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Abstract

A code, Charon, is described which simulates the effects that neutron damage
has on silicon semiconductor devices. The code uses a stabilized, finite-element dis-
cretization of the semiconductor drift-diffusion equations. The mathematical model
used to simulate semiconductor devices in both normal and radiation environments
will be described. Modeling of defect complexes is accomplished by adding an addi-
tional drift-diffusion equation for each of the defect species. Additionally, details are
given describing how Charon can efficiently solve very large problems using modern
parallel computers. Comparison between Charon and experiment will be given, as
well as comparison with results from commercially-available TCAD codes.
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1 Introduction

In recent years there has been a concerted effort at the nuclear weapons laboratories to move
away from experimental procedures and move toward computational methods, where fea-
sible, to assist in the design, qualification and stewardship of weapons systems. Where
possible, commercial applications are being used to model components, both mechani-
cal and electrical. However, because of the unique modeling needs specific to weapons
systems many commercial applications are insufficient to meet the modeling needs of the
national laboratories. One such area is in semiconductor modeling in neutron-radiation
environments.

Silicon semiconductor devices play an extremely important role in the operation of
current stockpile weapons systems and in the design of possible future weapons systems.
While there has been a small amount of experimental work done to empirically model the
effects of neutron radiation damage [25, 28] and in modeling of various radiation sources
in circuit, lumped-parameter modeling [9], there has been little work on modeling neutron
radiation at the fluences that may be experienced by components in nuclear weapons and
at the fidelity required to understand the physics occurring in sufficient detail.

To this end the computer code Charon has been developed at Sandia National Labora-
tories. Using the latest stabilized finite-element technology Charon is an attempt to model
a silicon semiconductor device, at the carrier-concentration level, including the transport
of the numerous defect complexes created by neutron radiation at the short time scales and
high fluence levels.

Due to the device dimensions, the high level of fidelity and the addition of a signifi-
cant number of unknowns for modeling the defect species Charon has been written to take
advantage of massively-parallel computing platforms. This will allow for timely simula-
tions that wouldn’t be possible on the scalar platforms supported by commercial TCAD
semiconductor analysis codes.

1.1 Enabling Technologies

As with most modern codes, Charon relies significantly on supporting technology to achieve
its goals. The two most significant supporting technologies for Charon are Trilinos [13],
Nevada and an automatic differentiation package referred to as SACADO.

Nevada is a software infrastructure designed to support development, testing, verifica-
tion release of large scientific simulation applications [27]. Nevada is designed to facilitate
development of new finite-element applications and provides much of the infrastructure
necessary for such codes. Items like I/O, element libraries, material model interface, etc.,
are provided.

Trilinos is a collection of packages to support modern application development. Charon
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specifically makes use of the following packages:

1. NOX [21] nonlinear solver,

2. Teuchos [24] basic tools,

3. AztecOO preconditioned Krylov Solver.

The other package used heavily by Charon is SACADO, which implements automatic
differentiation [2]. Automatic differentiation makes generating the Jacobian necessary for
the nonlinear solver almost trivial. The only requirement as far as Charon is concerned
is that anything requiring differentiation be templated on the SACADO data type. Once
that is accomplished there is no implementation of a Jacobian required from the developer,
thus bypassing an extremely labor-intensive, and error-prone process which is generat-
ing Jacobians as well as generation of accurate sensitivities to input parameters allowing
gradient-based algorithms such as sequential quadratic programming (SQP) techniques for
optimization.
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2 Semiconductor Physics

This section will describe the basic semiconductor physics, including the governing equa-
tions used for the drift-diffusion approximation and various empirical models used by
Charon.

2.1 Governing Equations

The equations governing the transport of charge carriers within a semiconductor device can
be approximated using the standard drift-diffusion equations given by:

∇ · (εE)−q(p−n+C) = 0, (1)

∇ ·Jn−qG = q
∂n
∂t

, (2)

−∇ ·Jp−qG = q
∂p
∂t

, (3)

where

E =−∇ψ, (4)
Jn = qnµnE+qDn∇n, (5)
Jp = qpµpE−qDp∇p. (6)

By using (4)–(6) in (1)–(3) one obtains

−∇ · (ε∇ψ)−q(p−n+C) = 0, (7)

∇ · (nµn∇ψ)−∇ · (Dn∇n)+G+
∂n
∂t

= 0, (8)

−∇ · (pµp∇ψ)−∇ · (Dp∇p)+G+
∂p
∂t

= 0, (9)

where the unknowns are: ψ, the electrostatic potential, n, the electron density, and p, the
hole density, with ε, the permittivity of the semiconductor material, q, the fundamental
electron charge, µn and µp, the electron and hole mobilities, respectively, Dn and Dp, the
electron and hole diffusion coefficients, respectively, C the doping profile, and R the gener-
ation/recombination source term. C can be broken down further as

C = N+
D −N−A , (10)

where N+
D and N−A represent the amount of ionized donor and acceptor dopant concentra-

tions, respectively.

Typically (7)–(9) are scaled prior to discretization [22]. The most widely used scale
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factors, and the ones used in Charon, are given in Table 1. After scaling (7)–(9) become

−λ
2
∇ · (εr∇ψ)− (p−n+C) = 0, (11)

∇ · (µnn∇ψ)−∇ · (Dn∇n)+G+
∂n
∂t

= 0, (12)

−∇ · (µp p∇ψ)−∇ · (Dp∇p)+G+
∂p
∂t

= 0, (13)

where

λ
2 =

V0ε0

qx2
0C0

. (14)

Quantity Symbol Value

X x0 max(X), X ∈ D

ψ V0
kBT

q

n, p,C C0 max(C(X)), X ∈ D | n Note 1
i

Dn,Dp D0 max(Dn(X),Dp(X)), X ∈ D

µn,µp µ0
D0
V0

R R0
D0C0

x2
0

t t0
x2

0
D0

E E0
V0
x0

Jn,Jp J0
qD0C0

x0

Table 1. Scaling factors used to scale the semiconductor drift-
diffusion equations. Note 1: In parallel runs it is often convenient
to have a global constant here to avoid doing a communication in
order to find the maximum value of the doping.

2.2 Empirical Models

Commercial TCAD programs rely on numerous empirical models developed through the
years by the semiconductor modeling community. Table 2 is a list of the empirical models
currently implemented within Charon.
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Model Name Purpose

Arora [1] Carrier Mobility

Philips [19, 20] Carrier Mobility

Analytic [3] Carrier Mobility

Carrier-Carrier [7] Carrier Mobility

Lucent [5] Carrier Mobility

Surface [23] Carrier Mobility

Bandgap Narrowing [34] Bandgap Variation with Doping Concentration

Concentration-Dependent Lifetimes Recombination/Generation

Incomplete Ionization [17, 32, 30] Fraction of Impurities Ionized

Table 2. List of empirical models implemented within Charon.

2.3 Boundary Conditions

The boundary conditions typically used for junction devices, such as the bipolar-junction
transistor, are derived assuming the electrical contacts are far enough away from any junc-
tion that equilibrium conditions prevail. This allows Dirichlet conditions to be used. For
the electric potential the boundary conditions are calculated such that the built-in potential
across junctions is set at the associated contacts. For a contact at a donor-doped contact the
electric potential is

ψn-contact =
kBT

q
ln
(

n
ni

)
. (15)

In the case of 100% ionization of the dopants n in (15) can be approximated by n≈ ND. In
the case of a contact adjacent to an acceptor-doped contact the electric potential is

ψp-contact =−kBT
q

ln
(

p
ni

)
. (16)

Again, in the case of 100% ionization of the dopants, p in (16) can be approximated by
p ≈ NA. The built-in potential can be calculated by subtracting (16) from (15). Assuming
100% ionization of the dopants this yields

Vbi = ψn-contact−ψp-contact =
kBT

q
ln
(

NDNA

n2
i

)
. (17)

To calculate the concentration values at the contacts, at equilibrium

np = n2
i . (18)
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Also, at equilibrium, charge neutrality must hold. Using (10), then at a contact

n|contact− p|contact−C = 0. (19)

Solving (18) for p and substituting the result into (19) yields

(n|contact)2−Cn|contact−n2
i = 0, (20)

which is a quadratic with solution

n|contact =
1
2

(
C +

√
C2 +4n2

i

)
. (21)

Similarly for p at a contact

p|contact =
1
2

(
C +

√
C2 +4n2

i

)
. (22)
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3 Discretization

In the discretization design process for Charon various discretization technologies were
considered. These included finite volume methods, stabilized finite-element methods and
mixed interpolation finite element methods. In that process it was decided that Charon
would initially use the stabilized finite-element method (FEM) for its discretization and
mixed interpolation methods, that would allow formulations closer to finite volume type
methods, would be considered later in the R&D effort. One reason for the choice of finite-
element methods is that it was demonstrated that the method commonly used to solve the
drift-diffusion equations by commercial TCAD codes, the Scharfetter-Gummel method,
suffers from excessive “numerical diffusion” when used for problems of more than one
dimension [33]. In addition, the development of a variational type method for discretization
would more naturally allow the development of adjoint based error estimators for spatial
discretization adaptivity and error control. Finally, Sandia in general, and our organization
in particular, has developed significant expertise in finite-element technology. Not only in
the analysis of various partial-differential equations (PDEs) and in the iterative solution
of these systems, but also in the generation of meshes for a wide variation of problem
geometries and in the visualization of results from finite-element analysis.

3.1 Variational Multiscale Discretization

The first step in any finite-element discretization is to generate the weak form of the gov-
erning equations. For the semiconductor physics considered here the governing equations
are given by (11)–(13). The associated Galerkin weak forms of (11)–(13) are given by,
respectively

λ
2
εr

Z
∇ψ ·∇wdΩ−λ

2
εr

Z
Γ

∇ψ · η̂wdΓ−
Z

pwdΩ+
Z

nwdΩ−
Z

CwdΩ = 0, (23)

Z
ṅwdΩ+

Z
Γ

µnn∇ψ · η̂wdΓ−
Z

µnn∇ψ ·∇wdΩ−
Z

Γ

Dn∇n · η̂wdΓ+Z
Dn∇n ·∇wdΩ+

Z
GwdΩ = 0, (24)

Z
ṗwdΩ−

Z
Γ

µp p∇ψ · η̂wdΓ+
Z

µp p∇ψ ·∇wdΩ−
Z

Γ

Dp∇p · η̂wdΓ+Z
Dp∇p ·∇wdΩ+

Z
GwdΩ = 0, (25)

where η̂ is a unit normal to the boundary of the problem domain, w is the testing function
and Γ is the boundary of the domain Ω.

For the Variational Multiscale (VMS) method we are going to split the problem domain
into a coarse and a fine solution. The split of the solution space is represented by

S = S̄⊕S′ (26)
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where

S̄→ Coarse solution subspace,
S′→ Fine solution subspace,

and likewise for the weighting space

ν̄→ Coarse weighting subspace,
ν
′→ Fine weighting subspace.

This implies that

ψ = ψ̄+ψ
′, (27)

n = n̄+n′, (28)
p = p̄+ p′, (29)
w = w̄+w′. (30)

We also require that on the boundary, Γ, the fine-scale solutions are identically zero [16].

3.1.1 Poisson Equation

Using (27)–(30) in (23), and assuming that either Dirichlet or Neumann conditions govern
on the boundary Γ yields

λ
2
εr

Z (
∇ψ̄ ·∇w̄+∇ψ̄ ·∇w′+∇ψ

′ ·∇w̄+∇ψ
′ ·∇w′

)
dΩ−Z (

p̄w̄+ p′w̄+ p̄w′+ p′w′
)

dΩ+
Z (

n̄w̄+n′w̄+ n̄w′+n′w′
)

dΩ−
Z (

Cw̄+Cw′
)

dΩ = 0.

(31)

We need to numerically model those terms associated with the coarse weighting space ν̄.
These are the terms associated with the coarse weighting function w̄. Gathering such terms
from (31) one obtains:

λ
2
εr

Z
∇ψ̄ ·∇w̄dΩ+λ

2
εr

Z
∇ψ
′ ·∇w̄dΩ−

Z
p̄w̄dΩ−

Z
p′w̄dΩ+Z

n̄w̄dΩ+
Z

n′w̄dΩ−
Z

Cw̄dΩ = 0. (32)

Now we need to remove any terms including the differentiation of any fine-scale variables.
The single term in (32) involving such an operation is

λ
2
εr

Z
∇ψ
′ ·∇w̄dΩ. (33)

To eliminate the derivative on ψ′ we can make use of the vector identity

∇ ·
(

a~B
)

= ∇a ·~B+a∇ ·~B, (34)
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where a = ψ′ and ~B = ∇w̄ then (33) becomes

λ
2
εr

[Z
∇ ·
(
ψ
′
∇w̄
)

dΩ−
Z

ψ
′
∇ ·∇w̄dΩ

]
. (35)

We can use the divergence theorem on the first term in (35) and it becomes

λ
2
εr

[Z
Γ

ψ
′
∇w̄ · η̂dΓ−

Z
ψ
′
∇ ·∇w̄dΩ

]
. (36)

Recognizing that the first integral in (36) contains a fine-scale solution on the boundary
and that we earlier stipulated that all fine-scale solutions were zero at the boundary we can
eliminate the first integral in (36), leaving us with

λ
2
εr

Z
∇ψ
′ ·∇w̄dΩ =−λ

2
εr

Z
ψ
′
∇ ·∇w̄dΩ. (37)

Now we can use (37) in (32) to obtain the coarse-scale equation

Galerkin
{

λ2εr

Z
∇ψ̄ ·∇w̄dΩ−

Z
Ω

(p−n+C) w̄dΩ−

SUPG/GLS
{

λ
2
εr

Z
ψ
′
∇ ·∇w̄dΩ−

VMS
{Z

p′w̄dΩ+
Z

n′w̄dΩ,

(38)

which is the final form of the equation to be numerically modeled. Note that if linear
elements are used then the SUPG/GLS term in (38) will be zero because of the second
derivative.

3.1.2 Electron Equation

Using (27)–(30) in (24) yieldsZ (
˙̄n+ ṅ′

)(
w̄+w′

)
dΩ+

Z
Γ

µn
(
n̄+n′

)
∇
(
ψ̄+ψ

′) · η̂(w̄+w′
)

dΓ−Z
µn
(
n̄+n′

)
∇
(
ψ̄+ψ

′) ·∇(w̄+w′
)

dΩ−Z
Γ

Dn∇
(
n̄+n′

)
· η̂
(
w̄+w′

)
dΓ+

Z
Dn∇

(
n̄+n′

)
·∇
(
w̄+w′

)
dΩ+Z

G
(
ψ̄+ψ

′, n̄+n′, p̄+ p′
)(

w̄+w′
)

dΩ = 0. (39)

Before proceeding further with the electron equation it is necessary to represent the
nonlinear source term in a way that facilitates the VMS analysis. Currently the nonlinear
term in the electron equation is included by employing a Taylor series expansion about the
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coarse solution (ψ̄, n̄, p̄) that neglects the higher order terms (H.O.T) and the dependence
on the other variables to obtain:

G(ψ,n, p) = Ḡ+
¯∂G

∂n
(n− n̄)+

¯∂G
∂p

(p− p̄)+
¯∂G

∂ψ
(ψ− ψ̄)+H.O.T.≈ Ḡ+

¯∂G
∂n

n′. (40)

This approximation produces a contribution that helps to stabilize the source contribu-
tion in the n equation. Using the notation of Donea and Huerta (see [6]) the term associated
with the generation for the electron concentration now becomesZ

ḠwdΩ+
Z

σnn′wdΩ (41)

where

σn ≡
∂Ḡ
∂n

(42)

for example.

Expanding out (39) and retaining only terms associated with the coarse space, w̄, yieldsZ
˙̄nw̄dΩ+

Z
ṅ′w̄dΩ+

Z
Γ

µnn̄∇ψ̄ · η̂w̄dΓ+
Z

Γ

µnn̄∇ψ
′ · η̂w̄dΓ+Z

Γ

µnn′∇ψ̄ · η̂w̄dΓ+
Z

Γ

µnn′∇ψ
′ · η̂w̄dΓ−

Z
µnn̄(∇ψ̄ ·∇w̄)dΩ−Z

µnn̄
(
∇ψ
′ ·∇w̄

)
dΩ−

Z
µnn′ (∇ψ̄ ·∇w̄)dΩ−Z

µnn′
(
∇ψ
′ ·∇w̄

)
dΩ−

Z
Γ

Dn∇n̄ · η̂w̄dΓ−
Z

Γ

Dn∇n′ · η̂w̄dΓ+Z
Dn∇n̄ · w̄dΩ+

Z
Dn∇n′ ·∇w̄dΩ+

Z
Ḡw̄dΩ+

Z
σnn′w̄ = 0. (43)

We can ignore the boundary terms if we assume that the unknowns are governed by either
Dirichlet or Neumann conditions. Doing so and regrouping terms in (43) yieldsZ

˙̄nw̄dΩ−
Z

µnn̄(∇ψ̄ ·∇w̄)dΩ+
Z

Dn∇n̄ ·∇w̄dΩ+
Z

σnn̄w̄dΩ+Z
σnn′w̄dΩ+

Z
ṅ′w̄dΩ−

Z
µnn′ (∇ψ̄ ·∇w̄)dΩ−Z

µnn̄
(
∇ψ
′ ·∇w̄

)
dΩ−

Z
µnn′

(
∇ψ
′ ·∇w̄

)
dΩ+

Z
Dn∇n′ ·∇w̄dΩ. (44)

The derivatives on the fine-scale unknowns need to be removed. The first term to be con-
sidered is Z

µnn̄
(
∇ψ
′ ·∇w̄

)
dΩ. (45)

We can again utilize (34) to obtainZ
µnn̄
(
∇ψ
′ ·∇w̄

)
dΩ =

Z
µnn̄
[
∇ ·
(
ψ
′
∇w̄
)]

dΩ−
Z

µnn̄ψ
′
∇ ·∇w̄dΩ. (46)
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We can use (34) again on the first term on the right-hand side of the equality in (46) to
obtain Z

µnn̄
[
∇ ·
(
ψ
′
∇w̄
)]

dΩ =
Z

∇ ·
(
µnn̄ψ

′
∇w̄
)

dΩ−
Z

∇(µnn̄) ·
(
ψ
′
∇w̄
)

dΩ

=
Z

Γ

µnn̄ψ
′
∇w̄dΓ−

Z
∇(µnn̄) ·

(
ψ
′
∇w̄
)

dΩ

(47)

The first term on the right-hand side of the equation is a surface integral with the fine-scale
variable ψ′. Earlier it was stipulated that such terms are zero. The second term can be
expanded out asZ

∇(µnn̄) ·
(
ψ
′
∇w̄
)

dΩ =
Z

(µn∇n̄+ n̄∇µn) ·
(
ψ
′
∇w̄
)

dΩ

=
Z

µnψ
′ (∇n̄ ·∇w̄)dΩ+

Z
n̄ψ
′ (∇µn ·∇w̄)dΩ.

(48)

If we assume that the mobility, µn, a material property, is constant then the term involving
the gradient of the mobility in (48) can be eliminated. This leavesZ

µnn̄
(
∇ψ
′ ·∇w̄

)
dΩ≈−

Z
µnn̄ψ

′
∇ ·∇w̄dΩ−

Z
µnψ

′ (∇n̄ ·∇w̄)dΩ. (49)

The next term involving a differentiation of a fine-scale variable from (44) isZ
µnn′

(
∇ψ
′ ·∇w̄

)
dΩ. (50)

This term is effectively a quadratic term on the fine scale involving n′ and ψ′. At present
we are going to assume such terms are negligible.

The last term to consider in (44) isZ
Dn
(
∇n′ ·∇w̄

)
dΩ. (51)

We again employ (34) to obtainZ
Dn∇n′ ·∇w̄dΩ =

Z
∇ ·
(
n′Dn∇w̄

)
dΩ−

Z
n′∇ · (Dn∇w̄)dΩ

=
Z

Γ

n′Dn (∇w̄ · η̂)dΓ−
Z

n′∇ · (Dn∇w̄)dΩ.
(52)

The surface term in (52) contains a fine-scale variable, n′, which was taken to be zero at the
surface leaving Z

Dn
(
∇n′ ·∇w̄

)
dΩ =−

Z
n′∇ · (Dn∇w̄)dΩ. (53)

Now we can use (49) and (53) in (44) which yieldsZ
˙̄nw̄dΩ−

Z
µnn̄(∇ψ̄ ·∇w̄)dΩ+

Z
Dn∇n̄ ·∇w̄dΩ+

Z
Ḡw̄dΩ+Z

σnn′w̄dΩ+
Z

ṅ′w̄dΩ−
Z

µnn′ (∇ψ̄ ·∇w̄)dΩ−Z
n′∇ · (Dn∇w̄)dΩ+

Z
µnn̄ψ

′
∇ ·∇w̄dΩ+

Z
µnψ

′ (∇n̄ ·∇w̄)dΩ. (54)
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The equation above can be reordered to give some insight into the differences between
Galerkin, SUPG and VMS. Doing so yields

Galerkin


Z

˙̄nw̄dΩ−
Z

µnn̄(∇ψ̄ ·∇w̄)dΩ+
Z

Dn∇n̄ ·∇w̄dΩ+Z
Ḡw̄dΩ+

SUPG/GLS


Z

ṅ′w̄dΩ−
Z

µnn′ (∇ψ̄ ·∇w̄)dΩ−
Z

n′∇ · (Dn∇w̄)dΩ+Z
σnn′w̄dΩ+

VMS
{Z

µnψ
′ (∇n̄ ·∇w̄)dΩ+

Z
µnn̄ψ

′
∇ ·∇w̄dΩ = 0

(55)

Again note that if linear elements are used then term above involving ∇ ·∇w̄ will be zero.

3.1.3 Hole Equation

The derivation of VMS for the hole continuity equation follows closely that of the electron
continuity in 3.1.2. First the source term represented as G in (25) must be approximated as
above. It takes on the form of Ḡ+σp p′. Using this relation in (25), along with (27) – (30),
and ignoring surface terms, yields

Z (
˙̄p+ ṗ′

)(
w̄+w′

)
dΩ+

Z
µp
(

p̄+ p′
)

∇
(
ψ̄+ψ

′) ·∇(w̄+w′
)

dΩ+Z
Dp∇

(
p̄+ p′

)
·∇
(
w̄+w′

)
dΩ+

Z
Ḡ
(
w̄+w′

)
dΩ+

Z
σp p′

(
w̄+w′

)
dΩ = 0. (56)

Expanding out (56) and retaining only terms associated with the coarse space, w̄, yields

Z
˙̄pw̄dΩ+

Z
ṗ′w̄dΩ+

Z
µp p̄(∇ψ̄ ·∇w̄)dΩ+

Z
µp p̄

(
∇ψ
′ ·∇w̄

)
dΩ+Z

µp p′ (∇ψ̄ ·∇w̄)dΩ+
Z

µp p′
(
∇ψ
′ ·∇w̄

)
dΩ+Z

Dp (∇ p̄ ·∇w̄)dΩ+
Z

Dp
(
∇p′ ·∇w̄

)
dΩ+

Z
Ḡw̄dΩ+

Z
σp p′w̄dΩ. (57)

We again need to eliminate the derivatives off of the fine-scale variables. The first term to
be considered is Z

µp p̄
(
∇ψ
′ · w̄
)

dΩ (58)

This is the same form as (45) and the end result isZ
µp p̄

(
∇ψ
′ ·∇w̄

)
dΩ≈−

Z
µp p̄ψ

′
∇ ·∇w̄dΩ−

Z
µpψ

′ (∇p̄ ·∇w̄)dΩ. (59)
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We will again assume that the quadratic termZ
µp p′

(
∇ψ
′ ·∇w̄

)
= 0. (60)

This leaves the term Z
Dp
(
∇p′ ·∇w̄

)
dΩ, (61)

which has the same form as (51) and results inZ
Dp
(
∇p′ ·∇w̄

)
dΩ =−

Z
p′∇ · (Dp∇w̄)dΩ. (62)

Using (59) and (62) in (57) yieldsZ
˙̄pw̄dΩ+

Z
ṗ′w̄dΩ+

Z
µp p̄(∇ψ̄ ·∇w̄)dΩ−

Z
µp p̄ψ

′
∇ ·∇w̄dΩ−Z

µpψ
′ (∇ p̄ ·∇w̄)dΩ+

Z
µp p′ (∇ψ̄ ·∇w̄)dΩ+Z

Dp (∇p̄ ·∇w̄)dΩ+
Z

p′∇ · (Dp∇w̄)dΩ+
Z

Ḡw̄dΩ+
Z

σp p′w̄dΩ. (63)

We can rearrange (63) to obtain more insight into the nature of the discretization compared
to others. We obtain

Galerkin


Z

˙̄pw̄dΩ+
Z

µp p̄(∇ψ̄ ·∇w̄)dΩ+
Z

Dp∇p̄ ·∇w̄dΩ+Z
Ḡw̄dΩ+

SUPG/GLS


Z

ṗ′w̄dΩ+
Z

µp p′ (∇ψ̄ ·∇w̄)dΩ+
Z

p′∇ · (Dp∇w̄)dΩ+Z
σp p′w̄dΩ−

VMS
{Z

µpψ
′ (∇ p̄ ·∇w̄)dΩ−

Z
µp p̄ψ

′
∇ ·∇w̄dΩ = 0

(64)

Again note that if linear elements are used then terms above involving ∇ ·∇w̄ will be zero.

3.1.4 Fine-Scale Solutions

Approximations for the fine-scale variables in (38), (55) and (64) must be determined. In
general they are specified as

ψ
′ =−τψRψ, (65)

n′ =−τnRn, (66)
p′ =−τpRp, (67)

where Rψ, Rn and Rp are the residuals of PDEs in (11), (12) and (13) and τψ, τn and τp are
the stabilization parameters.
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3.1.5 PDE Residuals

The residuals associated with the partial-differential equations (PDEs) are:

−λ
2
∇ · (εr∇ψ)− (p−n+C) = Rψ. (68)

∂n
∂t

+∇ · (µnn∇ψ)−∇ · (Dn∇n)+G = Rn (69)

∂p
∂t
−∇ · (µp p∇ψ)−∇ · (Dp∇p)+G = Rp (70)

For Poisson’s equation, (68), εr is typically constant and (68) can be written

−λ
2
εr∇ ·∇ψ− (p−n+C) = Rψ. (71)

In order to approximate the second-order Laplacian in (71), assuming first-order, linear
elements, L2 projection must be used.

For (69) we can expand out the derivatives to obtain:

Rn =
∂n
∂t

+n∇µn ·∇ψ+µn∇n ·∇ψ+µnn∇ ·∇ψ−∇Dn ·∇n−Dn∇ ·∇n+G. (72)

Generally it is assumed that the material properties, µn and Dn, are constant and terms
involving their derivative in (72) can thus be removed. Additionally if we assume steady-
state (72) reduces to

Rn ≈ µn∇n ·∇ψ+µnn∇ ·∇ψ−Dn∇ ·∇n+G. (73)

In order to include the second-order terms in (73), assuming the use of first-order, linear
elements, L2 projection must be used.

The residual for the hole carrier, (70), can be reduced in a fashion similar to that for the
electron.

Rp =
∂p
∂t
− p∇µp ·∇ψ−µp∇p ·∇ψ−µp p∇ ·∇ψ−∇Dp ·∇p−Dp∇ ·∇p+G. (74)

Again assuming negligible variation in the material properties and steady state, µp and Dp,
we obtain

Rp ≈−µp∇p ·∇ψ−µp p∇ ·∇ψ−Dp∇ ·∇p+G. (75)

L2 projection must be used to obtain an approximation of the second-order terms in (75),
assuming first-order, linear elements.

3.1.6 Stabilization Parameters

The stabilization parameters as implemented in the code are enumerated.
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3.1.6.1 Poisson Stabilization parameter For the Poisson equation, a diffusion-only
equation, we have implemented the following

τψ =

[
3
(
λ2εr

)2

‖gc‖2 +
(

∂Sψ

∂ψ

)2
]− 1

2

. (76)

where Sψ is the source term for the Poisson equation. In general the value of Sψ is
(p−n+C) and a derivative of this with respect to ψ is not available. To overcome this
you can use an equilibrium approximation

Sψ = ni

(
e

ψ

VT − e−
ψ

VT

)
. (77)

where ni is the intrinsic carrier concentration and VT is the thermal voltage, both of which
are constants.

3.1.6.2 Electron and Hole Stabilization Parameters We have implemented several
stabilization parameters typically used for convection-diffusion-reaction systems. The first
one was

τ =
[

2
∆t

+
√

ugcuT +
√

3.0Dn|p‖gc‖+
∣∣∣∣ ∂G
∂n|p

∣∣∣∣]−1

(78)

where

gc – The element contravariant tensor,
Dn|p – The diffusion coefficient for the n or p carrier,

u – The velocity defined as:
for electrons (n): µn∇ψ,

for holes (p): -µp∇ψ.

Note that if the problem is steady-state then the ∆t term will be absent. If we further assume
the generation (or reaction) term is negligible then the ∂G/∂n|p term can also be neglected.

Another stabilization definition commonly used is

τ =

[(
2
∆t

)2

+ugcuT +3
(
Dn|p‖gc‖

)2 +
∣∣∣∣ ∂G
∂n|p

∣∣∣∣2
]− 1

2

. (79)

Finally the value of the stabilization parameter obtained when solving a one-dimensional
convection-diffusion equation, with constant coefficients, is used. That is

τ =
1√

ugcuT

(
1

tanh(α)
− 1

α

)
, (80)

where

α =

√
ugcuT

Dn|p‖gc‖
. (81)
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3.2 Scalar Electric Current Calculation

While calculation of the carrier densities is important, most engineers and analysts are
more interested in the scalar electric current at the contacts. The electron and hole current
densities are given by (5) and (6), respectively. One approach to calculating the scalar
electric current at a contact is to take the solutions for ψ, n and p, using these in (5) and
(6), integrating the resulting expressions for Jn and Jp over the surfaces associated with
electrical contacts and finally summing these quantities to obtain the scalar electric current.

In his book Gresho (see [12], p. 853) argues that calculating fluxes with this approach is
not as accurate, and in some sense is in fact inconsistent with the finite-element discretiza-
tion. A consistent method of calculating fluxes incorporates the fluxes already contained in
the weak equations. In this case the relevant terms come from (24) and (25). Gathering the
surface terms in (24) Z

Γ

(µnn∇ψ−Dn∇n) · η̂wdΓ (82)Z
Γ

−(µp p∇ψ+Dp∇p) · η̂wdΓ (83)

Using the notation of (5) and (6), (82) and (83) can be rewritten as

−
Z

Γ

Jn · η̂wdΓ (84)Z
Γ

Jp · η̂wdΓ (85)

Using this notation the weak forms in (24) and (25) can be rewritten asZ
Γ

Jn · η̂wdΓ =
Z

ṅwdΩ−
Z

µnn∇ψ ·∇wdΩ+
Z

Dn∇n ·∇wdΩ+
Z

GwdΩ, (86)

−
Z

Γ

Jp · η̂wdΓ =
Z

ṗwdΩ+
Z

µp p∇ψ ·∇wdΩ+
Z

Dp∇p ·∇wdΩ+
Z

GwdΩ. (87)

Note that for the problems considered here the surface terms in the weak forms are typically
not used because either there is a zero-flux condition at the boundaries, or there are specified
Dirichlet conditions.

Once the solution is obtained for the primary degrees of freedom the right-hand sides of
(86) and (87) contain known quantities, thus the fluxes can be solved for as a small linear
problem. Since this is derived directly from the weak form it generally exhibits the same
second-order convergence as the finite-element method and gives more accurate results.

3.3 Results

A simple test problem geometry is illustrated in Figure 1. While displaying a two-dimensional
geometry, the physics of the problem is actually one-dimensional due to the invariance in
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Figure 1. A simple PN-junction diode used as a test problem in
Charon and Pisces.

the y direction, which makes it ideal for a test problem. The doping associated with the
geometry shown in Figure 1 is shown in Figure 2.

Figure 3 shows the results of a simulation run using a pure Galerkin discretization com-
pared to the same run using the additional SUPG terms in (55). It is obvious from that figure
that the SUPG is very effective at eliminating the spurious oscillations associated with the
Galerkin discretization of a convection-diffusion equation. It should be noted that similar
results are obtained for the hole concentration. Figure 4 shows the scalar electric currents
calculated using a Galerkin FEM formulation, a SUPG FEM formulation and the same
problem solved using Pisces, a legacy code that utilizes the Scharfetter-Gummel method.
All of the problems utilized a grid with 10 elements in the y-direction and 160 elements in
the x-direction.

3.3.1 Comparison of Discretization

To compare the relative effectiveness of the finite-element discretization to the effectiveness
of the more widely utilized Scharfetter-Gummel (SG), or “box”, method the problem illus-
trated in Figure 1 was used whose doping profile is illustrated in Figure 2. An IV -sweep
was performed in both Charon and Pisces from 0 volts to 1.0 volt in 0.05 volt increments.
For Pisces the initial mesh density in x was 20 cells and this was doubled until the maxi-
mum density of 640 cells in x was obtained. For Charon the initial mesh density was 20
elements in x and this was doubled until the maximum number of cells in x was 10,240.

Unless otherwise noted the Charon results are only utilizing the SUPG discretization.
VMS results are very preliminary at this stage, and this preliminary result will be shown as
a separate result.

The self-convergence of Pisces is shown in Figure 5. The value was calculated by
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Figure 2. Doping associated with test problem.

taking the highest mesh density, 640 in the case of Pisces, and using that as a baseline.
Then for each lower mesh density the percentage difference was calculated. The formula
is given by

Error =
In− IN

IN

∣∣∣∣
bias=Vb

(88)

where, for Pisces,

n = [20,40,80,160,320] ,
N = 640,

Vb = [0.1,0.3,0.5,0.8,1.0]V,

and for Charon

n = [20,40,80,160,320,640,1280,2560,5120] ,
N = 10240,

Vb = [0.1,0.3,0.5,0.8,1.0]V.

Referring to Figures 5 and 6, in general Charon achieves a second-order rate of con-
vergence more quickly than Pisces. However, Pisces has consistently lower errors. Both
methods/codes display a rather disturbing convergence behavior at low bias levels. Another
way to quantify this is to ask at what mesh density, for a given bias, is the result within one
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Figure 3. Comparison of a Galerkin discretization compared to
the same problem with added SUPG stabilization.

percent of the “self-converged” result. Referring to Figure 5, and using 0.5V as the bias,
Pisces would require approximately 70 cells in x to achieve the desired result. Referring to
Figure 6, again using a bias of 0.5V , Charon would require approximately 500 elements in
x to achieve the same result.

For Charon there are technologies being investigated to reduce the gap between the SG
method and the nodal finite-element method used by Charon. One method known to be
very effective is stabilization combined with initial mesh refinement around the metallur-
gical junction of the device. Such refinement can be automatic and performed based on a
simple calculation to determine the location of the metallurgical junction. An illustration of
an h-refined mesh, using two levels of refinement, with an additional two layers surround-
ing the calculated junction location is shown for a coarse mesh in Figure 7 where the mesh
is colored using the signed-log of the net doping, or

Color = sign(Nd−Na) log10 (1+ |Nd−Na|) .

Referring to Figure 7 it should be noted that the algorithm utilized by Charon refines in
both the x and y directions. In the pseudo-1D problem considered here the adaptation in y
does not affect the accuracy of the results.

Using adaptive mesh refinement (AMR) and again requiring the current to match within
one percent of the converged value at a forward bias of 0.5V , the number of elements re-
quired by Charon in the x direction is approximately 110. This value was based on a starting
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Figure 4. Comparison of scalar electric current for FEM
Galerkin, FEM SUPG and Pisces (Scharfetter-Gummel) solutions.

mesh with 80 elements in the x direction and three levels of refinement at the metallurgical
junction. Since neighboring elements are restricted to differ in the level of refinement by at
most one this effectively causes layers of elements surrounding the junction to also be re-
fined. Of course it should be noted that AMR can be used with most codes based on the SG
method as well. A more complete comparison of these methods with AMR will be carried
out in future work.

As derived in subsection 3.1, VMS is another possibility for reducing mesh density
required by Charon. At present the only results are very preliminary and only for a true two-
dimensional problem. The problem geometry is illustrated in Figure 8. Figure 9 shows the
results of an IV -sweep for various mesh densities. Referring to that figure it is obvious that
at the coarsest mesh density VMS offers improved accuracy. However, the improvement
over SUPG seems to dissipate rapidly as the mesh is refined. These results were obtained
with the VMS terms implemented in the Poisson equation only, (38). Work is ongoing to
implement the required terms in the drift-diffusion equations for the electrons and holes.
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Figure 5. Self-convergence rate of Pisces.
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Figure 6. Self-convergence of Charon.
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Figure 7. A Charon mesh using automatic, adaptive h-
refinement. This mesh was refined by locating the elements con-
taining the junction and refining that layer and two surrounding
layers to a depth of two.
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Figure 8. Geometry of a two-dimensional diode used as a VMS
test problem. The diode measures 0.5µm on each side and the
contacts are 0.2µm long. The coloring is based on the the signed
log of the net doping, Nd−Na.

Figure 9. IV plot of the currents versus the forward bias of a 2D
diode using a partial VMS discretization.
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4 Modeling of Neutron Radiation Damage

This section describes the defect physics implementation necessary to model the neutron
radiation damage of semiconductors within Charon. Neutron radiation causes displacement
of silicon atoms within the semiconductor device. The displacement of the atoms in the
lattice can be modeled as interstitials, vacancies and other defect complexes within the
silicon lattice. Such defects can be modeled as additional “species”, possibly electrically
charged, within the material. These species can be transported either via diffusion, in the
case of uncharged species, or via both diffusion and convection, by the electric field, in the
case of charged species.

4.1 Drift Diffusion Transport Of Defects

The defect chemistry implemented within Charon is based upon the defect chemistry im-
plemented within the 1D code written by Sam Myers. A detailed description of the 1D
implementation is described within Bill Wampler’s 1D theory document [36]. In general,
the defect species have properties (mobility, diffusion coefficient, etc.) that are very similar
to the carriers (electrons and holes), where the primary difference is in the magnitude of
these properties. But the transport behavior of the defects can be significantly different than
the carriers due to the following factors:

• Defects can be neutral and thus these particular defects will have zero mobility and
also will not have a direct impact upon Poisson’s equation.

• Defects can be immobile and thus have zero mobility and zero diffusivity.

• Primarily due to the bulleted items above and as stated earlier, the diffusion coeffi-
cients and mobilities can be many orders of magnitude smaller than then the carriers’
properties; defect species transport can be source term dominated.

Note on the first bullet, that since some of the defect species are charged these particular
species will directly contribute to Poisson’s equation. Also, since the defect reactions may
be non-reversible, we can no longer assume a common generation/recombination source
term for all species. Thus the drift diffusion equations have the following form:

∇ ·
(
λ

2E
)

=

(
p−n+C

N

∑
i=1

ZiYi

)
and E =−∇ψ in Ω (89)

∇ ·Jn =
∂n
∂t

+Rn [ψ,n, p,Y1, ...,YN ] and Jn = µnnE+Dn∇n in Ω (90)

−∇ ·Jp =
∂p
∂t

+Rp [ψ,n, p,Y1, ...,YN ] and Jp = µp pE−Dp∇p in Ω (91)

−∇ ·JYi =
∂Yi

∂t
+RYi [ψ,n, p,Y1, ...,YN ] and JYi = µYiYiE−DYi∇Yi in Ω (92)
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Equations 89, 90, 91, 92 are a first order, coupled nonlinear system of PDE’s in terms
of the primal variables (Note: there are N number of (92) where N is the total number of
defect species):

ψ: scalar electric potential;

n: electron concentration;

p: hole concentration;

Yi: concentration of defect species i for i = 1, ...,N;

and the dual variables:

E: electric field;

Jn: electron current density;

Jp: hole current density;

JYi current density of defect species i for i = 1, ...,N.

The drift diffusion model involves two important types of functions; doping and source
terms which are described below:

C = ND−Na: static doping profile, where ND is the impurity donor density and Na is the
impurity acceptor density. Note that if the dopants are treated as a defect species that
this parameter may be set to zero;

Rn: electron generation and recombination term;

Rp: hole generation and recombination term;

RYi: generation and recombination term of defect species i.

There are also several material parameters that describe diffusivity and mobility of carrier
or defect within the material:

λ: minimal Debye length of device;

Dn: electron diffusivity;

Dp: hole diffusivity;

DYi: diffusivity of defect species i;
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µn: electron mobility;

µp: hole mobility;

µYi: mobility of defect species i;

Zi: integer charge number of defect species i.

The defect mobility and diffusivity are related by Einstein’s relationship via

DYi =
kT
qYi

µYi (93)

Where

k: Boltzmann’s constant;

T : lattice (material) temperature (typically 300 K);

qYi: ≡ Ziq, where q is the Coulumb charge.

The diffusivity is calculated with a model (derived using Fick’s Law) that includes ther-
mally activated diffusion of silicon vacancies, and silicon and boron interstitial atoms de-
scribed by [35]

DYi = D0i exp
(

EAi

kT

)
(94)

where,

D0i: diffusion pre-factor of defect species i;

EAi: activation energy of defect species i.

Within Charon, the diffusivity of a defect is calculated with (94) and then the mobility is
calculated via Einstein’s relation with (93).

4.2 Defect Reactions and Source Terms

Critical and sometimes dominant aspects of the defect density transport are the recombina-
tion/generation source terms. Thus, it will be of significant importance to verify the models
that are used to model these terms. At the highest level there are two types of reactions:

• Carrier-Defect reactions

• Defect-Defect reactions
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Within Charon, there is a need to break these primary reactions up into a larger set of
reactions to appropriately identify, capture, and calculate the reactions. Within the 1D
code all reversible reactions are captured within a single expression, but in order to use our
input file structure it was easier to express all reactions into their non-reversible form. For
example electron capture and electron emission may be expressed as a single reversible
reaction:

V 0 + e−←→V−

or it may be expressed as two separate reactions:

V 0 + e− −→V− and V− −→V 0 + e−.

The reaction types within Charon are listed below with the reaction form and the corre-
sponding reaction equation. For a given species Yi, the source/sink term, R(Yi), is expressed
in terms of the recombination/generation source terms. The reactions of type charge-charge
reactions only include reaction with species of opposing charge. Reactions of species with
like charge are currently neglected (very small cross sections). Note that superscripts de-
note a given charge state and that holes are designated as h+ within reactions rather than p
so that they are not confused with protons.

• Electron Capture

Y m+1 + e− −→ Y m

R
[
Y m+1,e−

]
= σ

[
Y m+1,e−

]
νnnY m+1

R
[
Y m+1] = −R

[
Y m+1,e−

]
R
[
e−
]

= −R
[
Y m+1,e−

]
R [Y m] = R

[
Y m+1,e−

]
where,

– σ
[
Y m+1,e−

]
: electron capture cross-section for species Y m+1;

– νn: electron thermal velocity within material (for Si = 2.3e7 cm/s @ 300K);

• Electron Emission

Y m −→ Y m+1 + e−

R
[
Y m 7→ e−

]
= σ

[
Y m+1,e−

]
νnNcY m γ

(
Y m+1)

γ(Y m)
exp
(

EY m−Ec

kT

)
R
[
Y m+1] = −R

[
Y m 7→ e−

]
R
[
e−
]

= R
[
Y m 7→ e−

]
R [Y m] = R

[
Y m 7→ e−

]
where,
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– Nc: effective density of states in conduction band (for Si = 2.86e19 cm-3 @
300K);

– γ
(
Y m+1) ,γ(Y m): state degeneracies for Y m+1 and Y m respectively (these values

are typically 1.0 for the majority of defect species);

– EY m: energy of the electron state associated with Y m;

– Ec: conduction band minimum energy;

– EY m−Ec ≡ ∆EY m

e : activation energy for electron emission of species Y m;

• Hole Capture

Y m +h+ −→ Y m+1

R
[
Y m+1,h+] = σ

[
Y m,h+]

νp pY m

R [Y m] = −R
[
Y m,h+]

R
[
h+] = −R

[
Y m,h+]

R
[
Y m+1] = R

[
Y m,h+]

where,

– σ
[
Y m+1,h+]: hole capture cross-section for species ;

– νp: hole thermal velocity within material (for Si = 1.9e7 cm/s @ 300K);

• Hole Emission

Y m+1 −→ Y m +h+

R
[
Y m+1 7→ h+] = σ

[
Y m,h+]

νpNvY m+1 γ(Y m)
γ(Y m+1)

exp
(

Ev−EY m+1

kT

)
R
[
Y m+1] = −R

[
Y m+1 7→ h+]

R
[
h+] = R

[
Y m+1 7→ h+]

R [Y m] = R
[
Y m+1 7→ h+]

where,

– Nv: effective density of states in valence band (for Si = 2.66e19 cm-3 @ 300K);

– γ
(
Y m+1) ,γ(Y m): state degeneracies for Y m+1 and Y m respectively (these values

are typically 1.0 for the majority of defect species);

– EY m+1: energy of the hole state associated with Y m+1;

– Ev: valence band maximum energy;

– Ev−EY m+1 ≡ ∆EY m+1

h : activation energy for hole emission of species ;
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• Complex Recombination Charge-Charge

Xm +Y n −→ XY m+n where m,n 6= 0 and m×n < 0

R [Xm,Y n] = 4πrCoul {D(Xm)+D(Y n)}XmY n

R [Xm] = −R [Xm,Y n]
R [Y n] = −R [Xm,Y n]

R
[
XY m+n] = R [Xm,Y n]

where,

– D(Xm): diffusion coefficient of species Xm;

– D(Y n): diffusion coefficient of species Y n;

– rCoul: the reaction distance based on when the Coulumbic attraction is equiva-
lent to kT and can be expressed as

rCoul =
|m×n|(1.40e−4 cm ·K)

T

(Note: this only includes reactions where m× n < 0, in other words species
with opposite charge):

• Complex Dissociation Charge-Charge

XY m+n −→ Xm +Y n where m,n 6= 0 and m×n < 0

R
[
XY m+n 7→

]
= 4πrCoul {D(Xm)+D(Y n)} [Si]XY m+n×

×γ(Xm)γ(Y n)
γ(XY m+n)

exp
(
−∆E (XY m+n)

kT

)
R [Xm] = R

[
XY m+n 7→

]
R [Y n] = R

[
XY m+n 7→

]
R
[
XY m+n] = −R

[
XY m+n 7→

]
where,

– [Si]: the number of Si atoms per unit volume;

– γ(Xm) ,γ(Y n) ,γ(XY m+n): state degeneracies for Xm, Y n, and XY m+n respec-
tively (these values are typically 1.0 for the majority of defect species);

– ∆E (XY m+n): binding energy of species XY m+n;
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• Complex Recombination Charge-Neutral

X0 +Y n −→ XY n where m,n 6= 0 and m×n < 0

R
[
X0,Y n] = 4πrlattice

{
D
(
X0)+D(Y n)

}
X0Y n

R
[
X0] = −R

[
X0,Y n]

R [Y n] = −R
[
X0,Y n]

R [XY n] = R
[
X0,Y n]

where,

– rlattice: approximately the order of the lattice parameter within Si (5e-8 cm);

– X0: is any neutral defect;

• Complex Dissociation Charge-Neutral

XY n −→ X0 +Y n where n 6= 0

R [XY n 7→] = 4πrCoul
{

D
(
X0)+D(Y n)

}
[Si]XY n γ

(
X0)γ(Y n)
γ(XY n)

exp
(
−∆E (XY n)

kT

)
R
[
X0] = R [XY n 7→]

R [Y n] = R [XY n 7→]
R [XY n] = −R [XY n 7→]

where,

– γ
(
X0) ,γ(XY n): state degeneracies for X0 and XY n respectively (these values

are typically 1.0 for the majority of defect species);

– ∆E (XY n): binding energy of species XY n;

• Complex Recombination Neutral-Neutral - this is currently equivalent to Complex
Recombination Charge-Neutral but may be handled as a separate case if need be in
the future.

• Complex Dissociation Neutral-Neutral - this is currently equivalent to Complex Dis-
sociation Neutral-Neutral but may be handled as a separate case if need be in the
future.
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• Annihilation Charge-Charge

Xm +V n −→ [X ] where m =−n and m×n < 0

R [Xm,V n] = 4πrCoul {D(Xm)+D(V n)}XmV n

R [Xm] = −R [Xm,V n]
R [V n] = −R [Xm,V n]

where,

– V n: charged vacancy;

– [X ]: lattice material;

• Annihilation Neutral-Neutral

X0 +V 0 −→ [X ]

R
[
X0,V 0] = 4πrlattice

{
D
(
X0)+D

(
V 0)}X0V 0

R [Xm] = −R
[
X0,V 0]

R
[
V 0] = −R

[
X0,V 0]

where,

– V 0: neutral vacancy;

• Annihilation Charge-Charge Create Electron

Xm +V n −→ [X ]+ e− where m+n =−1 and m×n < 0

R [Xm,V n] = 4πrCoul {D(Xm)+D(V n)}XmV n

R [Xm] = −R [Xm,V n]
R [V n] = −R [Xm,V n]
R
[
e−
]

= R [Xm,V n]

• Annihilation Charge-Neutral Create Electron

Xm +V n −→ [X ]+ e− where m+n =−1 and m×n = 0

R [Xm,V n] = 4πrlattice {D(Xm)+D(V n)}XmV n

R [Xm] = −R [Xm,V n]
R [V n] = −R [Xm,V n]
R
[
e−
]

= R [Xm,V n]
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• Annihilation Charge-Charge Create Hole

Xm +V n −→ [X ]+h+ where m+n = 1 and m×n < 0

R [Xm,V n] = 4πrCoul {D(Xm)+D(V n)}XmV n

R [Xm] = −R [Xm,V n]
R [V n] = −R [Xm,V n]

R
[
h+] = R [Xm,V n]

• Annihilation Charge-Neutral Create Hole

Xm +V n −→ [X ]+h+ where m+n = 1 and m×n = 0

R [Xm,V n] = 4πrlattice {D(Xm)+D(V n)}XmV n

R [Xm] = −R [Xm,V n]
R [V n] = −R [Xm,V n]

R
[
h+] = R [Xm,V n]

4.3 Boundary Condition Implementation of Defect Species

With the defect species implementation, the boundary conditions must be specified for each
species and charged species must be appropriately handled within the doping dependent
boundary conditions. We can rewrite Equations 89, 90, 91, 92 as a second order boundary
value problem in terms of only the primal variables:

∇ ·
(
λ

2
∇ψ
)
−

(
p−n+

N

∑
i=1

qYiYi

)
= C in Ω

∇ · (−µnn∇ψ+Dn∇n)− ∂n
∂t
−Rn [ψ,n, p,Y1, ...,YN ] = 0 in Ω

∇ · (µp p∇ψ+Dp∇p)− ∂p
∂t
−Rp [ψ,n, p,Y1, ...,YN ] = 0 in Ω

∇ · (µYiYi∇ψ+DYi∇Yi)−
∂Yi

∂t
−RYi [ψ,n, p,Y1, ...,YN ] = 0 in Ω
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Equivalently, in residual form:

∇ ·
(
λ

2
∇ψ
)
−

(
p−n+

N

∑
i=1

qYiYi

)
= C in Ω (95)

∂n
∂t

+∇ · (µnn∇ψ)−∇ · (Dn∇n)+Rn [ψ,n, p,Y1, ...,YN ] = 0 in Ω (96)

∂p
∂t
−∇ · (µp p∇ψ)−∇ · (Dp∇p)+Rp [ψ,n, p,Y1, ...,YN ] = 0 in Ω (97)

∂Yi

∂t
−∇ · (µYiYi∇ψ)−∇ · (DYi∇Yi)+RYi [ψ,n, p,Y1, ...,YN ] = 0 in Ω (98)

In a complete mathematical model for a semiconductor device, boundary conditions
reflect the interaction of the device with the circuit which it is imbedded in. In the following
we shall be most interested in the dc operating conditions. This means that the ties between
two switching events are long enough for quasi steady state to be reached. In this case,
most of the important information is contained in the static voltage-current characteristics,
i.e. the relation between contact voltages and current through the contacts under steady
conditions.

P

N

N
Ω∂

N
Ω∂

N
Ω∂

2D
Ω∂

1D
Ω∂

Figure 10. A simple PN-junction diode and its geometrical con-
figuration in the two-dimensional case

Figure 10 shows a simple PN junction device; a PN diode and its geometrical config-
uration in the two dimensional case. The boundary conditions ∂Ω on the domain Ω are
assumed to consist of a Dirichlet part ∂ΩD and a Neumann part ∂ΩN as follows:

∂Ω = ∂ΩD∪∂ΩN , ∂ΩD∩∂ΩN = {} (99)

The Dirichlet part of the boundary corresponds to Ohmic contacts. There the potential ψ

and the concentration n and p are prescribed. The boundary values are derived from the
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following considerations. At Ohmic contacts the space charge, given by the right-hand side
of Equation 95 vanishes. Enforcing quasi-neutrality results in

p−n+C +
N

∑
i=1

qYiYi = 0 for x ∈ ∂ΩD. (100)

Furthermore, the system is in thermal equilibrium there, which is express by the relation:

np = n2
i for x ∈ ∂ΩD (101)

where ni is the intrinsic density (∼= 1010 cm−3 in Si @ 300K). Plugging (101) into (100)
and solving for n results in

n =


Nquasi, Ne f f > 0
n2

i /Nquasi, Ne f f < 0 for x ∈ΩD

0, Ne f f = 0
(102)

and

p =


n2

i /Nquasi, Ne f f > 0
Nquasi, Ne f f < 0 for x ∈ΩD

0, Ne f f = 0
(103)

where,

Nquasi =
{

Ne f f +
(
N2

e f f +4n2
i
) 1

2

}
/2 and Ne f f = C +

N

∑
i=1

qYiYi (104)

The potential at the contact is expressed as

ψ =


ln
(
Nquasi/ni

)
+ψapplied Ne f f ≥ 0

for x ∈ΩD

− ln
(
Nquasi/ni

)
+ψapplied, Ne f f < 0

(105)

where,

• ψapplied: applied potential (bias) at the boundary;

When the doping is set statically (defined within C) the boundary condition within equa-
tions 102. 103, 104, and 105 need only be set once even for transient calculations. The
reason for this is that the concentrations of charged defects at the contacts are typically set
to zero via a Dirichlet boundary condition. When the dopants are treated as defect species
and exhibit transient behavior at the boundary (this typically requires a reaction set with
source/sinks of the dopant species), these boundary conditions must be treated transiently.
We assume that the device geometry to be given by a domain of Ω⊆ Rd with d = 1,2, or 3.
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4.4 Neutron Damage Examples

To simulate the damage done to a device that is exposed to a radiation environment (in-
cluding neutron, gamma, electron-beam, and ion-beam), a Frenkel pair source rate is used
to simulate the damage done. When a neutron interacts with the device’s lattice material it
may “knock out” an atom within the lattice leaving a void (i.e., vacancy). A Frenkel pair is
a vacancy defect within the lattice and the corresponding material interstitial (free material
atom). A pulsed reactor environment will result in a transient and spatially dependent cre-
ation of Frenkel pairs due to radiation damage and the creation of electron-ion pairs due to
ionization. How these source rates are quantified and generated is beyond the scope of this
document and will not be discussed in detail here. The source rates are introduced within
Charon as transient, spatially dependent creation source rates of the species and carriers,
specifically vacancies, Si interstitials, electrons, and holes. The complete list of parameters
that will vary for a given radiation environment and device are:

• Vacancy transient, spatially dependent source rate

– this quantity is directly related to the Nickle Activity (neutron fluence dosimetry
measurement)

• Si Interstitial transient, spatially dependent source rate

– this quantity is directly related to the Nickle Activity (neutron fluence dosimetry
measurement)

• electron transient, spatially dependent source rate

– this quantity is directly related to the ionization dose

• hole transient, spatially dependent source rate

– this quantity is directly related to the ionization dose

• Current at emitter contact (held constant within the experiments of interest)

• Temperature of device

• Base-Collector bias

The examples shown and described within this section are for an npn Si BJT device
biased at 0.22 mA within the SPR-III (Sandia Pulse Reactor) reactor at Sandia National
Laboratories. The reactor has two exposure locations: cavity and leakage. The cavity loca-
tion provides a more direct exposure than the leakage location, thus the device is exposed to
larger fluences. A simulation was done for devices at each location and the result was com-
pared to the corresponding experimental result. The metric of comparison is the inverse
gain where:

Inverse Gain = Ib/Ic

where,
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• Ib: current at the base contact

• Ic: current at the collector contact

Although the gain better represents how functional the device is, the inverse gain is directly
proportional to the amount of damage done to the device. Since there are large uncertainties
within some of the physics parameters (e.g., cross-sections and diffusion prefactors), it
was necessary to do a calibration of these physics parameters with the experimental data.
Nominal values were calibrated for these physics parameters and then fixed within all the
radiation damage simulations. Two simulation results and the corresponding experimental
results are shown within Figure 11 and Figure 12 which represent the damage done to a
npn Si BJT within the cavity and leakage position of SPR-III respectively. Below are the
input values for each of the environments:

• SPR Cavity (shot #13245)

– Ni Activity = 2.582×104 Bq/g

– Total Dose = 1.082×105 Rad Si

– Emitter Current = 2.296×10−4 A

– Temperature of device = 18.5 0C

– Collector Base Bias = 10.21 V

• SPR Cavity (shot #13361)

– Ni Activity = 1.509×103 Bq/g

– Total Dose = 4.395×103 Rad Si

– Emitter Current = 2.210×10−4 A

– Temperature of device = 24.3 0C

– Collector Base Bias = 10.01 V

As can seen by Figure 11 and Figure 12 there is excellent agreement between the Charon
simulations and the experimental results. Note that the oscillations at early times within the
experimental data is due to thermal oscillations of the reactor which result in an oscillatory
ionization response. This physics feature was deemed unimportant for our analysis and not
reflected within the electron-ion creation source rates inputed into Charon and therefore
not reflected within the response.
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SPR Cavity Shot #13245 - Device Bias 0.22 mA
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Figure 11. Neutron damage of a Si BJT biased at 0.22 mA within
the cavity location of the SPR-III reactor.
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SPR Leakage Shot #13361 - Device Bias 0.22 mA
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Figure 12. Neutron damage of a Si BJT biased at 0.22 mA within
the leakage location of the SPR-III reactor.
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5 Parallel Performance of Charon

It is well known that preconditioning can significantly reduce the solution times of large
linear systems. The main approach used to date to improve the preconditioning of the lin-
ear systems in Charon is the use of multilevel preconditioners, specifically the multilevel
preconditioners available in the ML library [10]. The ML library provides algebraic multi-
grid preconditioners, including an aggressive coarsening procedure. Recently, a smoothed
aggregation preconditioner for nonsymmetric linear systems [29] has been implemented by
the ML developers. For steady-state solutions, the use of this preconditioner reduces the
solve time by roughly a factor of two compared with the baseline multilevel preconditioner.
This new preconditioner performs restriction smoothing because the problem is nonsym-
metric, and rather than using a single damping parameter, it calculates a local damping
parameter for the smoothed aggregation.

The second approach to preconditioning that is being pursued is the use of physics-
based preconditioners, for this case the use of preconditioners that are specifically tailored
to the drift-diffusion equations. To date, various block preconditioners such as block Jacobi,
block Gauss-Seidel, and block successive overrelaxation (SOR) have been implemented.
More advanced physics-based preconditioners will be implemented in the future.

To demonstrate the parallel performance of Charon, figures 13 and 14 show a weak
scaling study that compares the different preconditioners for a 2D 2× 1.5µm model npn
BJT, with 0.1µm contacts. A steady-state drift-diffusion calculation was performed with
voltage bias of 0.3V, with the solution of the nonlinear Poisson problem as an initial guess.
The comparison concerns a 1-level domain decomposition ILU preconditioner, compared
with two ML preconditioners. Both ML preconditioners use a 3-level aggressive coarsen-
ing method, and use ILU as smoother on the fine and medium mesh and a direct solver on
the coarsest level. About 85 nodes were used to form each aggregate. The green line de-
notes the result for the baseline ML preconditioner (referred to as “no EMIN” in the plot),
while the blue line denotes the result for the ML preconditioner for nonsymmetric linear
systems (referred to as “with EMIN” in the plot). These calculations were performed on
the Red Storm machine and were scaled up to 1024 nodes (one 2.4-Gz core per node was
used). The time reported is the average time to construct the preconditioner and perform the
linear solve for one Newton step. Note that for the calculation run on 1024 processors with
28 million unknowns, the ML preconditioner for nonsymmetric systems performs signif-
icantly better than the baseline ML preconditioner, and both ML preconditioners perform
significantly better than the 1-level preconditioner.
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Figure 13. Weak scaling study comparing average iteration per
Newton step for the different preconditioners
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6 Future Work

The development of Charon has been driven primarily by the needs of the QASPR project.
In the near future that will continue to be the case. The first phase of QASPR was to model
a BJT under normal operating conditions and obtain the correct gain when compared to
experiment. When this was accomplished the next step was to add the defects package and
again match to experimental data. Much of this work was done with a pseudo-1D model
of a BJT . At present we are attempting to do those same steps on a full two-dimensional
model. This requires significantly more computational power and is thus being carried out
on the largest computing systems available at Sandia.

The next major developmental step is to model oxide effects, which are believed to
have a significant effect on the operation of junction devices [15, 8]. This may involve
calibration of simple models, such as a constant E-field boundary condition on the surface,
or surface traps, or a combination, or it may involve implementing a true multi-physics
capability within Charon wherein different regions of the problem have different degrees
of freedom. In this case one region would be a semiconductor material with mobile carriers
and another would be an insulator with no mobile carriers.

The end goal of all the QASPR work is to satisfy the customers that simulation of a
neutron environment can accurately capture the physics and be truly predictive and thus
allow qualification of current weapons systems, as well as future weapons systems.

Many newer designs for weapons systems, and for replacement parts in existing weapon
systems, are making use of Gallium-Arsenide (GaAs), and other III-V semiconductor de-
vices. In the future Charon will likely need to model such devices. This presents a chal-
lenge in that doping concentrations are typically higher in such devices and a new set of
material properties corresponding to GaAs will need to be added.

Another major step would be the capability of modeling MOSFETs within Charon.
Most modern systems heavily utilize MOSFETs in their electronics. One application in
this area would be space-based electronics in satellite systems, an area in which Sandia is
heavily invested. Along this same line we are considering what steps would be necessary to
model sub-micron devices within Charon. This would likely entail the implementation of
more empirical models and perhaps utilize Boltzmann transport theory more closely than
does a pure drift diffusion approach.

Modeling semiconductor devices with high fidelity in two-dimensions requires not only
the largest computing systems available, but improvements in preconditioning for reducing
the solve time for the large linear systems. The multilevel methods in the ML library
have achieved a reasonable amount of success, but further work is needed in this area to
handle semiconductor specific issues. Work is also underway to implement more advanced
physics-based preconditioners to build on our earlier work with block preconditioners.

It should be noted that Charon is not limited to semiconductor physics. There is also
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significant development of Charon being done for modeling reacting flows and plasma
physics, both of which will continue to drive development of Charon forward.

Lastly, one of Charon’s primary goals was to act as a research platform for new dis-
cretization and algorithm technology. That is still an active goal and we have short-term
plans to implement a hybrid finite-element, finite-volume scheme in Charon with some
of the properties of the popular Scharfetter-Gummel scheme used in commercial TCAD
codes. Additionally Rythmos, a time-integrator being implemented in Trilinos, is being
tested within Charon. Rythmos offers arbitrary-accuracy in time integration and it is hoped
will allow for a more robust solve of the stiff problem associated with the defect physics
than does the current generalized-α method (see Appendix B).
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7 Conclusions

In this paper we have described a new Sandia code called Charon. Charon, in this context,
is being developed to model semiconductor devices within a neutron-radiation environ-
ment. The radiation environment of interest includes effects at short time scales and thus
requires a thorough understanding of the physics involved and a dynamic code capable of
accurately modeling the complex physics involved.

We have developed a stabilized finite-element method (SFEM) and a new variational
multiscale (VMS) discretization for drift diffusion (DD) equations. These formulations
have been demonstrated to stabilize the Galerkin FE discretization to control global oscil-
lations, and the ill-conditioning of the resulting linear systems for iterative solution, due to
convective effects. Results have demonstrated significant advantages of the formulations
over the standard Galerkin formulations.

Extensive verification and validation has been carried out and we have demonstrated the
methods converge at the expected rates. Comparison to the standard Scharfetter-Gummel
(SG) method in Pisces has indicated that the formulation is converging to the same solution
as an industry standard code as well.

Currently the SFEM requires higher resolutions than SG at the steep jumps developed
at metallurgical junctions (at low to moderate bias levels) to accurately compute the device
current. In the challenging, highly doped 2n2222 study presented in this report it was a
factor of ≈ 7 times higher. This resolution was shown to be effectively provided with the
use of adaptive mesh refinement (AMR) at the junction using ≈ 110 elements, rather than
employing a uniform discretization in the entire domain of ≈ 500 elements. Additionally,
preliminary work to evaluate the proposed variational multi-scale method (VMS) extensions
to the SFEM discretization has been carried out with one preliminary result presented in
this report. Further work on completing and evaluating the VMS formulation is recommend
along with consideration of alternate discretization strategies.

In terms of the overall solution method the Newton-Krylov methodology as imple-
mented in Charon has been demonstrated to be very robust and effective. The Newton iter-
ation as formulated with automatic differentiation has been demonstrated to be robust for
a complex set of drift diffusion and defect species formulations for radiation damage prob-
lems. The preconditioned parallel Krylov methods employing additive Schwarz domain
decomposition coupled with multi-level strategies has been demonstrated to be reasonably
robust and to perform well on large-scale problems.

Charon also serves as an advanced platform for testing of many of the latest algorithms
being implemented within Trilinos, including SACADO, LOCA, NOX, ML and Rythmos.
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A L2 Projection

In the stabilization term, 〈−τLφ, R̂〉, we need a flux that is continuous at the nodes to be
able to compute the second order term. The fluxes are piecewise constant across first order
elements, and thus are not continuous. We use an L2 projection to estimate the derivatives
at the nodes.

We wish to compute a variable ψ̃ at the nodes based on a least-squares projection from
known values at the quadrature points, ψ, of the elements that own the node.

This forms the minimization problem:

min
∀ψ̃inV

Z
Ω

[ψ̃−ψ]2 dΩ (106)

We note that ψ is a discontinuous quantity at the nodes while we need ψ̃ to be continuous
at the nodes.

Since ψ̃ is a variable in the finite element space, we use the definition:

ψ̃ = ∑
j

ψ̃ jφ j (107)

where φ are the basis functions in the discretization. The minimization problem can then
be solved by taking the derivative wrt to ψ̃ and setting the equation equal to zero:

2
Z

Ω

[ψ̃−ψ]φidΩ = 0 (108)

This is the residual equation for the unknown, ψ̃, at the node i. Rearranging, we get the
following: Z

Ω

ψ̃φidΩ =
Z

Ω

ψφidΩ (109)

Using equation 107 and rearranging we get:

N

∑
j

Z
Ω

φ jφidΩψ̃ j =
Z

Ω

ψφidΩ (110)

This results in a linear system of the form Mψ̃ = R where:

M =
N

∑
j

Z
Ω

φ jφidΩ (111)

R =
Z

Ω

ψφidΩ (112)

M is known as the mass matrix. The true L2 projection (called a consistent projection)
would require a linear solve of this system. We approximately solve this system by lumping
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the mass matrix. In lumping, we make the assumption that over an element, the value of
the variable ψ̃ at node j is equal to the value at node i (over the element, ψ̃ is constant):

ψ̃ j = ψ̃i. (113)

This allows us to bring the summation over j into the integral for the right hand side:

Z
Ω

N

∑
j

φ jφidΩψ̃i. (114)

The sum of the basis functions always sum to one, so we get the following systems of
equations: Z

Ω

φidΩψ̃i =
Z

Ω

ψφidΩ. (115)

The left and right hand side are vectors, so solving for ψ̃ becomes a vector divide. The left
hand side can be solved once and stored. The right hand side will have to be reevaluated
for each residual fill.

We note that lumping results in a projected value that is essentially the weighted value
of the quarter of the element closest to the node.
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B Time Integration

In this section a brief description of the Generalized-α method is presented. This time
integration algorithm is useful for allowing the parameterized selection of time integration
schemes which include both first and second order methods. Through this generalized
algorithm dissipative first order methods (e.g. Backward Euler), neutrally stable second
order methods (e.g. midpoint rule) and second order methods with high wave number
damping (BDF2) can be obtained. The traditional approach of Trapezoidal rule is still
obtainable by setting three coefficients discussed below: α f , αm, and γ. The Generalized-α
method can be written [4, 18]

Mn+αman+αm +Cn+α f vn+α f +Kn+α f dn+α f = Fn+α f

Using vector notation (i.e., x and ẋ) and noting that d = 0 for our fluids problems, we can
rewrite the above equation as

Mn+αm ẋn+αm +Cn+α f xn+α f = Fn+α f (116)

where the matrices and vectors are evaluated by

ψn+α f = (1−α f )ψn +α f ψn+1

ψn+αm = (1−αm)ψn +αmψn+1

and the time steps are found by

tn+α f = (1−α f )tn +α f tn+1

tn+αm = (1−αm)tn +αmtn+1

Thus tn+α f and tn+αm are the times where the forcing function (and damping matrix) and
the mass matrix are evaluated. The third coefficient, γ, relates x and ẋ.

xn+1 = xn +∆t
[
(1− γ)ẋn + γẋn+1] (117)

These coefficients can be manipulated to produce a variety of time integration methods
as shown in Table B.1.

To fit this within Charon, there are essentially three parts: generate initial predictions
for xn+α f and ẋn+αm , feed these vectors into the Newton-Krylov solver, and back out the
solution vectors xn+1 and ẋn+1. The second step is easily completed by feeding the solu-
tions into the current Newton-Krylov solver, and only requires explanation on the iterative
update.

To get the initial predictions for xn+α f and ẋn+αm (i.e., xn+α f
(0) and ẋn+αm

(0) ), we first need

a prediction for xn+1 (i.e., xn+1
(0) ). Using first-order Euler evaluation, we can obtain

xn+1
(0) = xn +∆tn ẋn
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Integration Methods α f αm γ

Newmark [26] 1 1 0 < γ≤ 1

HHT-α(1/2≤ ρ∞ ≤ 1) [14] 2ρ∞

1+ρ∞
1 1

2

(
3−ρ∞

1+ρ∞

)
WBZ-α(0≤ ρ∞ ≤ 1) [37] 1 2

1+ρ∞

1
2

(
3−ρ∞

1+ρ∞

)
Explicit Euler 0 0 0

Implicit Euler 1 1 1

Midpoint rule 1/2 1/2 1/2

Gear’s Two-step 1 3/2 1

Trapezoidal Rule [31, 11] 1 1 1/2

Generalized-α (0≤ ρ∞ ≤ 1) [4] 1
1+ρ∞

1
2

(
3−ρ∞

1+ρ∞

)
1

1+ρ∞

Table B.1. Various time integration algorithms derivable from
the Generalized-α method coefficients.

Using Adams-Bashforth second-order evaluation, we have

xn+1
(0) = xn +

∆tn

2

(
2+

∆tn

∆tn−1

)
ẋn− (∆tn)2

2∆tn−1 ẋn−1

This is easily interpolated to tn+α f

xn+α f
(0) = (1−α f )xn +α f xn+1

(0)

and the time derivative is found by

ẋn+αm
(0) =

(
1− αm

γ

)
ẋn +

αm

α f ∆tγ

(
xn+α f

(0) −xn
)

During each Newton iteration, k, a delta change to the solution, ∆xn+α f
(k) , is determined,

and the solution is updated
xn+α f

(k+1) = xn+α f
(k) +∆xn+α f

(k) . (118)

The time derivative can be updated by

ẋn+αm
(k+1) =

(
1− αm

γ

)
ẋn +

αm

α f ∆tγ

(
xn+α f

(k+1)− xn
)

. (119)

If we write the above equation for the kth iteration and subtract it from the (k+1)th iteration,
we find the time derivative can be updated by a simple expression involving ∆xn+α f

(k) ,

ẋn+αm
(k+1)− ẋn+αm

(k) =
αm

α f ∆tγ

(
xn+α f

(k+1)−xn+α f
(k)

)
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or
ẋn+αm

(k+1) = ẋn+αm
(k) +

αm

α f ∆tγ
∆xn+α f

(k) . (120)

If Eq, (120) is used to update the time derivative, it is possible, through error or other means,
that the solution and the time derivative can become “unsynchronized” such that they do
not satisfy Eq. (119), but because of the Newton iterations they will satisfy Eq. (116). This
is a very difficult error to find, and thus for safety the time derivative should be updated
using Eq. (119).

Once the Newton-Krylov solver determines the solution vectors, xn+α f and ẋn+αm , we
need to back out the desired solutions, xn+1 and ẋn+1.

xn+1 =
(

1− 1
α f

)
xn +

1
α f

xn+α f

ẋn+1 =
(

1− 1
αm

)
ẋn +

1
αm

ẋn+αm

Note: ẋ should be for physics which you are integrating (i.e., diffusion physics ẋ should
be for diffusion ẋdi f f ).
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