

SANDIA REPORT

SAND2005-1661
Unlimited Release
Printed March 2005

Advanced Mobile Networking, Sensing,
and Controls

J. T. Feddema, R. H. Byrne, J. J. Harrington, D. M. Kilman, C. L. Lewis, R. D. Robinett,
B. P. Van Leeuwen, and J. G. Young

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71318763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2005-1661
Unlimited Release

Printed March 2005

Advanced Mobile Networking, Sensing, and
Controls

J. T. Feddema, R. H. Byrne, C. L. Lewis, J. G. Young
Intelligent Systems, Sensors, and Controls Department

J. J. Harrington
Mobile Robotics Department

D. M. Kilman, B. P. Van Leeuwen
Networked Systems, Surveillance and Assurance Department

R. D. Robinett
Energy, Infrastructure and Knowledge Systems Center

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1003

Abstract
This report describes an integrated approach for designing communication, sens-

ing, and control systems for mobile distributed systems. Graph theoretic methods
are used to analyze the input/output reachability and structural controllability and
observability of a decentralized system. Embedded in each network node, this anal-
ysis will automatically reconfigure an ad hoc communication network for the sensing
and control task at hand. The graph analysis can also be used to create the optimal
communication flow control based upon the spatial distribution of the network nodes.
Edge coloring algorithms tell us that the minimum number of time slots in a planar
network is equal to either the maximum number of adjacent nodes (or degree) of
the undirected graph plus some small number. Therefore, the more spread out that
the nodes are, the fewer number of time slots are needed for communication, and
the smaller the latency between nodes. In a coupled system, this results in a more
responsive sensor network and control system. Network protocols are developed to
propagate this information, and distributed algorithms are developed to automati-
cally adjust the number of time slots available for communication. These protocols
and algorithms must be extremely efficient and only updated as network nodes move.
In addition, queuing theory is used to analyze the delay characteristics of Carrier
Sense Multiple Access (CSMA) networks. This report documents the analysis, sim-
ulation, and implementation of these algorithms performed under this Laboratory
Directed Research and Development (LDRD) effort.

3

This page intentionally blank.

4

Contents

Abstract 3

Table of Contents 5

List of Figures 7

1 Introduction 11

2 Cooperative Control 13
2.1 Example 1: Spreading Apart along a Line - A Containment Behavior 15
2.2 Example 2: Coverage of a Two-Dimensional Space 19
2.3 Example 3: Coverage of a Two-Dimensional Space with Constraints . 21
2.4 Example 4. Forming an Ellipse with Constraints - A Containment

Behavior . 23
2.5 Example 5. Converging on the Source of a Plume - 2D Case 27
2.6 Example 6. Converging on the Source of a Plume - 3D Case 29

3 Communication Effects 30
3.1 Stability Analysis . 32
3.2 Communications Sample Period . 36
3.3 Utilization versus Delay in CSMA Networks 44

4 Analysis and Simulation of TDMA and Coloring 46
4.1 Implementation Issues . 48
4.2 Simulation Results . 49

4.2.1 Setup time . 49
4.2.2 Degree of Network . 51
4.2.3 CSMA Collisions . 52
4.2.4 Communication Sample Period 52

5 CSMA Delay Characteristics and Simulation Results 54
5.1 CSMA Network Modeled as an M/D/1 Queue 55
5.2 Simulation Results . 56

6 Linear Matrix Inequality 83
6.1 SDP Formulation of Multiple Robot Vehicle Stability Problem 84
6.2 The Cutting Plane Algorithm . 86

6.2.1 Semidefinite Program . 86
6.2.2 Semiinfinite Program Reformulation of SDP 86
6.2.3 Linear Program Reformulation of SIP 87
6.2.4 Bounding the LP . 88
6.2.5 Optimal Set of Constraints . 88
6.2.6 Stopping Conditions . 90

5

6.2.7 Algorithm . 91
6.2.8 Efficiency of the Algorithm . 91

6.3 Bounding the LP Relaxation for the Multiple Robot Problem 92
6.4 Benchmarks . 93
6.5 Future Work . 94

7 Conclusions 95

6

List of Figures

1 One-dimensional control problem. The top line is the initial state. The
second line is the desired final state. Vehicles 1 and 4 are boundary
conditions. Vehicles 2 and 3 spread out along the line using only the
position of their left and right neighbors. 16

2 Four robot vehicles are shown guarding a perimeter denoted by the
blue line segments. When an intrusion detection sensor denoted by the
numbered circles alarms, one robot vehicle attends to the alarm (vehicle
near sensor 33) while the others spread apart along the perimeter so
that each vehicle is midway between its neighbors. 17

3 Robot vehicles used to perform perimeter surveillance task 18
4 Hopping landmine robots are filling breach left by enemy vehicle. When

a robot is breached, the robots will hop towards the missing robot and
settle when each robot is midway between its neighbors. 18

5 Hopping landmine robots used in self-healing minefield tests. 19
6 (Left) Initial configuration of robots. (Right) Desired final configuration. 20
7 Plot of 20 vehicles’ trajectories started from a clustered position with

the goal of spreading out uniformly through the space (blue * indicates
initial position, red marks indicate trajectory, and black + indicate
final position). 21

8 Plot of 20 vehicles’ trajectories started from a clustered position with
the goal of spreading apart uniformly through a hallway with a side
corridor (blue * indicates initial position, red marks indicate trajectory,
and black + indicate final position). 22

9 Robot vehicles used in an indoor communication/navigation network. 24
10 Robot path planner drives vehicles towards ellipse while staying away

from obstacles, denoted by red line, and the other vehicles. 25
11 Multiple vehicles converging on a rotating plume. 27
12 Miniature robot used in the plume localization experiment that located

a block of dry ice. 29
13 Nekton Research underwater vehicle used to locate synthetic plume

source. 31
14 Underwater synthetic plume test results. 31
15 Discrete time control block diagram of N-vehicle interaction problem. 34
16 Stability region for the N=2 vehicle case. 36
17 Stability region for the N=10000 vehicle case. 37
18 Graph of ad hoc communication network. Nodes with connecting lines

can communicate with each other. 38
19 Communication sample period for TDMA linear and polylogarithmic

broadcasts when Rc

L
= 0.1 and τ = 0.1s. 40

20 Utilization for a CSMA network when Rc

L
= 0.1s, τ = 0.1s, ε = 1, and

Td = 1s. 42

7

21 Communication sample period for TDMA and CSMA reconfigurable
coloring when Rc

L
= 0.1s, τ = 0.1s, ε = 1, and Td = 1s. 43

22 Communication overhead for reconfigurable coloring when Rc

L
= 0.1,

τ = 0.1s, ε = 1, and Td = 1s. 45
23 Setup Time . 50
24 Degree of the Network . 51
25 Number of Collisions . 52
26 Communication Sample Period . 53
27 M/D/1 Normalized Average Delay versus Utilization 58
28 Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-ML 59
29 Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-ML 60
30 Monte Carlo Simulation: Transmission Retry Statistics, a = 0, Backoff

0-ML . 61
31 Monte Carlo Simulation: Channel Access Time Statistics, a = 0, Back-

off 0-ML . 62
32 Monte Carlo Simulation: Fatal Collision Statistics, a = 0, Backoff 0-ML 63
33 Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-2.5ML . . 63
34 Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-2.5ML . . 64
35 Monte Carlo Simulation: Transmission Retry Statistics, a = 0, Backoff

0-2.5ML . 65
36 Monte Carlo Simulation: Channel Access Time Statistics, a = 0, Back-

off 0-2.5ML . 66
37 Monte Carlo Simulation: Fatal Collision Statistics, a = 0, Backoff

0-2.5ML . 67
38 Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-5ML . . . 67
39 Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-5ML . . . 68
40 Monte Carlo Simulation: Transmission Retry Statistics, a = 0, Backoff

0-5ML . 69
41 Monte Carlo Simulation: Channel Access Time Statistics, a = 0, Back-

off 0-5ML . 70
42 Monte Carlo Simulation: Fatal Collision Statistics, a = 0, Backoff 0-5ML 71
43 Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-ML . 71
44 Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-ML . 72
45 Monte Carlo Simulation: Transmission Retry Statistics, a = 0.1ML,

Backoff 0-ML . 73
46 Monte Carlo Simulation: Channel Access Time Statistics, a = 0.1ML,

Backoff 0-ML . 74
47 Monte Carlo Simulation: Fatal Collision Statistics, a = 0.1ML, Backoff

0-ML . 75
48 Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-2.5ML 75
49 Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-2.5ML 76
50 Monte Carlo Simulation: Transmission Retry Statistics, a = 0.1ML,

Backoff 0-2.5ML . 77

8

51 Monte Carlo Simulation: Channel Access Time Statistics, a = 0.1ML,
Backoff 0-2.5ML . 78

52 Monte Carlo Simulation: Fatal Collision Statistics, a = 0.1ML, Backoff
0-2.5ML . 79

53 Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-5ML 79
54 Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-5ML 80
55 Monte Carlo Simulation: Transmission Retry Statistics, a = 0.1ML,

Backoff 0-5ML . 81
56 Monte Carlo Simulation: Channel Access Time Statistics, a = 0.1ML,

Backoff 0-5ML . 82
57 Monte Carlo Simulation: Fatal Collision Statistics, a = 0.1ML, Backoff

0-5ML . 83

9

This page intentionally blank.

10

1 Introduction

In the wake of current world activities and terrorist events, the United States Army
is being transformed into a more agile, deployable, mobile force called the Objective
Force. One of the key tenets of this Objective Force is that soldiers will be provided
with a situational awareness that will greatly enhance their warfighting capabilities.
They will have access to information regarding their mission, aerial and terrain maps,
weather, their current location, the location of barriers such as minefields, and the lo-
cation and strength of friend and foe military forces both on the ground and in the air.
They will have access to information from man-delivered and airdropped unattended
ground sensors. They will be able to communicate with other soldiers in the field and
the higher echelon, and they will be able to command and control unmanned vehicles
such as UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Air Vehicles).
Key to all these capabilites is a secure, reliable, highly responsive communication
network that scales well with large numbers of nodes.

Most current large-scale distributed networks, such as the Internet, use a Carrier
Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol for communication.
Using a CSMA protocol, when node A wants to talk to node B, it first listens for
an open channel. If the channel is open, it transmits its message. If not, it waits a
random back-off time before trying again. With the Collision Avoidance option, a
short request-to-send/clear-to-send message is exchanged between two nodes to first
clear the channel for a longer message. This is used to eliminate the hidden-node
problem where two nodes, which can not hear each other, both send long messages
to an intermediate node at the same time. The primary advantage of the CSMA/CA
protocol is that it does not require a prior knowledge of what other nodes are present
in the network. Unfortunately, there are two disadvantages to this protocol. First, the
bandwidth of a properly designed system is approximately half of an optimally slotted
Time Division Multiple Access (TDMA) protocol and can be substantially less if the
number of nodes grows too large. Second, message collisions do occur making the
system undeterministic. Being undeterministic makes the network difficult to analyze
in terms of bandwidth and latency, and also makes it impossible to provide reliable
closed loop controls over a CSMA/CA network. For these reasons, in this project we
have investigated decentralized algorithms that would provide optimal flow control
in a large TDMA network. Within this report, comparisons are made between the
TDMA and CSMA networks. We used graph theory and large scale decentralized
control theory as the theoretical underpinnings of this work.

A particular focus of this effort is the distributed control of multiple unmanned
robotic vehicles. Over the past decade, considerable research has concentrated on
the development of cooperative controls of multiple robotic systems [1]. Much of this
work is originally inspired by the observation that social insects such as termites,
ants, and bees perform amazing group behaviors when individually executing simple
rules [2]. The hypothesis being that it must be possible to create useful “emergent”
group behaviors from simple individual behaviors. While this hypothesis has yet
to be proven or disproved, many people have demonstrated some interesting group

11

behaviors. For example, researchers have shown that groups of robots can forage for
objects [3], maintain formations [4], and push boxes [5].

More recently, researchers have begun to take a system controls perspective and
analyze the stability of multiple vehicles when driving in formations. Chen and Luh
[6] examined decentralized control laws that drove a set of holonomic mobile robots
into a circular formation. A conservative stability requirement for the sample period
is given in terms of the damping ratio and the undamped natural frequency of the
system. Similarly, Yamaguchi studied line-formations [7] and general formations [8]
of nonholonomic vehicles, as did Yoshida et al. [9]. Decentralized control laws using
a potential field approach to guide vehicles away from obstacles can be found in [10]-
[11]. In these studies, only continuous time analyses have been performed, assuming
that the relative position between vehicles and obstacles can be measured at all time.

Another way of analyzing stability is to investigate the convergence of a dis-
tributed algorithm. Beni and Liang [12] prove the convergence of a linear swarm of
asynchronous distributed autonomous agents into a synchronously achievable config-
uration. The linear swarm is modeled as a set of linear equations that are solved
iteratively. Their formulation is best applied to resource allocation problems that can
be described by linear equations. Liu et al. [13] provide conditions for convergence
of an asynchronous swarm in which swarm “cohesiveness” is the stability property
under study. Their paper assumes position information is passed between nearest
neighbors only and proximity sensors prevent collisions.

Also of importance is the recent research combining graph theory with decentral-
ized controls. Most cooperative mobile robot vehicles have wireless communication,
and simulations have shown that a wireless network of mobile robots can be modeled
as an undirected graph [14]. These same graphs can be used to control a formation.
Desai et al. [15]-[16] used directed graph theory to control a team of robots navigating
terrain with obstacles while maintaining a desired formation and changing formations
when needed. When changing formations, the transition matrix between the current
adjacency matrix and all possible control graphs are evaluated.

Over the past 8 years, Sandia’s Intelligent Systems and Robotics Center has been
developing cooperative control systems for military missions such as perimeter surveil-
lance [17], facility reconnaissance [18], and chemical plume tracking [19]. Multiple
mobile robots perform these missions in a coordinated fashion using low bandwidth
communication between nodes. We have demonstrated that by using Provably Con-
vergent Cooperative Controls (PC3) we can guarantee a specified level of performance
even under uncertainty. PC3 involves selecting an overall performance index and us-
ing distributed optimization techniques to minimize this performance index. The
stability of the control can be proven using a vector Liapunov function. The scheme
is inherently fault tolerant to nodal failure, allowing other nodes to complete a task
started by a failed node.

Key to the success of PC3 is that the communication between nodes is used to
synchronize the controls. To date, we have used a TDMA protocol with a small
number of nodes (up to 10). Eventually, we would like to extend the analysis and
demonstrate this PC3 capability in larger scaled systems of 100 to 1000 nodes, but

12

first, we must develop the underlying communication layer and ensure that it is a
deterministic system. Therefore, an important aspect of this work is an integrated
approach to both communication and controls. In this project, we have used graph
theoretic methods to analyze the input/output reachability and structural controlla-
bility and observability of a decentralized system. This analysis can be embedded in
each node and be used to automatically reconfigure an ad hoc communication network
for the control task at hand. The graph analysis can also be used to create the most
efficient communication flow control based upon spatial distribution of the network
nodes. Edge coloring algorithms in graph theory tell us that the minimum number
of time slots in a planar network is equal to the maximum number of adjacent nodes
plus some small number. The more spread out the nodes are, the fewer number of
time slots are needed for communication, and the smaller the latency between nodes.
In a coupled system, smaller latency results in a more responsive control system.
In this project, network protocols that propagate this information and distributed
algorithms that automatically adjust the number of time slots available for commu-
nication were evaluated. These protocols and algorithms must be extremely efficient
and only updated as network nodes move.

The next section provides a common mathematical framework that can be used
to develop cooperative behaviors among mobile robot vehicles. Section 3 describes
the effects of communication on the sampling period of a cooperative system. Four
different communication protocols: a Time Division Multiple Access (TDMA) linear
broadcast, a TDMA polylogarithmic broadcast, a TDMA coloring algorithm, and a
Collision Sense Multiple Access (CSMA) algorithm are compared. These communica-
tion effects are verified with OPNET simulations in Section 4. Section 5 concentrates
on the delay characteristics of a CSMA network, comparing Monte Carlo simula-
tions to closed form predicted performance using queuing theory. Finally, section 6
investigates solving the cooperative control stability problem using a Linear Matrix
Inequality formulation.

2 Cooperative Control

In this section, a common mathematical framework that can be used to describe
a number of cooperative behaviors is developed. This mathematical framework is
applied to three generic behaviors: containment, coverage, and converging. The
authors believe that this same framework could be applied to the other behaviors,
although this has not been proven at the time of this publication.

This mathematic framework is motivated by the fact that most of the laws in
physics and mechanics can be derived by finding the maximum or minimum of some
performance index, in this case, called the Lagrangian integral. In Table 1, notice
that the Lagrangian of each phenomenon is a function of some gradient term squared.
In the analysis that follows, you will notice that each behavior’s performance index
is also a function of some gradient term squared.

Following this same optimization approach, a three-step process for developing

13

Phenomenon Lagrangian

Classical Mechanics 1
2
m

(
∂q
∂t

)2 − V

Flexible String or Compressible Fluid 1
2
ρ
[(

∂q
∂t

)2 − c2∇q •∇q
]

Diffusion Equation −∇ψ • ψ∗ − . . .

Schrodinger Equation − h
2m

∇ψ • ∇ψ∗ − . . .

Electromagnetic Equations 4
∑4

n=1 ∇qn • ∇qn − . . .

Boltzmann Law 4
(

∂q
∂E

)2 − . . .

Table 1: Lagrangian for various physical phenomena [20]

cooperative control algorithms has been developed [21]. These three steps are as
follows:

Step 1. Define a global performance index as a function of parameters from all
entities.

Step 2. Partition and eliminate terms in the performance index so that only terms
of local neighbors are included.

Step 3. The local control law is the gradient (or the product of the inverse Hessian
and gradient) of the partitioned performance index.

The first step requires that one understands the problem well enough that it can
be posed as a global optimization problem. This step can be relatively difficult, but as
the examples in the remainder of this section will show, that with the right simplifying
assumptions, rather simple equations can be used to solve difficult problems.

The second step, partitioning the performance index, is often used in parallel op-
timization to reduce the computation time for large-scale problems [22]. In this case,
the second step is used to reduce communications between robots and to increase
robustness of the distributed system. The control law that would result from step
1 would require that every robot be able to communicate with all the other robots.
As the number of robots increase to 100s and 1000s, the time delay necessary for
communication would make the resulting control infeasible. Instead, partitioning the

14

performance index and eliminating terms to include only terms of local neighbors re-
sults in a control law that only requires communication with nearest neighbors, thus
greatly reducing communication delay. Also, using nearest neighbors that change
throughout the motion adds an element of robustness. The mathematical formula-
tion of the partition does not specify that robot number 10 must communicate with
robot number 6. Instead, the mathematical formulation specifies a group of nearest
neighbors that can change based on external forces and environmental conditions.
This creates an element of self-organization that allows the system to change and
evolve. If a robot fails, a new set of nearest neighbors is formed.

The third step is to solve for the extremum of the partitioned performance index
using either a first-order steepest descent algorithm or second order method such as
the Newton’s Method [23].

The remainder of this section will be spent showing how these three steps have
been used in practice. Six examples are given with details on the problem formulation
and the task that was performed.

2.1 Example 1: Spreading Apart along a Line - A Contain-
ment Behavior

This first example is a simple one-dimensional problem. The goal is for multiple
robots to evenly spread apart along a straight line using only information from the
neighboring robots on the right and left. In Figure 1, the first and last robots are
assumed to be stationary while the ones in between are to spread apart a distance d
away from each other.

The optimization steps are as follows.

Step 1. Specified as an optimization problem, the objective is to

min
x̄

v(x̄) (1)

where the global performance index is

v(x̄) =
1

2

n−1∑

i=1

(d − |xi+1 − xi|)2 (2)

xi is the position of robot i, x̄ = [x1 . . . xn]
T are the positions of all the robots,

and d is the desired distance between each robot. The goal is to minimize the
sum of squared errors in distances between every robot.

Step 2. This problem is easily partitioned amongst the interior n− 2 robots. The
distributed objective is to

min
xi

vi(x̄) ∀ i = 2, . . . , n− 1 (3)

15

�� ��4i i
i i �� ��3i i

i i �� ��2i i
i i �� ��1i i

i i
- X

t = tf

�� ��4i i
i i

�� ��3i i
i i

�� ��2i i
i i

�� ��1i i
i i

- X
t = t0

Figure 1: One-dimensional control problem. The top line is the initial state. The
second line is the desired final state. Vehicles 1 and 4 are boundary conditions.
Vehicles 2 and 3 spread out along the line using only the position of their left and
right neighbors.

where the partitioned performance index is

vi(x̄) =
1

2
(d − |xi − xi−1|)2 +

1

2
(d − |xi − xi+1|)2 (4)

Because of the additive form of Equation (2), simultaneously solving Equation
(3) for each robot is the same as minimizing the global performance index in
Equation (2). Therefore, in this case, no terms were eliminated. This is not
necessarily true for the other example problems below.

Step 3. A steepest descent control law for the partitioned performance index is
given by

xi(k + 1) = xi(k) − α∇vi(x̄(k)), 0 < α ≤ 1, (5)

where
∇vi(x̄) = 2xi − (xi+1 + xi−1) if xi−1 < xi < xi+1 (6)

Note that ∇vi(x̄) = 0 when xi = 1
2
(xi+1 + xi−1). Therefore, the vehicles will disperse

along the line until they have reached a position that is exactly in the middle of its
nearest neighbors. In [18], it is shown that α is actually more constrained than indi-
cated in Equation (5) depending on the speed of the vehicle and the communication
sample period. The control law in Equations (5)-(6) have been used to spread robot
vehicles apart along a perimeter [17] as shown in Figures 2 - 3, as well as to spread
out hopping minefield robots [24] as shown in Figures 4 - 5.

16

Figure 2: Four robot vehicles are shown guarding a perimeter denoted by the blue
line segments. When an intrusion detection sensor denoted by the numbered circles
alarms, one robot vehicle attends to the alarm (vehicle near sensor 33) while the
others spread apart along the perimeter so that each vehicle is midway between its
neighbors.

17

Figure 3: Robot vehicles used to perform perimeter surveillance task

Figure 4: Hopping landmine robots are filling breach left by enemy vehicle. When
a robot is breached, the robots will hop towards the missing robot and settle when
each robot is midway between its neighbors.

18

Figure 5: Hopping landmine robots used in self-healing minefield tests.

2.2 Example 2: Coverage of a Two-Dimensional Space

Next, we consider the example of dispersing robots in a plane in a specified pattern. In
Figure 6, the robots are to move from the configuration on the left to the configuration
on the right. The configuration on the right is specified by the distances dij between
robot i and robot j.

Step 1. The objective is to
min

x̄
v(x̄) (7)

where the global performance index is

v(x̄) =
1

2

n−1∑

i=1

n∑

j=i+1

(
d2

ij − (xi − xj)
2 − (yi − yj)

2
)2

(8)

x̄i = [xi yi]
T ∈ IR2 is the position of robot i in the xy plane, and x̄ = [x̄T

1 . . . x̄
T
n]T

is the position of all the robots in the xy plane. By minimizing the error between
the squared desired distance and the squared measured distance between every
pair-wise combination of robots, we can drive the robots from an initial pat-
tern to the desired specified pattern. Notice that the global performance index
does not specify the orientation or final absolute position of the group of robots.

Step 2. The global performance index is over constrained since it is possible
to achieve the same minimum solution without having to minimize the error
between every pair-wise combination. The same minimum solution can be
achieved by only minimizing the error between neighboring robots. The dis-
tributed objective is to

min
x̄i

vi(x̄) ∀ i = 1, . . . , n (9)

19

u u

u uu
uu

1
2

3 4

5

6

7

��������

�
�
�
�
�
�
�
�
��

E
E
E
E
E
E
E
E
E
E
E

S
S

S
S

S
S

SS
HHHH

B
B
B

B
BB

HHHH

d12

d15

d13

d23 d24

d34

d46

d35

d57
d37

d67

u u

u u u

u u

�
�
�
�
�
�
��

A
A

A
A

A
A

AA

A
A

A
A

A
A

AA

�
�
�
�
�
�
��

�
�
�
�
�
�
��

A
A

A
A

A
A

AA

�
�
�
�
�
�
��

A
A

A
A

A
A

AA

1 2

5 3 4

7 6

d12

d15 d13 d23 d24

d35 d34

d57 d37 d36 d46

d67

Figure 6: (Left) Initial configuration of robots. (Right) Desired final configuration.

where the partitioned performance index is

vi(x̄) =
1

2

∑

j∈NN

(
d2

ij − (xi − xj)
2 − (yi − yj)

2
)2

(10)

and NN stands for nearest neighbor.

Step 3. The steepest descent control law for the partitioned performance index is
given by

x̄i(k + 1) = x̄i(k) − α∇vi(x̄(k)), 0 < α ≤ 1 (11)

where

∇vi =




∂vi
∂xi

∂vi
∂yi



∈ IR2, (12)

∂vi(x̄)

∂xi
= −2

∑

j∈NN

[
d2

ij − (xi − xj)
2 − (yi − yj)

2
]
(xi − xj), (13)

∂vi(x̄)

∂yi
= −2

∑

j∈NN

[
d2

ij − (xi − xj)
2 − (yi − yj)

2
]
(yi − yj). (14)

20

Figure 7: Plot of 20 vehicles’ trajectories started from a clustered position with the
goal of spreading out uniformly through the space (blue * indicates initial position,
red marks indicate trajectory, and black + indicate final position).

Note that ∇vi = 0 when d2
ij = (xi − xj)

2 + (yi − yj)
2 for j ∈ NN . In [25], the

connective stability of this control law is proven using a vector Liapunov technique.
The control law in Equations (11)- (14) has been used to spread apart the hopping
minefield robots as shown in Figure 7. In this case, the specified distances are all
equal and the number of nearest neighbors used for control is three.

2.3 Example 3: Coverage of a Two-Dimensional Space with

Constraints

Next, consider the same problem as in the previous example, except that the robots
are constrained to stay within a region that is bounded by line segments as shown in
Figure 8.

Step 1. The objective is to
min

x̄
v(x̄) (15)

21

Figure 8: Plot of 20 vehicles’ trajectories started from a clustered position with the
goal of spreading apart uniformly through a hallway with a side corridor (blue *
indicates initial position, red marks indicate trajectory, and black + indicate final
position).

22

where the global performance index is

v(x̄) =
1

2

n−1∑

i=1

n∑

j=i+1

(
d2

ij − |x̄i − x̄j|2
)2

(16)

subject to
Ax̄i ≤ b ∀ i = 1, . . . , n (17)

where A ∈ IRmx2 and b ∈ IRm. Equation (17) specifies the boundary conditions
of m straight-line segments.

Step 2. The distributed objective is to

min
x̄i

vi(x̄) ∀ i (18)

where the partitioned performance index is

vi(x̄) =
1

2

∑

j∈NN

(
d2 − |x̄i − x̄j|2

)2
+

1

2
Λ

∑

l∈NO

(Alx̄i − bl)
−2 . (19)

Here, the inequality constraints in Equation (17) have been added as a weighted
penalty function that is the sum of the inverse squared perpendicular distances
between robot i and the nearest obstacle (NO) line segments l. The ∆ is a scalar
used to vary the importance of obstacle avoidance. As before, NN stands for
the set of nearest neighbors. Similarly, the setNO is the set of nearest obstacles.

Step 3. The steepest descent control law is

x̄i(k + 1) = x̄i(k) − α∇vi(x̄(k)), 0 < α ≤ 1 (20)

where

∇vi(x̄) = −2
∑

i∈NN

(
d2 − |x̄i − x̄j|2

)
(x̄i − x̄j) − Λ

∑

l∈NO

AT
l (Alx̄i − bl)

−3 (21)

The control law in Equations (20) and (21) has been used to spread out the robot
vehicles in a hallway as shown in Figure 8. The nearest obstacles are determined
from IR proximity sensors. The specified distance d between vehicles was chosen to
be within the 10 meter acoustic range of the sensors on top of the vehicle (see Figure
9) [26]. Again, the number of nearest neighbors used for control is three.

2.4 Example 4. Forming an Ellipse with Constraints - A

Containment Behavior

Next, consider a path following/formation problem where multiple vehicles are to 1)
travel towards and spread apart on an ellipse, 2) not drive into each other, and 3)
stay away from obstacle line segments. This is shown in Figure 10.

23

Figure 9: Robot vehicles used in an indoor communication/navigation network.

24

Figure 10: Robot path planner drives vehicles towards ellipse while staying away from
obstacles, denoted by red line, and the other vehicles.

25

Step 1. The objective is to
min

x̄
v(x̄) (22)

where the global performance index is

v(x̄) =
1

2

n∑

i=1


(x̄i − x̄0)

T




1
ρ2 0

0 1
σ2


 (x̄i − x̄0) − 1




2

(23)

subject to
|x̄i+1 − x̄i| > d ∀ i = 1, . . . , n− 1 (24)

Ax̄i ≤ b ∀ i = 1, . . . , n. (25)

The global performance index is squared error of the robot’s position from
the ellipse. The position of the center of the ellipse is x̄0, and ρ and σ are
the elliptical parameters along the x− and y−axes. The first constraint ensures
that the vehicles stay a distance d apart from each other. The second constraint
ensures that the vehicles stay away from the line constraints as in the previous
example.

Step 2. The distributed objective is

min
x̄i

vi(x̄) ∀ i (26)

where the partitioned performance index is

vi(x̄) =
1

2


(x̄i − x̄0)

T




1
ρ2 0

0 1
σ2


 (x̄i − x̄0) − 1




2

+

1

2

∑

j∈NN

(
d2 − |x̄i − x̄j|2

)2
+

1

2
Λ

∑

l∈NO

(Alx̄i − bl)
−2 (27)

The two constraints are implemented as penalty functions. The equations are
the same as in the previous example.

Step 3. The steepest descent control law is

x̄i(k + 1) = x̄i(k) − α∇vi(x̄(k)) (28)

where

∇vi(x̄) = 2


(x̄i − x̄0)

T




1
ρ2 0

0 1
σ2


 (x̄i − x̄0) − 1







1
ρ2 0

0 1
σ2


 (x̄i − x̄0)−

26

Figure 11: Multiple vehicles converging on a rotating plume.

2
∑

j∈NN

(
d2 − |x̄i − x̄j|2

)
(x̄i − x̄j) − Λ

∑

l∈NO

AT
l (Alx̄i − bl)

−3 (29)

The control law in Equations (28)-(29) has been implemented on a path planner as
shown in Figure 10. The number of nearest neighbors and number of nearest obstacles
can be one if the time step is small. The nearest neighbor and obstacle will continually
change throughout the motion.

2.5 Example 5. Converging on the Source of a Plume - 2D

Case

The next example is a plume localization problem. The objective is for multiple
vehicles to locate and converge on a source, which could either be acoustic, radio
frequency, temperature, or chemical (See Figure 11). It is assumed that the spatial
signature of the source can be approximated by a quadric surface. The form of
this second order equation allows us to easily formulate convergent control to the
extremum of the surface. If the data were fit to a higher order surface with many
local extremum, then it would not be possible to guarantee convergence to a single
solution.

27

Step 1. The objective is
max

x̄
v(x̄) (30)

where the global performance index is

v(x̄) ∼=
N∑

i=1

a0 +AT
1 (x̄i − x̄0) +

1

2
(x̄i − x̄0)

TA2(x̄i − x̄0) (31)

The parameters of the quadratic surface are a0 ∈ IR, A1 ∈ IR2, and A2 ∈ IR2x2 .
The center of the source is located at x̄0 ∈ IR2.

Step 2. The distributed objective is

max
x̄i

vi(x̄) ∀ i (32)

where the partitioned performance index is

vi(x̄) ∼=
N∑

i=1

a0i +AT
1 (x̄j − x̄i) +

1

2
(x̄j − x̄i)

TA2i(x̄j − x̄i) (33)

Each vehicle determines it’s own estimate of the quadratic surface using in-
formation from its nearest neighbors. An alternative approach is to use data
from as many neighbors as possible and calculate a least-squares estimate of
the quadratic coefficients. References [19]-[27] describe the least squares fitting
algorithm in more detail.

Step 3. The second order Newton’s method control law is

x̄i(k + 1) = x̄i(k) − αA−1
2i |x̄(k) A1i|x̄(k) (34)

where the quadratic coefficients are determined from the solution to the nearest
neighbor equations

v(x̄j) ∼= a0i +AT
1i(x̄j − x̄i) +

1

2
(x̄j − x̄i)

TAT
2i(x̄j − x̄i) ∀ j ∈ NN (35)

The control law in Equations (34)-(35) has been implemented on RATLER vehicles
(See Figure 3) that locate an acoustic source and on a set of miniature robotic vehicles
(See Figure 12) that locate a block of dry ice [19]-[27]. In both cases, the number of
nearest neighbors is six because seven measurements (including itself) are needed to
uniquely determine the quadric coefficients A1i and A2i .

28

Figure 12: Miniature robot used in the plume localization experiment that located a
block of dry ice.

2.6 Example 6. Converging on the Source of a Plume - 3D

Case

The last example is a three-dimensional plume localization problem. The objective
is for multiple vehicles to locate and converge in on a source, which could either be
acoustic, temperature, or chemical. It is assumed that the spatial signature of the
source can be approximated by a quadratic surface.

Step 1. The objective is
max

x̄
v(x̄) (36)

where the global performance index is

v(x̄) ∼=
N∑

i=1

a0 +AT
1 (x̄i − x̄0) +

1

2
(x̄i − x̄0)

TA2(x̄i − x̄0). (37)

The parameters of the quadratic surface are a0 ∈ IR , A1 ∈ IR3, and A2 ∈ IR3x3.
The center of the source is located at x̄0 ∈ IR3.

Step 2. The distributed objective is

max
x̄i

vi(x̄) ∀ i (38)

29

where the partitioned performance index is

vi(x̄) ∼=
∑

j∈NN

a0i +AT
1i(x̄j − x̄i) +

1

2
(x̄j − x̄i)

TA2i(x̄j − x̄i) (39)

Each vehicle determines its own estimate of the quadratic surface using infor-
mation from its nearest neighbors.

Step 3. The second order Newton’s method control law is

x̄i(k + 1) = x̄i(k) − αA−1
2i |x̄(k) A1i|x̄(k) (40)

where the quadratic coefficients are determined from the solution to the nearest
neighbor equations

v(x̄j) = a0i +AT
1i(x̄j − x̄i) +

1

2
(x̄j − x̄i)

TAT
2i(x̄j − x̄i) ∀ j ∈ NN (41)

For the 3D case, the number of nearest neighbors is nine because ten measurements
(including itself) are needed to uniquely determine the quadratic coefficients A1i and
A2i. Most recently, this algorithm has been implemented on underwater vehicles that
locate and converge in on a 3D plume [28]. Preliminary tests were conducted with a
synthetic plume. Synthesized sensor data was calculated as a function of position to
debug the algorithm. The underwater robots are shown in Figure 13. The results of
a typical test run are shown in Figure 14.

These six examples demonstrate the utility of this three-step process for creating
locally optimal distributed controls for multiple robotic vehicles. The resulting control
laws are robust and only require sharing of information between nearest neighbors.
The robustness is the result of the self-organizing nature of the control where nearest
neighbors are continually changing throughout the motions. If a vehicle is lost or dies,
another set of nearest neighbors can be used to complete the task. By using penalty
functions to approximate constraints, the control laws are in a form that is identical
to the potential field control laws often used for controlling single and multiple robots.
The main difference is the switching of potential fields based on the nearest neighbors
and the nearest obstacles.

3 Communication Effects

In this section, previous analysis regarding stable control of multiple vehicles using
large-scale decentralized control techniques [18] is extended to include the commu-
nications aspects of the problem. A stability analysis shows that the local feedback
control gains of the robotic vehicles must be decreased if the communication sample
period is increases. Therefore, there is a tight coupling between communications and
controls that cannot be ignored. In general, a system will be more responsive and
have shorter settling times if the feedback control gains are as large as possible and

30

Figure 13: Nekton Research underwater vehicle used to locate synthetic plume source.

Figure 14: Underwater synthetic plume test results.

31

the communication sample period is as short as possible. This section evaluates the
resulting communication sample period of four different communication protocols:
a Time Division Multiple Access (TDMA) linear broadcast, a TDMA polylogarith-
mic broadcast, a TDMA coloring algorithm, and a Collision Sense Multiple Access
(CSMA) coloring algorithm. The selection of the best protocol depends on the density
of the robot vehicles and the communication radius of each vehicle.

Throughout this section, the one-dimensional dispersion example from the pre-
vious section is used to illustrate the design methodology. In [18], it is shown that
Equation (5) is actually more constrained than 0 < α ≤ 1 depending on the speed
of the vehicle and the communication sample period. Therefore, the next question
to ask is that of connective stability. Under what conditions will the overall system
be globally asymptotically stable even under structural perturbations? Analysis of
connective stability is based upon the concept of vector Liapunov functions, which
associates several scalar functions with a dynamic system in such a way that each
function guarantees stability in different portions of the state space. The objective is
to prove that there exist Liapunov functions for each of the individual subsystems and
then prove that the vector sum of these Liapunov functions is a Liapunov function
for the entire system.

3.1 Stability Analysis

To simplify matters, we will assume that the control function has already been chosen
and the closed loop dynamics of the discrete time system can be written as

S : xi(k + 1) = gi(k, xi) + g̃i(k, x̄), i ∈ {1, . . . , N} (42)

where x̄(k) ∈ IRn is the state of S (e.g., x, y position, orientation, and linear and
angular velocities of all vehicles) at time k ∈ T , xi(k) ∈ IRni is the state of the
ith subsystem Si at time k ∈ T . The function gi : T × IRni → IRni describes the
local dynamics of Si , and the function g̃i : T × IRn → IRni represents the dynamic
interaction of Si with the rest of the system S. The interconnection function can be
written as

g̃i(k, x̄) = g̃i(k, ēi1x1, ēi2x2, . . . , ēiNxN) i ∈ {1, . . . , N}. (43)

where ēij ∈ Bni×nj , and the elements of the fundamental interconnection matrix
Ē = (ēij) are

(ēij)pq =





1, (xj)q occurs in (g̃i(t, x, u))p

0, (xj)q does not occur in (g̃i(t, x, u))p

(44)

where q ∈ {nj} and p ∈ {nj}.
The structural perturbations of S are introduced by assuming that the elements of

the fundamental interconnection matrix that are one can be replaced by any number

32

between zero and one, i.e.

eij =





[0, 1], ēij = 1

0, ēij = 0

(45)

Therefore, the elements eij represent the strength of coupling between the individual
subsystems. A system is connectively stable if it is stable in the sense of Liapunov
for all possible E = (eij) [29]. In other words, if a system is connectively stable, it is
stable even if an interconnection becomes decoupled, i.e. eij = 0, or if interconnection
parameters are perturbed, i.e. 0 < eij < 1. This is potentially very powerful, as
it proves that the system will be stable even if an interconnection is lost through
communication failure.

For linear systems, the discrete time dynamics may be written as

S : xi(k + 1) = Aiixi(k) +

N∑

j=1

eijAijxj(k), i ∈ {1, . . . , N} (46)

and the Liapunov function for each individual subsystems is vi(xi) = (xT
i Pixi)

1
2 where

Pi is a positive definite matrix. For the system S to be connectively stable, the
following test matrix W = (wij) must be an M-matrix (i.e., all leading principal
minors must be positive) [30]:

wij =





ξi, i = j

−eijξij, i 6= j

(47)

where ξi = 1−
√

1 − 1
λM (H∗

i)
, ξij = λ

1
2
M (AT

ijAij) , and AT
iiP

∗
i Aii −H∗

i = −I, λm(•) and

λM (•) are the minimum and maximum eigenvalues of the corresponding matrices,
and the superscript ∗ denotes the Hermitian operator.

For the linear dispersion example, we will model the vehicle dynamics as a discrete
time integrator with a position feedback loop (see Figure 15). The proportional
control gain is Kp, and the sampling period is T .

The sampling period is both the communication and position update sample time.
The state equations of the system are

S : x1(k + 1) = (1 −KpT)x1(k) + γKpTx2(k)

xi(k + 1) = (1 −KpT)xi(k) + γKpTxi−1(k) + γKpTxi+1(k), i ∈ {2, . . . , N − 1}

xN(k + 1) = (1 −KpT)xN(k) + γKpTxN−1(k)

(48)

33

���� ����
6

-

6

�HHHH

?

����

- - -Kp
Tz−1

1 − z−1

γ

+

+

−
+

C

XN (s)
YN (s)

UN (s)

...

���� ����

����
HHHH γ �

6 6

Kp
Tz−1

1 − z−1
- - - -

γ �

X2(s) Y2(s)U2(s)+

+

−
+

A
A

A
A

A
A

AA

�
�
�
�
�
�
��

?

���� ����
Kp

Tz−1

1 − z−1

?
- - - -

6 6

γ

X1(s) Y1(s)U1(s)+

+

−
+

1

Figure 15: Discrete time control block diagram of N-vehicle interaction problem.

34

Note that when comparing Equation (48) to Equations (5) and (6), it is evident that
2α = KpT and α = γKpT . If Equation (48) is forced to be exactly equivalent to

Equations (5) and (6), then γ = 1
2

and α =
KpT

2
. The following stability test is

less restrictive, and the interaction gain γ is less constrained. If 0 < KpT ≤ 1, the
resulting test matrix is

W =




KpT −KpTγ 0 . . . 0

−KpTγ KpT −KpTγ
...

0 −KpTγ KpT 0

...
. . . −KpTγ

0 . . . 0 −KpTγ KpT




, (49)

and if 1 < KpT ≤ 2, the test matrix is

W =




(2 −KpT) −KpTγ 0 . . . 0

−KpTγ (2 −KpT) −KpTγ
...

0 −KpTγ (2 −KpT) 0

...
. . . −KpTγ

0 . . . 0 −KpTγ (2 −KpT)




, (50)

For N = 2, the test matrix is an M-matrix, and the system is connectively stable if

|γ| <





1, 0 < KpT ≤ 1

2
KpT

− 1, 1 < KpT ≤ 2

(51)

Figure 16 illustrates the stability region for the case of N=2. The dark region
represents stable combinations of the interaction gain γ and KpT (proportional con-
trol gain multiplied by the sampling period). The white region represents unstable
combinations of γ and KpT . We refer to the dark region as a stability “house” due to
the shape of the stable zone. The size of this stability house varies only with N . As
N is increased, the house gets smaller in width but maintains the same height and
shape. The size of the stability house is a measure of the robustness of the closed-
loop system to parameter variations in interaction gain γ, sampling period T , and
proportional control gain Kp. Figure 17 shows the stability region for N = 10000.

35

Figure 16: Stability region for the N=2 vehicle case.

For this particular example, another way to check the stability of this linear system
is to check that the eigenvalues of the system matrix A are within the unit circle.
There is a special formula (p. 59 of [31]) for the eigenvalues of A given by

λi(A) = 1 −KpT + 2KpTγ cos(
iπ

N + 1
), i = 1, . . . , N (52)

From this formula, we can see that as N → ∞, the cosine term becomes unity.
This implies that γ must stay between -0.5 and 0.5 for KpT less than one in order
to maintain stability. For KpT greater than one, the admissible γ values taper off
parabolically (the sloped “roof”) until KpT = 2 .

3.2 Communications Sample Period

Several conclusions can be drawn from this stability analysis. First, asymptotic sta-
bility of vehicle positions depends on vehicle responsiveness Kp, communication sam-
pling period T , and vehicle interaction gain γ. If the vehicle is too fast (large Kp) or

36

Figure 17: Stability region for the N=10000 vehicle case.

37

u u u
u

uu
u

u
�
�
�
�

A
A

A
A

�
�

�
�

��

A
A

A
A

�
�
�
�
�
�
��

@
@

@@

Figure 18: Graph of ad hoc communication network. Nodes with connecting lines
can communicate with each other.

the sample period is too long (large T) then the vehicles will go unstable. There is a
dependence on interaction gain for stability as well. Second, the interaction gains can
be used to bunch the vehicles closer together or spread them out. Third, the stability
region shrinks as the number of vehicles, N , increases but only to a defined limit.

As noted, the communication sample period greatly affects the stability of the
system. As defined in the equations above, this sample period is the time it takes for
every node to communicate once. In this section, we will evaluate the communication
sample period of four different communication schemes: a Time Division Multiple
Access (TDMA) linear broadcast, a TDMA polylogarithmic broadcast, a TDMA
coloring algorithm, and a Collision Sense Multiple Access (CSMA) coloring algorithm.
All of these schemes assume that each node has a unique identification number. The
TDMA schemes also assume that each node has a synchronized clock that is used to
notify each node when it may transmit a message. The CSMA scheme first checks
the communication channel for a collision before transmitting a packet.

In order to determine this sample period, one important parameter associated with
an ad hoc communication network is the degree of the network. The degree of the
network is defined as the maximum number of nodes that any node can communicate
with given a limited communication range.

For the network shown in Figure 18, the degree of the network is

∆ = max
i∈{1,...,N}

{
N∑

j=1,j 6=i

range(xi − xj, Rc)

}
(53)

38

where

range(xi − xj, Rc) =





1 if |xi − xj| < Rc

0 else

(54)

and Rc is the communication radius of each node. Assuming all the robots are evenly
spaced along a line of length L and have a density δ = N

L
, then the degree of the

resulting network is

∆ = 2 bδRcc = 2

⌊
NRc

L

⌋
(55)

For the TDMA linear broadcast where every node is assigned a unique identification
number, the communication sample period time required for every node to send a
message is

Tlinear = τN (56)

where τ is the time period associated with each communication time slot. Notice
that the above expression is proportional to N . This delay time can be shortened by
using a polylogarithmic broadcast scheme [32] where each node communicates during
multiple time slots. Even though multiple messages are being broadcast at the same
time, the message is guaranteed a successful broadcast during one of the time slots
as long as the degree of the network is below a certain value. The communication
period for a polylogarithmic broadcast is

Tpolylog = τ (2 log2N)h (57)

when
∆ ≤ 2h+1 − 1 (58)

and where

h =

⌊
log2N

(log2 log2 N + 1)

⌋
(59)

Notice that this expression is proportional to the log2N instead of N . Figure 19
compares the linear broadcast to the polylogarithmic broadcast for a network spread
out over a line and with each node having a communication radius that is one-tenth
the length of the line. At 20 robots, the average degree of the network becomes too
large and the polylogarithmic broadcast will no longer work. Even better than the
linear broadcast and the polylogarithmic broadcast, a coloring scheme allows multiple
nodes to communicate at the same time by using spatial reuse of time slots. Time
slots (called colors) are assigned so that each node has a different color than its first
and second nearest neighbors. By using different colors, the hidden node problem,
where two nodes speak to an intermediate node at the same time, is eliminated. In
graph theory, the minimum number of colors can range from the maximum degree of
the network plus one to the square of the maximum degree of the network plus one.

∆ + 1 ≤ k ≤ ∆2 + 1 (60)

39

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of robots

C
o

m
m

u
n

ic
a

tio
n

 s
a

m
p

le
 p

e
ri
o

d
 (

s)

Linear Broadcast

Polylog Broadcast

Figure 19: Communication sample period for TDMA linear and polylogarithmic
broadcasts when Rc

L
= 0.1 and τ = 0.1s.

40

However, in a typical planar wireless network the number of colors is typically bounded
by

k ≤ ∆ + ε (61)

where ε is a small number, typically 1 to 5.
For a colored TDMA network, the communication sample period is given by

TTDMA = τ (∆ + ε) (62)

where ε is small.
For a CSMA network, the actual communication time is non-deterministic because

the packets often collide and a random back-off is used before retransmitting. The
average communication time depends on the network utilization, i.e. the percentage
of time the network is being used (see Section 5 for more details). Modeling the
CSMA network as a M/D/1 queue, the average communication time per node is

τCSMA =
ρTm

2(1 − ρ)
+ Tm (63)

where Tm is the time to send a single message (or service time of the queue). For
simplicity of comparison with the TDMA network, we will assume that Tm = τ . In
reality, the message length Tm in a TDMA network must be slightly less than the
time slot τ . The utilization factor is

ρ =
Tm(∆ + ε)

Td

(64)

where Td is the delay time between each new message that a node initiates. For a
CSMA network with degree ∆, the communication sample period is approximately
given by

TCSMA = τCSMA(∆ + ε) (65)

Figure 20 shows how the network utilization changes as the number of robots increases
in our one-dimensional dispersion example. The resulting communication sampling
period for both the TDMA and CSMA colored networks are shown in Figure 21.

Notice that for smaller numbers of vehicles both the colored TDMA and CSMA
networks have a shorter communication sample period than both linear and polyloga-
rithmic broadcasts. However, when the utilization of the CSMA network reaches 0.9,
the CSMA network starts to substantially degrade in performance. This is caused by
flooding the network with messages as the density of the robots increase while the
back-off time of communication stays the same. It should be noted that this flood-
ing can be alleviated if the nodes where to adjust how often they send out messages
based on the maximum degree of the network. Ideally, the nodes should adjust their
communication sample period so that Td = TCSMA.

These results show that a colored TDMA network appears to perform the best.
However, the disadvantage of the colored TDMA network is that there is an initializa-
tion time that is required to determine the color of each node whenever the network

41

10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of robots

U
til

iz
a

tio
n

Figure 20: Utilization for a CSMA network when Rc

L
= 0.1s, τ = 0.1s, ε = 1, and

Td = 1s.

42

10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of robots

C
o

m
m

u
n

ic
a

tio
n

 s
a

m
p

le
 p

e
ri
o

d
 (

s)

Colored TDMA

CSMA

Figure 21: Communication sample period for TDMA and CSMA reconfigurable col-
oring when Rc

L
= 0.1s, τ = 0.1s, ε = 1, and Td = 1s.

43

topology changes. The other algorithms have the advantage that they do not require
a network initialization time. Using an algorithm by [33], this initialization time is the
time required to broadcast their own identification number, their 1st nearest neighbor
lists (after which each node can determine 2nd nearest neighbor), and k+2 additional
messages for coloring. In addition to these messages, each neighboring node must
acknowledge the messages containing the neighbor lists and coloring information to
make ensure that the messages were received. Since time slots are typically not as-
signed before hand, this initialization process occurs using CSMA protocols, and it
should be performed whenever the topology of the network changes, i.e. when robots
move. Assuming that all messages are the same length, the resulting initialization
time is given by

tinit = τCSMA [2(∆ + ε) + (∆ + ε+ 2)(∆ + ε)]+

τCSMA [(∆ + ε)(∆ + ε− 1) + (∆ + ε)(∆ + ε+ 2)(∆ + ε− 1)]

(66)

where ε is small. This initialization time is plotted as a function of the number of
robots in Figure 22. This figure shows that this initialization time can be substantial.
Adding the initialization time in Figure 22 to the communication sample period in
Figure 21, we see that the linear, polylogarithmic, and CSMA networks have a shorter
sample period than the colored TDMA network. In general, it is best to use the
TDMA mode only if the network does not reconfigure; otherwise, it is best to use a
CSMA mode of communications.

3.3 Utilization versus Delay in CSMA Networks

If a control system is implemented with a CSMA communications scheme, there is
a tradeoff between network utilization and message delay. Ideally, one would like
to maximize network utilization while minimizing the delay seen by each message.
Modeling the CSMA network as an M/D/1 queue, the normalized delay (where Tm

is the message length) is given by

τCSMA

Tm
=

ρ

2(1 − ρ)
+ 1 (67)

where τCSMA is the average communication time. Using the cost function J(ρ) below,
the gains K1 and K2 may be used to weight the penalty associated with utilization
and delay.

J(ρ) =
K1

ρ
+

K2ρ

2(1 − ρ)
+K2 (68)

The optimal solution is then obtained by minimizing the cost function over 0 ≤ ρ < 1.

J(ρ∗) = min
0≤ρ<1

J(ρ) = min
0≤ρ<1

{
K1

ρ
+

K2ρ

2(1 − ρ)
+K2

}
(69)

44

10 15 20 25 30 35 40
0

100

200

300

400

500

600

Number of robots

C
o

m
m

u
n

ic
a

tio
n

 in
iti

a
liz

a
tio

n
 t

im
e

 (
s)

CSMA

Figure 22: Communication overhead for reconfigurable coloring when Rc

L
= 0.1, τ =

0.1s, ε = 1, and Td = 1s.

45

Weighting Gains Optimal Utilization, ρ∗

K1 = K2 = 1 ρ∗ = 0.5858

K1 = 1, K2 = 10 ρ∗ = 0.309

K1 = 0.1, K2 = 10 ρ∗ = 0.124

Table 2: Optimal Utilization for Different Values of K1 and K2

Differentiating equation (69) with respect to ρ yields

∂J(ρ)

∂ρ
= −K1

ρ2
+

2(1 − ρ)K2 + 2K2ρ

4(1 − ρ)2
(70)

Solving equation (70) for the minimum gives the following optimal value for network
utilization ρ∗ based on the weighting values K1 and K2.

ρ∗ =
−2K1 ±

√
2
√
K1K2

(K2 − 2K1)
, 0 ≤ ρ∗ < 1 (71)

If utilization and average delay are equally weighted, the optimal value of ρ is ρ∗ =
0.5858. Optimal utilization values for several values of K1 and K2 are summarized in
Table 2. These results are intuitive - if average message delay is critical, then network
utilization should be kept to a minimum.

This section illustrates the tight coupling that exists between communications
and controls when designing large-scale cooperative robotic systems. A connective
stability analysis shows that local feedback control gains and communication sample
periods are inversely related. If the communication sample period increases, then the
local feedback control gains must decrease. The communication sample period is a
function of the protocol, and the protocol with the shortest communication sample
period depends on the density of robots and the communication radius. By assuming
worst-case conditions for robot density and communication range, this analysis can
be used off-line to determine conservative control gains required for stable control.
In the future, it might also be possible to use this analysis on-line to adjust control
gains and/or communication range as the robot density changes. The next section
presents simulation results for the node organization algorithm described in [33].

4 Analysis and Simulation of TDMA and Coloring

This section presents OPNETTM simulation results for the node organization al-
gorithm described in [33]. The algorithm, proposed by Chlamtac and Pinter, was

46

intended to provide collision free channel allocation in a multihop radio network.
The algorithm describes the use of a graph coloring algorithm to be used for channel
access allocation in an ad hoc wireless network. This algorithm will complete when
each node in the network has been assigned a “color” or channel for use. Once the
algorithm is complete, nodes can communicate in the network using a TDMA scheme
based on the channels assigned in the algorithm.

There are several assumptions made about the radio network in order to guarantee
the proper operation of the algorithm [33].

A1: Nodes have distinct identities and know the identities of their neighbors. (We
assume the existence of a physical layer for mutual location and identification
of stations).

A2: Links are bidirectional. (The case of directional links is discussed in [33]).

A3: A message sent by a node is received correctly within a finite time by all its
neighbors.

A4: Control messages arrive in finite but undetermined time.

A5: Network topology does not change during the algorithm execution (this may be
relaxed).

Using these assumptions, each node keeps the following lists:

LOCAL.Neighbors which contains all the neighbors of the node (1-hop).

LOCAL.Receive Neighbors consists of a flag for every neighbor indicating whether
a neighbor has already sent its list of neighbors.

LOCAL.Neighbor&2-Neighbors stores for every neighbor and 2-neighbor, its (as-
signed) Slot Number (DUMMY at initialization) and a flag Slot Assigned indi-
cating that a slot assignment has been accomplished.

LOCAL.ID unique local identification number.

LOCAL.Slot slot number for the node that is assigned with the algorithm.

LOCAL.Node Awake boolean variable that is false at initialization.

A node starts participating in the algorithm either on receiving a WAKE message
or by the reception of a message from another node executing the algorithm. On
entering the algorithm each node executes the following sequence:

• Each node broadcasts a message NEIGHBORS(LOCAL.Neighbors and LO-
CAL ID) consisting of its list of neighbors. Nodes which receive this message
use it for constructing LOCAL.Neighbor&2-Neighbors.

47

• On completion of the list LOCAL.Receive Neighbors, the node is waiting for
the development of proper conditions for selecting a slot. At a node i, this
condition is obtained when i becomes the node with the highest ID in LO-
CAL.Receive Neighbors whose Slot Assigned flag is false. Following the slot
selection, node i transmits a SLOT message to its neighbors who forward it to
i’s 2-neighbors.

Mechanisms for dynamically adding and deleting nodes are also presented in [33].
In order to implement this algorithm three steps must be taken:

Step 1 Announcement - each node announces itself by broadcasting its network ID.
Every node receiving a node announcement packet will add the sending node
to its list of neighbors.

Step 2 Neighbor Broadcast - all nodes broadcast their neighbor list to the network.
Nodes receiving a neighbor list process the list and add any new nodes in the
received list as a level two neighbor.

Step 3 Channel Allocation - when i becomes the node with the highest ID in LO-
CAL.Receive Neighbors whose Slot Assigned flag is false. Following the slot
selection, node i transmits a SLOT message to its neighbors who forward it to
i’s 2-neighbors.

Step 1 is required to meet assumption A1 which requires knowledge of neighbors.
Step 3 is the actual channel allocation step. The node with the largest ID number
in its list of level 1 and level 2 neighbors gets to assign itself a channel. The node
picks the smallest channel that has not been used by any of its level-one neighbors.
This channel assignment is then sent to the neighbors who receive, process, and then
forward the assignment. (Only level 1 neighbors need to forward the assignment). As
each node becomes the largest unassigned node in its list, they will assign themselves
a channel.

Once all nodes have completed channel assignment, data communication in the
network can begin.

The algorithm presented in the paper included an enhancement for mobile net-
works. The complication of getting the standard algorithm to work precluded any
development into this area. The next section addresses the difficulties experienced
when simulating the algorithm.

4.1 Implementation Issues

The algorithm as written makes an assumption that every packet which is sent in
the network is received by all necessary recipients. Unfortunately, in a network, this
assumption does not hold true unless there is a mechanism to guarantee the receipt
of messages in the physical layer. Because of this, packets which should have been
received (i.e. neighbor lists and slot announcements) get lost in the network usually
due to collisions. The problem becomes one of assumptions; a node does not know

48

what it doesn’t know. In simulating this algorithm in a wireless network, packets were
lost due to collisions. If a node received a node announcement, but not a neighbor list
from this node; the next step of the algorithm (channel selection) would be inaccurate
due to missing information.

Because of these difficulties, a system of acknowledgments was needed to ensure
nodes had the information they needed before proceeding to the next step. In Step
2 (neighbor list exchange), a node receiving a neighbor list packet will then send a
receipt or acknowledgment packet to the sender. Node will not leave Step 2 until
they have received receipts from all nodes they consider level-one neighbors. A sim-
ilar situation occurs in Step 3 where level-one neighbors will send a receipt when
they receive a channel allocation packet from a level-one neighbor. Nodes receiving
forwarded channel allocation packets will not send receipts.

In order to make the network more stable, the receipt packets are given a higher
priority than other setup message packets. This ensures that nodes will have to
re-send their message packets less often.

Another situation created by the lossy nature of the communication channel is the
necessity of retries. If a node does not receive all of the receipts from its neighbors,
it will need to re-send the packet which did not get acknowledged.

If a node misses an allocation packet, there is a mechanism for requesting the
packet built into the simulation as well. This situation arises when a node does not
receive a forwarded channel allocation packet. A node will request a channel if it
receives a channel allocation for a node which is smaller than the node without a
channel. This works as a result of the ordered assignment of channels from largest
node ID to smallest.

4.2 Simulation Results

After achieving a working simulation, the following results were calculated.

• Setup Time: the time it takes for all nodes to assign and share their channel
value

• Degree of network

• Number of Collisions comparing CSMA and Colored TDMA

• Communication Sample Period

4.2.1 Setup time

As the degree of the network increase, the amount of time it takes for a network to
become fully setup will also increase. This is due to the increased number of packets
being sent and the higher probability of collisions. As can be seen in Figure 23, the
setup times increase greatly as the number of nodes increase. This is due to the
change in the degree of the network which will be shown in the next plot.

49

Radius of Communication 250 meters

Length 2500 meters

RC/L 0.1

Backoff uniform distribution between 50 and 150 msec

Packet Size 1000 bits

Data Rate 10,000 bps

Table 3: Simulation Parameters

10 15 20 25 30 35 40 45 50 55
0

50

100

150

200

250

300

350

Number of Nodes

T
im

e
(s

ec
)

Setup Time

Figure 23: Setup Time

50

0 10 20 30 40 50 60
0

2

4

6

8

10

12

Number of Nodes

D
eg

re
e

Degree of the Network (min, max, average)

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Degree of the Network (min, max, ideal)

Number of Nodes

D
eg

re
e

Figure 24: Degree of the Network

4.2.2 Degree of Network

The degree of the network, shown in Figure 24, was measured by taking the degree
of each node in the network. The min and max values are used for confidence bars.
Both the average and mean values for the degree are shown as well.

The ideal degree was calculated using

ideal degree = 2

⌊
NRC

L

⌋
(72)

where N is the number of nodes, RC is the radius of communications, L is the length
of the line (assume that nodes are distributed in a line).

In the 10 node case, the degree of the network was 0 due to the distance between
the nodes. When distributing 10 nodes on a 2500 meter line, the distance between
each node is 277.77 meters. The simulation enforced a hard communication range of
250 meters. Therefore, none of the nodes was able to hear the other nodes.

51

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12
x 10

6

Time (sec)

C
ol

lis
io

ns

CSMA Collisions

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8
x 10

5

Time (sec)

C
ol

lis
io

ns

Colored TDMA Collisions

Figure 25: Number of Collisions

4.2.3 CSMA Collisions

The number of CSMA collisions is shown in Figure 25.
As this plot clearly shows, the true advantage of Colored TDMA is in the low rate

of collisions after the coloring has been performed.

4.2.4 Communication Sample Period

A comparison of the communications sample period for CSMA versus colored TDMA
appears in Figure 26.

The main advantage of the network organization algorithm proposed by Chlamtac
and Pinter is that once configured, it provides efficient collision free channel allocation
in a multi-hop radio network. However, one of the assumptions for the algorithm is
that a message sent by a node is received correctly within a finite time by all neigh-
bors (A3). An additional assumption (A1) is that nodes know the identities of their
neighbors. In RF networks, where there are often collisions or dropouts, these two

52

10 15 20 25 30 35 40 45 50 55
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Nodes

C
om

m
un

ic
at

io
ns

 S
am

pl
e

P
er

io
d

Communications Sample Period

Colored TDMA
CSMA

Figure 26: Communication Sample Period

53

assumptions require that the physical layer or a higher layer incorporate robustness to
guarantee the delivery of messages. If these assumptions are not met, the algorithm
encounters many difficulties. However, meeting these assumptions in a practical sys-
tem adds a lot of communications overhead (e.g. message acknowledgments) that
decreases the simplicity and efficiency of the algorithm.

The next section discusses the delay characteristics of CSMA communication net-
works.

5 CSMA Delay Characteristics and Simulation Re-

sults

This section focuses on the delay characteristics of Carrier Sense Multiple Access
(CSMA) networks because the delay characteristics affect the performance of any
type of networked control system. CSMA networks allow multiple users to efficiently
share a single channel. The main advantage of this scheme is that each user can
access the channel at any time, provided that an attempt is made to avoid collisions
by listening to (e.g. sensing) the carrier due to another user’s transmission [34]. Based
on the state of the channel, there are different actions, often referred to as protocols,
that may be taken by the user awaiting tranmission. Some common protocols include:
1 − persistent CSMA, p− persistent CSMA, and nonpersistent CSMA.

For nonpersistent CSMA, the user senses the channel and performs the following
actions:

Step 1. If the channel is sensed idle, the user transmits the packet.

Step 2. If the channel is sensed busy, the user reschedules the transmission of the
packet to some later time according to the retransmission delay distribution.
At this point, Step 1 is repeated.

The retransmission delay distribution is used to decrease the chance of two users
attempting to access the channel at virtually the same time and generating a colli-
sion. Common delay distributions include a uniform distribution or an exponential
distribution.

The 1 − persistent protocol is a special case of the p − persistent protocol with
p = 1. For 1 − persistent CSMA, the user senses the channel and performs the
following actions:

Step 1. If the channel is sensed idle, the user transmits the packet with probability
1.

Step 2. If the channel is sensed busy, the user waits until the channel goes idle and
only then transmits the packet (with probability 1).

p − persistent CSMA is a generalization of the 1 − persistent protocol. It is
assumed that the time axis is finely slotted where the (mini) slot size is τ seconds.

54

For simplicity of analysis, the system is synchronized such that all packets begin their
transmission at the beginning of the slot [34]. For p − persistent CSMA, the user
senses the channel and performs the following actions:

Step 1. If the channel is sensed idle, the user transmits the packet with probability
p, or with probability 1 − p the user delays the transmission by τ seconds. If
at this new time, the channel is still idle, the same process is repeated. If the
channel is sensed busy, the action in Step 2 is performed.

Step 2. If the channel is sensed busy, the user reschedules the transmission of the
packet to some later time according to the retransmission delay distribution.
At this point, Step 1 is repeated.

5.1 CSMA Network Modeled as an M/D/1 Queue

One of the basic assumptions for analysis of CSMA networks is that the traffic source
consists of an infinite number of users who collectively form an independent Poisson
source with an aggregate mean packet generation rate of λ packets/sec. For a Poisson
process, the probability that k arrivals occur during the time interval (0, t) is given
by Pk(t) [35].

Pk(t) =
(λt)k

k!
e−λt k ≥ 0, t ≥ 0 (73)

For a random variable t̃, which represents the time between adjacent arrivals, the
probability density function (pdf) in the Poisson case is given by

a(t) = λe−λt (74)

which is the well known exponential distribution [35].
Modeling the channel as a Poisson source enables analysis of the channel char-

acteristics. For control applications, one of the most important characteristics is
message delay. Another parameter of interest is the utilization factor ρ [35]. For a
single-server system, the definition of ρ is

ρ = (average arrival rate of customers) × (average service time) (75)

For a single-channel communications network with a Poisson distribution, the average
arrival rate is λ packets/second, and the average service time is the average message
length Tm. Thus, equation (75) can be expressed as

ρ = λTm (76)

If a CSMA network is modeled as an M/D/1 queue, the average message delay as a
function of ρ is given by

τCSMA =
ρTm

2(1 − ρ)
+ Tm (77)

55

where Tm is the message length (or service time of the queue). The message delay is
composed of two components, the queuing time and the message length. The notation
A/B/m is often used to succinctly describe the characteristics of queuing systems.
The A represents the probability distribution of interarrival times of customers, the
B represents the probability distribution of the service time, while the m represents
the number of servers. For an M/D/1 queue, the interarrival times are modeled as
a Markov process (exponential distribution for states), the message time is constant
(Deterministic), and there is one channel so the number of servers m equals one. If
the message time has an exponential distribution (M/M/1 queue) the average delay
increases roughly by a factor of two. The normalized average delay may be obtained
by dividing by the message length Tm which yields

τCSMA

Tm
=

ρ

2(1 − ρ)
+ 1 (78)

A plot of normalized average delay as a function of network utilization ρ appears in
Figure 27. While the average network delay is certainly an important parameter for
a networked control system, the distribution of the delay is also a critical parameter.
If the system performance or stability can be guaranteed for any delay less than δ,
then the delay distribution is required to determine the probability that the delay will
be less than δ. A method for predicting the delay characteristics of CSMA networks
is described in [36]. An alternate method is to perform Monte Carlo simulations of
the network of interest. A simple Matlab program was developed to simulate CSMA
networks and analyze their delay characteristics. The m-file appears in Appendix A.

5.2 Simulation Results

One of the assumptions for an M/D/1 queue is that the traffic source consists of
an infinite number of users who collectively form an independent Poisson source.
In many practical networks the traffic source consists of a finite number of users
that come close to collectively forming an independent Poisson source. Monte Carlo
simulations were performed to investigate how closely several different networks can
be modeled by the M/D/1 queue. The network parameters used in the simulations
are summarized in Table 4. The message length (ML) was held constant at 10 ms
for all of the simulations. Each agent attempted to broadcast a message at a periodic
rate of once per second (e.g. at a constant sampling rate that would be typical of
a network control system). The number of agents was varied between 1 and 80 to
vary the channel utilization ρ. The backoff scheme employed a uniform distribution
proportional to message length, and three variations were tested: 0-ML, 0-2.5ML,
and 0-5ML. Approximately 104 messages were used in each simulation run. Two
different types of collision detection were tested: a = 0 and a = 0.1ML. The case
a = 0 assumes “perfect” collision detection, which is not really feasible. The case
a = 0.1ML assumes that if one agent is scheduled to start a message within a seconds
of the previous message there is a fatal collision - both messages are lost. Plots
of the Monte Carlo simulation results appear in Figures 28 -57. Each data point

56

message length (ML) 0.01 sec

message frequency 1 Hz

number of agents 1-45

backoff scheme uniform distribution proportional to message length

0-ML, 0-2.5ML, 0-5ML

number of messages 104

collision detection a = 0 perfect (not really feasible)

a = 0.1ML

Table 4: Monte Carlo Simulation Network Parameters

represents approximately 104 simulated messages. Data is presented for each of the
six test cases: (a = 0, backoff = 0-ML),(a = 0, backoff = 0-2.5ML),(a = 0, backoff
= 0-5ML), (a = 0.1ML, backoff = 0-ML), (a = 0.1ML, backoff = 0-2.5ML), and
(a = 0.1ML, backoff = 0-5ML). The first plot compares the normalized average delay
from the Monte Carlo simulation to the ideal M/D/1 queue. The second plot shows
the variance of the delay (not normalized). The third plot displays the statistics for
the transmission retries. The fourth plot shows the statistics for the channel access
time. The fifth plot contains the fatal collision statistics. For the ideal case a = 0
there will never be any fatal collisions because of the perfect (unrealistic) collision
detection.

Overall, the Monte Carlo simulations agree with the M/D/1 approximation. How-
ever, the accuracy of the agreement depends on the simulation parameters as well as
the range of utilization ρ. For example, the test case (a = 0, backoff = 0-ML) agrees
well for ρ < 0.5. For another test case (a = 0.1ML, backoff = 0-ML), the M/D/1
queue approximation is accurate for 0.1 < ρ < 0.7. In general, the longer the backoff
scheme (e.g. 0-5ML), the larger the delay at higher utilizations. The differences in
the M/D/1 queue approximation and the Monte Carlo simulations may be traced to
the channel access statistics. The closer these are approximated by an independent
Poisson source, the more accurate the M/D/1 approximation.

The next section describes a Linear Matrix Inequality approach for stable control
of multiple cooperative robotic vehicles.

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Utilization, ρ

N
or

m
al

iz
ed

 A
ve

ra
ge

 D
el

ay

M/D/1 Normalized Delay vs. Utilization

Figure 27: M/D/1 Normalized Average Delay versus Utilization

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

Utilization, ρ

Normalized Average Delay

Monte Carlo Simulation
M/D/1 Approximation

Figure 28: Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-ML

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

x 10
−3

Utilization, ρ

Delay Variance (σ2)

Figure 29: Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-ML

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

Utilization, ρ

Average Number of Transmission Retries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

Utilization, ρ

Number of Transmission Retries Variance (σ2)

Figure 30: Monte Carlo Simulation: Transmission Retry Statistics, a = 0, Backoff
0-ML

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Utilization, ρ

Average Channel Access Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Utilization, ρ

Channel Access Time Variance (σ2)

Figure 31: Monte Carlo Simulation: Channel Access Time Statistics, a = 0, Backoff
0-ML

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Utilization, ρ

Percent of Fatal Collisions

Figure 32: Monte Carlo Simulation: Fatal Collision Statistics, a = 0, Backoff 0-ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

Utilization, ρ

Normalized Average Delay

Monte Carlo Simulation
M/D/1 Approximation

Figure 33: Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-2.5ML

63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

−3

Utilization, ρ

Delay Variance (σ2)

Figure 34: Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-2.5ML

64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

Utilization, ρ

Average Number of Transmission Retries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

Utilization, ρ

Number of Transmission Retries Variance (σ2)

Figure 35: Monte Carlo Simulation: Transmission Retry Statistics, a = 0, Backoff
0-2.5ML

65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Utilization, ρ

Average Channel Access Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Utilization, ρ

Channel Access Time Variance (σ2)

Figure 36: Monte Carlo Simulation: Channel Access Time Statistics, a = 0, Backoff
0-2.5ML

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Utilization, ρ

Percent of Fatal Collisions

Figure 37: Monte Carlo Simulation: Fatal Collision Statistics, a = 0, Backoff 0-2.5ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

12

Utilization, ρ

Normalized Average Delay

Monte Carlo Simulation
M/D/1 Approximation

Figure 38: Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-5ML

67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2

4

6

8

10

12

14

x 10
−3

Utilization, ρ

Delay Variance (σ2)

Figure 39: Monte Carlo Simulation: Delay Statistics, a = 0, Backoff 0-5ML

68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

Utilization, ρ

Average Number of Transmission Retries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

Utilization, ρ

Number of Transmission Retries Variance (σ2)

Figure 40: Monte Carlo Simulation: Transmission Retry Statistics, a = 0, Backoff
0-5ML

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Utilization, ρ

Average Channel Access Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Utilization, ρ

Channel Access Time Variance (σ2)

Figure 41: Monte Carlo Simulation: Channel Access Time Statistics, a = 0, Backoff
0-5ML

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Utilization, ρ

Percent of Fatal Collisions

Figure 42: Monte Carlo Simulation: Fatal Collision Statistics, a = 0, Backoff 0-5ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.2

1.4

1.6

1.8

2

2.2

Utilization, ρ

Normalized Average Delay

Monte Carlo Simulation
M/D/1 Approximation

Figure 43: Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-ML

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

x 10
−4

Utilization, ρ

Delay Variance (σ2)

Figure 44: Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-ML

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Utilization, ρ

Average Number of Transmission Retries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

Utilization, ρ

Number of Transmission Retries Variance (σ2)

Figure 45: Monte Carlo Simulation: Transmission Retry Statistics, a = 0.1ML, Back-
off 0-ML

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Utilization, ρ

Average Channel Access Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Utilization, ρ

Channel Access Time Variance (σ2)

Figure 46: Monte Carlo Simulation: Channel Access Time Statistics, a = 0.1ML,
Backoff 0-ML

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

Utilization, ρ

Percent of Fatal Collisions

Figure 47: Monte Carlo Simulation: Fatal Collision Statistics, a = 0.1ML, Backoff
0-ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

Utilization, ρ

Normalized Average Delay

Monte Carlo Simulation
M/D/1 Approximation

Figure 48: Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-2.5ML

75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

2

3

4

5

6

7

8

9

10

x 10
−4

Utilization, ρ

Delay Variance (σ2)

Figure 49: Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-2.5ML

76

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

1.2

Utilization, ρ

Average Number of Transmission Retries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

Utilization, ρ

Number of Transmission Retries Variance (σ2)

Figure 50: Monte Carlo Simulation: Transmission Retry Statistics, a = 0.1ML, Back-
off 0-2.5ML

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Utilization, ρ

Average Channel Access Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01

0.02

0.03

0.04

0.05

0.06

Utilization, ρ

Channel Access Time Variance (σ2)

Figure 51: Monte Carlo Simulation: Channel Access Time Statistics, a = 0.1ML,
Backoff 0-2.5ML

78

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

Utilization, ρ

Percent of Fatal Collisions

Figure 52: Monte Carlo Simulation: Fatal Collision Statistics, a = 0.1ML, Backoff
0-2.5ML

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Utilization, ρ

Normalized Average Delay

Monte Carlo Simulation
M/D/1 Approximation

Figure 53: Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-5ML

79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Utilization, ρ

Delay Variance (σ2)

Figure 54: Monte Carlo Simulation: Delay Statistics, a = 0.1ML, Backoff 0-5ML

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

Utilization, ρ

Average Number of Transmission Retries

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

Utilization, ρ

Number of Transmission Retries Variance (σ2)

Figure 55: Monte Carlo Simulation: Transmission Retry Statistics, a = 0.1ML, Back-
off 0-5ML

81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

Utilization, ρ

Average Channel Access Time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Utilization, ρ

Channel Access Time Variance (σ2)

Figure 56: Monte Carlo Simulation: Channel Access Time Statistics, a = 0.1ML,
Backoff 0-5ML

82

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

Utilization, ρ

Percent of Fatal Collisions

Figure 57: Monte Carlo Simulation: Fatal Collision Statistics, a = 0.1ML, Backoff
0-5ML

6 Linear Matrix Inequality

This section describes an alternative solution to the stable control of multiple coop-
erative robotic vehicles. Instead of ensuring that the test matrix W is an M-matrix
as in Section 3.1, we can also solve the same problem by formulating it as a Linear
Matrix Inequality (LMI) problem [37]. We originally thought that the LMI formula-
tion would allow for a faster solution. However, after much analysis and testing, we
have found that this formulation actually results in longer computation times since
it is solving a more general problem than our simple example given in Section 3.1.
In fact, the size of the Semi-Definite Program (SDP) used to solve the LMI problem
grows proportional to the number of robots squared. Although efficient interior point
methods exist for medium-size SDPs, this stability problem becomes intractable as
the number of robots grows large. In the following analysis, a cutting plane algorithm
was developed as an alternative approach to the interior point algorithm. This cut-
ting plane algorithm uses a semiinfinite reformulation of the SDP and solves it using
a cutting plane scheme [38].

83

6.1 SDP Formulation of Multiple Robot Vehicle Stability

Problem

The LMI optimization problem is given by

min θ

subj P̃ � 0


−P̃ AT P̃ AT P̃ HT

P̃ A P̃ − I 0 0

P̃ A 0 −P̃ 0

H 0 0 −θI




≺ 0

where

• H: Describes the interaction between the robots, i.e. (H)ij = Aij in Equation
(46).

• A: Describes the internal dynamics of each robot, i.e. A = diag(A11, ..., ANN)
in Equation (46).

• r: The number of robots.

• m = r(r+1)
2

+ 1: The number of variables.

• n = 4r: The size of the semidefinite constraint.

• P ∈ Sr×r: Variable matrix.

• θ ∈ <: Scalar variable θ = 1
e2
ij

in Equation (46). The system is robustly stable

with degree α =
√

1
θ

if the problem is feasible.

This may be reformulated into

min θ

subj X =




P̃ −AT P̃ −AT P̃ −HT

−P̃A I − P̃ 0 0

−P̃A 0 P̃ 0

−H 0 0 θI




� 0

84

from the negation of the semi-definite constraint and the Schur complement theorem.
The primal problem in standard form is given by

min θ

subj X = Fmθ +
r∑

i=1

i∑

j=1

Fβ(i,j)pβ(i,j) − F0 � 0

where

• β(i, j) = i
2
(1 + 2r − i) + j − r: Indexing function

• Pi,j = pβ(i,j)

• F0 =




0 0 0 −HT

0 I 0 0

0 0 0 0

−H 0 0 0




• Fα(i,j) =




Ei,j −(Ei,iA)T −(Ei,jA)T 0

−Ei,jA −Ei,j 0 0

−Ei,jA 0 Ei,j 0

0 0 0 0




• Fm+1 =




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 I




• Ei,j =

{
eie

T
j + eje

T
i i 6= j

eie
T
j otherwise

85

6.2 The Cutting Plane Algorithm

The original cutting plane algorithm was developed by Krishnan and Mitchell[38].
This formulation duplicates many of their results using the same problem formulation
as the solver SDPA[39].

6.2.1 Semidefinite Program

The SDP primal problem is given by

min f(x) = cTx

subj X =
m∑

i=1

Fixi − F0 � 0 (SDP)

where

• X ∈ Sn×n: variable matrix.

• Fi ∈ Sn×n: constraint matrices.

• c ∈ <m×1: cost vector.

• x ∈ <m×1: variable vector.

The SDP dual problem is given by

max F0 • Y
subj Fi • Y = ci i = 1, . . . ,m (SDD)

Y � 0

where

• Y ∈ Sn×n: variable matrix.

Assumption 1. Both (SDP) and (SDD) has strictly feasible solutions.

Assumption 2. The matrices Fi are all linearly independent.

6.2.2 Semiinfinite Program Reformulation of SDP

Recall that X � 0 is equivalent to ddT • C > 0∀d ∈ B where B is a compact set.
This allows (SDP) to be reformulated as a semiinfinite programming problem.

The SIP primal problem is given by

min f(x) = cTx

subj
m∑

i=1

(ddT • Fi)xi ≥ ddT • F0 ∀d ∈ B (SIP)

where

• B: compact set in <n×1.

86

6.2.3 Linear Program Reformulation of SIP

Taking a finite subset of the infinite number of constraints from (SIP) gives a linear
programming problem.

The LP primal problem is given by

min f(x) = cTx

subj
m∑

i=1

(djd
T
j • Fi)xi ≥ djd

T
j • F0 j = 1, . . . , p (LPP)

where

• p is arbitrary.

The LP dual problem is given by

max F0 • (

p∑

j=1

yjdjd
T
j)

subj Fi • (

p∑

j=1

yjdjd
T
j) = ci i = 1, . . . ,m (LPD)

where

• y ∈ <+
⋃
{0}

Since (LPP) is a relaxation of (SDP), a feasible solution of (LPP) isn’t necessarily
feasible in (SDP). Conversely, (LPD) is more constrained than (SDD), so all feasible
solutions of (LPD) are feasible in (SDD). This is given formally by the following
theorem.

Theorem 1. Any feasible solution to (LPD) gives a feasible solution to (SDD).

Proof. Let, Y =
p∑

j=1

yjdjd
T
j

I must show that Fi • Y = ci and Y � 0.
The first part following immediately from (LPD).
The second part can be seen by noting

dTY d = dT (

p∑

j=1

yjdjd
T
j)d

=

p∑

j=1

yjd
T (djd

T
j)d

=

p∑

j=1

yj(d
Tdj)

2

≥ 0

since yj ≥ 0∀j.

87

A solution to (SDP) is optimal when the duality gap between (SDP) and (SDD)
is 0. The following theorem shows that if the optimal solution of (LPP) is feasible,
then it is also an optimal solution to (SDP).

Theorem 2. Let x∗ be an optimal solution to (LPP) and y∗ be an optimal solution
to (LPD). If x∗ is feasible in (SDP), then x∗ is optimal in (SDP).

Proof. Let Y =
p∑

j=1

y∗j djd
T
j and X =

m∑
i=1

Fix
∗
i − F0.

The duality gap is given by

tr(Y X) = tr((

p∑

j=1

y∗j djd
T
j)(

m∑

i=1

Fix
∗
i − F0))

= (

p∑

j=1

y∗j djd
T
j) • (

m∑

i=1

Fix
∗
i − F0)

=

p∑

j=1

y∗j (djd
T
j • (

m∑

i=1

Fix
∗
i − F0))

=

p∑

j=1

y∗j (
m∑

i=1

(djd
T
j • Fi)x

∗
i − djd

T
j • F0)

= 0

from complementary slackness at optimality for the dual pair (LPP) and (LPD).
Since x∗ and y∗ are both feasible and the duality gap is 0, x∗ is an optimal solution

to SDP.

6.2.4 Bounding the LP

Assuming that the original SDP is bounded, there exists M such that cTx > M ∀x.
Initializing the LP with this constraint insures that the LP is bounded. The constant
M depends on the individual problem.

6.2.5 Optimal Set of Constraints

Assume that the current optimal solution is infeasible. Then, adding more constraints
to (LPP) should produce a solution closer to feasibility. However, not all constraints
will produce an equivalent improvement. Some constraints are redundant and others
produce a very marginal gain. So, an intelligent choice of constraints allows the
method to converge faster.

Theorem 3 (Valid Cut). A cut generated from

m∑

i=1

(d(k)d(k)T • Fi)xi ≥ d(k)d(k)T • F0

where

88

• x(k): optimal solution of (LPP) at iteration k.

• X(k) =
m∑

i=1

Fix
(k)
i − F0 6� 0

• d(k) ∈ B 3 d(k)X(k)d(k) < 0.

is deep.

Proof.

d(k)X(k)d(k) < 0 =⇒
m∑

i=1

(d(k)d(k)T • Fi)x
(k)
i − d(k)d(k)T • F0 < 0

So, the current point is solution is infeasible and the cut is deep.

The following theorem describes how to find d(k) quickly and efficiently.

Theorem 4. Let B = {d 3 ‖d‖2
2 ≤ 1}. Every eigenvector d(k) that corresponds to a

negative eigenvalue of X(k) generates a valid cut.

Proof. Let λ(k) be the eigenvalue of X(k) that corresponds to d(k).
Notice,

d(k)TX(k)d(k) = d(k)Tλ(k)d(k)

= λ(k)

However, λ(k) < 0 by assumption. So, the cut is valid.

Although adding multiple cuts per iteration could potentially increase perfor-
mance, the next theorem describes the optimal cut.

Theorem 5 (QSP). A cut generated by letting

d(k) = arg min
d
dTX(k)d

subject to
d(k) ∈ B

describes the most violated constraint.

Proof. The amount a constraint is violated is given by ddT •F0−
m∑

i=1

(ddT •Fi)x
(k)
i for

some d.

89

Since,

d(k) = arg min
d
dTX(k)d

= arg min
d

m∑

i=1

(ddT • Fi)x
(k)
i − ddT • F0

= arg max
d
ddT • F0 −

m∑

i=1

(ddT • Fi)x
(k)
i

the violation is maximized.

The maximally violated constraint is easily solved by the following theorem.

Theorem 6. Let B = {d 3 ‖d‖2
2 ≤ 1}. The eigenvector that corresponds to the

smallest algebraic eigenvalue of X(k) minimizes (QSP).

Proof. There are two cases two consider.
First, assume that the constraint is inactive. This implies that the minimum is an

unconstrained minimum. However, this minimum can’t exist unless X(k) is positive
definite. But, this is a contradiction since by assumption X(k) 6� 0.

Second, assume that the constraint is active. From the first order necessary con-
ditions, X(k)d = λd. So, all eigenvectors of X(k) are stationary points. Let d(k) be an
eigenvector with corresponding eigenvalue λ(k). Then, d(k)TX(k)d(k) = d(k)Tλ(k)d(k) =
λ(k). Thus, the smallest algebraic eigenvalue’s eigenvector minimizes (QSP).

6.2.6 Stopping Conditions

The algorithm has the option to use four different stopping conditions. The first two
stopping conditions consider the progress the method is making toward an optimal
solution. However, these stopping conditions perform very poorly. The second two
stopping conditions consider the feasibility of the current solution.

The method has converged when it is no longer gaining progress toward the opti-
mal solution. Notice, the objective value at every iteration converges monotonically
to the optimal solution. So, when f(x(k))−f(x(k−1)) ≤ ε1(1+f(x(k))), the method has
converged. Unfortunately, there is no guarantee that the objective value will change
when a cut is taken. So, this stopping conditions often fails before a good solution is
reached.

The method will also converge when the distance between two successive solutions
converges to 0, ‖x(k−1) − x(k)‖ ≤ ε2(1 + ‖x(k)‖). Unfortunately, the cutting plane
method requires a very large number of cuts before a good solution is obtained. So,
the difference between two sucessive solutions tends to be very small.

Since the relaxation provides a superoptimal solution to the original problem,
as the solution approaches feasibility, it also approaches optimality. Recall, since
X � 0 when all its eigenvalues are nonnegative, the smallest algebraic eigenvalue
gives a measure of how close the matrix is to feasibility. So, if λn is the smallest

90

eigenvalue, then the method has converged when λn > −ε3. Unfortunately, the
smallest eigenvalue tends to converge to zero very slowly even the solution is near
optimal. Further, the smallest eigenvalue does not necessarily converge monotonically
to 0.

The final stopping condition provides the best estimate of optimality, but is much
more difficult to determine. Let X̂(k) = X(k) + E(k) � 0. Since all feasible solutions

have the form X =
m∑

i=1

Fixi −F0, an appropriate matrix E(k) must be found such that

E(k) =
m∑

i=1

Fix̂i − F0 and the norm of E(k) converges to 0 as the method converges

toward optimality. Once found, E(k) provides an upper bound to the problem that
converges toward optimality. So, the gap between the upper and lower bounds tends
to 0 as the method converges toward optimality.

6.2.7 Algorithm

1. Initialize: Determine the constraint needed to bound the LP.

2. Find the lower bound: Solve the LP for its optimal solution

3. Check for stopping conditions

4. Remove inactive constraints.

5. Add new cutting planes

6. Find a new lower bound and repeat.

6.2.8 Efficiency of the Algorithm

The two parts of the method that take the most computational time are solving the
LP and finding the cutting planes.

Solving the LP The LP is solved using the simplex method. So, it is important
to determine whether it is more efficient to solve the primal or dual problem.

The primal LP has m variables. Unfortunately, it has a variable number of con-
straints. In practice, the primal has far fewer constraints than variables since inactive
constraints are eliminated. Conversely, the dual LP has these characteristics reversed.
It contains a variable number of variables, but a fixed number of constraints.

Unfortunately, there is no formula that describes the exact running time of the
simplex method. However, it is commonly accepted that the time it takes to solve
a problem grows more quickly with the number of constraints than the number of
variables. Since the number of constraints that the primal problem possess is far less
than the number of variables, it is much more efficient to solve the primal problem.

91

Solving the Quadratic Subproblem Calculating all of the eigenvalues of a
matrix requires O(n3) operations. However, typically only a few eigenvalues per iter-
ation are needed. So, since X(k) is symmetric, Lanczos method can be used to find
the smallest eigenvalues. The exact running time of Lanczos method is difficult to
determine. The effort per iteration depends on the difficulty of the matrix multipli-
cations and the sparsity of the system. Further, the number of iterations required
to converge varies depending on the eigenvalue structure of the matrix. However, in
this case, for a limited number of eigenvalues, it is much more efficient to use Lanczos
method than a general scheme.

6.3 Bounding the LP Relaxation for the Multiple Robot Prob-

lem

Recall that the LP relaxation isn’t always bounded. However, for this problem, this
simple constraint insures the problem is bounded.

Theorem 7. The constraint θ ≥ 0 bounds the LP. Further, θ ≥ 0 for all feasible
solutions to (SDP).

Proof. The proof has two parts.
First, an LP that attempts to minimize θ subject to θ ≥ 0 is obviously bounded

with a minimum solution of 0.
Second, let

A =




P̃ −AT P̃ −AT P̃

−P̃A I − P̃ 0

−P̃A 0 P̃




B =




−HT

0

0




C = θI

From the Schur complement theorem

X =



A B

BT C


 � 0 ⇐⇒ A � 0, C − BTA−1B � 0

92

Assume that X � 0 and θ < 0.
Notice,

A � 0 =⇒ A−1 � 0

=⇒ BTA−1B � 0

=⇒ −BTA−1B � 0

This implies that the largest algebraic eigenvalue of −BTA−1B, λ1, is less than or
equal to 0.

From the shifting property of eigenvalues, the largest algebraic eigenvalue of C −
BTA−1B is equal to θ + λ1. However, since θ < 0, θ + λ1 < 0. But this is a
contradiction, since, by assumption, C − BTA−1B � 0.

6.4 Benchmarks

These benchmarks were generated on a 400MHz Pentinum running WindowsNT using
three different solvers: CSDP4.1[40], the LMI Toolbox[41], and the cutting plane
algorithm CPX. Notice, CSDP4.1 uses a primal-dual interior point method while the
LMI toolbox uses a projective method. The solver CPX indicates the cutting plane
method with a maximum of X cuts per iteration. This method was implemented
using LAPACK’s RRR algorithm to find eigenvalues and GLPK[42] to solve the LP
relaxations.

The internal dynamics of each robot was given by A = −.6I. The interaction
between the robots was described by H where each off diagonal element was equal to
1.6.

Robots CP2 CP4 CP8 CP16 CP32 CSDP4.1 LMI Toolbox

2 .078 .093 .093 N/A N/A .109 .125

4 1.484 1.187 1.187 1.218 N/A .343 .766

8 MAX MAX 540 514 359 .406 2.09

16 MAX MAX MAX MAX MAX 1.84 18.2

32 MAX MAX MAX MAX MAX 21.1 252

Table 5: Run Time of Each Algorithm in Seconds

Table 5 gives the running time of each algorithm in seconds with a maximum time
limit of 600s. For any nontrivial problems, the cutting plane method takes far longer
than either CSDP4.1 or the LMI Toolbox. For moderately sized problems, the LMI
Toolbox has trouble calculating an answer quickly.

93

Notice, attempting to calculate more cuts per iteration doesn’t necessarily in-
crease the performance of the cutting plane algorithm. Recall, only eigenvectors that
correspond to negative eigenvalues will produce valid cuts. If too many eigenvalues
are calculated, many of them will be positive. So, the computational effort used to
produce them is wasted.

Robots CP2 CP4 CP8 CP16 CP32 CSDP4.1 LMI Toolbox

2 25 25 25 N/A N/A 11 17

4 375 250 225 200 N/A 10 22

8 15775 14450 11700 10675 7000 10 24

16 575 500 450 400 350 11 26

32 375 200 100 100 75 11 26

Table 6: Number of Iterations Computed

Table 6 gives the number of iterations each method took to converge. Notice, the
cutting plane algorithm typically takes a huge number of inexpensive iterations to
converge while CSDP4.1 and the LMI Toolbox take a smaller number of more expen-
sive iterations. As the size of the problem increased, the effort needed to compute an
iteration of the cutting plane algorithm prevented substantial progress.

Table 7 gives the value of α calculated by each method. The results obtained from
CSDP4.1 and the LMI Toolbox were identical while those obtained from the cutting
plane algorithm tended to possess more error.

6.5 Future Work

The next two phases involve further optimizing the algorithm and distributing the
task asynchronously to multiple agents.

The most expensive step of the algorithm is the simplex method. However, the
optimal solution from one iteration to the next changes only slightly. Hence, warm
starting the simplex method would probably speed up the process.

The asynchronous distribution of the problem is more difficult. Typically, parallel
computers allow operations such as matrix multiplications, eigenvalues computations,
or the simplex method to be distributed between machines. However, the communi-
cation cost between two robots is much higher than it is between multiple processors.
So, a new scheme must be developed.

94

Robots CP2 CP4 CP8 CP16 CP32

2 2.500854e-1 2.501291e-1 2.501801e-1 N/A N/A

4 1.547215e-1 1.547063e-1 1.545778e-1 1.547429e-1 N/A

8 1.380454e-1 1.337765e-1 1.330610e-1 1.330866e-1 1.331674e-1

16 4.469729e-1 4.326303e-1 4.394678e-1 4.266139e-0 3.548570e-1

32 ∞ ∞ 1.908568e+7 ∞ ∞

Robots CSDP4.1 LMI Toolbox

2 2.500000e-1 2.500000e-1

4 1.545085e-1 1.545085e-1

8 1.330222e-1 1.330222e-1

16 1.271652e-1 1.271652e-1

32 1.255686e-1 1.255686e-1

Table 7: Value of α Calculated

7 Conclusions

This project took an integrated approach to designing communication, sensing, and
control systems for fixed and mobile distributed systems. Our analysis built upon
our past experience in developing provably convergent cooperative controls and upon
concepts from graph theory as applied to communication networks. A common math-
ematical framework consisting of three steps was developed for creating decentralized
cooperative controls laws. The first step is to define a global performance index for
the cooperative behavior. The second step is to partition the performance index so
that only local interactions are included. The third step is to create a first or second
order gradient control law that minimized the partitioned performance index. After
these three steps, a vector Liapunov technique is used to determine the stability con-
straints on the individual subsystem control gains, interaction control gains, and the
communication sampling period.

Next, we evaluated which communication protocols could meet the constraint on
communication sampling period. Coloring algorithms from graph theory were used to
compare the performance of TDMA or CSMA communication networks. In general,

95

we found that TDMA networks will outperform CSMA networks if the network is
stationary, and there is sufficient time to perform the network coloring algorithms.
However, if the network is moving, then a CSMA network will outperform the TDMA
network as long as the network utilization stays below 58 percent. Queuing theory
was used to determine a closed form solution of the time response of a CSMA network,
and Monte Carlo simulations were used to verify the solution. The vector Liapunov
analysis shows that the collective CSMA networked system will still remain stable as
long as the maximum communication time is below the maximum sampling period
determined from the vector Liapunov analysis.

The report concluded by evaluating using Linear Matrix Inequality (LMI) instead
of the vector Liapunov analysis. Our initial belief was that the stability problem
could be solved more efficiently using LMI equations instead the M-matrix technique,
and that we might be able to use this technique on-line to adjust the communication
sampling period and control gains so that the system remains stable. We found that
this is not true, and that in general the LMI equations actually takes more time
to solve. An area of future research will be to determine more efficient methods of
solving these equations and determining the bounds on the communication sample
period.

Portions of this report have been published in [21] and [43].

Acknowledgments

Section 2, Common Mathematical Framework, was primarily written by John Fed-
dema with input from Ray Byrne. Section 3, Behavior Metrics, was the work of John
Feddema. Dominique Kilman performed the OPNETTM simulations and authored
Section 4, Analysis and Simulation of TDMA and Coloring. Ray Byrne performed
the CSMA delay simulations and wrote Section 5, CSMA Delay Characteristics and
Simulation Results. The LMI research was performed by Joseph Young who authored
Section 6, Linear Matrix Inequality. Ray Byrne coordinated and edited the final doc-
ument. Rush Robinett was the originator of many of the concepts covered in Section
2. John Harrington and Brian Van Leeuwen provided assistance with all commu-
nications sections. Chris Lewis developed most of the RATLERTM demonstrations
described in Section 2.

96

References

[1] T. Arai, E. Pagello, and P. E. Parker, “Guest editorial: Advances in multirobot
systems,” IEEE Transactions on Robotics and Automation, vol. 18, pp. 655–659,
October 2002.

[2] E. Bonaneau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural
to Artificial Systems. New York: Oxford University Press, 1999.

[3] R. C. Arkin, “Cooperation without communication: Multiagent schema-based
robot navigation,” Journal of Robotic Systems, vol. 9, no. 3, pp. 351–364, 1992.

[4] T. Balch and R. C. Arkin, “Behavior-based formation control for multirobot
teams,” IEEE Transactions on Robotics and Automation, vol. 14, December
1998.

[5] R. C. Kube and H. Zhang, “Collective robotics: From social insects to robots,”
Adaptive Behavior, vol. 2, pp. 189–218, Fall 1993.

[6] Q. Chen and J. Y. S. Luh, “Coordination and control of a group of small mobile
robots,” in Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 3, (San Diego, CA), pp. 2315–2320, May 1994.

[7] H. Yamaguchi and T. Arai, “Distributed and autonomous control method for
generating shape of multiple mobile robot group,” in Proceedings of the IEEE
International Conference on Intelligent Robots and Systems, vol. 2, (Munich,
Germany), pp. 800–807, September 1994.

[8] H. Yamaguchi and J. W. Burdick, “Asymptotic stabilization of multiple non-
holonomic mobile robots forming group formations,” in Proceedings of the 1998
Conference on Robotics and Automation, (Leuven, Belgium), pp. 3573–3580,
May 1998.

[9] E. Yoshida, T. Arai, J. Ota, and T. Miki, “Effect of grouping in local communi-
cation system of multiple mobile robots,” in Proceedings of the IEEE Conference
on Intelligent Robots and Systems, vol. 2, (Munich, Germany), pp. 808–815,
September 1994.

[10] P. Molnar and J. Starke, “Communication fault tolerance in distributed robotic
systems,” in Distributed Autonomous Robotic Systems 4 (L. E. Parker, G. Bekey,
and J. Barhen, eds.), pp. 99–108, Springer-Verlag, 2000.

[11] F. E. Schneider, D. Wildermuth, and H. L. Wolf, “Motion coordination in for-
mations of multiple robots using a potential field approach,” in Distributed Au-
tonomous Robotic Systems 4 (L. E. Parker, G. Bekey, and J. Barhen, eds.),
pp. 305–314, Springer-Verlag, 2000.

97

[12] G. Beni and P. Liang, “Pattern reconfiguration in swarms - convergence of a
distributed asynchronous and bounded iterative algorithm,” IEEE Transactions
on Robotics and Automation, vol. 12, pp. 485–490, June 1996.

[13] Y. Liu, K. Passino, and M. Polycarpou, “Stability analysis of one-dimensional
asynchronous swarms,” in 2001 American Control Conference, (Arlington, VA),
pp. 716–721, June 25-27 2001.

[14] A. Winfield, “Distributed sensing and data collection via broken ad hoc wireless
connected networks of mobile robots,” in Distributed Autonomous Robotic Sys-
tems (L. E. Parker, G. Bekey, and J. Barhen, eds.), pp. 273–282, Springer-Verlag,
2000.

[15] J. P. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of multiple mo-
bile robots,” in Proceedings of the 1998 Conference on Robotics and Automation,
(Leuven, Belgium), pp. 2864–2869, May 1998.

[16] J. P. Desai, V. Kumar, and J. P. Ostrowski, “Modeling and control of formations
on nonholonomic mobile robots,” IEEE Transactions on Robotics and Automa-
tion, vol. 17, pp. 905–908, December 2001.

[17] C. Lewis, J. T. Feddema, and P. Klarer, “Robotic perimeter detection system,”
in Proceedings of the SPIE Volume 3577, (Boston, MA), pp. 14–21, November
3-5 1998.

[18] J. T. Feddema, C. Lewis, and D. A. Shoenwald, “Decentralized control of robotic
vehicles: Theory and application,” IEEE Transactions on Robotics and Automa-
tion, vol. 18, pp. 852–864, October 2002.

[19] R. D. Robinett III and J. E. Hurtado, “Stability and control of collective sys-
tems,” in Proceedings of the John L. Junkins Astrodynamics Symposium, (College
Station, TX), May 23-24 2003.

[20] B. R. Frieden, Physics from Fisher Information. Cambridge University Press,
1998.

[21] J. T. Feddema, R. D. Robinett, and R. H. Byrne, “An optimization approach to
distributed controls of multiple robot vehicles.” Workshop on Control and Co-
operation of Intelligent Miniature Robots, IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 31, 2003.

[22] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and
Applications. Oxford University Press, 1998.

[23] D. G. Luenberger, Linear and Nonlinear Programming. Addison Wesley Pub-
lishing Company, 2 ed., 1984.

98

[24] D. Schmitt, R. Byrne, J. Feddema, G. Fisher, J. Harrington, C. Little, J. Neely,
and B. Rigdon, “Intelligent mobile land mine IMLM system,” Tech. Rep.
SAND2003-1186, Sandia National Laboratories, Albuquerque, NM, July 2003.

[25] J. T. Feddema and D. A. Schoenwald, “Stability analysis of decentralized coop-
erative controls,” in Multi-Robot Systems: From Swarms to Intelligent Automata
(A. C. Shultz and L. E. Parker, eds.), pp. 122–133, Kluwer Academic Publishers,
2002.

[26] J. T. Feddema and D. A. Schoenwald, “Distributed communications/navigation
robot vehicle network,” in Proceedings of the World Automation Congress, (Or-
lando, FL), June 9-13 2002.

[27] R. H. Byrne, D. R. Adkins, S. E. Eskridge, J. J. Harrington, E. J. Heller, and J. E.
Hurtado, “Miniature mobile robots for plume tracking and source localization
research,” Journal of Micromechatronics, vol. 1, no. 3, pp. 253–261, 2002.

[28] R. H. Byrne, S. E. Eskridge, J. E. Hurtado, and E. L. Savage, “Algorithms
and analysis of underwater vehicle plume tracing,” Tech. Rep. SAND2003-2643,
Sandia National Laboratories, Albuquerque, NM, July 2003.

[29] D. D. Siljak, Decentralized Control of Complex Systems. Academic Press, 1991.

[30] M. E. Sezer and D. D. Siljak, “Robust stability of discrete systems,” International
Journal of Control, vol. 48, no. 5, pp. 2055–2063, 1988.

[31] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Dif-
ference Methods. Oxford University Press, 3rd ed., 1985.

[32] S. Basagni, D. Bruschi, and I. Chlamtac, “A mobility-transparent deterministic
broadcast mechanism for ad hoc networks,” IEEE/ACM Transactions on Net-
works, vol. 7, pp. 799–807, December 1999.

[33] I. Chlamtac and S. S. Pinter, “Distributed nodes organization algorithm for
channel access in a multihop dynamic radio network,” IEEE/ACM Transactions
on Networks, vol. C-36, pp. 728–737, June 1987.

[34] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: Part I -
carrier sense multiple-access modes and their throughput-delay characteristics,”
IEEE Transactions on Communications, vol. COM-23, pp. 1400–1416, December
1975.

[35] L. Kleinrock, Queueing Systems, Volume I: Theory. New York: John Wiley &
Sons, 1 ed., 1975.

[36] S. L. Beuerman and E. J. Coyle, “Delay characteristics of csma/cd networks,”
IEEE Transactions on Communications, vol. 36, pp. 553–563, May 1988.

99

[37] D. Stipanovic and D. D. Siljak, “Robust stability and stabilization of discrete-
time non-linear systems: the LMI approach,” International Journal of Control,
vol. 74, no. 9, pp. 873–879, 2001.

[38] K. Krishnan and J. E. Mitchell, “Properties of Cutting Plane Method for
Semidefinite Programming.” submitted for publication, May 2003.

[39] K. Fujisawa and M. Kojima, “SDPA(Semidefinite Programming Algorithm) :
User’s manual,” 1995.

[40] B. Borchers, “CSDP, A C Library for Semidefinite Programming,” Optimization
Methods and Software 11, pp. 613–623, 1999.

[41] Mathworks, “LMI Control Toolbox,” 1995. Software.

[42] A. Makhorin, “GNU Linear Programming Kit,” May 2003. Software.

[43] J. T. Feddema, “Communication and control of large scale cooperative systems,”
in Proceedings of the American Nuclear Society 10th International Conference on
Robotics and Remote Systems for Hazardous Environments, (Gainesville, FL),
March 28-31 2004.

100

Appendix A

CSMA Simulation Program

% Simulation of CSMA Comm

% Ray Byrne, 15234

% 8/30/04

PRINT_DEBUG = 0; % 1==print each test run, otherwise only summary data

NN = 10; % number of agents

h = 1; % update rate in seconds

ML = 0.01; % message length multiplier (sec)

M = 1e6; % oscillator uncertainty

SIMS = 10^4; % number of simulations

%B = 0.1; % back off scaling

B = 5.0*ML; % backoff is always proportional to message length

P_ACTUAL = []; % actual utilization

actual_utilization = [];

STATS = [] % store statistics of each run

for I=1:80 % loop simulations

%L = ML*I; % utilization varies from 0.1 to 0.9

L = ML; % constant message length

N = round(NN*I/10) % vary number of robots for utilization - fudge factor to get utilization spread correct

STOP = SIMS/N/h; % simulation iterations

a = L/10; % fatal collision if difference in start time less than a

% start of Simulation

T_0 = rand(N,1); % random start times

ROBOT_ID = (1:N)’; % N robots

T_0 = [T_0 ROBOT_ID zeros(N,1) zeros(N,1) zeros(N,1)];

T_0 = sortrows(T_0,1); % arrange in order

T=[]; % event, time axis

% T = [event_time robot_ID delay collision fatal_collision]

H = rand(N,1); % add uncertainty to local oscillators

H = H./M + h;

for i=1:(STOP)

T = [T ; T_0(:,1)+i*H T_0(:,2) L*ones(N,1) T_0(:,4) T_0(:,5)]; % include message lenth in delay

end

LAST_TIME = max(T(:,1))

actual_utilization = 0; % clear this every run through

n = length(T);

% check ordering

T = sortrows(T,1);

i=2;

while i < (n+1)

j=0;

if ((T(i,1) - T(i-1,1)) < a) % case of fatal collision

actual_utilization = actual_utilization + L + (T(i,1) - T(i-1,1));

101

T(i-1,5) = 1;

T(i,5) = 1;

% DO NOTHING WITH DELAY FOR FATAL COLLISION CASE - LOSE MESSAGE!

i = i + 1;

%if rem(i,1000) == 0 i=i

%end % end if

elseif ((T(i,1) - T(i-1,1)) < L) % case of collision

% actual_utilization = actual_utilization + L; % first message

% gets through, second is rescheduled, -> no channel utilization

T_old = T(i,1);

T(i,1) = T(i-1,1) + L + B*rand(1);

delay = T(i,1) - T_old;

T(i,3) = T(i,3) + delay; % add to delay column

T(i,4) = T(i,4) + 1.0;

% sort

if i+j+1 <= n

while T(i+1+j,1) < T(i+j,1)

temp = T(i+j,:);

T(i+j,:) = T(i+j+1,:);

T(i+j+1,:) = temp;

if i+j+2 <= n

j=j+1;

else

break;

end %end if

end % while sort

end % end if

else

i = i + 1;

actual_utilization = actual_utilization + L;

%if rem(i,1000) == 0 i=i

%end % end if

end % end if

end % end while

n = length(T);

D = [];

for k=2:n

diff = T(k,1) - T(k-1,1);

D = [D diff];

end % end for

STOP_TIME = max(T(:,1)) + L % sec

P_ACTUAL = [P_ACTUAL; actual_utilization/STOP]

if PRINT_DEBUG == 1

clf; % clear graphics

subplot(2,2,1);

plot(0);

axis([0 1 0 1]);

str = sprintf(’Number of robots = %d’, N);

text(0.05, 0.8, str);

text(0.05, 0.7, ’Communication Rate = 1/sec’);

str = sprintf(’Backoff = 0-%d ms, uniform distribution’, B*1000);

text(0.05, 0.6, str);

temp = sprintf(’Message Length = %f (sec)’, L)

text(0.05, 0.5, temp);

temp = sprintf(’Offered Utilization \\rho = %f’, I/10);

text(0.05, 0.4, temp);

temp = sprintf(’Acutal Utilization \\rho = %f’, actual_utilization/STOP);

text(0.05, 0.3, temp);

str = sprintf(’10^4 Messages in Simulation’);

text(0.05, 0.2, str);

102

title(’Simulation Parameters’);

end; % PRINT_DEBUG

delay_avg = mean(T(:,3));

delay_var = var(T(:,3));

if PRINT_DEBUG == 1

subplot(2,2,2);

EDGES = 0:0.01:0.5;

HN = histc(T(:,3),EDGES);

BAR(EDGES,HN,’histc’)

xlabel(’Delay (sec)’);

title(’Delay Distribution’);

x_max = max(EDGES);

y_max = max(HN);

str = sprintf(’Mean = %f’, delay_avg);

text(0.3*x_max, 0.7*y_max, str);

str = sprintf(’Variance = %f’, delay_var);

text(0.3*x_max, 0.6*y_max, str);

end; % PRINT_DEBUG

trans_avg = mean(T(:,4));

trans_var = var(T(:,4));

if PRINT_DEBUG == 1

subplot(2,2,3);

EDGES = -0.5:1:(max(T(:,4))+0.5);

HN = histc(T(:,4),EDGES);

BAR(EDGES,HN,’histc’);

xlabel(’Transmission Retries’);

title(’Transmission Retry Distribution’);

x_max = max(EDGES);

y_max = max(HN);

str = sprintf(’Mean = %f’, trans_avg);

text(0.3*x_max, 0.7*y_max, str);

str = sprintf(’Variance = %f’, trans_var);

text(0.3*x_max, 0.6*y_max, str);

subplot(2,2,4);

plot(T(:,1),T(:,3));

xlabel(’Time (sec)’);

ylabel(’Transmission Delay (sec)’);

title(’Transmission Delay as a Function of Time’);

fname = sprintf(’D:/CSMA/Sim%i’, I);

print(’-depsc2’,fname);

end; % PRINT_DEBUG

channel_avg = mean(D);

channel_var = var(D);

fatal_collisions = sum(T(:,5));

fatal_percent = fatal_collisions/10^2;

if PRINT_DEBUG == 1

clf;

subplot(2,1,1);

%EDGES = -0.05:0.1:0.25;

%HN = histc(D,EDGES);

%BAR(EDGES,HN,’histc’)

hist(D);

xlabel(’Channel Access Time (sec)’);

str = sprintf(’Channel Access Time Distribution, Mean = %f, Variance = %f’, channel_avg, channel_var);

title(str);

103

subplot(2,1,2);

plot(T(:,1),T(:,5));

str = sprintf(’Fatal Collisions, Total = %i, Percent of Messages = %0.2f %%, a = %f’,

fatal_collisions, fatal_percent,a);

xlabel(’Time (sec)’);

title(str);

fname = sprintf(’D:/CSMA/Sim%ia’, I);

print(’-depsc2’,fname);

end; % PRINT_DEBUG

STATS = [STATS; delay_avg delay_var trans_avg trans_var channel_avg channel_var fatal_percent];

end % end of simulation loop

% DO MORE SIMULATIONS AT LAST VALUE OF I (~45), OR DON’T DO!

for J=1:0 % loop simulations

%L = ML*I; % utilization varies from 0.1 to 0.9

L = ML; % constant message length

N = round(NN*I/10) % vary number of robots for utilization - fudge factor to get utilization spread correct

STOP = SIMS/N/h; % simulation iterations

a = L/10; % fatal collision if difference in start time less than a

% start of Simulation

T_0 = rand(N,1); % random start times

ROBOT_ID = (1:N)’; % N robots

T_0 = [T_0 ROBOT_ID zeros(N,1) zeros(N,1) zeros(N,1)];

T_0 = sortrows(T_0,1); % arrange in order

T=[]; % event, time axis

% T = [event_time robot_ID delay collision fatal_collision]

H = rand(N,1); % add uncertainty to local oscillators

H = H./M + h;

for i=1:(STOP)

T = [T ; T_0(:,1)+i*H T_0(:,2) L*ones(N,1) T_0(:,4) T_0(:,5)]; % include message lenth in delay

end

LAST_TIME = max(T(:,1))

actual_utilization = 0; % clear this every run through

n = length(T);

% check ordering

T = sortrows(T,1);

i=2;

while i < (n+1)

j=0;

if ((T(i,1) - T(i-1,1)) < a) % case of fatal collision

actual_utilization = actual_utilization + L + (T(i,1) - T(i-1,1));

T(i-1,5) = 1;

T(i,5) = 1;

% DO NOTHING WITH DELAY FOR FATAL COLLISION CASE - LOSE MESSAGE!

i = i + 1;

%if rem(i,1000) == 0 i=i

%end % end if

104

elseif ((T(i,1) - T(i-1,1)) < L) % case of collision, detected - re-schedule

% actual_utilization = actual_utilization + L; % first message

% gets through, second is rescheduled, -> no channel utilization

T_old = T(i,1);

T(i,1) = T(i-1,1) + L + B*rand(1);

delay = T(i,1) - T_old;

T(i,3) = T(i,3) + delay; % add to delay column

T(i,4) = T(i,4) + 1.0;

% sort

if i+j+1 <= n

while T(i+1+j,1) < T(i+j,1)

temp = T(i+j,:);

T(i+j,:) = T(i+j+1,:);

T(i+j+1,:) = temp;

if i+j+2 <= n

j=j+1;

else

break;

end %end if

end % while sort

end % end if

else

i = i + 1;

actual_utilization = actual_utilization + L;

%if rem(i,1000) == 0 i=i

%end % end if

end % end if

end % end while

n = length(T);

D = [];

for k=2:n

diff = T(k,1) - T(k-1,1);

D = [D diff];

end % end for

STOP_TIME = max(T(:,1)) + L % sec

P_ACTUAL = [P_ACTUAL; actual_utilization/STOP]

if PRINT_DEBUG == 1

clf; % clear graphics

subplot(2,2,1);

plot(0);

axis([0 1 0 1]);

str = sprintf(’Number of robots = %d’, N);

text(0.05, 0.8, str);

text(0.05, 0.7, ’Communication Rate = 1/sec’);

str = sprintf(’Backoff = 0-%d ms, uniform distribution’, B*1000);

text(0.05, 0.6, str);

temp = sprintf(’Message Length = %f (sec)’, L)

text(0.05, 0.5, temp);

temp = sprintf(’Offered Utilization \\rho = %f’, I/10);

text(0.05, 0.4, temp);

temp = sprintf(’Acutal Utilization \\rho = %f’, actual_utilization/STOP);

text(0.05, 0.3, temp);

str = sprintf(’10^4 Messages in Simulation’);

text(0.05, 0.2, str);

title(’Simulation Parameters’);

end; % PRINT_DEBUG

delay_avg = mean(T(:,3));

delay_var = var(T(:,3));

if PRINT_DEBUG == 1

105

subplot(2,2,2);

EDGES = 0:0.01:0.5;

HN = histc(T(:,3),EDGES);

BAR(EDGES,HN,’histc’)

xlabel(’Delay (sec)’);

title(’Delay Distribution’);

x_max = max(EDGES);

y_max = max(HN);

str = sprintf(’Mean = %f’, delay_avg);

text(0.3*x_max, 0.7*y_max, str);

str = sprintf(’Variance = %f’, delay_var);

text(0.3*x_max, 0.6*y_max, str);

end; % PRINT_DEBUG

trans_avg = mean(T(:,4));

trans_var = var(T(:,4));

if PRINT_DEBUG == 1

subplot(2,2,3);

EDGES = -0.5:1:(max(T(:,4))+0.5);

HN = histc(T(:,4),EDGES);

BAR(EDGES,HN,’histc’);

xlabel(’Transmission Retries’);

title(’Transmission Retry Distribution’);

x_max = max(EDGES);

y_max = max(HN);

str = sprintf(’Mean = %f’, trans_avg);

text(0.3*x_max, 0.7*y_max, str);

str = sprintf(’Variance = %f’, trans_var);

text(0.3*x_max, 0.6*y_max, str);

subplot(2,2,4);

plot(T(:,1),T(:,3));

xlabel(’Time (sec)’);

ylabel(’Transmission Delay (sec)’);

title(’Transmission Delay as a Function of Time’);

fname = sprintf(’D:/CSMA/Sim%i’, I);

print(’-depsc2’,fname);

end; % PRINT_DEBUG

channel_avg = mean(D);

channel_var = var(D);

fatal_collisions = sum(T(:,5));

fatal_percent = fatal_collisions/10^2;

if PRINT_DEBUG == 1

clf;

subplot(2,1,1);

%EDGES = -0.05:0.1:0.25;

%HN = histc(D,EDGES);

%BAR(EDGES,HN,’histc’)

hist(D);

xlabel(’Channel Access Time (sec)’);

str = sprintf(’Channel Access Time Distribution, Mean = %f, Variance = %f’, channel_avg, channel_var);

title(str);

subplot(2,1,2);

plot(T(:,1),T(:,5));

str = sprintf(’Fatal Collisions, Total = %i, Percent of Messages = %0.2f %%, a = %f’,

fatal_collisions, fatal_percent,a);

xlabel(’Time (sec)’);

title(str);

106

fname = sprintf(’D:/CSMA/Sim%ia’, I);

print(’-depsc2’,fname);

end; % PRINT_DEBUG

STATS = [STATS; delay_avg delay_var trans_avg trans_var channel_avg channel_var fatal_percent];

end % end of simulation loop

clf;

plot(P_ACTUAL, (1/ML)*STATS(:,1),’v’);

axis([0 0.9 1 max((1/ML)*STATS(:,1))]);

xlabel(’Utilization, \rho’);

title(’Normalized Average Delay ’);

hold on

p = 0:0.01:0.9;

W=p./2./(1-p) + 1;

plot(p,W,’r’)

legend(’Monte Carlo Simulation’, ’M/D/1 Approximation’,2);

fname = sprintf(’D:/CSMA/F_Summary1’);

print(’-depsc2’,fname);

clf;

plot(P_ACTUAL,STATS(:,2),’v’);

axis([0 0.9 min(STATS(:,2)) max(STATS(:,2))])

xlabel(’Utilization, \rho’);

title(’Delay Variance (\sigma^2)’);

fname = sprintf(’D:/CSMA/F_Summary1a’);

print(’-depsc2’,fname);

clf;

subplot(2,1,1);

plot(P_ACTUAL,STATS(:,3),’v’);

axis([0 0.9 min(STATS(:,3)) max(STATS(:,3))])

xlabel(’Utilization, \rho’);

title(’Average Number of Transmission Retries’);

subplot(2,1,2);

plot(P_ACTUAL,STATS(:,4),’v’);

axis([0 0.9 min(STATS(:,4)) max(STATS(:,4))])

xlabel(’Utilization, \rho’);

title(’Number of Transmission Retries Variance (\sigma^2)’);

fname = sprintf(’D:/CSMA/F_Summary2’);

print(’-depsc2’,fname);

clf;

subplot(2,1,1);

plot(P_ACTUAL,STATS(:,5),’v’);

axis([0 0.9 min(STATS(:,5)) max(STATS(:,5))])

xlabel(’Utilization, \rho’);

title(’Average Channel Access Time’);

subplot(2,1,2);

plot(P_ACTUAL,STATS(:,6),’v’);

axis([0 0.9 min(STATS(:,6)) max(STATS(:,6))])

xlabel(’Utilization, \rho’);

title(’Channel Access Time Variance (\sigma^2)’);

107

fname = sprintf(’D:/CSMA/F_Summary3’);

print(’-depsc2’,fname);

clf;

subplot(2,1,1);

plot(P_ACTUAL,STATS(:,7),’v’);

axis([0 0.9 min(STATS(:,7)) (max(STATS(:,7)+1))])

xlabel(’Utilization, \rho’);

title(’Percent of Fatal Collisions’);

% subplot(2,1,2);

fname = sprintf(’D:/CSMA/F_Summary4’);

print(’-depsc2’,fname);

108

This page intentionally blank.

109

Distribution

5 MS0741 Rush Robinett, 6200

1 MS0785 Robert Hutchinson, 5516

1 MS0785 Dominique Kilman, 5616

1 MS0785 Brian Van Leeuwen, 5616

1 MS1002 Philip Heermann, 15230

1 MS1002 Steve Roehrig, 15200

1 MS1003 Barry Spletzer, 15200

20 MS1003 John Feddema, 15234

10 MS1003 Ray Byrne, 15234

1 MS1003 Joeseph Young, 15234

1 MS1004 Elaine Hinman-Sweeney, 15231

1 MS1005 Russ Skocypec, 15240

1 MS1005 Chuck Duus, 15201

1 MS1007 Larry Shipers, 15232

1 MS1010 Kelly Hays, 15233

1 MS1125 Phil Bennett, 15244

1 MS1125 John Harrington, 15244

1 MS1176 Robert Cranwell, 15243

1 MS1188 John Wagner, 15241

1 MS9018 Central Technical Files, 8945-1

2 MS0899 Technical Library, 9616

110

	Advanced Mobile Networking, Sensing, and Controls
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	2 Cooperative Control
	2.1 Example 1: Spreading Apart along a Line-A Containment Behavior
	2.2 Example 2: Coverage of a Two-Dimensional Space
	2.3 Example 3: Coverage of a Two-Dimensional Space with Constraints
	2.4 Example 4: Forming an Ellipse with Constraints-a Containment Behavior
	2.5 Example 5: Converging on the Source of a Plume-2D Case
	2.6 Example 6: Converging on the Source of a Plume-3D Case

	3 Communication Effects
	3.1 Stability Analysis
	3.2 Communications Sample Period
	3.3 Utilization versus Delay in CSMA Networks

	4 Analysis and Simulation of TDMA and Coloring
	4.1 Implementation Issues
	4.2 Simulation Results
	4.2.1 Setup time
	4.2.2 Degree of Network
	4.2.3 CSMA Collisions
	4.2.4 Communications Sample Period

	5 CSMA Delay Characteristics and Simulations Results
	5.1 CSMA Network Modeled as an M/D/1 Queue
	5.2 Simulation Results

	6 Linear Matrix Inequality
	6.1 SDP Formation of Multiple Robot Vehicle Stability Problem
	6.2 The Cutting Plane Algorithm
	6.2.1 Semidefinite Program
	6.2.2 Semiinfinite Program Reformulation of SDP
	6.2.3 Linear Program Reformulation of SIP
	6.2.4 Bounding the LP
	6.2.5 Optimal Set of Constraints
	6.2.6 Stopping Conditions
	6.2.7 Algorithm
	6.2.8 Efficiency of the Algorithm

	6.3 Bounding the LP Relaxation for the Multiple Robot Problem
	6.4 Benchmarks
	6.5 Future Work

	7 Conclusions
	Acknowledgments
	References
	Appendix A
	Distribution List

