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Abstract 

 
   There is a need in security systems to rapidly and accurately grant access of authorized personnel to a secure 
facility while denying access to unauthorized personnel.  In many cases this role is filled by security personnel, 
which can be very costly.  Systems that can perform this role autonomously without sacrificing accuracy or speed of 
throughput are very appealing.  To address the issue of autonomous facility access through the use of technology, 
the idea of a “secure portal” is introduced.  A secure portal is a defined zone where state-of-the-art technology can 
be implemented to grant secure area access or to allow special privileges for an individual.  Biometric technologies 
are of interest because they are generally more difficult to defeat than technologies such as badge swipe and keypad 
entry.  The biometric technologies selected for this concept were facial and gait recognition.  They were chosen 
since they require less user cooperation than other biometrics such as fingerprint, iris, and hand geometry and 
because they have the most potential for flexibility in deployment. 
   The secure portal concept could be implemented within the boundaries of an entry area to a facility.  As a person is 
approaching a badge and/or PIN portal, face and gait information can be gathered and processed.  The biometric 
information could be fused for verification against the information that is gathered from the badge.  This paper 
discusses a facial recognition technology that was developed for the purposes of providing high verification 
probabilities with low false alarm rates, which would be required of an autonomous entry control system.  In 
particular, a 3-D facial recognition approach using Fisher Linear Discriminant Analysis is described.  Gait 
recognition technology, based on Hidden Markov Models has been explored, but those results are not included in 
this paper.  Fusion approaches for combining the results of the biometrics would be the next step in realizing the 
secure portal concept. 
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Secure Portal 
 

1. Introduction 
Autonomous facility access could be realized through the concept of a “secure portal.”  A secure portal is a 

defined zone where state-of-the-art technology is implemented to grant secure area access or privileges.  One of the 
technologies that would facilitate this idea is automatic facial recognition.  Facial recognition is a promising 
technology for many applications because of its non-intrusive nature, ease of integration into existing systems, and 
potential to identify individuals at a distance without subject cooperation. These attributes make it ideal for the 
screening of individuals at borders, airports, secure facilities, etc. However, designing systems ideal for these 
environments requires systems that are robust to variations in facial pose, illumination, and expression. While the 
utilization of 3D data is an opportune choice to mitigate issues associated with illumination and pose variations, 3D 
data is still highly affected by variations in facial expression due to non-rigid facial deformations. 

Among the unsupervised statistical learning techniques, Principle Component Analysis (PCA) and Linear 
Discriminant Analysis (LDA) are in the forefront, noted for their potential for dimensionality reduction and data 
generalization. PCA seeks to minimize the L2 norm between a PCA synthesized representation and an original 
signal, making it a good choice when a lower dimensional model of a signal class typically containing little within-
class variation is desired. However, when the within-class variation is significant PCA can be less than optimal for a 
recognition task because within-class variations may be as or more significant than between-class variations causing 
great difficulty in the determination of highly accurate match decisions. LDA addresses this issue by determining a 
data basis from the training data that maximizes the between-class variations, while minimizing within-class 
variations. LDA and/or its variants have been applied to the 2D face recognition problem and have demonstrated 
significant improvement when presented with variations in illumination and expression [1, 2].  

Despite the above, the generalization/overfitting problem with many of these systems is of major concern. In [1], 
Zhao et al. state that projecting data onto a lower-dimensional basis prior to applying LDA (subspace LDA) greatly 
improves this overfitting issue over standard LDA, especially when using very few training images per subject. 
However, Martinez and Kak [3] state that in applying even subspace LDA it is very important that the training 
samples are representative and uniformly sample the distribution for each class. In addition, if this is not the case 
then one may encounter situations where PCA outperforms LDA, thus, negating the entire motivation for using the 
approach.  

This paper presents an approach for 3D face recognition using Fisher Linear Discriminant Analysis (FLDA) that 
demonstrates good recognition performance when provided with expression varying facial data. The robustness of 
the approach is in the deformation model used to align faces prior to projection onto a lower dimensional subspace; 
and in the power of using a class specific method (LDA) for recognition. In the formulation, when a semi-
representative training set is used, good generalization performance is realized, and the performance is substantially 
better than PCA, given the same test and training sets. 

 The remainder of this paper is organized as follows. Section 2 summarizes related work in the area of 3D face 
recognition and in particular the use of PCA based approaches for recognition. In Section 3, a novel deformation 
model is discussed which provides the correspondences needed for PCA and LDA. Then, FLDA will be discussed in 
section 4 providing the framework for the presented recognition system. Finally, results of the system are presented 
in section 5. 

2. Related Work 
Since the launch of the FRGC, numerous approaches for the 3D and 2D+3D face recognition problems have 

emerged. The FRGC sought to motivate an order of magnitude improvement in face recognition technology by 
providing the research community with a standard set of data for analysis and associated challenge experiments [4]. 
Review articles of 3D based face recognition systems are provided in [5] and [6].   
The FRGC v2 database contains variations in facial expression that were challenging for many algorithms.  For 
instance, the FRGC baseline’s Iterative Closest Point (ICP) and PCA algorithm’s rank one identification rate 
dropped from 91% and 77% to 61.5% and 61.3% for neutral and non-neutral expressions, respectively. Some 
researchers have proposed to analyze expression insensitive regions to mitigate this problem.  For example, Chang 
et al. [7] consider ICP based face matching with several probe surfaces concentrated around the nose elevating the 
rank one identification rate to 87% for expression varying data. However, Mian et al. [8] consider ICP base 
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matching using a nose and forehead region and achieve a 95.63% probability of detection (Pd) at .001 FAR using a 
neutral gallery set. Although, [8] reports improved results over  [7] using a similar technique, one must realize that 
the probe images were only matched to neutral gallery images. The inclusion of non-neutral probe to non-neutral 
gallery matches would likely decrease performance. Nevertheless,  [8] still performed better than  [7] for neutral 
images indicating that the inclusion of the forehead region may add additional discrimination.  This presents the 
issue that although removing face regions appears to benefit recognition with expression varying data, it may also 
remove some important information beneficial for recognition.   

Other approaches have obtained good results in the presence of facial expressions while considering the whole 
face, outperforming the region based techniques.  For instance, Kakadiaris et al. [9] present an annotated face model 
for recognition that deforms a reference face to an input face. The deformation information is subsequently encoded 
with wavelets and used for recognition. A Pd of 97.3% was obtained at .001 FAR.   Log-Gabor wavelets were 
applied to the 3D face recognition problem in [10] achieving a 92.3% Pd at .001 FAR. Maurer et al. [11] present an 
approach that analyzes the distribution of errors after registering two faces with ICP. Integrating 3D and texture, 
they achieved a 92.8% Pd at .001 FAR. And, Husken et al. [12] integrate shape and texture information using a 
technique based on Hierarchical Graph Matching (HGM’s) obtaining a 97.3% Pd at .001 FAR. To obtain a robust 
solution to the facial recognition  problem it is important that the best performance is achieved in each modality.  
However, the performance of  [11]  and  [12] drops to 87% and 89.5% respectively when only 3D information is 
used indicating the potential for improvement.. However, [9]  is only based on 3D and thus, has the best reported 3D 
solution.  

Even though LDA based techniques have been often applied to overcome some of the within-class variations 
apparent in 2D imagery [13], no results have been reported of using this approach directly to mitigate the 3D face 
expression problem. And although several  PCA techniques have been applied to 3D face recognition [14] [15] 
[16].[17], these systems have typically fallen below the FRGC top performers. The exception may be [15] whose 
system was validated using only 60 subjects from an non-FRGC database. One thing to note is that many of these 
PCA approaches use a range-based (2.5D) representation. The exception is Russ et al. [14] who encode the x, y, and 
z components with PCA yielding a 95% Pd at .001 FAR when matching neutral probes to a single subject neutral 
gallery set.  

Although, [9] has achieved good performance for expression varying data using only 3D data, it is believed that 
model based approaches such as PCA and LDA bring a unique perspective to the recognition problem and may be 
optimal in environments where the authorized user set is known. Therefore, this work builds upon [14] and analyzes 
the performance of LDA for expression varying data.  It is believed that LDA/PCA approaches can be as or more 
accurate that 3D point matching schemes such as ICP if the 3D correspondence problem is properly addressed. 

3. 3D Point Correspondence/Alignment 
The correspondence calculation is a critical component of unsupervised statistical learning algorithms such as 

PCA, LDA, etc. and will impact the accuracy of the synthesized representation, the amount of data compression 
achievable, and furthermore recognition. 

Only a few methods have been reported where 3D corresponded face coordinates are encoded with PCA. In [18], 
shape and texture correspondences for PCA were obtained by optical flow registration to a reference face. However, 
the 3D model was used to address the problem of pose variation for 2D face recognition systems. Also in [14] each 
input face was first iteratively aligned to a scaled reference face using ICP and subsequently deformed to 
approximate an input face using a surface normal correspondence procedure. While this deformation worked 
reasonably well, it can produce erroneous correspondences in surface regions that vary significantly from the input 
surface in distance or complexity. 

The presented method for correspondences builds upon the approach in [14] and mitigates the associated 
correspondence issues. Addressing these correspondence issues for data containing variations in facial expression is 
of particular importance because of the significant differences that occur between drastic facial expressions and the 
neutral reference face used for correspondence.  Thus, in this work the normal based deformation procedure is 
performed iteratively and more gradually than in [14] to better approximate the input surface.   

A system diagram of the correspondence procedure is provided in Figure 1 with the deformation algorithm shown 
in the gray box outlined in black. At each iteration t of the deformation process the algorithm takes as inputs the 
registered input surface F, the current reference Rt and two parameters β  and α that control the speed of 
deformation and smoothness of the deformed surface respectively. The output Pt is the current deformed 
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approximation to the input surface F and can be considered the corresponded surface upon completion (i.e. the result 
of correspondence between an input surface and a reference). 

iteration t+1 
reference face

reference 
face

input face

3d corresponded
face

Scale
Transform

registered
face

3D Correspondence 
by Deformation

Smoothing 
Filter

3D features

Rt

F

Rt+1

Pt

R0

Normal 
Correspondence

Nearest Neighbor
Correspondence

if Vi is 
false

neighborhood size

α

β

ICP 
Registration

Figure 1. A system diagram of the correspondence 
procedure achieved by deforming a reference face. 

 
The mathematical formulation of the deformation process is as follows. Consider a reference face Rt containing M 

3D points that are updated at each time step to better approximate a constant input probe surface F.  
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An approximation Pt to input surface F is achieved at each time step by determining a corresponding point on the 
input surface tiW ,  for each point i on the reference surface.  The approximate surface Pt is defined by (3.1). In (3.1), 
α is in [0, 1] and controls the smoothness of the resulting representation versus maintaining the integrity of the 
input surface. Similarly, β , in [0, 1], controls the strength of the reference surface attraction towards the input 

surface and thus controls the magnitude of the pull towards surface F at teach time step. The term tiW , is the best 
corresponding point to reference point i at time t. This value is determined by either using the point at which the 
reference’s normal vector (Nt,i) intersects the input surface F or by selecting the closest point on F to the current 
reference point. The normal surface intersection is the primary method for correspondences and is only abandoned if 
the normal vector is not long enough to intersect the input surface or if the point at which the normal vector 
intersects the surface is too far from a point actually on the surface. This condition is represented by the boolean Vi.  
In determining the normal intersection point, the length of the normal vector ( r

it ,Δ ) at reference point i is bounded 

by r
MAXΔ and dynamically based on the current reference to input surface distance. If a valid normal vector surface 

intersection, represented by the boolean Vi, cannot be found, the closest point to the input surface is used as shown in 
(3.2).  

Each time step brings the reference surface closer to the input surface F. When the distance between the reference 
surface and Wt,i is less than some tolerance r

TOLΔ , a point Qi is defined as the final correspondence between the 
reference face at point i and the input surface F. Once Qi is defined, the correspondence search for point i is not 
conducted at future time steps. This enables the process to terminate when all the Qi’s have been defined. 
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At each time step, the reference face is updated by convolving Pt with a smoothing filter H. This helps to ensure 
that the reference surface is smooth and contains well conditioned surface normals.  

HPR tt ∗=+1  (3.3) 
This approach seeks to minimize the error function Et defined as the cumulative distance between the current 

reference Rt and the approximate surface Pt .shown in (3.4). The described deformation process is iteratively 
performed until Et or |Et – Et-1| is less than some tolerance, all Qi’s have been defined, or K iterations have been 
performed. 
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For this work a statistical mean of faces was used as the initial reference face, shown in Figure 2. Prior to 
deformation, each input face F is segmented, filtered to remove noise and fill holes, and registered to a scaled 
version of the reference face using ICP. The reference face was scaled vertically as in [14]  using sellion and mouth 
features that were autonomously detected using radial symmetry [19]. Examples of segmented faces and their 
resulting deformed faces are shown in Figure 3 for various facial expressions of the same subject. 

∑
=

−=
M

i
ititt RPE

1
,,  (3.4) 

 
Figure 2. The Initial 3D Reference Face (R0) 

 

Figure 3. 3D Point Correspondence by Reference 
Deformation. Top) The segmented, but unregistered 
input surface. Bottom) The approximate input surface Pt

achieved by reference surface deformation. Each 
column corresponds to a different acqusition of the same 
subject. Each surface is colored by its z coordinate 
where blue is the closest to the camera and red is the 
farthest. 

 
It is important to note that this simplified formulation of the deformation process can be used because holistic 

scale changes in the deformation process do not have to be accounted for since the initial reference face R0 was 
scaled prior to facilitate ICP registration. 

This approach is similar to deformable models [20] in the sense that there are external forces towards which the 
model is pulled and internal smoothness constraints that regularize the resulting model. However, this approach 
typically converges in a few iterations and allows greater control over the deformation process by guiding the 
direction and rate of the reference surface attraction to an input surface. 

4. Fisher Linear Discriminant Analysis 
The formulation of the FLDA presented here is based on the fisherface method of [2]. Fisher Linear Discriminant 

Analysis selects a basis W such than the ratio of the between-class scatter SB to the within-class scatter SW is 
maximized as shown in (4.1). 

WSW

WSW
W

W
T

B
T

Wopt max=  (4.1) 

Consider a set of N training samples containing C classes and Ni samples for each class i represented by the set Xi. 
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Given this, the between-class scatter matrix is computed by (4.2) where μi is the mean of each class in the training 
samples and μ is the mean over all training samples. The within-class scatter matrix is defined by (4.3) where kx is 
the kth sample in class i. 
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iWiiB wSwS λ=  (4.4) 

The optimal solution to (4.1) can be posed as the generalized eigenvalue problem shown in (4.4). If SW is 
nonsingular, W can be solved using BW SS 1− , however, the rank of SW is at most N – C. Thus, in practice a non-
singular SW is difficult to achieve because the dimension of each sample xk (H) is often much greater than the 
number of training examples (N). This is referred to as the curse of dimensionality. 

Projecting training samples onto a lower-dimensional subspace can address a number of issues associated with the 
traditional formulation of FLDA. First, a nonsingular within scatter matrix can be obtained by carefully choosing the 
dimension M of the subspace. Second, the overfitting/generalization problem is improved [1]. And third, the space 
complexity is greatly reduced through the examination of MxM scatter matrices opposed to HxH. To obtain some of 
these benefits training samples were first projected onto a PCA basis of dimension M. Since PCA already requires a 
mean subtracted signal before projection, the mean training sample μ becomes zero in (4.2). 

While a non-singular SW is attractive for computational reasons, it is important that this is not the driving force for 
the selection of the basis size M, since this can significantly impact recognition performance. Therefore the 
generalized eigenvalue problem is solved in a way that can accommodate a singular SW. There are several 
formulations of the generalized eigenvalue problem. The approach used here is based on the utilization of the QZ 
algorithm [21], for it appears to be more robust, yielding higher recognition results, than when using the inverse of a 
nonsingular SW. 

For 3D face recognition, the difference between a registered and corresponded 3D face and reference is encoded 
with the described subspace methods. The data vector xk contains a list of 3d coordinates ( )iii zyx ΔΔΔ ,,  
representing the variation of the input surface from the reference surface at point i. Figure 4 presents the first three 
basis vectors for PCA and FLDA respectively. To improve visualization, a single basis vector is represented by three 
images generated by using the corresponding ,, ii yx ΔΔ and izΔ vectors to color the reference surface. Notice how 
the z component of the PCA basis vectors appears to isolate face changes to different regions of the face. For 
example, the z component PCA basis vectors 1, 2, and 3 are isolated to the nose, mouth, and cheeks respectively. 
The FLDA basis vectors although different, look more random; discernible facial features are difficult to see. 

a) PCA Basis Vectors b)FLDA Basis Vectors
Figure 4. The X, Y, and Z components of the first 3 
vectors from the (a) PCA Basis and (b) FLDA Basis 
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5. Experimental Results 

5.1. Database Description 
Analysis of the presented system is performed for 3D facial verification using databases from the Facial 

Recognition Grand Challenge database versions 1 and 2 (FRGC v1 and v2) [4]. 
The 3D images were acquired with the Minolta Vivid 900/910 range scanner and contain a 640x480 array of 3D 

points and a registered 640x480 color image. The color image is not used for the algorithm presented in this paper.  
FRGC v1 consists of images of 275 subjects acquired in the spring of 2003 resulting in 943 images. The FRGC 

v2 database was acquired during the fall of 2003 and spring of 2004 and contains significant variations in facial 
expressions. This FRGC v2 dataset contains 466 subjects and 4007 images of which 1643 contain non-neutral 
expressions. Examples of expression variation are shown in Figure 3. 

5.2. Subspace Training 
A training set for PCA and FLDA was extracted from the combined FRGC v1 and v2 database. In creating this 

set, it is important to have both a good sampling of faces and a good sampling of face expressions. However, it is not 
necessary for each expression to be present for each subject, although, this will likely improve the overall results. 
For this database, expressions were partitioned into six groups: astonished, disgusted, frowning, sad, smiling, puffy, 
and neutral. For each expression class, a gallery was created containing the first occurrence of each subject in each 
expression class. These gallery sets were then combined to form 1927 images from which to derive the training set. 
In the following experiments, 250 subjects and their associated images (828) from this set were used for PCA and 
FLDA training. The number of training images compared to the number of test images used for each subject is 
shown in Figure 5. 

 
Figure 5. Distribution of Training and Testing Samples 
Per Subject 

5.3. Face Recognition 
The match metric used for facial recognition is the cosine of the angles between the subspace coefficients [22]. Z-

norm gallery score normalization as described in [23] was performed for both PCA and FLDA face recognition. 
Normalization seems to be beneficial on large datasets where there is significant variation associated with the 
within-class data samples such as expression. 

 
PCA Recognition 

To establish a baseline for performance, results using PCA coefficients as features for recognition are first 
presented. Face matching was performed using the combined FRGC v1 and v2 database resulting in 4950x4950 
matches. For the PCA results, whitening was performed during matching. Face samples were projected onto the 
entire PCA basis of dimension M=827 (defined by the number of training samples minus one). However, only 25% 
of the coefficients were used for matching (approximately 200). We found that using all of the coefficients resulted 
in an overfitting of the subjects used in training, whereby, recognition of subjects included in training was worse 
than the recognition of untrained subjects. The trailing PCA coefficients were then removed to minimize this issue 
and improve overall performance. The Receiver Operating Character (ROC) curve representing the verification rate 
versus the false alarm rate is shown in Figure 6. The overall Pd at .001 FAR is 85.08%. Note that, using all of the 
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coefficients for matching resulted in a verification rate of 77%. As expected, good recognition performance is 
obtained for neutral faces (97.55% at .001 FAR), while a considerable performance decrease is observed for 
expressions (58.55% at .001 FAR). In the following section, the benefit of using FLDA for this problem is 
demonstrated. 

 
 

Figure 6. PCA 3D Face Recognition ROCs. 

 
 
 
 
FLDA Recognition 

Since only 250 training samples are used, the resulting dimension of the FLDA basis is at most C-1 resulting in 
249 features for our experiments. During matching no whitening or scaling is conducted in either PCA or FLDA 
space. The resulting FLDA ROC’s are shown in Figure 7.  Notice that FLDA has improved recognition performance 
for the neutral and non-neutral categories, achieving 98.7% and 95.8% Pds at .001 FAR for these categories 
respectively. FRGC v2 ROC’s are shown for comparison to other 3D face recognition algorithms that use this 
database and are approaching the best reported results using this database [9]. The improvement over PCA amounts 
to approximately an increase in 37 percentage points at .001 FAR for non-neutral expressions. This demonstrates 
that FLDA is truly able to suppress the within-class variations thereby reducing the match score differential between 
within-class samples. 

As stated in section 3, the training sample data is first projected onto a lower dimension PCA basis prior to 
performing FLDA. The size of the selected PCA dimension is 100% of the full PCA space defined by the number of 
training samples minus one ( N-1). Although this resulted in a singular SW, it consistently performed better than 
pruning the PCA basis to M <= N-C to obtain a non-singular SW. We attribute this to the fact that in order for FLDA 
to properly maximize between-class variations while minimizing within-class variations, these variations should be 
properly represented in the data.  In [1], removing trailing basis vectors was justified by the argument that they 
represent noise and removing them will lead to greater generalization.  However, in the presented system trailing 
basis vectors may correspond to real expression features and furthermore, if noise is a typical component of the data 
to be analyzed by the system, these are variations that LDA can learn to be robust against. This may explain the 
higher performance of FLDA on neutral faces than PCA. It is important to note that the method selected to solve the 
general eigenvalue problem can also have a significant impact on recognition performance. MATLAB’s eigensolver, 
which uses the QZ algorithm, has been found to be robust and stable. 
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Figure 7. FLDA 3D Face Recognition ROCs. 

 

5.4 FLDA Generalization 
Although, FLDA appears to be an extremely promising approach for addressing the facial expression problem, 

one must remember that it is a class specific unsupervised learning algorithm, thus, it is important to understand how 
it performs with respect to the overfitting/generalization problem. 

For this reason, the combined FRGC v1 and v2 database was partitioned into two sets referred to as dependent 
and independent. The dependent set contains subjects that were included in the training set, while the independent 
sets contains subjects that were not. This partition resulted in 2665 and 2284 dependent and independent samples 
respectively. The ROC curves for these sets appear in Figure 8. These curves demonstrate that the system performs 
extremely well on trained subjects, even with numerous untrained expressions per subject (99.1% at .001 FAR). 
Compared to the dependent set, there is a noticeable performance decrease for the independent set. However, the 
approach still demonstrates a good ability to learn untrained subjects and their associated expressions (95% at .001 
FAR). It is interesting to note that the dependent set of samples performed slightly better than the neutral samples, 
indicating that FLDA is fully capable of accommodating expressions, but could benefit from improvement in 
generalizing these learned expressions to the expressions of new subjects. 

 
 
 

Figure 8. FLDA 3D Face Recognition ROCs Representing 
the Generalization Issue 
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6. Conclusion 
Although, FLDA is known for dealing with within-class variations, this paper includes the first reported results of 

using the method to accurately solve the facial expression problem in 3D. The presented FLDA approach provides a 
dramatic improvement over using PCA for the same database. We also believe the iterative registration and 
deformation processes used to obtain good correspondences are instrumental in achieving the results presented. The 
accuracy of this stage enables good generalization to new untrained subjects. 

A summary of results obtained using the FLDA approach is presented in Table 1. Given these results, the 
presented approach would be competitive with the best reported FRGC 3D performer [9] whose highest reported 
results are 97.3% Pd at .001 FAR (95.6% and 99.0% for non-neutral and neutral expressions respectively). While [9] 
has achieved higher performance overall, we believe we have higher accuracy potential for known subjects where 
training samples can be obtained (i.e. 99.1%). The FLDA 3D face recognition approach is ideal for access control 
environments where the authorized users are known. In this setting, samples of subjects and their expression 
variations can be obtained resulting in a system that is extremely accurate. 

 
 

Table 1. Summary of FLDA 3D Face Recognition Results 
FLDA Description Verification 

Rate 
At .001 FAR 

All vs. All 96.6% 
Neutral vs. Neutral 98.7% 
Expression vs. Expression 95.8% 
Dependent Subjects All vs. All 99.1% 
Independent Subjects All vs. All 95.0% 

 
In future efforts, the FLDA 3D face space will be further explored to determine its limit. For instance, at what 

point do adding new faces fail to improve generalization and potentially decrease performance for the known 
subjects? It has already been observed that increasing the training set size from 200 to 250 subjects increased the 
overall performance by several percentage points. At what point will this cease? In addition, it is of interest to fuse 
these 3D results with texture data to obtain additional robustness and accuracy.  
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