  Ideally, we would want data for extended time, two weeks for instance, under 
constant conditions.  Then we can assess exactly how much time is needed to establish 
steady-state corrosion. 

Further expanding the thought of initial transition period and steady-state corrosion, 
we can compare the corrosion rates for different conditions, such as different fuel, load, or 
other operational parameters.  It would be an interesting topic itself to see whether the first 
half hour data can be used to assess the relative corrosion rate of boiler different conditions.  
More time-dependent corrosion experiments are needed to establish such a technique for 
assessing relative corrosion rate quickly.  The issue of corrosion rate changes with time and 
how the measured data would be a worthy research topic following this study. 

 

SEM Analysis and Metrology Calibration 

 
There are obvious color differences in the ash deposit or corrosion product on the 

coupon surface for biomass co-firing and 100% coal firing, as shown in coupon pictures in 
Figure 24.  The analysis of the coupon surface by SEM with EDS was performed to 
determine the morphology and composition of the deposit.   

The coupons were also be measured by metrology method to determine the average 
thickness of the metal loss.  This type of measurements was performed in previous studies 
and the result was consistent with the electrical resistance method.  In other words, if the 
furnace electrical resistance measurement indicates 1 mil metal loss, the value can be 
confirmed by micrometer measurement in the laboratory.  To perform such measurement, the 
ASTM surface cleaning procedure or similar method has to be used to remove the deposit 
from the surface.  Because all the current coupons are preserved for further SEM and/or 
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chemical analysis, the metrology measurement of the coupon thickness were only done for a 
few samples, and the result were quite consistent with the resistant method. 

Figure 25 is an SEM picture of the ash layer on the sensor surface, with EDS analysis 
of the elements.  The sensor was used at the waterwall location.  The spherical particles in 
the picture are typical coal fly ash particles.  The estimated average diameter of the particle is 
smaller than typical fly ash particles collected at the electrostatic precipitator.  The ash 
deposit also appears to have attached to larger bulging irregular-shaped base.  The elements 
found in the EDS analysis are common fly ash components. 

The SEM picture of Figure 26 focused on the part of the sensor surface that is free of 
ash deposit.  In the picture, there appear to be a thin layer attaching to the rough surface, with 
a few ash spheres here and there.  The EDS analysis indicates that the thin layer is mostly 
made of iron and oxygen, whereas the rough base is mostly iron.  The result indicates that the 
thin layer is likely the corrosion product.  The rough base is the fresh metal surface after the 
thin layer peeled off.  The sensor surface is then further tilted to allow a side view of the 
corrosion product, as shown in Figure 27.  The rough metal surface has granular type of 
roughness dimension on the order of 1-3 μm.  The corrosion product layer has a thickness of 
about 5-10 μm.  The top of the corrosion layer appear to have a melted substance, and the 
bottom of the layer is more granular. 

Based on the SEM analysis of the sensor surface, we can form the picture of metal 
corrosion on the sensor surface, as shown in Figure 28.  Such a model is helpful in 
establishing the detailed description of the complex interactions and reactions among gas-
melt-solid phases.  

A type of interesting ash morphology is observed in the SEM analysis, shown in 
Figure 29.  Among the typical spherical ash particles, clusters of needle type of structure 
were noticed in the picture.  This type of structures is not seen in coal fly ash collected in the 
electrostatic precipitators.  The EDS analysis showed somewhat different elemental 
composition from fly ash particles.  It could the unique environment near the sensor surface 
that caused the formation of some type of crystals. 
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CONLUSIONS 

 
Two corrosion monitoring systems were designed and built in the laboratory, and 

successfully tested in a muffle furnace.  The difficulty and high cost of capacitance sensor 
fabrication led us to focus our effort on resistance sensors.  Full-scale power plant 
measurements indicated that the system can determine the corrosion rate for waterwall and 
superheater tubes.  The results at the superheater location show that biomass co-firing has 
two scenarios regarding its impact on fireside corrosion.  When a fresh coupon is first 
exposed to biomass co-firing, the corrosion rate for biomass co-firing is much higher than the 
case when the coupon is first exposed to 100% coal firing and then biomass co-firing.  The 
waterwall corrosion rate for 100% coal firing is similar to, but smaller than that for the 
superheater location.  Also, the waterwall corrosion rate appeared to be higher at higher 
boiler load for coal.  SEM with EDS analysis provided a detailed picture of the corrosion on 
the sensor surface.  A three-layer corrosion model was proposed with metal at the bottom, 
corrosion product layer in the middle, and ash deposit layer at the top.  The cracking and 
peeling off of the corrosion product layer exposed the metal to further corrosion 
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Figure 1.  A schematic diagram of capacitance sensor principle.   
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Figure 2.  A schematic diagram of equal potential lines for resistance sensor.   
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Figure 3.  Resistance change with metal thickness reduction  
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Thermal Conductivity vs. Temperature
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Figure 4.  Thermal conductivity of BeO, Alumina (99.6%Al2O3) and AlN.  
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Figure 5.  Design drawings of the the capacitance sensor. 
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Figure 6.  A picture of the DC magnetron sputtering deposition system. 
 
 
 
 

  

Figure 7.  A schematic diagram for the laboratory experimental setup. 
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Figure 8.  Temperature control system for the probe. 

                   
 
 
 
              
 
  

 
 
 
 

Figure 9.  A pictures of wedged iron coating on the capacitance sensor. 
 

 
 

Figure 10.  Resistance sensors (bottom) and sensor assembly (top) 
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Figure 11.  Temperature control system for the probe. 
 
 
 
 
 
 

  
Figure 12.  Complete measurement system layout in the laboratory. 
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Figure 13.  Assembly drawing of the probe. 
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Figure 14.  Schematic diagram of probe installation. 
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Figure 15.  Assembled corrosion probe  
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Figure 16.   Power plant waterwall measurement. 
 

 
Figure 17.  Corrosion probe inserted through the manhole at superheaters. 
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(a) Coupon resistance raw data 

 

 

(b) Coupon temperature test result 

 
(c) Coupon resistance after noise filtering and temperature compensation 

Figure 18.  Corrosion at superheater location for coupon A 
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(a) Coupon resistance test result 

 

 

(b) Coupon temperature test result 

 
(c) Coupon resistance after filtering and compensation 

Figure 19.  Corrosion at superheater location for coupon B 
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Figure 20. Corrosion with biomass co-firing (Coupon C). 

 
 
 
 
 
 

  
 

 

Figure 21. Corrosion in superheater for coupon D 
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Figure 22. Corrosion at waterwall location for 100% coal. 
 
 
 
 
 
 
   

 
 

Figure 23.  Photo of ash deposition on the coupon inside the waterwall 
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Figure 24.  Pictures of corrosion sensor after use. 
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EDS Spectrum Collected from 1000x Area of 
Waterwall Coal #2

 
 

Figure 25. SEM picture and EDS elemental analysis of ash deposit on sensor surface. 
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Figure 26. SEM analysis of corroded layer on sensor surface. 
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Figure 27. SEM side view of the corroded layer on sensor surface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 28.  A corrosion model for the metal surface. 
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SEM Image of Superheater Coal #5 Area 1

Needle
Deposit

 
 
 

EDS Spectrum Collected from Needle Deposit
Superheater Coal #5

 
 

Figure 29. SEM analysis of needles formed in ash deposit on sensor surface. 
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A Novel Sensor and Measurement 
System for Corrosion Monitoring in 

Combustion Environments

Zuoping Li, Bochuan Lin & Heng Ban

Department of Mechanical Engineering  
University of Alabama at Birmingham



Fireside Corrosion

Fireside corrosion is a continuing concern, especially in low 
emission combustion mode and using opportunity fuels. 
Corrosion cost electric utilities $6.9 billion/yr in USA (NACE).



Boiler Tube Failure Due to 
Fireside Corrosion

Tube failure is the leading cause of boiler shutdowns



Why Corrosion Monitoring

• Diagnoses of corrosion problems
• Advanced warning of system upsets leading 

to corrosion damage
• Execution of the process control
• Determination of inspections and /or 

maintenances
• Estimation of the equipment lifetime



Corrosion Monitoring Methods
• Off-line, non-continuous measurement

Visual Inspection
Radiography (X-Ray)
Ultrasonic Testing
Weight-loss Coupon

• On-line, continuous measurement
Electric Resistance (ER)Technique 
Electrochemical Noise (ECN) Technique



Challenge
• Off-line measurement made during 

scheduled or forced outages is unable 
to get instantaneous corrosion 
information.

• Online-line continuous measurement is 
still underdevelopment

• Challenge: to measure corrosion rate in 
one shift (8 hours)



Objectives
• To examine the feasibility of the new 

sensor concept in the laboratory.
• To investigate options for sensor design 

and fabrication.
• To obtain information on measurement 

uncertainty.



Principle of Novel Sensor
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Fabrication Method 

• Magnetron Sputtering Deposition 
Technology

• Plasma Spray Technology
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Plasma Spray Process



Substrate Materials Selection

• BeO
– High thermal conductivity

• Alumina (Al2 O3 )
– High dielectric constant



Novel Sensor Design
Sensor  Type 1



Sputtering Deposition for Sensor

DC Sputtering System Wedge-shaped Coating Backside coating



Novel Sensor Design
Sensor Type 2



Experimental Setup

1. Muffle Furnace: up to 1000 OC 
2. Furnace temperature control: +/- 2 OC 
3. Programmable temperature control for the 

corrosion probe
4. LCR meter (programmable)
5. Data acquisition software and the computer 



System Diagram



System Picture



Substrate Dielectric Constant
Alumina dielectric constant change vs temperature
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Reported dielectric constant at 25oC @1MHz: 6.5~6.7 for BeO and 9.3~ 9.8 
for Alunina(99.6% Al2 O3 ).  High temperature values are not available. 



Temperature Compensation for Corrosion 
Rate Calculation
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Corrosion Test Results- Sensor Type1

Before corrosion

After corrosion



Corrosion Results -Sensor Type 1
Capacitance change during corrosion test at 200癈

25.0
25.3
25.5
25.8
26.0
26.3
26.5
26.8
27.0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Time (hour)

C
ap

ac
ita

nc
e 

(p
F)

Temperature fluctuation during corrosion test at 200癈

195
196

197
198

199
200

201
202

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Time (hour)

Te
m

pe
ra

tu
re

 (癈
 )



Corrosion Results --Sensor Type 1
Capacitance change during corrosion test at 300癈
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Corrosion Results --Sensor Type 1



Corrosion Results --Sensor Type 1



Corrosion Results –Sensor Type 2

Before corrosion After corrosion



Corrosion Results—Sensor Type 2



Corrosion Results—Sensor Type 2



Uncertainty Analysis
Measurements Uncertainty,Ux
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Corrosion Rate with Uncertainty

Sensor 
Type 

Temp.
(°C)

Uncertainty 
(%)

Corrosion Rate
R’ (nm/hr)   (95%)

Type 1

200 4.1% 1.98  ±
 

0.08

300 5.4% 56  ±
 

3

350 3.4% 1515 ±
 

52

400 5.8% 1973 ±
 

114

Type 2 600 4.7% 49 ±
 

2.3

650 3.5% 121 ±
 

4.2



Future Pilot Furnace and Plant 
Testing and Development



Conclusions 

• Laboratory experiments showed the 
feasibility of the sensor concept.  

• DC magnetron sputtering deposition 
and plasma spray are methods that can 
be used to make wedge-shape 
coatings on ceramic substrate. 

• Uncertainty analysis indicated that the 
overall measurement uncertainty was 
within 4%.
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Abstract 
     Fireside corrosion in coal-fired power plants is an obstacle to increase the overall 
efficiency of the plant. Corrosion-induced equipment failure could lead to catastrophic 
damage and inflict significant loss of production and cost for repair. Monitoring fireside 
corrosion in a reliable and timely manner can provide significant benefits to the plant 
operators. There have been many attempts to develop real time continuous corrosion 
monitoring technologies. However, there is no short-term, on-line corrosion monitoring 
system commercially available for fireside corrosion to date due to the extremely harsh 
combustion environment.  
     This paper reports the results of a laboratory development effort on fireside 
corrosion monitoring. A novel sensor and the corrosion measurement system were 
developed for online short-term determination of corrosion rate based on electrical 
capacitance and thin-film technologies. Laboratory experimental results indicated that an 
accurate measure of corrosion rate could be made with high sensitivity. An uncertainty 
analysis of the measurement system was also performed to provide a basis for further 
improvement of the system for future pilot scale testing and full scale testing in power 
plants.  
 
 
1  Introduction 
     Corrosion of metals exposed to high temperature combustion environments, often 
in the presence of deposits, has long been a problem in industrial process plants and 
furnaces. The existence of reducing conditions in low emission operations aggravated 
furnace wall corrosion [1-6]. Key equipment such as boiler tubes and heat exchangers can 
be damaged by corrosion, which reduces equipment performance and reliability and, in 
extreme cases, lead to unexpected failures and shutdowns [7]. For safe, reliable and 
efficient operation, it is important to detect and quantify the amount of corrosion that 
exists and the corrosion rate. The main advantage of on-line corrosion monitoring system 
is to promptly provide the process operator with the information such as warning 
messages, types of corrosion, predicted time frame for corrosion failure and the specific 
reason for the corrosion problem on a continuous basis [3,8]. 
     Corrosion monitoring is an essential element of plant reliability programs. 
Traditionally, inspections of the corrosion are conducted during planned shutdowns and 
preventive maintenance [5-8]. These post-mortem inspections provide little help in 
preventing the damage [1]. There have been attempts to develop on-line continuous 
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corrosion monitoring techniques for corrosion rates. However, these measurement 
methods still need further research and development efforts before they are mature 
enough for widespread industrial use. Currently, there is no commercial product available 
for short-term on-line fireside corrosion monitoring, despite the obvious need.  

This research was based on a new method for corrosion measurement and 
developed a novel sensor for short-term, on-line fireside corrosion monitoring in 
combustion environments.  The main objective of the research was to perform laboratory 
experiments to prove the feasibility of the concept and the sensor design.   
 
 
2   Sensor Principle and Methods 
2.1 Sensor Principle  

The principle of the novel sensor is to convert the thickness measurement, i.e., the 
loss of a thin layer of metal due to corrosion, to an area measurement. The design of the 
sensor is similar to an electrical capacitor and the signal is measured by electrical 
capacitance (EC) technique. A typical EC sensor consists of a ceramic substrate with 
metal coatings on both sides. The front side coating that is exposed to the combustion has 
a linear thickness change. A back side coating of non-corroding material is used to form a 
plate capacitance, as illustrated in Fig. 1.  

      
         Fig. 1:  A schematic diagram for the principle of the sensor.  

   
     The sensor capacitance is a function of the overlapping area of the metal coatings, 
substrate thickness and dielectric properties of the ceramic material. When there is metal 
loss on the front side coating, the corresponding area of the front side coating will recede.  
Therefore, there will be a decrease in capacitance produced by the change in overlapping 
area resulting from coating thickness reduction due to corrosion. The corrosion rate can 
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be measured as the decrease in electrical capacitance over the time. Because the front 
side coating exposed to corrosion has a small slope, this arrangement equivalently 
magnifies a small change in the depth  (thickness) to a much larger change in area, which 
is much easier to measure by electrical capacitance.  Corresponding changes in thickness 
with changes in capacitance can be established experimentally and theoretically based on 
the sensor coating geometry and the dielectric constant of the ceramic plate. The 
corrosion rate R (coating thickness decrease per unit time) is given by Eqs. (1)-(2) 

        thtδR c ∆∆=∆= /cos/ φ                                                (1)    

                                           ( )sh
st
hdC

hst

hdCR <<
∆
∆

≅
+∆

∆
=

εε 22
                                (2)                         

Where s is the overlapping area per unit width of the sensor, h is the initial maximum 
thickness of the wedge-shaped coating, ∆t is the corrosion exposure time, d is the 
thickness of sensor substrate, ε is the dielectric constant of substrate, and ∆C is the total 
capacitance change of the sensor produced by corrosion. 
 
2.2 Substrate Material Selection and Sensor Fabrication 
 The physical and chemical properties of the sensor substrate material are 
important factors affecting the sensor deign and its performance. Beryllium Oxide (BeO) 
is a ceramic material that combines excellent electrical insulating properties with high 
thermal conductivity. It is also corrosion resistant. This unique combination of properties 
in conjunction with good mechanical strength and thermal shock resistance enable BeO 
to be the best substrate material. 
 One of the objectives of this research is to investigate fabrication methods for the 
wedge-shaped coating on the sensor substrate. DC magnetron sputtering deposition 
technologies was applied to coat both sides of the sensor substrate. Figure 2(a) shows a 
fabricated novel sensor based on the design. The sensor has wedge-shaped iron coating 
on the front side for corrosion and a uniform titanium coating on the other side. The 
thickness of the front wedge-shaped coating of the sensor varies incrementally from 0 to 
15 µm over a length of 15 mm. The backside titanium coating is corrosion-resistant and 
has uniform coating thickness.  
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                     (b) 
     Fig. 2:  Pictures of a fabricated sensor, (a) before corrosion (b) after corrosion. 
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2.3 Temperature Compensation and Corrosion Rate Calculation 
During the corrosion experiments, the temperature variations of the sensor 

elements can produce capacitance fluctuations because the dielectric constant of sensor 
substrate is temperature dependent. The dielectric constant of the ceramic substrate 
increases with increasing temperature.  As a result, the sensor capacitance increases with 
increasing temperature. In order to obtain the capacitance change caused by the 
corrosion, the sensor capacitance has to be evaluated at a constant or nominal 
temperature.  The fireside sensor is usually air-cooled to a temperature close to the boiler 
tube surface temperature.  Small temperature fluctuation is likely to exist, for instance, 
+/- 1 oC.  Therefore, a method for temperature compensation was applied to remove the 
capacitance fluctuation caused by temperature fluctuations in our laboratory study. The 
compensated capacitance of the sensor element ),( tTC  under temperature T at transient 
time t is calculated by Eq. (3): 

                                             )(),(),( '' TT
dT
dCtTCtTC −−=                                           (3) 

Where ),( ' tTC is the measured sensor capacitance at temperature T’ and time t, and 
( TT −' ) is the temperature difference or fluctuation from the nominal temperature T. The 
dC/dT value can be measured as the property of the ceramic material.  An accurate 
determination of dTdC /  can also be obtained directly from the actual element around 
exact temperature of interest in the experiment. The recorded data include sensor 
capacitance and sensor temperature. The small variations in temperature around its set 
point, together with change in capacitance for a short period can be plotted to acquire the 

dTdC / value. Within the short period, the actual corrosion is negligible and the 
capacitance-temperature relationship is assumed to be the material property.  Take the 
corrosion test data at 200°C for example, the typical value of dTdC /  used to calculate 
corrosion rate is shown in Fig. 3. Similarly, the same value can be obtained at other 
experimental temperature. 
  After temperature compensation, the total capacitance change C∆  of the sensor 
element caused by corrosion during exposure time (t-t0) can be given by Eq. (4) 

                                                   ),(),( 0tTCtTCC −=∆                                                   (4) 
Thus, the corrosion rate R at a test temperature T is given Eq. (5): 

                                                    
stt

hdCR
ε)( 0−

∆
=                                                           (5) 

 
2.4 Experimental Setup 

An experimental system with data acquisition, shown in Fig. 4, was set up for the 
laboratory corrosion experiments to prove the design concept. The furnace was set at a 
temperature with temperature control. A thermocouple was used to measure real time 
temperature of the sensor. Data acquisition software was programmed to perform 
automatic data collection by computer to obtain the test data from the LCR meter and 
OMEGA Dpi8 thermometer on real time basis, respectively. The 4-wire measurement 
technique was utilized to measure capacitance of the sensor. The 4-wire technique 
eliminates the impedance of measurement leads as a source of error. 
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Fig. 3:  A typical plot of dTdC / measured from small temperature fluctuations around 
200 ºC.    
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

Fig. 4:  A schematic diagram of measurement system. 
 
 
3   Results and Discussions 
3.1 Dielectric Constant Measurement Results 

The purpose of this measurement was to obtain the influence of temperature on 
the dielectric constant of BeO, because the correlation between the dielectric constant of 
the BeO and elevated temperatures is currently not available. In addition, there no 
dielectric constant data available for BeO at the frequency range of our measurement. 
The experiment was conducted using a BeO capacitor with no corrosion and varying the 
furnace temperature from room temperature to over 400 ºC. Results in Fig. 5 demonstrate 
that the dielectric constant of BeO is highly temperature dependent and increased from 
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6.7 at 150 ºC to 7.9 at 450ºC. This information was used in the sensor design, in the 
selection of the measurement instrument, and in the process of evaluating possible 
uncertainties introduced by the temperature fluctuation. 
 
3.2 Corrosion Measurement Results 

Laboratory corrosion experiments were performed using the muffle furnace and 
fabricated sensors at the temperature of 200°C, 300°C, 350°C and 400°C, respectively. 
One corroded sensor is shown in Fig. 2(b) and the corrosion of the wedge-shaped coating 
is apparent. Figures 6-9 show the capacitance of the sensors decrease steadily during 
exposure period of corrosion for each test temperature. The temperature compensation 
was applied to process experimental data and Figure 6-9 shows the processed data with 
10 point running average. The experimental results clearly proved the feasibility of the 
sensors concept.  It also shows that the fabricated sensors can survive in high temperature 
environments.  The sensitivity of the sensor is high enough to provide on-line continuous 
corrosion information quickly. In our experiment, an accurate corrosion measurement 
was obtained in periods as short as in few hours under laboratory conditions. The 
relationship between corrosion rate and reduction in coating thickness follows the 
theoretical equation established early in conceptual design. The experimental results were 
stable and reliable. The high corrosion rates may be possibly attributed to low coating 
thickness and no oxidation protection scale was formed before the coating was 
completely corroded away [9].   
 
3.3 Post-Exposure Analysis 

Scanning Electronic Microscope (SEM) was used to examine the coating 
microstructure of the sensors before and after the corrosion test.  SEM graphs can provide 
information about coating microstructure and surface roughness. Microscopic 
examination revealed that shallow pitting and surface roughness for the corroded sensors.  
The surface profilometer and digital micrometer were utilized to measure the coating 
thickness of the sensor elements and provided quantitative physical information for 
validation of the electrical capacitance measurement.  Meanwhile, the optical microscopy 
also indicated that the coatings successfully survived high temperature tests and there was 
no peeling or detachment from the substrate. 
 
3.4 Uncertainty Analysis 

Uncertainty analysis of the corrosion measurement was performed to quantify the 
uncertainty of the measurement system.  Since the corrosion rate measurement in this 
research is a multi-variable measurement, uncertainty from each variable will propagate 
to the final result or overall uncertainty [10-11]. The corrosion rates with uncertainty for 
the above experimental results under different temperature were calculated and presented 
in table 1 below. The sensitivity of the measurement system, which depends on the sensor 
design and the measurement instrument, is a function of the slope of wedge–shaped 
coating, the dielectric constant and the thickness of the substrate, sensor and coating 
geometry and the overall precision error of the system.  Our experimental results indicate 
that the sensor is capable of measuring sub-micrometer thickness changes confidently.  
Such capability can be used for short-term, on-line corrosion monitoring.        
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         Table 1:  Average corrosion rates with uncertainty at different test temperature           

Sensors Corrosion Exposure 
Time    (hours) 

Temperature     
(°C) 

Corrosion rate 
with 

uncertainty  
(nm/hr) 

1 48 200    1.98 ± 0.07 
2 6 300  56 ± 2.0 
3 0.75 350 1515 ± 38 
4 0.5 400 1973 ± 62 

 
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 5:  Dielectric constant change of  BeO  with temperature at 10kHz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6:  Capacitance change during corrosion test at 200°C  
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Fig. 7:  Capacitance change during corrosion test at 300°C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8:  Capacitance change during corrosion test at 350°C 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 9: Capacitance change during corrosion test at 400°C 



 

 9

4   Conclusions 
The laboratory corrosion studies have demonstrated that the sensor and 

measurement system are capable of short-term, on-line corrosion monitoring. In 
summary, the following conclusions can be drawn from current research: 

1. Laboratory proof-of-concept corrosion experiments showed the feasibility of the 
sensor concept.  The sensor showed high signal-to-noise ratio and can detect sub-
micrometer thickness changes. The sensor and measurement system obtained 
corrosion information quickly under different experimental temperatures. The 
corrosion rates showed strong dependence on temperature ranging from 1.98 
nm/hr at 200°C to 1973 nm/hr at 400°C. 

2. DC magnetron sputtering deposition is a method that can be used to make wedge-
shape coatings on BeO substrate. The coatings survived high temperature 
environments in our experiment. The fabricated method for the sensors was 
shown to meet the theoretical design requirements. 

3. Uncertainty analysis indicated that the overall measurement uncertainty was 
within 4% of the measured mean value. Sensitivity analysis of the experimental 
system showed that the performance of the sensor and corrosion measurement 
system could lead to short-term on-line corrosion capabilities for fireside 
corrosion monitoring. 
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Plant Test of an On-Line 
Fireside Corrosion Monitor 

Bochuan Lin, Heng Ban
University of Alabama at Birmingham

Arun Mehta 
Electric Power Research Institute 



Boiler Tube Fireside Corrosion

Tube failure is the leading cause of boiler shutdowns

Fireside corrosion is a continuing concern, especially 
in low emission combustion mode and using 
opportunity fuels. Corrosion cost electric utilities $6.9 
billion/yr in USA (NACE).



Why Corrosion Monitoring

Diagnoses of corrosion problems
Advanced warning of system upsets 
leading to corrosion damage
Determination of inspections and /or 
maintenances
Estimation of the equipment lifetime



Corrosion Monitoring Methods

Off-line, non-continuous measurement
Visual Inspection
Radiography (X-Ray)
Ultrasonic Testing
Weight-loss Coupon
On-line, continuous measurement
Electric Resistance (ER)Technique 
Electrochemical Noise (ECN) Technique
New technologies in Development



What We Did:

- An on-line fireside corrosion monitoring 
system based on electric resistance 
measurement.

- Tested at a tangentially fired PC boiler 
burning an Eastern bituminous coal. 

- Corrosion rate was determined (coupon 
thickness change). 



Measurement Principle 

(constant current)I

U

sample

equipotential line test pole #1

test pole #2

•A sacrificial metal coupon 
exposed to the corrosive 
environment.

•The change of the coupon 
thickness is determined 
based on the measurement 
of the coupon electrical 
resistance change. 



Resistance vs Thickness



Experimental Setup 

control unit
temperature

computer

current source

voltage measure

sample
corrosion



furnace wall

corrosion probe

cooling air

electric line

test pole

sample
corrosion

furnace

Schematic Diagram Of Corrosion Probe 



Corrosion Sensor (coupon)

Front view                       Back view



Probe Assembly



Probe Installation



Control and Measurement Unit



View Port Viewing with a mirror

Probe Operation



Resistance Monitoring 



Coupon after experiment



Result and Discussion 
Summary for Run 2

Sample material Low carbon 1010 steel
Sample thickness 0.381 ±0.02mm

Sample temperature 550 oC

Fuel for boiler Bituminous coal

Position of probe Boiler front corner wall

Experiment time 240 hours

Quantity of Corrosion 26.7%



Coupon Resistance vs Time 



Flue Gas Analysis



Boiler Steam Loading



Ash Deposition on the Coupon 



The Resistance Change 
in First 100 Hours



• The on-line corrosion monitoring 
system based on electrical 
resistance can determine the 
corrosion rate in about 40 hours at 
a power plant. 
• More work in needed to examine 
the effect of ash deposition on the 
measurement. 

Conclusion



Thanks for 
listening! 



Question? 



Introduction: Fireside Corrosion



Fireside Corrosion Monitoring

Many boilers have experienced unacceptable 
rates of corrosion in furnaces resulting from 
the introduction of technologies targeting 
emissions reduction, efficiency improvement, 
or fuel/oxidant flexibility 
Fireside corrosion causes damage to 
waterwall tube.
There is no commercial product available for 
online fireside corrosion monitoring.



Challenges

Off-line measurement made during 
scheduled or forced outages is unable 
to get instantaneous corrosion 
information.
Online-line continuous measurement is 
still underdevelopment
Challenge: to measure corrosion rate in 
one shift (8 hours)
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ABSTRACT 
Many boilers have experienced unacceptable rates of fireside corrosion resulting from 

the introduction of technologies targeting emissions reduction, efficiency improvement, or 
fuel/oxidant flexibility.  Because fireside corrosion can lead to catastrophic boiler failures, an 
on-line corrosion monitoring system can be valuable in reducing the overall operating cost.  
This paper presents the result of an on-line fireside corrosion monitoring system tested at a 
tangentially fired PC boiler, burning an Eastern bituminous coal.  The method was based on 
the measurement of the coupon electrical resistance to determine the coupon thickness. The 
probe was mounted on the furnace wall and air-cooled to maintain a constant temperature of 
the sensing coupon. The corrosion rate was determined from a four-wire resistance 
measurement with computer data acquisition. It was shown that the measurement system can 
successfully determine the corrosion rate.  The result also indicates that better temperature 
control or temperature compensation, and measures to remove ash deposition are needed to 
allow the probe to measure corrosion rate accurately in a prolonged period. 

 
INTRODUCTION 

The corrosion of waterwall tubes due to chemical attack occurring on the furnace side 
of the heat exchanging surfaces in industrial furnaces is known as external or fireside 
corrosion [1,2].  Fireside corrosion is characterized by the relatively high temperature and the 
unique environment encountered in the furnaces.  Figure 1 shows the major areas of 
corrosion in a typical coal-fired steam generator, and Figure 2 shows a cross-section of a 
corroded waterwall tube.  Many power plants that rely on steam from boilers have 
experienced unacceptable rates of corrosion in furnaces resulting from the introduction of 
technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant 
flexibility [3,4,5].    

       The waterwall tubes experience the largest heat flux, about 200-500 kW/m2, of all 
boiler tubes due to the large temperature gradient between hot gases in the combustion zone 
and a relative cool waterwall tube at about 350-450 oC.  High temperature corrosion occurs at 
the superheater or reheater where the nominal temperature is above 500 oC. The symptoms of 
waterwall tube fireside corrosion are the thinning of the tube, as shown in Figure 2, and 
increased tube strain.   



         

 
 
       Fireside corrosion is a continuing problem in Kraft recovery boilers in the pulp and 

paper industry.  It is also an increasing concern for coal fired power plants due to operations 
such as low NOx firing and fuel changes from the use of biomass, spot-market coal, or other 
opportunity fuels.  Water tube damage from accelerated corrosion can cause catastrophic 
equipment failure, explosions, and forced plant outages.  The resulting economic impact 
from repair and loss of production can be debilitating.   

Currently, there is no commercial product available for online fireside corrosion 
monitoring despite the industrial demand.  At present, downtime visual inspection and 
ultrasonic tube thickness measurement are standard techniques for identifying corrosion 
after-the-fact during scheduled or forced outages.  These techniques provide little help in 
preventing the damage. 

 This paper presents the result of an on-line fireside corrosion monitoring system 
tested at a tangentially fired PC boiler burning an Eastern bituminous coal.  The probe was 
mounted furnace on the furnace wall and air-cooled. The corrosion rate was determined from 
a four-wire electrical resistance measurement with computer data acquisition. The corrosion 
rate was determined based the coupon electrical resistance change, which reflects the coupon 
thickness change. The tests show that the measurement system can successfully determine 
the corrosion rate.     

 
MEASUREMENT PRINCIPLE  

       The measurement method uses a sacrificial metal coupon exposed to the corrosive 
environment and determines the rate of the average coupon thickness recession.  The relative 
change of the coupon thickness is determined based on the measurement of the coupon 
electrical resistance change. Because the electrical resistance of a current path increases 
when the cross sectional area of the conductor is reduced, the metal loss due to corrosion can 
be detected by an electrical resistance-measuring instrument.  The sensing coupon is made of 
a circular disk of the alloy of concern with four electrical connections.  A DC constant 
current is applied through the two opposite electric connections and the voltage between the 
other two electric connections is measured, as shown in Figure 3. 

Figure 2. Membrane fireside corrosion  Figure 1. A schematic diagram showing the 
location of corrosion in a typical steam boiler
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       The corrosion of coupon material will reduce the thickness of the coupon, and lead to 

an increase of measured resistance.  Since the electric current is maintained at constant, the 
voltage between the test poles 1 & 2 will increase as the thickness decreases. Figure 3 shows 
the theoretical relationship between the measured voltage and the coupon thickness in 
relative percentages.  Figure 3 was calculated using a commercial finite element package to 
model the geometry effect of a specific coupon size and the location of the four electric 
connections.  The curve for partial corrosion was calculated to account for the fact that there 
is little corrosion on the rim of the coupon due to sealing o-ring. Figure 3 shows an 
approximate linear relationship when the change of resistance is not significant. 

The method to determine coupon thickness is straight forward if a linear relationship 
is assumed between the resistance and thickness.  The measured voltage U is: 

 
                                                                           (1) 

 
and the resistance R between the test poles is: 

  
               (2) 

 
where :   K        a constant determined by the material and geometry of the coupon, 

       Δ        the thickness of the coupon, 
      I const   the constant electric current. 

The thickness (Δ) and the resistance (R) of the coupon can be calculated based on the initial 
values of Δo, and Ro: 
 

(3)                         
 
Therefore, the percentage change of thickness 
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follows the equation below:  
                                                                                                (4) 

 
 

Figure 4. Resistance change with thickness 
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EXPERIMENTAL SETUP 
The measurement system for the on-line corrosion testing consists of (1) temperature 

control unit, (2) constant current power source, (3) precise voltage measurement unit, and (4) 
computer control and data processing unit.  Figure 5 is a diagram of the system.  The 
corrosion coupon was installed on the tip of a probe to be installed through the observation 
port of the furnace wall, shown in Figure 6.  Because the electric conductivity of sample 
material is a function of temperature, an air-cooling system with a PID temperature controller 
was used to maintain a stable temperature of the coupon. 

 Figures 6 & 7 are pictures of the corrosion coupon and the instrument cabinet 
respectively.  The measurement system is programmed to operate autonomously and allows 
periodic downloading of data. 

 
 
 
 
 
 
 
 
 
 
 
                   
Figure 5.  Corrosion testing system.                            Figure 6. Schematic diagram of corrosion probe. 

 

   
Figure7. Corrosion coupon                                             Figure 8. Measurement system                                         

 
RESULT AND DISCUSSION 

The experiment was carried out in a power plant boiler (Steam flow rate: 600,000 
lb/hr). The unit is tangentially fired burning an Eastern bituminous coal.  The corrosion probe 
was inserted into the boiler through the inspection port on the corner one floor above the 
nozzle, as shown in Figure 8. One of the corrosion experimental results is summarized in 
Table 1 and the detailed resistance data and overall furnace operation parameters are 
presented in Figure 9-10. 

Figure 9 shows the coupon resistance change for a testing period of 240 hours.  The 
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temperature of the coupon was set to 550 oC during the period. The resistance of the coupon 
increased steadily during the first 140 hours, and stayed approximately flat for the remaining 
100 hours.  The resistance also has significant fluctuations as spikes and sometimes a slight 
decrease in the periods of a few hours.  Figure 10 showed the flue gas analysis result and the 
steam load change for the experimental period. It is apparent that the changes in the SO2, 
NOx, and CO2 concentrations are somewhat correlated to the steam loading of the unit. The 
fluctuations in coupon resistance also have corresponding changes when the furnace loading 
condition is changed.  Figure 11, in situ pictures of the coupon in the furnace, shows the 
development of ash deposit on the coupon surface. The ash deposition was slight in first 72 
hrs, and there was a heavy ash layer on the sample surface after 168 hrs till the end of 
experiment.  The coupon corrosion and ash deposition, after the coupon is removed, is also 
shown in Figure 11, with dark layers of metal corrosion and yellowish ash on the surface.  

 
Table 1. Result summary for one corrosion experiment 

 
Coupon material Low carbon 1010 steel 
Initial thickness 0.381 ±0.02mm 
Temperature 550 oC 
Fuel for boiler Bituminous coal 
Position of probe Boiler corner port 1 
Experiment time 240 hours 
Actual Corrosion 26.7% 

 
Overall, the resistance of the coupon increases with time.  The resistance of coupon 

increases from about 1.07 mOhm to 1.18 mOhm, about 10.2% in Figure 9.  According to Fig. 
4, the resistance increase should be almost proportional to thickness decrease. Therefore, the 
thickness change determined by the electrical resistance measurement is about 10.5%.  But 
the coupon thickness measurement after the coupon is removed from the furnace showed an 
actual thickness decrease of 26.7%. Such difference between resistance measurement and 
actual thickness reduction is likely originated from the spatial and temporal non-uniformity 
of the coupon temperature.  To convert the resistance to the thickness, it is required that the 
resistance values are compared at a fixed reference temperature.  Because the resistance is a 
function of temperature, a temperature drift can lead to erroneous result for the coupon 
thickness calculated from resistance data.  For example, if the coupon temperature is 
decreased, the measured resistance will also be lower even if the thickness of the coupon is 
decreased.  The reason for the temperature variation in the experiment may be due to the ash 
deposition on the coupon surface.  The ash deposit can cause spatial temperature variation of 
the coupon surface when the ash is not uniformly distributed on the surface.  The deposition 
and falling-off of the ash from the surface can also cause temperature variation temporally.  
Therefore, the resistance may be masked by the temperature effect, and the direct comparison 
of the resistance is not appropriate.  In Fig. 9, the resistance data show a trend of increasing 
fluctuations, corresponding to the ash deposition process initially and probably the deposition 
and detachment of the ash layer afterwards. 

Based on the result in the first 100 hours, the average corrosion rate is calculated to be 
around 1×10-6 m/h in Figure 12.  The corrosion rate can also be extracted from the data in the 
first 40 hrs as 1×10-6 m/h.  During these periods, the ash deposition is not significant and the  



  
Figure 9. Corrosion measurement result of sample resistance v.s time. 

 

 
 

 
 
 
Figure 10.  Flue gas analysis and steam loading. 
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Figure 11. Ash depositing and oxide coating on the coupon surface. 
 
 
 

Figure 12.  The resistance measurement in the first 100 hours. 
 
effect of ash deposit is much less.  This rate value of 1×10-6 m/h is about twice as much as 
the actual average corrosion rate of 0.42×10-6 m/h.  Because the corrosion tends to be faster 
initially, the result is believed to be reasonable.  The commonly accepted “normal” corrosion 
rate is about 0.1×10-6 m/h at lower temperatures of about 400.  Because the temperature in 
this experiment is higher at 550 oC, the corrosion rate is higher as expected. 
 
CONCLUSION 
 The on-line corrosion monitoring system based on electrical resistance can determine 
the corrosion rate in about 40 hours under the experimental conditions at a power plant.  The 
coupon had significant ash depositions during the 240 hour test and the non-uniformity of the 
coupon temperature caused significant errors in coupon thickness calculation.  Better 
temperature control or temperature compensation, and measures to remove ash deposition are 
needed to allow the probe to measure corrosion rate accurately in the prolonged period.
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Why Corrosion Monitoring
• Diagnoses of corrosion problems
• Advanced warning of system upsets leading to 

corrosion damage
• Determination of inspections and/or maintenances
• Estimation of equipment lifetime



Recent EPRI & DOE Efforts

• Reaction Engineering Inc. used ECN.
• DOE NETL Albany Research Center is 

testing ECN.
• Alstom tested panel resistance method.
• Southern Research Institute and UAB 

tested and developed ER.
• UAB developed Capacitance method.



Corrosion Work at UAB
• Resistance Sensor

– Lab sensor development
– Pilot coal combustor testing
– Power plant measurement

• Capacitance Sensor
– Lab development
– Pilot coal combustor testing



Objectives
• Power plant testing of ER probe and 

measurement system.
• Measurement of waterwall and 

superheater fireside corrosion rate.
• Compare the corrosion rates for coal and 

switchgrass-coal co-firing



Commercial ER Corrosion Probes



Sensor Fabrication

DC Sputtering System Wedge-shaped Coating Backside coating



Laboratory Setup





Corrosion Probe at SRI 
Combustor



Probe Picture



Plant Gadsden, Switchgrass Co-Firing 



Corrosion probe & Sensor Assembly



Plant Measurement



Probe after experiment



Layers on Metal Surface



Substrate

Ash Deposit

SEM Image of Waterwall Coal #2 Area 1



EDS Spectrum Collected from 1000x Area of 
Waterwall Coal #2



SEM Image of Waterwall Coal #2 Area 2

Upper
Substrate

Lower
Substrate



EDS Spectrum Collected from Upper Substrate of 
Waterwall Coal #2



Substrate

Ash Deposit

EDS Spectrum Collected from Lower Substrate of 
Waterwall Coal #2



SEM Image of Waterwall Coal #2 Area 3



SEM Image of Superheater Coal #5 Area 1

Needle
Deposit



EDS Spectrum Collected from Needle Deposit
Superheater Coal #5



SEM Image of Superheater Coal #5 Area 2
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Sensor Resistance Data



Repeat Run



Corrosion rate (μm/day)
Location Fuel sequence Steam 

(lb/h) 100% Coal Biomass

Superheater
100% coal

Biomass+coal
100% coal

530,000 13.9 (0-10 hr) 9.9 (24-34 hr)

Superheater
100% coal

Biomass+coal
100% coal

530,000 14.8  (0-14 hr)
5.7  (24-40 hr) 7.2 (14-24 hr)

Superheater Biomass+coal 530,000 27.2 (1-6.5 hr)

Superheater Biomass+coal 530,000 28.2 (1-7hr)

Waterwall 100% coal 320,000 7.24 (0-20hr)

Waterwall Biomas+coal
100% coal 530,000 9.11 (10-24 hr)

Waterwall
100% coal

Biomass+coal
100% coal

530,000 17.3* (0-14 hr)
10.9(32-72 hr)



Conclusions
• The ER probe can be used to determine 

corrosion in short measurement period.
• The corrosion rates for biomass co-firing 

and coal were measured.
• The differences between biomass and 

coal corrosion are still to be understood.
• More testing is needed to validate data.



E. C. Gaston Steam Plant

Questions?
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Outline of Work

• Resistance Sensors
– Lab sensor development
– Pilot coal combustor testing
– Power plant measurement

• Capacitance Sensors
– Lab development
– Pilot coal combustor testing



Capacitance Principle 
Thickness => Area/Length

dc

• Convert thickness measurement to 
length/area measurement.  For example, 
2 μm in thickness change can be turned 
into a 2 mm length change (or area).

• Measure electrical 
capacitance change 
to determine the 
area change.



Sensor Fabrication

DC Sputtering System Wedge-shaped Coating Backside coating



Laboratory Setup





Corrosion Probe at SRI Combustor



Commercial Corrosion Probes for Low 
Temperature Applications



Probe Picture



Power Plant with Biomass Co-Firing 



Plant Measurement





Corrosion probe (left) and sensor 
assembly (right) 



Probe after experiment



Corrosion Sensor after Tests 
(left: waterwall; right: superheater)



E. C. Gaston Steam Plant
The E. C. Gaston Steam Plant is a 5-unit coal fired plant with a combined 
output of 1,880 megawatts. The Plant is located near Wilsonville, 
Alabama in Shelby County. 
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Why Corrosion Monitoring

• Diagnoses of corrosion problems
• Advanced warning of system upsets leading to 

corrosion damage
• Determination of inspections and/or maintenances
• Estimation of equipment lifetime



Recent EPRI & DOE Efforts

• Reaction Engineering Inc. used ECN.
• DOE NETL Albany Research Center is 

testing ECN.
• Alstom tested panel resistance method.
• Southern Research Institute and UAB 

tested and developed ER.
• UAB developed Capacitance method.



Corrosion Work at UAB

• Resistance Sensor
– Lab sensor development
– Pilot coal combustor testing
– Power plant measurement

• Capacitance Sensor
– Lab development
– Pilot coal combustor testing



Objectives

• Power plant testing of ER probe and 
measurement system.

• Measurement of waterwall and 
superheater fireside corrosion rate.

• Compare the corrosion rates for coal and 
switchgrass-coal co-firing.



Commercial ER Corrosion Probes



Sensor Fabrication

DC Sputtering System Wedge-shaped Coating Backside coating



Laboratory Setup





Corrosion Probe at SRI ombustor



Probe Picture



Plant Gadsden, Switchgrass Co-Firing 



Corrosion probe & Sensor Assembly



Plant Measurement



Probe after experiment



Layers on Metal Surface



Substrate

Ash Deposit

SEM Image of Waterwall Coal #2 Area 1



EDS Spectrum Collected from 1000x Area of 
Waterwall Coal #2



SEM Image of Waterwall Coal #2 Area 2
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EDS Spectrum Collected from Upper Substrate of 
Waterwall Coal #2



Substrate

Ash Deposit

EDS Spectrum Collected from Lower Substrate of 
Waterwall Coal #2



SEM Image of Waterwall Coal #2 Area 3



SEM Image of Superheater Coal #5 Area 1

Needle
Deposit



EDS Spectrum Collected from Needle Deposit
Superheater Coal #5



SEM Image of Superheater Coal #5 Area 2

Substrate

Ash Deposit



Sensor Resistance Data



Repeat Run



Location Fuel sequence Steam 
(lb/h)

Corrosion rate (μm/day)

100% Coal Biomass

Superheater
100% coal

Biomass+coal
100% coal

530,000 14 (0-10 hr) 9.9 (24-34 hr)

Superheater
100% coal

Biomass+coal
100% coal

530,000 15  (0-14 hr)
5.7  (24-40 hr) 7.2 (14-24 hr)

Superheater Biomass+coal 530,000 27 (1-6.5 hr)

Superheater Biomass+coal 530,000 28 (1-7hr)

Waterwall 100% coal 320,000 7.2 (0-20hr)

Waterwall Biomas+coal
100% coal 530,000 9.1 (10-24 hr)

Waterwall
100% coal

Biomass+coal
100% coal

530,000 17* (0-14 hr)
11(32-72 hr)

Result Summary



Conclusions

• The ER probe can be used to determine 
corrosion in short measurement period.

• The corrosion rates for biomass co-firing 
and coal were measured.

• The differences between biomass and 
coal corrosion are still to be understood.

• More testing is needed to validate data.



E. C. Gaston Steam Plant

Questions?
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