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Abstract

We explore tensor mesons in AdS/QCD focusing on f2(1270), the lightest
spin-two resonance in QCD. We find that the f2 mass and the partial width
Γ(f2 → γγ) are in very good agreement with data. In fact, the dimensionless
ratio of these two quantities comes out within the current experimental bound.
The result for this ratio depends only on Nc and Nf , and the quark and
glueball content of the operator responsible for the f2; more importantly, it
does not depend on chiral symmetry breaking and so is both independent of
much of the arbitrariness of AdS/QCD and completely out of reach of chiral
perturbation theory. For comparison, we also explore f2 → ππ, which because
of its sensitivity to the UV corrections has much more uncertainty. We also
calculate the masses of the higher spin resonances on the Regge trajectory of
the f2, and find they compare favorably with experiment.
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1 Introduction

It is well known that QCD, of the real world, cannot be studied through the AdS/CFT
correspondence. After all, QCD is not a conformal field theory, Nc is not large, the
string dual of QCD is a complete mystery, and if there is such a dual, the string scale
must be low. One can even make more practical objections, such as that any low en-
ergy predictions which do come out cannot be original. They must be the same as the
predictions of chiral perturbation theory, since the symmetries are the same. Or at
least, since AdS/CFT employs the operator product expansion, it should not be more
powerful than QCD sum rules, which should be able to extract as much information
as possible out of the OPE. Therefore, why bother with AdS/QCD at all? We are
motivated by several reasons. First, with QCD we have experimental results which
can help determine the elements of AdS/CFT essential for establishing a predictive
duality. Second, after we know what works and what does not, there is the possi-
bility that we may learn something about QCD itself, and perhaps about strongly
coupled gauge theories in more generality. Finally, as our framework depends on the
holographic map, we are also indirectly exploring this map experimentally.

To elaborate on these motivations, we turn to the topic of the current work:
tensor mesons. We will focus on the f2, a spin-two isospin singlet meson with mass
1275 MeV, although higher spin mesons will be discussed as well. As we will shortly
see (Section 2), not much can be said about tensor mesons in perturbation theory.
Even if we couple the f2 universally, assuming general coordinate invariance (GC),
there is an unknown dimensional coupling constant, the analog of the Planck scale
for the spin-2 graviton. The decay rates to pions and to kaons can be related by
SU(3), but the decay rate to photons has a free NDA factor of order 1. The f2 mass
is another free parameter. What’s worse is that the cutoff on the chiral Lagrangian
is Λ = 4πfπ ≈ 1200 MeV, which is below the f2 mass. So even if chiral symmetry
did make predictions, we would not be able to trust them.

In contrast, on the AdS side, the f2 will be treated as a spin-2 gauge field in
the bulk (Section 3). Equivalently, we can think of it as a KK excitation of the
graviton. Thus, we secure its interactions by GC. But now the coupling constant
can be calculated by matching to the perturbative OPE. The f2 mass is set by the
eigenvalue equation for the KK mode. We define our units by fixing the IR cutoff
with the ρ mass. This leads to the simple formula that the ratio of the f2 mass to
the ρ mass is simply given by the ration of the zeros of Bessel functions J1 and J0.
Thus

mf2

mρ

=
zero of J1

zero of J0

= 1.59 (AdS/QCD) (1)

The experimental value for this ratio is 1.64, a difference of 3% . Remarkably, mass
predictions can be extended up the Regge trajectory for higher spin mesons, without
a noticeable loss of accuracy (Section 5).

The coupling to photons is also fixed in this theory – it is determined by the
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overlap of the flat photon wavefunction with that of the f2. Thus we can compute

Γ(f2 → γγ) = 2.71 keV (AdS/QCD) (2)

The observed width is 2.60 ± 0.24 keV, so we get this rate correct to within exper-
imental error. These two calculations indicate that, for some reason, AdS/QCD is
more accurate then we have any right to expect. Because the decay to photons is
sensitive to the admixture of the tensor glueball operator, we actually obtain some
non-trivial information about the f2 from the this calculation. This is discussed in
section 3.3.

Not everything in the tensor sector works so well. We also calculate the rate for
f2 decaying to pions, still without introducing any new free parameters, and find
it too small by a factor of 4. This is more in line with our naive expectations. It
indicates that either some of our assumptions, such as the those about boundary
conditions, should be reconsidered, or that higher dimension operators are relevant.
In fact, we know roughly where the string scale is on the AdS side. Some of the
tensor modes, such as a2(1320), must be string states, because they carry isospin.
So we are at least very near the regime where string corrections become important.
Gravity corrections are also important because we know the effective Planck scale
for the f2, and it is also low. So it is not surprising that our calculations can receive
stringy corrections. In Section 4 we show that higher dimension bulk operators are
very relevant to the f2 to pion decays. More importantly, we also show that higher
dimension bulk operators are not relevant for the decay to photons, so we have more
reason to trust our f2 → γγ calculation.

2 Introducing the f2

Before we describe the AdS/QCD construction, we review and elaborate on what is
known about the f2 from other methods. In particular, we discuss chiral perturbation
theory, which allows us to couple the f2 to pions. We will also establish notation
and present some formulae which will be used later on.

2.1 Chiral Perturbation Theory

In chiral perturbation theory, the pions are Goldstone bosons for a spontaneously
broken SU(Nf)L × SU(Nf)R global symmetry [1]. They are embedded in a matrix π
which is exponentiated to get

U = e2iπ/fπ (3)

This matrix U transforms under SU(Nf )L × SU(Nf )R

U → gLUg†R (4)
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and the non-linear transformations of the pions follow. The lowest order chiral
Lagrangian (with massless quarks) is

L(2) =
f 2

π

4
Tr[DµU

†DµU ] =
1

2
(∂µπ

a)(∂µπa) + · · · (5)

To next order, there are additional terms [37]

L(4) = L1Tr[DµU
†DµU ]2+L2Tr[DµU

†DνU ]Tr[DµU †DνU ]+L3Tr[DµU †DµUDνU
†DνU ]

+ iL9Tr[F µν
R DµUDνU

† + F µν
L DµU

†DνU ] + L10Tr[U †F µν
R UF L

µν ] (6)

where F µν
R/L are the field strengths for external right- and left-handed gauge fields.

At this point, all the L′is and fπ are unknown parameters to be fit to data. Often,
assumptions additional to chiral symmetry can predict some of these Li’s. For exam-
ple, vector meson dominance assumes that the bare Li are all zero, and the observed
Li come from integrating out heavy mesons, in particular the ρ meson [26–28]. This
predicts some relations between the Li. Another example is AdS/QCD which pre-
dicts similar, but different, relations [3, 4, 10]. The Li are fairly well known, and are
therefore handy for distinguishing different theories.

To add the f2, we introduce, by hand, a massive spin-2 meson. Its kinetic term
should be of the Fierz-Pauli form [24]

L(f)
kin =

1

2
hµν�hµν + h2

µα,α − hµν,µh,µ +
1

2
h2

,µ +
1

2
m2

f (h
2
µν − h2) (7)

where h = hµµ. Then the most general set of interactions with the chiral Lagrangian
begins

Lint = c1hµνTr[DµUDνU
†] + c2hTr[DµUDµU †] + c3hµνTr[U †F R

µαUF L
αν ] + · · · (8)

By chiral symmetry alone, the ci, like the Li, are completely undetermined.
To progress, we can assume that the f2 couples universally to the energy mo-

mentum tensor for matter, like in general relativity. And, like in general relativity,
this would let us bootstrap the f2’s self-couplings as well, at least in the absence of
an f2 mass. But because of the mass, the final Lagrangian will have no exact sym-
metry lacking in the general expression (8). Nevertheless, the assumption that the
f2 couples to the energy momentum tensor of matter is consistent within effective
field theory, as it parametrically raises the scale at which the f2 interactions become
strong [35, 36].

Adding an f2 coupling strength Gf (if f2 were a graviton, Gf ≈ M−1
P ) to the

Lagrangian, we have

L = L(2) + L(f)
kin +

1

2
GfhµνΘ

(2)
µν + · · · (9)
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where Θ
(2)
µν is the energy momentum tensor following from L(2)

Θ(2)
µν =

f 2
π

4

[

ηµν(DκU)(DκU †) − 2(DµU)(DνU
†)
]

(10)

This is of the form L(f)
int with c1 = −2c2. We can integrate out the f2 now, recalling

that because of the Fierz-Pauli mass its propagator is [25, 29]

〈hµνhρσ〉 =
Pµνρσ

p2 − m2
f

(11)

where the projector, in the particle’s rest frame, has the form

Pµνρσ =
1

2
(ηµρηνσ + ηµσηνρ −

2

3
ηµνηρσ) (12)

(In the massless case, or if the mass had just the h2
µν term, the residue would have a

1 instead of a 2/3). Then integrating out the f2 gives an L(4) term with coefficients

Lf
1 = −

G2
ff

4
π

96m2
f

and L2 = −3L1 (13)

Of course, these are not predictions, as the Li can have contributions from integrating
out other fields as well, or simply from adding a bare term.

We will find in the next paragraph, that from the f2 decay rate into pions we
can set Gf = gfππ = 0.019 MeV−1. This leads to, L1 = −0.17 × 10−3 and L2 =
0.50× 10−3. These are fairly substantial contributions to the experimental values of
L1 = 0.4±0.3×10−3 and L2 = 1.4±0.4×10−3. Of course, this tells us nothing about
the f2, as we must make assumptions about what else contributes to the Li, which
are just as likely to be wrong as our universality hypothesis for the f2 couplings.

Now let us turn to this the f2 decays. The f2 decays predominantly into pions.
The minimal couplings can be written as

Lfππ =
1

2
gfππhµνΘ

π
µν , Θπ

µν =
1

2
ηµν(∂απ)2 − (∂µπ)(∂νπ) (14)

then the decay rate is [9, 12, 18]

Γ(f → π+π−, π0π0) = g2
fππ

m3
f

1280π

(

1 − 4
m2

π

m2
f

)5/2

= g2
fππ(4.56 × 105MeV3) (15)

where we have used mf = 1275.4 MeV and mπ = 139.5 MeV. We are also interested
in the decay into photons, which is well measured also. If we define the coupling as

Lfγγ =
1

2
gfγγhµνΘ

γ
µν , Θγ

µν =
1

4
ηµνF

2
αβ − FναFαµ (16)
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then the formula for this decay rate is [9, 12]

Γ(f2 → γγ) = g2
fγγ

m3
f

320π
= g2

fγγ(2.04 × 106MeV3) (17)

The observed decay rates are Γ(f → ππ) = 156 MeV and Γ(f2 → γγ) = 2.6 keV
which imply gfππ = 0.0185 MeV−1 and gfγγ = 3.55× 10−5 MeV−1. A helpful way to
compare theory and experiment is through the ratio of decay rates with the phase
space factored out

g2
fππ

g2
fγγ

= 2.71 × 105 (Exp) (18)

Assuming strict universality of the f2 couplings would lead to gfππ = gfγγ = Gf , and
get this ratio wrong by six orders of magnitude.

To get a better prediction, we must use the fact that the photon is really ex-
ternal to QCD, and so its coupling must be suppressed by powers of the weak cou-
pling constant e/4π. Naive dimensional analysis [38] instructs us to take gfγγ =
cNDAe2/16π2Gf , for some constant cNDA of order one. Then

g2
fππ

g2
fγγ

=
1

c2
NDA

(

16π2

e2

)2

=
1

c2
NDA

2.96 × 106 (NDA) (19)

This is a fairly good estimate. We see that cNDA = 3.31. But we cannot get cNDA

by NDA or by assuming universality of the f2 couplings (which would say cNDA =
16π2/e2).

One way to estimate cNDA has been proposed in [12]. Similar to the assumption
in vector meson dominance, it declares that the decay to photons is mediated purely
by ρ exchange. That is, f decays into two ρ’s which decay into photons. So the
bare coupling gfγγ is zero. This assumption can be called tensor meson dominance
(TMD) [12, 18, 23]. Taking gfππ from experiment, it gives

g2
fππ

g2
fγγ

= 3.6 × 106 (TMD) (20)

This is not better than naive dimensional analysis with cNDA = 1.
Tensor meson dominance also relates the f2 decay constant ff to gfππ. The f2

decay constant is defined by

〈Θµν |f2〉 = ffm
3
f ǫµν (21)

where ǫµν is the polarization tensor for the f2 and Θµν is the energy momentum
tensor. We have chosen ff to be dimensionless, and so it is off by factors of mf from
what is often called gf in the literature. If we assume, via TMD, that the pion tensor
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form factors are determined by f2 exchange, even as p → 0, then the normalization
of the pion’s energy determines

ff =
1

mfgfππ

= 0.042 (TMD) (22)

We cannot compare ff to experiment, but we will compare this value to predictions
from AdS/QCD below.

In summary, we wrote down the most general Lagrangian involving a spin-2 field,
the f2, which respects chiral symmetry. We assumed the f2 couples to the energy
momentum tensor of the various matter fields, like the graviton, even though the f2

is massive. Its mass, its coupling constant, and an order one factor in its coupling to
photons are all free parameters. We can fit these to the observed mass, decay rate to
pions, and decay rate to photons, but then there are no predictions. Instead, we can
assume tensor meson dominance ad hoc, which eliminates one parameter, and makes
a prediction which turns out not to much better than naive dimensional analysis.

3 AdS/QCD

Now we turn to the predictions from AdS/QCD. We will mostly follow the notation
of [3], although [2] presents an equivalent formulation. Our review will be quick, and
we refer the reader to these two papers, or to the original AdS/CFT literature [5–8]
for more details.

The basic premise of AdS/CFT is that there is a duality between a 4D conformal
field theory and a 5D gravity theory on a curved AdS background. Position in the
extra dimension corresponds to energy in the 4D theory. We will use conformal
coordinates, with the curvature scale normalized to 1, so the metric is

ds2 =
1

z2
(dx2

µ − dz2) (23)

Energy independence in the CFT corresponds to an AdS isometry which shifts z.
Small z is the high energy UV region, and large z is the IR. Though approximately
conformal in the UV (in the sense that β ∼ g3 → 0), QCD becomes strongly coupled,
and breaks conformality in IR. We avoid this awkward region by explicitly cutting
off the space at z = zm, where zm (which will be of order 1/ΛQCD) is to be fit to
data. We thus implicitly assume that asymptotic freedom sets in very quickly as we
go the UV in QCD, motivating our choice of the AdS metric.

3.1 The f2 mass

Operators in the CFT, or in this case QCD, correspond to fields in the AdS bulk.
For example, the ρ, which is a isospin triplet spin-1 meson in QCD, corresponds to
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a bulk gauge field VM in bulk. The action for VM is just

L =

∫

d5x
√

g
1

4
FMNFMN =

∫

d5z
1

z
(
1

4
F 2

µν −
1

2
F 2

µ5) (24)

More precisely, ρ is the first KK excitation of the 4-vector part Vµ(x, z), while the
other KK modes, ρn, correspond to heavier resonances with the same quantum num-
bers. Thus the ρn are 4D fields with 5D profiles determined by the vector KK
equation in AdS

z∂z
1

z
∂zVn(z) + (mV

n )2Vn(z) = 0. (25)

The generic solution is

Vn(z) = Nnz
[

J1(m
V
n z) + βnY1(m

V
n z)] (26)

We then impose boundary conditions ρ′(zm) = ρ(0) = 0, which sets βn = 0 and
quantizes the masses to be solutions of J0(m

V
n zm) = 0. The normalization is set by

∫

dzρn(z)2/z = 1 and so the ρ wavefunction is

V (z) = 2.72
z

zm

J1(2.40
z

zm

) (27)

We can then use the observed ρ mass of 775 MeV to fix zm = (323 MeV)−1.
For the f2, we need a spin-2 field in the bulk, hMN. The first KK mode of hMN

will be the f2. Of course, we already have a spin-2 field in the bulk, the graviton.
Expanding linearized gravity excitations about the AdS background

ds2 =
1

z2
(ηµν + hµν)dxµdxν − 1

z2
dz2 (28)

produces a Lagrangian
∫

d5x
√

gR5 =

∫

d5x
1

2

1

z3
[∂zhµν∂zhµν − hµν�hµν + · · · ] (29)

But since we are not demanding a fully consistent theory, we could just as well have
introduced a different spin-2 field. In fact, we expect from QCD that there are a
number of isospin singlet spin-2 particles, including glueballs, and so a complete
formulation should include a number of bulk spin-2 fields.

Each field will have a tower of KK modes, whose profiles are determined by the
tensor equation of motion

z3∂z
1

z3
∂zhn(z) + (mh

n)2hn(z) = 0. (30)

The generic solution is

hn(z) = Nnz2
[

J2(m
h
nz) + βnY2(m

h
nz)] (31)
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Boundary conditions h′(zm) = h(0) = 0 again put βn = 0 and now quantize the
masses according to J1(m

h
nzm) = 0. For the spin-2 case, the normalization is set by

∫

dzh2
n/z

3 = 1. Thus the f2 profile is

h(z) = 3.51
z2

zm
J2(3.83

z

zm
) (32)

Thus we get our first prediction. The f2 mass is predicted to be 3.83 z−1
m = 1236

MeV, which, as noted in the introduction is, only 3% off of the observed mass of 1275
MeV. In other words, we have made the zm independent prediction mf2

/mρ = 1.59
of equation (1). The experimental central values give

mf2

mρ
= 1.64 (Exp) (33)

To be fair, we have been working in the free field approximation, so that, at this
point, the f2 and ρ are infinitely narrow resonances. In fact, the widths of the f2

and ρ are 185 MeV and 146 MeV respectively, and thus there is an uncertainty in
what we should expect the resonance mass to be. So the AdS/CFT prediction is
entirely satisfactory. It is remarkable how little we had to introduce to arrive at this
prediction – no chiral symmetry breaking, no mention of the number of flavors or
colors, in fact, no matching to QCD at all. We simply assumed that the lightest spin-
2 mode is captured by a 5D massless spin-2 field (i.e. the dual of a spin-2 operator
of the lowest dimension).

3.2 Matching to QCD

Next, we will calculate the coupling constant of the f2 by matching to the operator
product expansion for the tensor-tensor two point function in QCD. We prefer to
express all the dimensionful scales in terms of zm, so we write the coupling constant
as Gf = zmgf , leaving gf as the dimensionless coupling constant associated with the
f2, directly analogous to g5 for the ρ.

For each quark, we can construct a tensor bilinear,

Θµν
q =

1

4
iq̄(γµ

↔
∂ ν + γν

↔
∂µ)q (34)

where
↔
∂ =

←
∂ −

→
∂ . This is just the energy momentum tensor for quarks in QCD [9].

The OPE we need is the ΘΘ two-point function, which can be written as

〈Θµν
q Θρσ

q 〉 = P µνρσΠq
θθ(p

2) (35)

where P µνρσ is the transverse projector (12). The constant term in the ΘΘ OPE
comes from a 1-loop quark diagram [18,20]

Πq
θθ(p

2) = − Nc

160π2
p4 ln(

p2

Λ2
) + · · · (36)
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Since we have the correlator as a function of momentum p for fixed cutoff Λ, on
the 5D side, we should think of the current as a source on the UV boundary at z = ε,

L ⊃ 1

2
gfδ(z − ε)hµνΘ

µν (37)

Then the ΘΘ correlator can be derived from an effective 4D action at z = ε, with
the fifth dimension integrated out:

〈ΘµνΘρσ〉 =
4

g2
f

(

δ

δhµν

δ

δhρσ
eiSeff

)
∣

∣

∣

∣

h=0

(38)

The easiest way to compute this is through the bulk-to-boundary propagators K(z),
which propagates a source via hµν(z) = hµν(ε)K(z). Then the action (29) reduces
to a boundary term on the equations of motion, and we have simply

〈ΘµνΘρσ〉 = P µνρσ 4

g2
f

K ′(ε)

ǫ3
(39)

For the purpose of evaluating gf , the IR boundary conditions are irrelevant and
taking zm → ∞ we solve for K(z) directly. The solution involves the second order
Bessel function K2 [11]

K(p, z) =
z2K2(pz)

ε2K2(pε)
(40)

It is not hard to check that this satisfies (z3∂z
1
z3 ∂z + p2)K(p, z) = 0 and K(ε) = 1.

Thus the AdS prediction for the leading log in the tensor-tensor correlator is

Πθθ(p
2) =

4

g2
f

K ′(ε)

ε3
= − 1

2g2
f

p4 log p2 + · · · (41)

The right hand side of this equation presents the leading log in the small z expansion
of K2(z). Once we identify the quark content of the f2, we can match the logs in
(41) and (36) to fix gf .

To identify the f2 note that there is more than one isospin singlet state we can
construct in QCD. First, there are the quark states. But in addition, in QCD there
is a tensor glueball state. Its energy momentum tensor is

ΘG
µν =

1

4
ηµν(G

a
αβ)2 − Ga

ναGa
αµ (42)

Conveniently, the two-point function for the glueball is QCD has also been studied.
Its OPE begins [14]

〈ΘG
µνΘ

G
ρσ〉 = −P µνρσ 1

10π2
p4 ln p2 + · · · (43)

9



Now, in general, there will be kinetic mixing among the glueball and the quark states,
proportional to αs. Although, the explicit mixing is known, we will be content to
observe that one of the eigenstates should couple to the conserved current, the energy
momentum tensor. This will be the lightest state, as the αs corrections can only lift
the mass, so we identify it as the f2.

Thus we are led to take the f2 coupling to be

L =
1

2
gfhµνΘ

µν , Θµν = Θu
µν + Θd

µν + Θs
µν + ΘG

µν (44)

Hence, from QCD,

〈ΘµνΘρσ〉 = −P µνρσ(
NcNf

160π2
+

N2
c − 1

80π2
)p4 ln p2 (45)

Taking Nc = Nf = 3 and matching (41) produces to (45)

gf =
4π√

5
. (46)

And using z−1
m = 322 MeV, determined from the ρ mass, the f2 coupling constant is

Gf = gfzm = 0.0174 MeV−1 (47)

This coupling cannot be directly measured, but it lets us calculate the f2 decay rates.
It is instructive to calculate the f2 decay constant ff as well, defined in (21).

ff also appears in residue of the decomposition of the two point function ΘΘ into
meson resonances.

〈ΘΘ〉 =
∑

mesons

f 2
nm4

f

p2 − m2
n

(48)

On the AdS side, the easiest way to compute the residue is by observing that the
Dirichlet Green’s function has a similar decomposition over KK modes

G(z, z′) =
∑

KK modes

hn(z)hn(z′)

p2 − m2
n

(49)

This Green’s function is related to the bulk-to-boundary propagator by K(z′) =
(z2

m/z3)∂zG(z, z′)|z=ε and so using (39) we can relate the decay constant directly to
the wavefunction. For the f2, with wavefunction (32), we get

ff =
2

gf

1

m3
fz

3
m

h′(ε)

ε3
=

8.47

m3
fz

3
mgf

= 0.024 (50)

This also cannot be measured, but we can compare it to the prediction from TMD
(ff = 0.042). We will discuss the significance of this discrepancy after calculating
the decay rates.
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3.3 f2 → γγ

We now discuss how to introduce the photon and calculate Γ(f2 → γγ). The photon
is a vector field which is external to QCD. Nevertheless, we can consider it as a bulk
gauge field, whose zero mode, the photon, is massless. Thus the photon will have a
flat profile in the bulk

γ(z) = cγ (51)

Generally, a flat mode in AdS is not normalizable. In fact, regulating with a UV
cutoff at z = ε

∫ zm

ε

1

z
γ(z)2dz = c2

γ log
zm

ε
. (52)

Normally, this would be a serious problem, as this divergent normalization appears as
the coefficient of the photon kinetic term in the 4D action when the extra dimension
is integrated out

L = c2
γ log

zm

ε

(

1

4
F 2

µν

)

+ · · · (53)

However, the coefficient of the term is supposed to be 1/e2, and the electric charge is
divergent – it has a Landau pole. Explicitly, including only the quark contributions

1

e2(µ)
=

(

(
2

3
)2 + (

1

3
)2 + (

1

3
)2 + · · ·

)

Nc

6π2
ln(

µ

Λ
) (54)

But this means that if we set c2
γ = e2/(3π2) (for Nf = 3) then the photon kinetic term

becomes canonically normalized, −1
4
F 2

µν . We can use this divergent cγ in calculations
by just taking the renormalized value for the electric charge at the relevant energy
scale. It is satisfying that in contrast to chiral perturbation theory, where the electric
charge must be added by hand, including an order one uncertainty, here the electric
charge appears naturally from matching to QED.

Another way to model the photon is as a linear combination of the diagonal
generators of SU(3)flavor. Its coupling can then be fit from the AdS/CFT matching
to the two-point function of vector currents in QCD. Since the relevant diagram is
the same as the one-loop contribution as in the QED β-function, it leads to the same
value for cγ. Although the two ways of modeling the photon are equivalent, they have
complimentary advantages. The former nicely demonstrates that the z-dependence
of the photon profile corresponds to its running coupling, while the latter shows that
it is really only the quark contributions which we must include. For example, we do
not include the electron contribution to cγ because the electron is not part of our
AdS/QCD model.

The coupling of the f2 to the photon is determined by general coordinate invari-
ance. Using the parametrization (28), we get

L =

∫

d5x
√

gFMNFMN =
1

2
gfγγhµνΘ

γ
µν + · · · (55)
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where Θγ
µν is given in (16) and the coupling constant is determined by the overlap

integral

gfγγ = gf

∫ zm

0

dz

z
h(z)γ(z)2 = 0.671c2

γzmgf = 0.671
e2

3π2
zmgf = 2.08 × 10−3Gf (56)

If we use the value of Gf , calculated in the previous subsection by matching to QCD
(including the 3 quark and gluon contributions), this leads to gfγγ = 3.62 × 10−5

MeV−1 and a decay rate of

Γ(f2 → γγ) = 2.70 keV (AdS/QCD) (57)

Compared to the experimental rate of 2.60 ± 0.24 this is quite remarkable. All we
needed to get this rate was Nc and Nf , and the ρ mass to define MeV. In fact, we
do not even need the ρ at all. If we take zm from the measured f2 mass, zm = 333
MeV, then Γ(f2 → γγ) = 2.54 keV, which is also within experimental error.

At this point, since we have achieved a very favorable comparison to experiment,
it is useful to return to some of our assumptions. Recall that we we identified
the f2 with the energy-momentum tensor, because it is lightest spin-2 field in the
theory. Thus, in our model, the f2 is part glueball, and equal parts up, down, and
strange. If fact, some quark models suggest that the f2 and its nonet partner, the
f ′2(1525), are close to ideally mixed. That is, the f2 is mostly up and down, and the
f ′2 is almost pure strange. We have not attempted to include quark masses at this
point, so we cannot split the f2 from the f ′2, but we can nevertheless compare our
result to the results of making other assumptions about the f2 quark content. For
example, if we decouple the strange, so the f2 is up, down and glue, we would get
Γ(f2 → γγ) = 2.13 keV. It is reassuring that the 3 quark value (2.70 keV) and the
2 quark value (2.13 keV) straddle the experimental decay rate (2.60 ± 0.24 keV). If
we had not included the glueball component, by ignoring the last term in Eq. (45),
the decay rates would be 7.51 keV and 7.82 keV for the 3 quark and 2 quark cases
respectively. This lets us conclude that the f2 must have a large glueball component,
consistent with a universal coupling to the energy momentum tensor.

3.4 f2 → ππ

Thus far, we have derived two predictions – the f2 mass and the partial width
Γ(f2 → γγ) – and the only input from experiment (besides Nc and Nf) was the
ρ mass, which just set the scale. To work out the rate f2 → ππ we need more
information. We need to model chiral symmetry breaking, including both the quark
condensate and quark masses. Needless to say, the construction we will use is not
unique, and ambiguities make these predictions less accurate, and less convincing.
Since this is not the main focus of this paper, we will quickly review, and then simply
use, the formalism suggested in [3].

12



The global symmetries SU(3)L × SU(3)R of QCD map to gauge symmetries in
the AdS. So we introduce bulk gauge bosons AL

M and AR
M for the two subgroups.

In 4D, pions appear as the Goldstone bosons when the global chiral symmetry is
spontaneously broken. Since in 5D the global symmetry is gauged, the Goldstone
bosons are eaten and show up in unitary gauge as a mass term m2

AA2
M for the axial

vector boson AM = AR
M − AL

M . In the 4D description of the 5D Higgs mechanism,
the vectors Aµ eat the scalar A5 components. So in order to have massless 4D pions,
we must arrange for A5 to have a massless excitation.

The mass mA corresponds to the formation of vacuum condensates, such as 〈q̄q〉
in QCD. Thus we should think of mA as being spontaneously generated by the
expectation value of some bulk scalar field X. Since this breaking occurs in the IR,
the mass should be localized near the IR brane. However, it should have some z
dependence corresponding to the energy dependence of the operator 〈q̄q〉. AdS/CFT
tells us to match the dimension of the 4D operator to the bulk mass of a 5D field.
This is somewhat intuitive – the energy dependence of a operator is determined by its
scaling dimension, and the z dependence of a bulk field by its mass. So we assume
〈q̄q〉 is represented by the expectation value of a bulk scalar field X. The scalar
equations of motion in AdS lead to

〈X〉 = mz + ξz3 ≡ v(z) (58)

Spontaneous symmetry breaking occurs in the IR, at large z, so ξ represents the
strength of this effect. Similarly, explicit symmetry breaking due to quark masses,
which is apparent even in the UV, corresponds to the m term, which is more relevant
at small z. We will work in the massless quark limit for simplicity, and thus set
m = 0. Then the free parameter ξ corresponds to the chiral symmetry breaking
scale Λ3

QCD ∼ 〈q̄q〉.
So, the bulk action for the gauge fields in the AdS background is

S =

∫

d4xdz − 1

4z
(F L

MN)2 − 1

4z
(F R

MN)2 +
v(z)2

2z3
(AM)2 (59)

Note that the vector combination VM = AL
M + AR

M , does not have a bulk mass. So
its first KK mode will be the same ρ we introduced previously. For the axial section,
we want to decouple A5 and Aµ. To do this, we introduce Goldstone bosons and
gauge-fix, following [3]. This separates the pions from the axial vectors.

After this gauge fixing, the KK equation for the axial vector is

[

m2 − 2
v(z)2

z2
+ z∂z

1

z
∂z

]

an(z) = 0 (60)

We can use this and the experimental a1 mass to fix ξ. With boundary conditions
a′(zm) = a′(0) = 0, and using z−1

m = 322MeV from the ρ mass, we find, numerically,
an eigenvalue at the a1 mass of 1230 MeV for ξ = 3.77z−3

m .

13



The zero mode of A5 represents the physical pions. The KK profile for this mode
satisfies

∂z

(

z3

2v(z)2
∂z

(

1

z
A5(z)

))

= A5(z) (61)

The solution is

A5(z) = Nξz3

[

I2/3(

√
2

3
ξz3) − βπK2/3(

√
2

3
ξz3)

]

(62)

Although we have not imposed boundary conditions, A5(0) = 0 automatically. This
is essentially set by the fact that we insist on having a massless mode. The boundary
condition A5(zm) = 0 then sets βπ. The normalization is determined by a z integral

−
∫

dz

[

1

z
A5(z)2 +

1

z

z3

2v(z)2
(∂z

1

z
A5(z))2

]

= 1 (63)

On the solution for A5(z), the expression in brackets is a total derivative, which lets
us calculate the normalization analytically

N−1/2 =
I2/3(

√
2

3
ξz3

m)

2K2/3(
√

2
3

ξz3
m)2

[

√
3πI2/3(

√
2

3
ξz3

m) + 3K2/3(

√
2

3
ξz3

m)

]

(64)

Thus, identifying this mode with the pion wavefunction, we have

π(z) = Nξz3

[

I2/3(

√
2

3
ξz3) − I2/3(

√
2

3
ξz3

m)

K2/3(
√

2
3

ξz3
m)

K2/3(

√
2

3
ξz3)

]

(65)

Now we can calculate gfππ.
The coupling of f2 to the pions is determined by general coordinate invariance.

Since everything is canonically normalized, we simply evaluate the overlap of the f2

with the combination that appears in the kinetic term for π.

gfππ = gf

∫

dzh(z)

[

1

z
π(z)2 +

z3

2v(z)2
(∂z

1

z
π(z))2

]

= 0.519zmgf = 0.519Gf (66)

So we predict for the Gf -independent ratio

g2
fππ

g2
fγγ

= 6.24 × 104 (AdS/QCD) (67)

Compared to the experimental value of 2.72 × 105 this is off by a factor of 4. Using
our previous result, Gf = 0.0174 MeV−1, we get gfππ = 9.05 × 10−3 MeV−1, and
predict

Γ(f2 → π+π−, π0π0) = 37.4 MeV (AdS/QCD) (68)
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This also off from the experimental value of 156.9 ± 3.8 MeV by a factor of 4.
This factor of 4 is from the same origin as the factor of 2 discrepancy between ff

from AdS/QCD (ff ∼ 0.02) and ff from TMD. After all, in TMD, ff is extracted
from the f2 → ππ rate. In AdS/QCD, there is a conflict between the decay rates to
photons and to pions, because they depend on the same parameters; but we will now
see that it is justifiable, and it is good that the photon rate is the one which comes
out right.

4 Higher order operators

We can understand why the decay to photons was so accurate, but the decay to pions
was so far off by looking at higher dimension operators. Because the f2 is heavy,
1275 MeV, compared to the naive cutoff of the chiral Lagrangian, 4πfπ = 1168 MeV,
we expect chiral perturbation theory not to be accurate in the f2 sector. We can
also see the breakdown of perturbation theory on the AdS side, by looking at where
higher dimension derivative operators become relevant. Let us now consider some of
these operators, relevant to the f2 → ππ process.

Since we are interested in f2 → ππ we want operators linear in h and quadratic
in AM . The term we have been using to calculate gfππ was determined by general
coordinate invariance and the π kinetic term. It is, roughly,

∫

d5x
1

z
gfhµν(∂µA5)(∂νA5) = (0.209)Gf

∫

d4xhµν(∂µA5)(∂νA5) (69)

The number 0.209 comes from the z-integral, with the f2 and π wavefunctions. The
difference from (66) is because we have simplified the tensor structure, but it is the
same order of magnitude.

A possible higher order term, leading to exactly the same 4D structure is
∫

d5x
1

z
gfhµν(∂µA5)(z

2∂2
z )(∂νA5) = (−1.57)Gf

∫

d4xhµν(∂µA5)(∂νA5) (70)

This could come from the 5D general coordinate invariant term
∫

d5x
√

gFMNDNDPFPM (71)

Or
∫

d5x
1

z
gf(z

2∂2
zhµν)(∂µA5)(z

2∂2
z )(∂νA5) = (5.05)Gf

∫

d4xhµν(∂µA5)(∂νA5) (72)

which might come from
∫

d5x
√

gRMNOP(h)F MNF OP , (73)
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where RMNOP(h) is invariant under hµν → hµν + ∂µξν(x) + ∂νξµ(x). Note that lin-
earized R̃µν(h) = Rµν(h)−4/z2hµν (the combination invariant under the above shift)
vanishes when the f2 is on shell.

We could assume that these terms are suppressed compared to the leading piece
by some factors of the weak coupling constant gf . At best, we could use the 5D
loop factor, and suppress by g2

f/24π3 = 0.04. Thus the correction (70) contributes
30% relative to the original term (69), which is not a small effect. With the 4D loop
factor, 16π2, the new term is 1.5 times as important as the original. Either way,
there is no excuse to ignore the higher order corrections and we cannot reasonably
expect our rate f2 → ππ to be at all accurate. In fact, it is surprising that we were
even able to get the coupling constant to a factor of 2.

In contrast, consider the terms contributing to corrections to f2 → γγ. At leading
order, we had

∫

d5x
1

z
gfhµνFµαFνα = (0.671)Gf

∫

d4xhµνFµαFνα (74)

Any correction to the f2 → γγ rate has to come from a vertex with one h and two
F ′s. But the photon profile is flat, so any term with ∂z’s acting on F will vanish.
Terms with ∂µ acting on F (like the Riemann term above) may appear, but they
cannot contribute to the decay rate because the photon is massless and transverse –
there is nothing to which we may contract the new momentum factor.

One might worry that term such as
∫

d5x
√

gFMND2FMN (75)

could contribute if the derivatives are ∂z’s and they act on the background metric.
But the effect is then only to shift the coupling constant g5, which is unobservable
because the renormalized coupling has been matched to QCD. Another way to see
this is that on shell D2FMN ∼ 1/z2FMN which is the standard gauge kinetic term.
Thus, the contribution of (75) has already been accounted for in the definition of g2

5.
So no operators, analogous to the ones relevant for the pion decay, affect the photon
decay mode at all.

Throughout, we have been ignoring boundary operators on the IR brane. But
these can affect the photon decay rate, and should be included in a consistent effective
field theory. The natural size of a term like δ(z − zm)hF 2 is of order zm times
g2

f/16π2 = 0.20, or about .04Gf . Comparing to (74) we expect corrections of order
10% to the f2 photon coupling. In addition, some other assumption could be wrong.
For example, αs corrections have not been included – we have assumed that QCD
is conformal. So this can change the result as well. Really, we could not have
known ahead of time that we would get f2 → γγ so precisely. Nevertheless, the rate
came out right, and it is suggestive that the contribution of boundary operators and
violations of conformality are small.
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5 Higher Spin States

In addition to the f2, which we have studied here, QCD has a whole tower of high
spin resonances (for example, the f6 with spin 6 sits at 2510 MeV). In this section,
we derive the predictions of AdS/QCD for their masses, and compare to experiment.

A spin s state in QCD corresponds to a field φM1M2...Ms
in AdS. Ideally, we

would like to write down an action for φ, but higher spin Lagrangians are in general
very complicated. For example, even at the free field level in flat space, one needs to
introduce on the order of s auxiliary fields to eliminate the propagation of unphysical
modes. Instead, we will take a more direct approach, and simply use symmetry
arguments to guess the equations of motion for the transverse spin-s modes.

It is natural to expect the AdS theory for φ to respect a linearized gauge invari-
ance, under which

φM1M2...Ms
→ φM1M2...Ms

+ D{M1
ξM2...Ms}, (76)

Such a symmetry allows us to go to an axial gauge in which φ5M2...Ms
= 0. In AdS, it

is not hard to show that this gauge is preserved under residual transformations with
ξ5M3...Ms

= 0 and ξµ2...µs
(x, z) = z2−2sξµ2...µs

(x). This means that a field φ(x, z) =
z2−2sφ̃(x) simply shifts under the 4D gauge transformation, and therefore represents
a zero mode. In terms of φ̃, in this axial gauge, the Lagrangian contains a piece√

g(∂µφ)2 = z1−2s(∂µφ̃)2 and a similar piece with ∂z’s acting directly on φ̃. Thus the
KK modes for a field of spin s will satisfy

∂z
1

z2s−1
∂zφ̃ +

m2

z2s−1
φ̃ = 0 (77)

Note that this equation is just a naive generalization of (25) and (30) and matches
previous results for spins 1 and 2.

We can confirm this result from AdS/CFT reasoning as well. On the QCD side,
the lowest dimension operator of spin s, may contain terms like

q̄γ{µ1
∂µ2

....∂µs}q

Gρ
{µ1

∂µ2
....∂µs−1

Gµs}ρ. (78)

These operators are of dimension ∆ = s + 2. Under conformal transformations,
operators scale based on their twist ∆ − s. Thus a constant bulk field, representing
the vev of such an operator, should vary as φ ∼ z2. The source for the operator J∆

has dimension 4 − ∆ = 2 − s and so it sources a field which varies like φ ∼ z2−2s.
This is the same AdS zero mode solution we derived by symmetry arguments above.

The normalizable solutions to (77) are zsJs(mz). Requiring Neumann boundary
conditions in the IR, we find that the mass of the lightest spin-s particle is given by
the first zero of Js−1. This leads to the following predictions for spin-s resonances
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in QCD

Particle ρ f2 ω3 f4 ρ5 f6

Experiment(MeV) 775.8 1275 ± 1 1667 ± 4 2025 ± 8 2330 ± 35 2465 ± 50
AdS/QCD(MeV) −− 1236 1656 2058 2448 2829

Note that we have neglected the effects of quark masses and so we are not sensitive
to isospin. In Figure 5, we plot the squared masses from this table as a function of
spin. We also display the linear fit to the experimental values, which is the Regge
trajectory, and the quadratic curve through the AdS/QCD points. Note that the
AdS/QCD results take only mρ from data, but provide a good estimate of both
the intercept and slope of the Regge trajectory. Although the linear fit is an good
match to data, the quadratic fit from AdS/QCD seems to produce deviations at low
energy in the right direction. It is expected that at higher energy, stringy effects are
dominant, and we should merge smoothly back into the linear regime.

1 2 3 4 5 6
spin

2

4

6

8

10
mass2 HGeV2

L

Figure 1: Squared masses from AdS/QCD (red) verses experiment (blue), as a func-
tion of spin. Linear (Regge) fit to experimental values and quadratic fit to AdS/QCD
values are shown. The errors shown are due to the widths of the resonances.

We might try to calculate the decay rates of these particles as well. There are two
main impediments. First, none of the decay modes are well measured. Second, we do
not know how to write down interactions for higher spin fields. For the spin-2 case,
we used general coordinate invariance to guess the f2 couplings. But for higher spin
fields, it is impossible to find a consistent set of interactions (there can be no higher
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spin conserved current), at least in flat space4. Yet we know massive higher spin
fields exist in QCD, and we can try to guess these interactions, or perhaps compute
them using the holographic map.

6 Conclusions

In this paper, we have shown that despite obvious challenges, the AdS/CFT corre-
spondence produces some remarkably accurate predictions about QCD. We saw that
the mass for the f2 meson and the rate for f2 → γγ are in fantastic agreement with
experiment. The f2 → γγ prediction is particularly satisfying, because it is diffi-
cult to approach this decay through more traditional methods. Moreover, we have
demonstrated that higher-dimension bulk operators do not affect this decay rate, and
so our results are trustworthy. In contrast, we also calculated the rate for f2 → ππ,
which was off by a factor of 4. This rate is sensitive to higher order corrections, and
to our representation of chiral symmetry breaking in AdS/CFT. Thus our results are
predictions of a self-consistent effective field theory which matches remarkably well
to QCD at leading order.

We have also shown that the naive expectation from AdS/CFT, that the lightest
state of a given spin is captured by the lowest dimension operator with that spin,
seems to be favored by data. This indicates that not only is AdS/QCD capable
of quantitative success, but also that it may reveal interesting connections between
QCD and its dual. For example, we have seen that the f2 makes an awful 4D
graviton. In contrast, on an AdS5 background, general coordinate invariance allowed
us to predict the f2 coupling to photons correctly, making it a natural 5D graviton
KK mode.
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