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Abstract 

 In this study we derive a methodology for calculating discontinuity factors consistent with the 

Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for 

hexagonal reactor geometries.  The accuracy of coarse-mesh nodal methods is greatly enhanced 

by permitting flux discontinuities at node boundaries, but the practice of calculating 

discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be 

sufficiently accurate for more challenging problems in which there is a large amount of 

internodal neutron streaming.  The authors therefore derive a TPEN-based method for 

calculating discontinuity factors that are exact with respect to generalized equivalence theory.  

The method is validated by reproducing the reference solution for a small hexagonal core.   

1.  Introduction 

Solving the neutron diffusion equation with high spatial resolution can become very 

computationally intensive at the geometrically detailed full-core level.  An alternative to this 

approach is to subdivide the reactor core into homogenized nodes where each node usually 

corresponds radially to a single fuel assembly.  One gains the advantage of reducing the number 

of spatial meshes in the problem but is faced with the disadvantage of poor spatial resolution and 

high discretization errors associated with large meshes.  To compensate for these disadvantages 

higher fidelity nodal updates are applied periodically during the coarse mesh iterations.  The 

nodal updates improve upon the coarse mesh solution by generating spatial expansions of the 

neutron flux within each node.  These local expansions are used to force a higher order of 

accuracy on the global solution through the use of corrective coupling coefficients. 

The homogenized nodal cross sections are computed so that reaction rates are conserved, but it 

has been shown that there are insufficient degrees of freedom to simultaneously conserve 

reaction rates, leakages and the multiplication eigenvalue [1].  Generalized equivalence theory 

(GET) solves this problem by introducing additional degrees of freedom at node boundaries.  
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Specifically, the scalar neutron flux of the homogenous calculation is allowed to be 

discontinuous at node interfaces.  The discontinuities are prescribed such that the heterogeneous 

neutron flux (i.e. the flux solution without homogenization) is made continuous at the 

boundaries.  This condition can be written 

  , , , ,

, ,

m s m s n s n s

g hom g g hom gf fφ φ=  

where ,

,

n s

g homφ  is the group g homogenous scalar flux on bounding surface s of node n.  The 

discontinuity factor can therefore be defined 
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In general, the heterogeneous flux will not be known.  A common approximation is to perform 

an infinite medium (zero-current) calculation of a single node using an accurate transport method 

and use this result as an approximation to the heterogeneous solution [1].  In this case, the 

homogenous flux is spatially flat, and the discontinuity factor can be expressed as the ratio of the 

surface average heterogeneous flux to the node average heterogeneous flux.  The zero current 

approximation may not produce accurate nodal parameters in some cases, such as in small 

reactor problems with significant internodal streaming.  Also, in benchmarking applications it 

may be desirable to avoid the zero-current approximation solely to isolate errors arising from 

other aspects of the methodology. 

To avoid the zero-current approximation one must compute reliable values of both the 

heterogeneous and homogenous surface fluxes for all nodal interfaces in the core.  If we assume 

that the reference heterogeneous solution is known, one must only compute the homogenous 

solution and Equation (1) can be solved exactly.  The methodology for computing the 

homogenous flux in the denominator of Equation (1) must be consistent with the methodology 

that will be used in the calculation of the global homogenous solution and will therefore be 

unique for different nodal methodologies.  In the current study the authors derive such a 

methodology for the Triangle-based Polynomial Expansion Nodal (TPEN) [2] method, which is 

the hexagonal method employed by the Purdue Advanced Reactor Core Simulator (PARCS) [3].  

A brief overview of important elements from the TPEN methodology is presented in the 

following section, followed by the derivation of a method capable of calculating discontinuity 

factors for TPEN-based nodal reactor calculations.  Finally, we use the new methodology to 

compute discontinuity factors for a small example problem and compare our nodal results with 

the reference heterogeneous solution. 

2.  TPEN Methodology 

The underlying theory of the TPEN methodology is documented [2-4], so this section will 

provide only a brief overview, emphasizing certain aspects that are important for the derivation 

presented in the next section.   
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In TPEN, 2D hexagonal nodes are subdivided into six triangular domains.  The scalar flux is 

expanded within each triangular domain by a nine-term, third order polynomial: 

  2 2 2 3 3 3

0( , )m m m m m m m m m m

g g gx gy gx gu gp gx gu gpx y c a x a y b x b u b p c x c u c pφ = + + + + + + + +  

where x, u, and p are the local coordinates normal to the three triangle surfaces.  The x direction 

is normal to the surface corresponding to the outer surface of the hexagon, while u and p are 

normal to the inner surfaces: 
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The flux expansions for each of the six triangles can be coupled and written as a sparse linear 

system for which there is an efficient algebraic solution.  The boundary conditions for this 

system are the incoming partial currents along each of the exterior hexagonal surfaces and the 

point fluxes at each of the hexagon’s six corners.  The incoming partial currents can be computed 

by 
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where the surface averaged flux and current are written, respectively, 
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where surface k is the coincident surface between nodes m and n, and m

gφ  is the group g  node-

averaged flux in node m.  The factors D̂  and α̂  are corrective coupling coefficients updated after 

each TPEN nodal iteration, calculated by solving Equations (3) and (4) using updated values of 

the surface current and flux.  Note that the surface flux given by Equation (4) has been denoted 

the heterogeneous flux.  This is because this value of the flux is identical for both nodes m and n, 

implying a continuity of flux at this surface which, in turn, means that this value should converge 

to the heterogeneous value of the flux.  Equation (2) can be rewritten in these terms by 
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In addition to the incoming current, the corner point fluxes are needed to compute the TPEN 

solution.  There is not a straight forward way of computing these values using corrective 

coefficients like in Equations (3) and (4), so another approach must be taken.  In PARCS, the 

corner points of all nodes in a given plane are coupled using a corner point balance.  The corner 

point flux for each node is computed by expanding the intra-hexagonal flux in a 13-term 

polynomial whose coefficients are expressed in terms of the node averaged flux, 6 surface 

averaged fluxes and 6 corner point fluxes.  The node averaged fluxes are assumed to be known 

from the coarse mesh calculation, and the surface averaged fluxes are computed by Equation (4), 

which should again be multiplied by the inverse of the discontinuity factor to yield the 

homogenous surface flux.  This leaves only the 6 corner point fluxes as unknowns.  The resulting 

corner point system of linear equations is strongly diagonally dominant and efficiently solved by 

a Gauss-Seidel method. 

3. Calculation Of Discontinuity Factors 

Our goal is to compute exact discontinuity factors defined by Equation (1).  If we assume that the 

heterogeneous reference solution is known, then the numerator of the right hand side of Equation 

(1) should also be known.  The remaining task is therefore to compute the homogenous solution.  

This can be done by solving the TPEN system of equations for each node in the core given 

boundary conditions from the reference solution.  As was shown in the previous section, 

however, the boundary conditions to the TPEN problem, both the incoming partial current and 

the corner point fluxes, depend on the homogenous surface flux and therefore require a priori 

knowledge of the discontinuity factors. 

3.1. Reformulation of TPEN boundary condition 

In order to solve the TPEN “1-node” problem for the homogenous surface flux, the boundary 

condition must be changed to a quantity that will be preserved between the heterogeneous and 

homogenous problems and can therefore be taken directly from the reference solution.  In the 

current study this is accomplished by replacing the incoming partial current with the surface net 

current by making the substitution 

  , , , , ,inc m k out m k m k

g g gj j J= − . (6) 

The outgoing partial current is already an unknown in the TPEN system, and the net current is 

taken from the reference solution.  This substitution has the advantage of not changing the 

structure of the TPEN linear system, so the same efficient algebraic solver can be used with only 

slight modification to the matrix coefficients. 

3.2. Corner point solution methodology 

In the original TPEN methodology, the corner point fluxes were determined from a linear system 

expressed in terms of node average fluxes and (homogenous) surface fluxes.  A new approach 

must now be taken since the homogenous surface fluxes are not known from the reference 

solution.  One possible solution is to derive the polynomial expansion coefficients in terms of net 

surface currents instead of surface fluxes.  This new formulation, however, results in a linear 
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system which is no longer diagonally dominant and is also unstable.  Since the same 

methodology must be used when generating discontinuity factors as when generating the final 

nodal solution, the PARCS implementation of the corner point solver would also need 

modification.  Replacing the efficient solver currently in PARCS with a less stable one is 

undesirable. 

An alternative approach is to determine the discontinuity factors by iterating between the TPEN 

and corner point solvers.  This approach has the advantage of maintaining the numerical benefits 

of the original formulation and avoiding modification of PARCS.  An algorithmic description of 

the iterative process follows, where f 
(n)

 is the set of discontinuity factors at the n
th

 iterate and 
( )n

hom
φ  is the set homogeneous surface fluxes at the n

th
 iterate: 
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The convergence properties of this method have not been rigorously demonstrated.  In the 

following example problem, it was observed that the iterations produced negative corner point 

and surface fluxes in some areas of the core with steep flux gradients.  In order to aid 

convergence and ensure a physical solution, limits were placed on the possible values of 

discontinuity factors.  For the problem that follows, the maximum allowable discontinuity factor 

was set to 4.  This prevented the non-converged homogenous surface fluxes from becoming too 

small.  It was observed that the solution changed very little when the maximum discontinuity 

factor was limited between 3 and 8.  When this limit was greater than or equal to 9 the PARCS 

solution would not converge.  When the limit was less than 2 the discontinuity factors did not 

allow enough freedom in the homogenous solution to produce accurate solutions.  The 

convergence tolerance, ε, was set to 10
-8

. 

4. Results 

The above methodology was tested in two dimensions and two groups on a small problem with 

19 fissile nodes and a water reflector.  A fine-mesh diffusion solution was generated with the 

PDQ diffusion theory code to provide the heterogeneous reference solution (keff = 0.989403).  

PARCS was used to generate the nodal diffusion solution both with and without discontinuity 
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factors developed by the above method.  A nodal solution was also generated for comparison 

using the hexagonal nodal expansion method (NEM) from NESTLE [5].  Table I gives the 

effective multiplication errors in pcm [10
-5

] and summarizes the nodal power errors in terms of 

the root-mean-square error (RMS), mean-relative error (MRE), maximum error (MAX) and error 

at the node of highest power.  Note that the NESTLE solution was generated without 

discontinuity factors, since a methodology for computing discontinuity factors consistent with 

NEM in hexagonal geometry has not been derived. 

  TABLE I.  Solution Comparison 

NESTLE (NEM) PARCS (TPEN) w/o DF PARCS (TPEN) w/ DF

∆keff -3016 pcm 865.4 pcm  0.208 pcm

Power, RMS 3.30% 2.91% 0.02%

Power, MRE 2.85% 1.75% 0.01%

Power, MAX 7.23% 8.59% 0.05%

Max Power 2.02% 0.85% 0.003%  

As shown in the table, adding discontinuity factors to the PARCS nodal calculation reproduced 

the reference solution almost exactly. 

5. Conclusions 

We have described a methodology for generating assembly discontinuity factors for hexagonal 

reactor calculations that is capable of reproducing the reference solution.  This methodology is 

certainly useful for benchmark calculations.  It would be insightful for future studies to 

investigate the sensitivity of these discontinuity factors to their core environment and better 

establish the accuracy of this method.  This study applied limits on the discontinuity factors by 

trial and error to ensure stable convergence to a physical solution.  It would be desirable to make 

the method more robust by better understanding the convergence properties of the iterations. 
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