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Abstract 

 
In this report, we summarize our work on developing a production level foam 
processing computational model suitable for predicting the self-expansion of foam in 
complex geometries. The model is based on a finite element representation of the 
equations of motion, with the movement of the free surface represented using the 
level set method, and has been implemented in SIERRA/ARIA. An empirically based 
time- and temperature-dependent density model is used to encapsulate the complex 
physics of foam nucleation and growth in a numerically tractable model. The change 
in density with time is at the heart of the foam self-expansion as it creates the motion 
of the foam. This continuum-level model uses an homogenized description of foam, 
which does not include the gas explicitly. Results from the model are compared to 
temperature-instrumented flow visualization experiments giving the location of the 
foam front as a function of time for our EFAR model system. 
 



4 

 
 
 

 
 
 



5 

ACKNOWLEDGMENTS 
 
We appreciate the funding provided by ASC to develop this model, implement it in 
SIERRA/ARIA, and write this SAND report. The model would be nothing without the 
experimental team who made experimental discoveries for model development, determined 
parameters to populate the model, and provided validation data. The experimental team, in 
addition to authors Lisa Mondy and Doug Adolf, includes Anne Grillet, Ed Russick, Chris 
Brotherton, Chris Bourdon, Allen Gorby, Ray Cote, Jaime Castañeda and Kyle Thompson. 
Thanks especially to Anne and Ed for jumping in and getting results at the 11th hour. Andy 
Kraynik has been invaluable for pointing us in the right direction for correlations from the foam 
literature and his general knowledge of foam. Jim Mahoney from Kansas City Plant is our muse 
and has inspired this project by politely asking for a foam self-expansion modeling tool since 
none are commercially available at the present time. He has also tirelessly provided meshes and 
geometries, adding and changing the boundary conditions at my insistence. 
 
 



6 



7 

CONTENTS 
 

1. Introduction .................................................................................................................. 11 
1.1. Background................................................................................................................... 11 
1.2. Composition of EFAR and REF, Mixing and Foaming Protocols ............................... 12 

2. Continuum Model......................................................................................................... 15 
2.1. Continuum- Level Model for Foaming Materials......................................................... 15 
2.2. Material Models for Continuum Equations .................................................................. 16 

2.2.1. Variable Density Models ................................................................................ 16 
2.2.2. Epoxy Polymerization Model ......................................................................... 21 
2.2.3. Viscosity Models ............................................................................................ 25 
2.2.4. Gas Production Model .................................................................................... 31 
2.2.5. Thermal Properties Model .............................................................................. 32 

3. Numerical Method........................................................................................................ 35 
3.1. Interface Tracking via the Level Set Method ............................................................... 35 

3.1.1. Property Evaluation ........................................................................................ 36 
3.1.2. Surface Tension .............................................................................................. 37 
3.1.3. Redistancing Algorithm.................................................................................. 38 

3.2. Finite Element Discretization ....................................................................................... 39 
3.2.1. Pressure Stabilization...................................................................................... 41 
3.2.2. Taylor-Galerkin Upwinding for Level Set Equation ...................................... 42 
3.2.3. Streamline Upwind Petrov-Galerkin for the Momentum Equation................ 42 

3.3. Matrix Equations and Krylov-Based Iterative Solvers ................................................. 43 
3.4. Geometry, Mesh, Initial Conditions, and Boundary Conditions .................................. 44 

3.4.1. Finite Element Mesh and Boundary Conditions............................................. 45 
3.4.2. Initial Conditions ............................................................................................ 46 

3.5. Mass Conservation........................................................................................................ 47 

4. Results .......................................................................................................................... 49 
4.1. Experimental Validation Studies in QA Fixture........................................................... 49 
4.2. Finite Element Results .................................................................................................. 51 

4.2.1. Isothermal, Time-Dependent Density Model ................................................. 51 
4.2.2. Nonisothermal, Time- and Temperature-Dependent Density Model, Full 
Variable Property Models ............................................................................................ 54 
4.2.3. Nonisothermal, Time- and Temperature-Dependent Density Model, Variable 
Property Models with a Simplified Viscosity Model ................................................... 61 

5. Conclusions and Future Work...................................................................................... 65 

6. References .................................................................................................................... 67 

Appendix A:  Foam Material Properties and ARIA Input File..................................................... 71 

Distribution ................................................................................................................................... 79 
 
 
 
 



8 

FIGURES 
 
Figure 1. Epoxy foam starts out as an emulsion and probably nucleates heterogeneously. ......... 13 
Figure 2. Height increase as a function of time for foam rise in a 65oC oven. ............................. 17 
Figure 3. Temperature and pressure in foam rise rate experiments.............................................. 18 
Figure 4. Density of a foam sample with time.............................................................................. 19 
Figure 5. Foam density evolution as measured in original experiments at various temperatures, 
compared to equation (8) with C(T)=A/T-B.................................................................................. 20 
Figure 6. Foam density evolution at two temperatures. Symbols are data and lines are predicted 
from equation (8) assuming no initial air content (ρinitial = 1.14).................................................. 21 
Figure 7. Raw DSC date giving heat flow with time for various isothermal experiments (top) and 
time-temperature shifted DSC data so all temperatures fall on the same master curve (bottom). 22 
Figure 8. Experimental data compared to curve fits of the reaction rate, dζ/dt............................ 23 
Figure 9. Experimental data compared to curve fits of the extent of reaction.............................. 24 
Figure 10. Viscosity prediction for the continuous phase viscosity, e.g. without foaming .......... 26 
Figure 11. Effects of Fluorinert on Epoxy Viscosity. Room temperature experiments show the 
viscosity of the epoxy with and without the fluorinert emulsion phase. ...................................... 27 
Figure 12. Temperature ramp in the free-rise experiment used to predict gas content. ............... 28 
Figure 13. Parallel plate viscometry of evolving EFAR20 foam.................................................. 29 
Figure 14. Foam viscosity experiments (blue) plotted with Mooney Taylor theoretical viscosity 
model (pink) for foam viscosity as a function of gas volume fraction. ........................................ 30 
Figure 15. Kansas City mold (left), as seen in the videos and annotated (right). ......................... 45 
Figure 16: Tetrahedral Mesh for QA Test Fixture........................................................................ 45 
Figure 17. Initial Condition for Level Set Function ..................................................................... 47 
Figure 18. Experimental validation data for QA test fixture ........................................................ 49 
Figure 19. Temperature as a function of time at various locations in the QA test fixture............ 50 
Figure 20. X-ray CT of a part giving density of the final part. The value in the box outlined by a 
dotted line represents the difference between the lowest and highest boxed region density values.
....................................................................................................................................................... 51 
Figure 21. Comparison of ARIA results with flow visualization data. Simulations fill slower 
initially than the experiments, than fill faster at later times.......................................................... 52 
Figure 22. Time and place where knit lines come together for ARIA simulations for time-
dependent density model and experimental flow visualization: Left is simulation at time=156.1s 
and right is data at time=236.4s. Red arrows indicate the place where knit lines join in the mold.
....................................................................................................................................................... 52 
Figure 23. Comparison of volume as a function of time for the ARIA results and flow 
visualization experimental data [Grillet, 2008].  Experiments fill faster than simulation at early 
times and then are slower than simulation at later times. ............................................................. 53 
Figure 24. Simulation results for foam self-expansion as a function of time using full model with 
all variable properties.................................................................................................................... 54 
Figure 25. Comparison between simulation and experiment for full model with variable 
properties, heat transfer and polymerization................................................................................. 55 
Figure 26. Time and place where knit lines come together for ARIA simulations for full model 
and experimental flow visualization: Left is simulation at time=132.1s and right is data at 
time=236.4s. Red arrows indicate the place where knit lines join in the mold. ........................... 55 



9 

Figure 27. Comparison of volume as a function of time for the full ARIA model and flow 
visualization experimental data.  Experiments fill faster than simulation at early times and then 
are slower than simulation at later times, though numerical issues ended the simulation early. 
The theoretical volume from the density model used in simulations is also plotted for reference 
(pink squares)................................................................................................................................ 56 
Figure 28.  Volume as a function of time for flow visualization experiments (blue) fit to a 
theoretical volume, based on a consistent density model (pink squares). To match the volume 
data the initial density is 1.14g/cc, the final density is 0.36g/cc and the time dependent exponent 
is 1/55s at 65oC. ............................................................................................................................ 57 
Figure 29. Property variation in the foam as a function of time for density, shear viscosity, bulk 
viscosity, heat capacity, thermal conductivity, and gas volume fraction...................................... 58 
Figure 30. Maximum temperature and extent of reaction as a function of time........................... 59 
Figure 31. Temperature contours at a slice in the center of the mold........................................... 60 
Figure 32. Temperature profiles from simulation for TC101 (blue), TC103 (yellow) for a 
temperature initial condition of 43oC............................................................................................ 60 
Figure 33. Temperature profiles from simulation for TC101 (blue), TC103 (yellow) for a 
temperature initial condition of 52.7oC......................................................................................... 61 
Figure 34. Comparison between simulation and experiment for full model with variable 
properties, heat transfer and polymerization, but using a curing epoxy viscosity model without 
the effects of gas bubbles.............................................................................................................. 62 
Figure 35. Time and place where knit lines come together for ARIA simulations for full model 
and experimental flow visualization: Left is simulation at time=164.0s and right is data at 
time=236.4s. Red arrows indicate the place where knit lines join in the mold. ........................... 62 
Figure 36. Comparison of volume as a function of time for ARIA simulations and flow 
visualization experimental data. Similar to the other models, the experiments fill faster than the 
simulation at early times and then slower than the simulation at later times. .............................. 63 
Figure 37. Property variation in the foam as a function of time for density, bulk viscosity, shear 
viscosity, heat capacity, conductivity, gas volume fraction for simpler curing viscosity model. 64 
Figure 38. Conceptual representation of the foam nucleation process. Blue bubbles represent the 
gas phase. The black bubbles represent fluorinert liquid-phases inside a continuous epoxy phase, 
shown as white. Due to the different densities between the black and blue phases, there exists a 
relative motion leading to enhanced collisions............................................................................. 66 
 
 

TABLES 
 
Table 1. Epoxy Foam Formulations Used in this Study ............................................................... 12 
Table 2.  Epoxy Polymerization Kinetic Parameters .................................................................... 25 
Table 3.  Curing Epoxy Viscosity Model Parameters................................................................... 27 
Table 4.  Parameters for Gas Evolution Model............................................................................. 31 
Table 5.  Thermal Model Parameters............................................................................................ 33 
 



10 

NOMENCLATURE 
 
 
ASC Advanced Strategic Computing 
AF&F Arming, Fuzing, and Firing 
C6 Campaign 6 
DOE Department of Energy 
DSC Differential Scanning Calorimeter 
EFAR Epoxy Foam Able Replacement 
KCP Kansas City Plant 
REF Removable Epoxy Foam 
SNL Sandia National Laboratories 
 
 
 



11 

1. INTRODUCTION 
 
 
1.1.  Background 
 
Foams are ubiquitous low density materials used for a variety of applications including shock, 
thermal, and vibration isolation of electronic components, disposable containers, and energy 
production. Foams are used widely in the weapons’ complex as encapsulants to protect sensitive 
electronic components from shock and vibration. Despite their many uses, foams are still not 
well understood at a fundamental level [Seo et al., 2003; Mao et al, 2006]. Two major categories 
of foam exist: chemically blown foams and physically blown foams. Chemically blown foams 
expand via reactions that produce a gas phase during polymerization, e.g. polyurethanes, while 
physical blown foams begin with a dissolved blowing agent that boils to produce cells either by 
increasing the temperature or decreasing the pressure. For our applications, we are interested in 
blown foams, such as EFAR (Epoxy Foam Able Replacement) and REF (Removable Epoxy 
Foam) used to encapsulate portions of the AF&F. These foams start off as an emulsion of 
fluorinert blowing agent in epoxy monomer and curative. Once this emulsion is formed, the foam 
precursor is injected into the mold and inserted into an oven to boil the fluorinert and produce 
foam. The complex interplay between heat transfer, polymerization, boundary conditions and 
nucleation of fluorinert can make predetermination of the final foam density and amount needed 
to fill the mold difficult. The goal of this work is to use the data provided by the Campaign 6 
(C6) Foam Processing Project to better our understanding of the physical process of epoxy foam 
blowing and to use that understanding to build an engineering model, which, in turn, can be used 
to predict the foaming process. This model, in turn, will be used to address processing issues in 
foam such as voids, incomplete embedding, and inhomogeneous properties and microstructure 
that can lead to production delays and potential SFIs. Beyond troubleshooting, the model can 
also improve foam encapsulation by optimizing gate and vent locations, material properties, and 
processing conditions. 
 
In this report, we summarize our work on developing a production level, foam processing 
computational model suitable for predicting the self-expansion of foam in complex geometries. 
The model is based on a finite element representation of the equations of motion, with the 
movement of the free surface represented using the level set method and has been implemented 
into the SIERRA/ARIA mechanics code. An empirically based time- and temperature-dependent 
density model is used to encapsulate the complex physics of foam nucleation and growth in a 
numerically tractable model. The change in density with time is at the heart of the foam self-
expansion as it creates the motion of the foam. This continuum-level model uses an 
homogenized description of foam, which does not include the gas explicitly, but only through the 
density model. The viscosities, shear and bulk, are a complex function of temperature, degree of 
polymerization, and gas bubble volume fraction. For our epoxy foams, foam processing is non-
isothermal because of the low temperature mixing step required by the physical blowing agent 
and the heat increase associated with the exothermic polymerization. Here, we use thermal 
properties that vary with gas volume fraction as well. When available, physical properties are 
determined from experimental data obtained from the C6 Foam Processing Project. 
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In addition to varying local fields such as temperature and gas volume fraction, the material 
models also vary with the location of the level set interface taking thermal and fluid properties of 
the displaced air phase in the negative level set region and those of the foam in the positive level 
set region. The level set zero describes the location of the interface, where surface forces are 
applied using the Continuous Surface Force (CSF) treatment. The variation from foam to gas 
properties is handled with a diffuse interface method using a numerical Heaviside function. 
Results from the model are compared to temperature-instrumented flow visualization 
experiments giving the location of the foam front as a function of time for our EFAR model 
system, used because it is more readily available that the REF. 
 
Though our work herein focuses on EFAR, it should also be applicable to REF, and other foam 
encapsulants including chemically blown foams such as PMDIs, once the models are populated 
with parameter values suitable to those materials. Part of the C6 project was focused on creating 
a methodology to characterize foams that can be applied to other systems of interest. 
 
1.2.  Composition of EFAR and REF, Mixing and Foaming Protocols 
 
The EFAR20 foam is initially mixed as a Part A and Part B mixture, where 20 indicates the 
recipe for a 20lb/ft3 foam. (The recipe for EFAR08 is similar, but contains more fluorinert to 
produce an 8lb/ft3 foam.) The detailed weight fractions and density of each component are given 
in Table 1. For completeness, we also include information for REF08 though this foam is not 
used in this study. 
 

Table 1. Epoxy Foam Formulations Used in this Study 
Material Weight 

fraction 
Density (g/cm3) 

EFAR20  (Unfoamed) 1.14 
EFAR20 Part A (resin) 

• Shell Epon 828 resin  
• Shell Epon 8121 resin 

0.654 
• 0.6 
• 0.4 

1.17 
• 1.17 
• 1.17 

EFAR20 Part B (curative) 
• Air Products Ancamine 2049 curing agent 
• Shell Epi-Cure 3270 curing agent 
• Air Products DC-193 surfactant 
• Cabot Cab-O-Sil M-5 fumed silica 
• 3M Fluorinert FC-72 

0.346 
• 0.585 
• 0.245 
• 0.019 
• 0.019 
• 0.132 

1.08 
• 0.95 
• 0.97 
• 1.07 
• 2.20 
• 1.7 

REF308  (Unfoamed) 1.23 
REF308 Part A (resin) 

• Removable epoxy resin 1 (RER1) 
• Removable resin 2 (RR2) 
• Shell Epon 8121 resin 

0.627 
• 0.48 
• 0.12 
• 0.40 

1.19 
• 1.2, approx. 
• 1.2, approx. 
• 1.17 

REF308 Part B (curative) 
• Air Products Ancamine 2049 curing agent 
• Air Products Ancamine 2205 curing agent 
• Air Products DC-193 surfactant 

0.373 
• 0.361 
• 0.142 
• 0.069 

1.23 
• 0.95 
• 1.04 
• 1.07 
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• Cabot Cab-O-Sil M-5 fumed silica 
• 3M Fluorinert FC-72 

• 0.009 
• 0.419 

• 2.20 
• 1.7 

 
For both EFAR and REF, Part A is preheated to the standard oven temperature of 65oC, while 
Part B remains at room temperature to insure that the fluorinert does not boil prematurely. The 
boiling temperature of fluorinert in Albuquerque, at altitude, is 53oC and at Kansas City, at sea 
level, is 56oC; thus the fluorinert is superheated relative to its boiling temperature in a 65oC oven.  
 
Part A and B are mixed vigorously to form an emulsion of fluorinert droplets in an epoxy 
continuous phase. An additional effect of the mixing is that a significant amount of air is 
entrained into the resulting mixture. The air phase plays an important role in nucleating the 
boiling of the liquid fluorinert [Mondy et al, 2008]. Figure 1 shows a micrograph of the foam 
precursor, with the fluorinert droplets having a size of about 10μm while the air bubbles have a 
size of roughly 100μm. 
 

 
Figure 1. Epoxy foam starts out as an emulsion and probably nucleates heterogeneously. 
 
The foam precursor takes on a temperature of 43oC after mixing the 65oC Part A with the room 
Part B, kept at a low temperature to keep the fluorinert from boiling. This mixture is then 
injected into a preheated mold and a preheated oven at 65oC. The material foams to fill the mold 
in roughly 5 minutes, depending on the mold geometry. After an hour in the mold, the oven 
temperature is increased to 75oC to increase the rate of polymerization. 
 

100 micron 

100 micron100 micron
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2. CONTINUUM MODEL 
 
2.1. Continuum- Level Model for Foaming Materials 
 
Physically blown foams are inherently two-phase materials with bubbles of air and fluorinert 
being surrounded by a continuous phase of epoxy. A detailed mesoscale model including the 
dynamics, deformation, mass transfer, and pressurization of each bubble, of which there are 
millions, would be ideal but is beyond the scope of current computational techniques. Here, 
instead, we develop a continuum-level model that uses averaged properties between the gas 
bubbles and the liquid phase to determine the behavior of the foam during the self-expansion 
process. This self-expansion process is driven by the phase change of the liquid fluorinert to gas 
due to oven heating. Here we encapsulate the complex physics of nucleation and boiling into a 
time- and temperature-dependent density function, which decreases in time creating velocity 
through the continuity equation. The continuity equation is written to emphasize the change in 
density as the source of foam velocity generation, where v is the mass averaged velocity and ρ is 
the foam density. 
 

 1 ( )v v
t
ρ ρ

ρ
∂

∇ = − + ∇
∂

i i  (1) 

Conservation of momentum takes into account gradients in the fluid stress, τ, and pressure, p, as 
well as gravitational effects. Note that gravity is applied to the homogenized foam material and 
does not take into account the buoyancy differences between the epoxy and the gas bubbles. 

 v v v p g
t

ρ ρ τ ρ∂
+ ∇ = ∇ − ∇ +

∂
i i  (2) 

The stress tensor has a generalized Newtonian shear viscosity, in addition to a generalized 
Newtonian bulk viscosity. The bulk viscosity is associated with the fact that the divergence of 
the velocity field is non-zero and we have a dilatational flow [Bird et al., 1960]. The bulk 
viscosity term produce only normal stresses and not shear stresses. 

 
2( )) ( )( )
3

tv v v I

pI

τ η η κ

π τ

= ∇ + ∇ − − ∇

= −

i
 (3) 

 
It is a useful construct to define a total stress, π, based on the fluid stress and the pressure, as we 
will see in subsequent sections. The generalized Newtonian viscosity models imply that the 
viscosities vary with local fields, but still have a Newtonian form where stress is proportional to 
strain. However, the gradients of η and κ are non-zero and must be included in the momentum 
equation. Here, both the shear and bulk viscosities are a function of temperature, degree of 
polymerization, and gas bubble volume fraction. 
 
Once the stress tensor is substituted into the momentum equation, we obtain the following 
equation which contains the usual Newtonian terms plus the bulk viscosity and gradients of the 
viscosity model. 
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2( )

2 2( ) ( ) ( ) (( ) )
3 3

tv v v v v v
t

v I v I p g

ρ ρ η η

η κ η κ ρ

∂
+ ∇ = ∇ ∇ + ∇ + ∇

∂

− ∇ − ∇ ∇ − − ∇ ∇ + ∇ +

i i

i i i i
  (4) 

 
 
Because the process is nonisothermal, heat transfer effects must be followed as well. The energy 
equation has a variable heat capacity, Cp, and thermal conductivity, k, both of which depend on 
the gas volume fraction. Heat is generated by the exothermic polymerization reaction and is used 
up via the evaporation of fluorinert. 
 

 ( )p p rxn evap
TC C v T k T S S
t

ρ ρ∂
+ ∇ = ∇ ∇ + +

∂
i i  (5) 

 
The epoxy polymerization follows condensation chemistry, where the complex kinetics can be 
represented by the extent of reaction ξ. The extent of reaction is calculated from the following 
equation which includes its time evolution, advection, and reaction kinetics. 
 

 / ( )(1 )aE RTi m nv k e A
t
ξ ξ ξ ξ∂

+ ∇ = + −
∂

i  (6) 

 
  
Material models to populate the conservation equations were determined from experimental 
measurements and literature review. The choice of material model is discussed in the next 
section. 
 
2.2. Material Models for Continuum Equations 
 
In this section, we discuss the material models used to populate the continuum conservation 
equations discussed in the previous section. For more detailed discussion of the experiments and 
experimental methods that went into these material models, please see our companion, 
experimental SAND report [Mondy et al., 2008]. 
 
Here we summarize our variable density models, cure kinetics, complex viscosity and thermal 
properties. 
 
2.2.1. Variable Density Models 
 
In order to create a preliminary engineering model of the foam rise, we decided to simply 
determine a rise rate for the foam based on empirical measurements using our known mixing 
techniques and oven temperatures.  Experiments were performed in narrow slots so that the 
temperature would be as uniform as possible.  Typical data from a foam rise rate in a narrow slot 
can be seen in Figure 2, where time zero is assumed to occur after the end of the foam precursor 
injection. A narrow slot was used to ensure that the experiment was as isothermal as possible, 
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though the material must come up to temperature after being mixed at a temperature below the 
boiling point of fluorinert, 43oC. 
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Figure 2. Height increase as a function of time for foam rise in a 65oC oven. 
 
 
From Figure 3, we can see that the material comes up to oven temperature in about 100s, during 
which time the material is foaming. While Test A and Test B are isobaric, Test C used a pressure 
of 30 psia to delay foaming until the material reached the oven temperature. Unfortunately, this 
method of assuring an isothermal experiment leads to foam with a much higher density than the 
isobaric experiments. We hypothesize that the high pressure results in a two minute delay in 
nucleation, which is enough time for most of the air bubble to degas from the solution leaving a 
dearth of nucleation sites. 
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Figure 3. Temperature and pressure in foam rise rate experiments 
 
 
From the foam rise rate experiments, we can determine a time-dependent density function. In 
order to determine this function, we must know certain parameters such as the initial volume and 
density, and the initial gas fraction. If we knew the initial density of the material, the height at 
which the material was completely injected could be calculated from the measured mass of 
material. Unfortunately, as the foam is expanding immediately as it enters the hot mold, it is 
difficult to know the density and, hence, the height at time=0. Furthermore, although we know 
the density of the mixture of liquid components alone is 1.14 g/cm3 mixing incorporates a 
significant amount of air. Measurements of the volume of the syringe and the mass injected 
indicate that a typical initial density is close to 0.9 g/cm3.  This value agrees with that obtained in 
separate experiments in which the foam was mixed in a volume-calibrated beaker.   
 
In order to be consistent with the mass injected, we decided to use the liquid component density, 
though other choices are possible. Figure 4 shows the experimental density measurement based 
on this choice of initial density. 
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Figure 4. Density of a foam sample with time. 
 
 
 
From the data in Figure 4, and following Seo et al, [2003], we develop a simple time-dependent 
density model, which assumes no spatial variations. 
 
 ( ) kt

final initial final eρ ρ ρ ρ −= + −  (7) 
 
From the data in Figure 4, ρinitial=1.14g/cm3, ρfinal=0.27g/cm3 and k=1/80. 
 
Within the range of the temperatures tested, as the temperature increases, the foam rises faster. 
Preliminary foam rise data were taken in a similar fashion as described above, but with less 
control of the initial quantity of material injected into the slot and, in some cases, less 
temperature monitoring.  However, these first measurements were taken over a higher range of 
oven temperatures.  By considering both the preliminary data set and the subsequent more 
controlled data, including all the various temperatures, one can modify equation (7) to include 
the effects of temperature.  

 
( ) exp

( )

( )

initial final final
t

C T
Awhere C T B
T

ρ ρ ρ ρ
⎡ ⎤−

= − +⎢ ⎥
⎣ ⎦

= −

 (8) 

 

Figure 5 documents the density changes at three oven temperatures, assuming that the initial 
density was 1.14 g/cm3. Also shown in Figure 5 is a fit to preliminary data in the form of 
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equation (8) to take into account the effects of temperature and based on the nominal oven 
temperature only.   

Here, ρfinal was taken to be 0.27 g/cm3, the value typically measured in this series of experiments. 
T is the temperature in Kelvin.  Fitting equation (8) to the data in Figure 5 resulted in values for 
the parameters, A and B, of 116250 K s and 274.26 s, respectively, yielding time constants for 
the exponential change in the foam density of 69.5 s at 65 C and 7.1 s at 140C.  An actual 
temperature of the foam was recorded for each data point in Figure 5, so the calculated points 
here take into account the temperature history in this case.  
 

 
 

 
Figure 5. Foam density evolution as measured in original experiments at various 
temperatures, compared to equation (8) with C(T)=A/T-B. 
 
Figure 6 shows the more recent data at both 54°C and 66°C nominal oven temperatures 
compared to the time-temperature-density model originally developed with the earlier data, 
equation (8), and calculated using the temperature history data.  Also plotted are the data at the 
lower temperature assuming that the initial density is the liquid density (ρinitial = 1.14 g/cm3). 
Here, the equations ignore the incorporated air and go to a final density of 0.24 g/cm3. There is 
uncertainty in determining the initial density since air is incorporated both as part B is shaken to 
distribute the fluorinert and as part A and part B are mixed together. The liquid density is known 
to be 1.14 g/cm3, but the entrained air can reduce the density to 0.9 g/cm3 or lower. 
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Figure 6. Foam density evolution at two temperatures. Symbols are data and lines are 
predicted from equation (8) assuming no initial air content (ρinitial = 1.14). 
 
 
2.2.2. Epoxy Polymerization Model 
 
The reaction kinetics were measured with a TA Instruments Q200 differential scanning 
calorimeter (DSC). The reactants were mixed at room temperature and then placed into pre-
cooled test pans, which were subsequently stored at -40oC to minimize reaction prior to 
measurement. Figure 7 shows the raw DSC data for temperatures ranging from 60oC -90oC 
thought to be representative of temperatures seen during processing and below the gel point, for 
heat flow with time. After the gel point, we have seen temperatures as high as 140oC due to 
exothermic polymerization. Also shown in Figures 7, the heat flow measurements at different 
temperatures overlay when time, temperature shifted, indicating only one reaction mechanism.  
The amount of the shift reveals the activation energy, Ea, is 11 kcal/mol. The reaction is 
exothermic, with an average heat of reaction of 250 J/g.  
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Figure 7. Raw DSC date giving heat flow with time for various isothermal experiments 
(top) and time-temperature shifted DSC data so all temperatures fall on the same master 
curve (bottom). 
 
From the raw data, one can determine the heat of reaction associated with the polymerization, the 
extent of reaction, and the derivative of extent of reaction with time. With the extent of reaction 
and the reaction rate, in addition to the assumption that the epoxy follows condensation 
chemistry [May, 1988], we can populate the parameters in equation (6) and determine a kinetic 
rate model. Figure 8 gives a comparison on the experimental rate to the fit of the rate while 
figure 9 gives the extent of reaction from experiment and from the fit to the data. 
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Figure 8. Experimental data compared to curve fits of the reaction rate, dζ/dt. 
  



24 

 
Figure 9. Experimental data compared to curve fits of the extent of reaction. 
 

 
 
The kinetic equation for EFAR polymerization is given in the following equation with the 
parameters found from curve fitting substituted in. The curve fitting occurs in an Excel 
spreadsheet by comparing the reaction rate and extent of reaction, obtained by numerically 
integrating the reaction rate, to the experimental data for these quantities while varying the 
parameters in equation (6) using the activation energy of 11 kcal/mol determined by the time, 
temperature shift (Figure 7). 

 
11

3 1.418.6 10 (1 )

kcal
mol

RTv x e
t s
ξ ξ ξ

−∂
+ ∇ = −

∂
i  (9) 

 
The parameter values for the epoxy polymerization kinetics are also summarized in Table 2. 
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Table 2.  Epoxy Polymerization Kinetic Parameters 
 
Epoxy Cure Parameter Value 
Rate coefficient, ki 8.6x103 1/s 
Activation energy, Ea 11 kcal/mol 
Rate parameter, A 0 
Rate exponent, m 0 
Rate exponent, n 1.4 
Heat of reaction, rxnHΔ  250 J/g 
 
 
This detailed model of the polymerization reaction can be used to determine a curing viscosity 
model as discussed in the following section. 
 
2.2.3. Viscosity Models 
 
Foam rheological properties are complex measurements to perform in a reproducible manner, 
since shearing the foam often changes the microstructure thereby altering the viscosity. For this 
reason, we decided to separate the viscosity into three parts dependent on 1) continuous phase 
epoxy properties, dependent on extent of reaction and temperature, 2) fluorinert emulsion effects, 
and 3) gas bubble volume fraction. We assume these components are multiplicative since these 
effects are separable and can be decoupled. This assumption is based on the suspension/emulsion 
literature, which has clearly shown that the effects of the continuous phase are separable from the 
discontinuous particle, emulsion, or gas bubble phases [Clift et al, 1978; Prud’homme and Khan, 
1996]. 
 
 epoxy fluorinert φη η η η=  (10) 
 
Rheological measurements were made for the continuous phase epoxy monomer as a function of 
time as it polymerized in a Rheometrics ARES rheometer with parallel plate geometry at a 
steady shear rate of 2 Hz. The reactants were mixed at room temperature, and the test was 
initiated as quickly as possible to minimize reaction prior to measurement. Various isothermal 
experiments were undertaken at temperature ranging from room temperature to 95oC. The 
experimental data are shown in Figure 10. 
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Figure 10. Viscosity prediction for the continuous phase viscosity, e.g. without foaming 
 
 
For operating temperatures far above the current glass transition temperature of the reacting 
epoxy, the temperature dependence can be modeled accurately by an Arrhenius relationship 
[Ferry, 1980]. Dynamic percolation theory predicts a dependence of the Newtonian viscosity on 
extent of reaction with the form  
 

 00 exp( )( )
b b

pa c
epoxy b

c

E
RT

ξ ξη η
ξ
−

=  (11) 

where ξc is the gel point, Ea is the activation energy, and η00 is the uncured viscosity at reference 
temperature T0, and b and p are exponents for the model, with b being positive and p being 
negative [Martin et al., 1989]. Note, also shown in Figure 10 is the curing viscosity model fit 
from equation (11). 
 
The parameters to populate this model are given in Table 3. 
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Table 3.  Curing Epoxy Viscosity Model Parameters 
 
Curing Epoxy Viscosity Model Parameter Value 
Uncured viscosity, at reference T, η00 4.0x10-9 Pa s 
Activation energy, Ea 13 kcal/mol 
Extent of reaction at gel point, ξc 0.6 
Curing viscosity exponent, p -3.5 
Curing viscosity exponent, b 1.0 
 
 
The effect of fluorinert is harder to judge. In the foam precursor, we have an emulsion of 
fluorinert droplets in an epoxy continuous phase. Below the boiling point of fluorinert, the 
emulsion has a viscosity of about 50% higher than the neat epoxy, as seen from Figure 11. 
 
 

 
Figure 11. Effects of Fluorinert on Epoxy Viscosity. Room temperature experiments show 
the viscosity of the epoxy with and without the fluorinert emulsion phase. 
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Once the fluorinert boils and produces gas bubbles, however, it affects the viscosity differently. 
We have included this 50% increase in the base viscosity in the model since this will be more 
significant early on when the foam is expanding quickly than at later times when the viscosity is 
dominated by the high concentration of foam bubbles. A 50% increase is small relative to the 
change of viscosity compared to that from curing and gas bubbles, which can be orders of 
magnitude. 
 
We expected the foam viscosity ηφ to be a strong function of the gas volume fraction φg and to 
follow the Taylor-Mooney form derived from emulsion experiments, extrapolating the 
discontinuous phase viscosity to zero [Prud’homme and Khan, 1995]: 

 0 exp
1

g

g
φ

φ
η η

φ
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠
 (12) 

 
To determine if this was a satisfactory approximation to the foam effective viscosity, we tested 
the EFAR20 as it was foaming in a shear rheometer using the parallel plate geometry.  Because 
the foam was expanding during the test, the foam escaped out the side of the parallel plates and, 
therefore, the volume of the sample did not change, but the density of the sample did.  Both 
quantities are needed for the interpretation of the viscosity measurement.  We used a temperature 
ramp in the rheometer that mimicked that of the free-rise experiments (Figure 12).  Knowing that 
the viscosity of the foam would be sensitive to cell breakage, we tested a shear rate as low as 
possible given the resolution of the torque sensor in the rheometer.  We also measured the 
dynamic viscosity in small amplitude oscillations to try to measure viscosity while minimizing 
cell breakage.  Unfortunately, fluids with structure, like foams, do not follow Cox-Merz rules 
relating dynamic and shear viscosities. Nevertheless, the lowest shear rate measurements agreed 
reasonably well with the oscillatory measurements at low frequencies giving us more confidence 
in these low shear rate results.   
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Figure 12. Temperature ramp in the free-rise experiment used to predict gas content. 
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Figure 13 describes the results of the rheometry tests, and shows the growth of the viscosity with 
time (as the foam gas fraction increases and the density decreases). The foam appears to be shear 
thinning, which is typical for these materials.  However, as the shear rate increases, the foam 
structure is undoubtedly damaged, so, at a constant gas fraction, it will appear not only shear 
thinning but time-dependent.    Nevertheless, we will interpret the low shear rate data as if the 
viscosity is only a function of the gas fraction, and the time dependence is only due to the 
increasing gas fraction. To do this the viscosity at the lowest shear rate was fit with a curve as 
shown on the Figure 10. The minimum viscosity was assumed to be 3.5 Pa s, estimated from the 
initial viscosity measured here and the corresponding predictions using equation (12).   
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Figure 13. Parallel plate viscometry of evolving EFAR20 foam. 

 
The gas fraction at each moment in time was estimated from the previous free-rise test, Figure 
14. The measured viscosity of the foam was compared to that predicted by equation (12) and 
found to be adequate (Figure 14) for low shear rates.  The comparison is excellent to a gas 
fraction greater than 0.6, while the expected limit of this equation is a gas fraction of 0.6 
[Prud’homme and Khan, 1995].  
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Figure 14. Foam viscosity experiments (blue) plotted with Mooney Taylor theoretical 
viscosity model (pink) for foam viscosity as a function of gas volume fraction. 
 
 
 
The total shear viscosity model, including the effects of curing epoxy, fluorinert droplets, and 
gas bubbles is summarized in the equation below, 
 

 00 exp( )( ) (1.5)exp
1

b b
gpa c

foam b
c g

E
RT

φξ ξη η
ξ φ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟−⎝ ⎠

 (13) 

where in practice the effect of fluorinert is absorbed into the reference viscosity. 
 

 00 exp( )( ) exp
1

b b
gpa c

foam b
c g

E
RT

φξ ξη η
ξ φ

⎛ ⎞−
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 (14) 

 
To determine the foam stress tensor, we must understand both the shear and bulk viscosity. 
Following Batchelor [1967], for the simple system of an incompressible liquid with a population 
of compressible bubbles, expansion occurs solely through the increase in the size of the bubbles 
while flow occurs around each bubble. The effective expansion viscosity may be determined by 
equating the total dissipation as it would appear for a homogeneous fluid to the total dissipation 
from the ordinary shear viscosity in the liquid surrounding the bubbles. Doing these calculations 
yields the result 
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 4
3

epoxy

g

η
κ

φ
= . (15) 

Equation (14) may be extended to non-dilute conditions, which was done by Kraynik et al [2005] 
who used 2D boundary integral calculations and 3D ALE free surface calculations of expansion 
in a Kelvin cell. Their numerical results demonstrated that the following formula, 
 
 

 
(1 )4

3
g

epoxy
g

φ
κ η

φ
−

= , (16) 

 
We should note in any case that the equation (16) results are the most pertinent because they 
involve processes where the divergence of velocity is large. As 0gφ → the liquid becomes 
increasingly incompressible, and the velocity becomes solenoidal ( 0∇ • =v ), and bulk viscosity 
is no longer important. 
 
 
2.2.4. Gas Production Model 
 
The gas volume fraction, necessary for the viscosity and thermal models, can be determine from 
post-processing the density model and knowing some of the pure component mass fractions and 
densities: 
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 (17) 

 
Where ρi is the initial precursor foam density, 0

vρ  is the density of pure fluorinert vapor, 0
lρ  is 

the density of pure fluorinert liquid, Ya is the mass fraction of air, and 0
aρ  is the density of pure 

air. The values used for calculating the volume fraction of gas are summarized in Table 4. 
 

Table 4.  Parameters for Gas Evolution Model 
 
Gas Evolution Parameter Value 
Density of initial foam precursor, ρi 1.14 g/cm3 
Density of fluorinert liquid,  1.68 g/cm3 
Density of fluorinert vapor,  .0139 g/cm3 
Mass fraction air, Ya 0-2.6e-4 
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2.2.5. Thermal Properties Model 
 
Foam heat capacity and thermal conductivity are strong functions of gas volume fraction and 
necessary for the energy equation, equation (5). From Gibson and Ashby [1990], the foam heat 
capacity can be calculated from mixture theory for a two-phase material of epoxy and gas 
bubbles. 
 

 , ,ˆ ˆ(1 )p l l g p g g g
p

c c
C

ρ φ ρ φ
ρ

− +
=  (18) 

 
Here ,p lc�  is the heat capacity of the continuous liquid phase and ,p gc�  is the heat capacity of the 
gas phase, ρl is the density of the liquid phase, and ρg is the density of the gas phase. 
 
An upper limit for the thermal conductivity of the foam mixture is given by the following 
equation [Hilyard and Cunningham, 1991]. 
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 (19) 

 
This equation stems from an analysis of conduction through a solid matrix with cubic bubbles 
arranged in line where gk  is the gas conductivity, lk  is the liquid-phase conductivity, and rk is 
the heat conduction due to radiation. In our initial implementation, we ignore any radiative 
contributions assuming that at an oven temperature of 65oC they will not be important. This can 
be tested when we undertake our thermal validation and compare this model to experimental 
data. Liquid phase properties were estimated by direct measurement, e.g. density, and from 
experience with other similar epoxy systems [Adolf, 1996]. Gas phase properties were estimated 
from air properties [Wikipedia, 2008].  
 
Heat production comes from two different mechanisms: 1) the exothermic polymerization 
reaction of the fluorinert and 
 

 0
rxn rxn e

dS H Y
dt
ξρ= Δ  (20) 

 
2) the endothermic evaporation of the fluorinert as it boils.  The effect of fluorinert vaporization 
can be determined from the evolution of the density and the initial mass fractions of air and 
epoxy and the pure component densities. 
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The summary of the parameters used in the thermal models is given in Table 5. The initial mass 
fractions of epoxy and air can be found in Tables 1 and 4. 
 

Table 5.  Thermal Model Parameters 
 
Thermal Model Parameters Value 
Heat capacity of liquid phase 2.0 J/gK 
Heat capacity of gas phase 1.0 J/gK 
Density of liquid phase, ρl 1.14 g/cm3 
Density of gas phase, ρg 0.001 g/cm3 
Thermal conductivity of liquid phase, kl 0.18 W/mK 
Thermal conductivity of liquid phase, kg 0.025 W/mK 
Heat of vaporization, fluorinert, ˆ

evapHΔ  87.1 J/g 
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3. NUMERICAL METHOD 
 
The SIERRA mechanics framework is based on the finite element method and designed to solve 
the equations of motion for both fluid and solid mechanics and has been chosen as the nuclear 
weapon’s tri-laboratory engineering analysis code. ARIA/SIERRA was originally developed for 
modeling low speed flows for applications such as manufacturing, focusing on incompressible 
flows. Free surface flows, using both Eulerian and Lagrangian methods, were also a focus. As 
part of the SIERRA consolidation process, ARIA is being broadened to include all fluid/thermal 
SIERRA capabilities previously available in the modules CALORE, FUEGO, and PREMO. 
ARIA was chosen as the development platform for foam encapsulation modeling, since it had 
performed well for other similar free surface flows such as epoxy encapsulation [Rao et al, 2006; 
Mondy et al, 2007]. 

 
3.1. Interface Tracking via the Level Set Method 

 
As the foam expands via fluorinert nucleation and growth, the material slowly fills the mold. The 
location of the foam-air interface must be determined from the complex interplay of density 
evolution, velocity generation, viscous stress, surface tension, and gravitational effects, and it 
must be determined as part of the solution method. Many methods are available to determine the 
location of the free surface from moving mesh methods to volume of fluid methods. Here, we 
use an Eulerian approach based on a diffuse interface implementation of the level set method 
[Sethian, 1995]. Because it is an Eulerian approach it can handle geometric complexity and 
topological changes, such as droplet breakup, without complex remeshing steps. 
 
The level set, ( , , , )x y z tφ ,  is a signed distance function of space and time. The magnitude of the 
level set function is the shortest distance from x to any point on the free surface, where the free 
surface is defined by the level set zero. The sign of level set is used to indicate whether the point 
x lies inside the material. It should be noted that φ should scale as a distance function, that is, the 
magnitude of its gradient is unity. 
 
 1φ∇ =  (22) 
 
This level set representation of the interface presents numerous advantages. The location of the 
interfacial curve can be determined exactly from interpolation of the finite element shape 
functions. In addition, the level set representing function provides immediate information about 
the normal, n, and curvature, H, of the interfacial surface via these relations: 
 

 2
lsn φ

φ
φ

= ∇

∇
= −

∇
H

 (23) 

 
Because the level set zero,  
 ( , , , ) 0x y z tφ = , (24) 
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is a material surface, it advects with the fluid velocity whereas elsewhere it is unclear how the 
level set equation evolves. For this reason, we use an advection equation for the entire level set 
function. 
 

 0u
t
φ φ∂

+ ⋅∇ =
∂

 (25) 

 
Because advection is only truly applicable at the interface, equation (24) distorts the distance 
function. This necessitates the use of a renormalizing algorithm, which must be run periodically 
to correct the distance function. Here, we utilize a constrained redistancing algorithm that 
attempts to redistance the level set so that the volume of each phase remains unchanged. Details 
of the renormalization algorithm can be found below. 
 
3.1.1. Property Evaluation 
 
Notationally, we denote these two sides of the interface as “phase A” and “phase B” and often 
use “A” and “B” as subscripts on mathematical quantities that are specific to a phase. By 
convention, we associate phase A with the negative level set field. This can be seen from an 
example ARIA input file (Appendix A), where we have properties associated with phase A, 
phase B, and multiphase properties that apply to both phases. 
 
The level set method uses continuous equations for both the foam and gas phase, but modulates 
the material properties based on the level set function. This property modulation occurs via a 
numerical Heaviside function defined for phase A and B, where the Heaviside functions sum to 
one. 
 ( ) ( ) 1A BH Hφ φ+ =  (26) 
 
In the diffuse interface approach, the Heaviside function is regularized so that there is a smooth 
transition from one phase to another. In this work, we use  
 
  

 
sin( )1( ) (1 ),

2 2BH  -

πφ
φ αφ α φ α

π
= + + < <  (27) 

 
where α is defined as the half of the width of the diffuse interface, which is usually taken as 
about six elements across. Here HB is zero in phase A, 1 in phase B, and follows equation (27) in 
the diffuse region. 
 
Another useful function related to the Heaviside function is the regularized Dirac delta function, 
which is defined as 
 

 ( )( ) (1 cos( )),
2

dH  -
dα

φφ πφδ φ α φ α
φ α α

= = + < <  (28) 
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where ( )αδ φ is large in the diffuse interface zone, and zero elsewhere. 
 
The continuity equation, (1) can be rewritten including the Heaviside function to modulate the 
density from foam to gas phase. 

 ( ) ( ) ( )A B
A A B B A A B BH H v H v H v

t t
ρ ρρ ρ ρ ρ∂ ∂

+ ∇ = − + ∇ − + ∇
∂ ∂

i i i  (29) 

Assuming here that the foam phase is designated A and the gas phase designated B, we assume 
the foam has a variable density and ignore any density variations in the air phase since there 
variations will be orders of magnitude smaller. This yields:  
 

 ( ) ( )A
A A B B A AH H v H v

t
ρρ ρ ρ∂

+ ∇ = − + ∇
∂

i i . (30) 

 
The momentum equation, (2) including property modulation becomes, 
 

 ( )( ) ( )A A B B A A B B A A B B
vH H v v H H H H g
t

ρ ρ π π ρ ρ∂
+ + ∇ = ∇ + ∇ + +

∂
i i i  (31) 

 
where the phase defined stress tensor is more complex for the foam, while the gas is assumed to 
have a constant viscosity and be incompressible. 
 

 
A A

B B

pI

pI

π τ

π τ

= −

= −
 (32) 

 
The energy equation (5), becomes, 
 

 ( )( ) (( ) )A A p A B B p B A A B B A rxn A evap
TH C H C v T H k H k T H S H S
t

ρ ρ ∂
+ + ∇ = ∇ + ∇ + +

∂
i i  (33) 

 
with the heat source terms only occurring in the foam phase. 
 
The epoxy polymerization equation is also phase dependent and only has a nonzero right-hand-
side source term in the foam phase.  
 

 / ( )(1 )aE RTi m n
Av H k e A

t
ξ ξ ξ ξ∂

+ ∇ = + −
∂

i  (34) 

 
3.1.2. Surface Tension 
 
Mold filling flows are often highly influenced by the capillary dynamics at the fluid-gas 
interface, though it is unclear how important surface forces are to foam self-expansion flows. 
Due to the implicit tracking of this interface, special care must be taken to enforce the capillary 
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boundary condition. The general form of the capillary boundary condition for constant surface 
tension, σ, is 
 
 ( ) 2

A B
n nπ π σ− = −i H  (35) 

 
Integrated boundary conditions, such as equation  (35), can be applied with the level set method 
using several techniques [Jacqmin, 1995], only one of which we discuss here. To evaluate 
equation (35), we must construct a local mean curvature H. The local mean curvature is defined 
as 
 

 
2

lsn n φ
φ

∇
− = ∇ ≈ ∇ =

∇
i iH  (36) 

Hence, the curvature is related to the second derivative of φ. Since we use the standard finite 
element discretization for φ, it is only C0 continuous and can only be differentiated once. Thus, in 
this work, we solve for an approximation to the curvature, Hp, using a least squares, lumped 
mass projection that is integrated by parts, creating a boundary term in addition to the volume 
integral. 
 
 ( )i p i ls i ls i ls

V V V S

N dV N n dV N n dV N n n dS= − ∇ = − ∇ +∫ ∫ ∫ ∫i i iH  (37) 

 
Here, n is the unit normal along the exterior boundary of the domain. In order to enforce a 
prescribed contact angle, 1cos ( )lsn nθ −= i  one would include the boundary term in (37) and 
replace lsn ni  with cos θ. For the application described here, we weakly impose θ = 90 and so 
this boundary contribution is not included. 
 
Since there is no explicit interface at φ = 0, we utilize the diffuse Dirac delta function and the 
volumetric projection for the curvature Hp to implement the capillary boundary condition, 
equation (34), viz., 
 
 ( ) 2 ( ) lsB A pn nαπ π σδ φ− =i H  (38) 

 
following the continuous surface force literature [see for instance, Brackbill et al., 1992]. 
 
3.1.3. Redistancing Algorithm 
 
One distinct aspect of the level set method is that while the level set function might initially have 
the smooth properties of a distance function, this is not a necessarily preserved by the evolution 
scheme. It is almost certainly the case that as evolution proceeds it will deviate away from a pure 
distance function. Indeed sharp gradients might occur at some points in the flow, while very 
shallow gradients occur in others. The former is bad because it leads to inaccuracies in the 
integration of equation (25); that latter is bad because it widens inappropriately the thickness of 
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the interfacial zone. A necessary aspect of any level set method, therefore, is a periodic need to 
redistance or renormalize the level set function back to a distance function. Our decision to 
renormalize is based upon monitoring the average gradient magnitude of the level function over 
the interfacial zone. In general, this average gradient is only allowed to vary between 1.25 and 
0.75. Outside of this range it will trigger a redistancing procedure. 
 
There are several methods by which this can be done. Sussman and Fatemi [1999] described a 
redistancing step based upon a separate evolution of the level set field subject to a mass 
conserving constraint. We have implemented a more algorithmic approach. The elements that 
contain the interface can be quickly identified as those whose nodal level set values have 
differing signs. On these elements, a piecewise linear representation of the interface is 
constructed. For each node i in the mesh, it is possible to find a minimum distance Di to this set 
of facets. Renormalization of the level set nodal unknown is made by the simple assignment: 
 
 * 0( )j j jsign Dφ φ=  (39) 
 
where 0

jφ  is the value of the level set function prior to renormalization. Given a sufficient density 
of facets, this procedure will yield good results as well as being fast and robust. However, it does 
present the potential for slight, systemic motion of the zero level set contour and a consequent 
loss of mass. This is especially a problem for lower order (trilinear) interpolation of the level set 
function. This can be avoided however by introducing a volume constraint.  This is accomplished 
by finding a small change to the distance function, ε , such that the initial and final volumes are 
the same.  The distance function at the end of the renormalization is thus given by, 
 
 *

j jφ φ ε= +  (40) 
where ε  is found by solving the equation, 
 
 ( ) ( )0 * 0 0

A A
V V

H dV H dVφ ε φ+ =∫ ∫  (41) 

The superscript on the Heaviside is used here to denote that this is the sharp Heaviside function, 
that is unity where its argument is positive and zero else where.  The left hand side of this 
equation is the volume of the phase A following the renormalization and the right hand side is 
the volume before renormalization.  By using this adjustment to the nearest point distance, we 
guarantee that the volume of the phase A after renormalization will be the same as it was before 
renormalization. 
 
3.2. Finite Element Discretization 

 
The phase modulated equations of motion, conservation of energy, and kinetics equation (29-34) 
together with the level set equation (25), are discretized with the well-known Galerkin finite 
element method. For details of the finite element method see for instance Hughes [2000]. The 
unknowns of interest are the velocity vector, pressure, temperature, extent of reaction, and level 
set. These fields are approximated with finite element basis function, Ni(x,y,z), and nodal 
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variables, e.g. ui, vi, wi, Ti, ξi, φi. Bilinear Lagrangian, C0-continuous, basis functions are used for 
all variables. The velocity vector would be expressed in the following manner, 
  

 
1 1 1

( , , ), ( , , ), ( , , )
n n n

i i i i i i
i i i

u u N x y z  v v N x y z  w w N x y z
= = =

= = =∑ ∑ ∑  (42) 

 
and pressure, temperature, extent of reaction, and level set are 

 
1 1 1 1

( , , ), ( , , ), ( , , ), ( , , )
n n n n

i i i i i i i i
i i i i

p p N x y z  T T N x y z  N x y z  N x y zξ ξ φ φ
= = = =

= = = =∑ ∑ ∑ ∑ . (43) 

 
The approximate variables are substituted in the conservation equation, multiplied by a 
weighting function, and integrated over the domain. In the Galerkin finite element method, the 
weight function is chosen to be the bilinear shape functions themselves. Any second derivatives, 
such as the divergence of the stress tensor and the heat flux, are integrated by parts, to improve 
the accuracy of the discretization as shown below. The integration by parts on the momentum 
and energy equations kick out surface terms that serve as natural boundary conditions if no other 
conditions are applied at the domain boundaries. 
 

 ( ) 0continuity
i i

V

R N v v dV
t
ρρ ρ∂⎡ ⎤= ∇ + + ∇ =⎢ ⎥∂⎣ ⎦∫ i i  (44) 

 

 ( ( ) ( ) : ) 0momentum
i i i i

V S

vR N v v g eN dV n eN dS  
t

ρ ρ ρ π π∂
= + ∇ − − ∇ + =

∂∫ ∫i i i  (45) 

 

 ( ( ) ) 0energy
i i p p rxn evap i

V S

TR N C C v T S S N k T dV n k TdS
t

ρ ρ∂
= + ∇ − − − ∇ ∇ + ∇ =

∂∫ ∫i i i  (46) 

 
 

 /( ( )(1 ) ) 0aE RTcure i m n
i i

V

R N v k e A dV
t
ξ ξ ξ ξ∂

= + ∇ − + − =
∂∫ i  (47) 

 

 ( ) 0levelset
i i

V

R N v dV
t
φ φ∂

= + ∇ =
∂∫ i  (48) 

 
Time derivative are discretized using a first-order backward Euler finite difference method. The 
resulting weighted residual equations are integrated numerically using Gaussian quadrature. 
 
There exists an inf-sup condition constraining the pressure space to be one order lower than the 
velocity space, which is termed the LBB condition [Hughes, 2000]. For 2D problems, we 
routinely use quadratic velocity basis functions coupled to linear or bilinear pressure 
interpolation. This is a computational intensive pair, because high order Gaussian quadrature 
must be used and nodal summations per element increase from four for bilinear to nine for 
biquadratic. In addition, due to the fact that the continuity equation, (1), is the equation for the 



41 

pressure unknown and contains no pressure, a saddle point problem is created when the 
discretized matrices are formed. For this reason, direct Gaussian elimination is needed to invert 
the matrix and solve the unknowns of interest. In 2D, this is all feasible since bandwidths are 
small. In 3D, we cannot afford the cost of either high order elements or direct solvers. Therefore, 
to allow us to use equal order interpolation and circumvent the LBB condition, we must use a 
stabilization method, an extra benefit of which is allowing us to use Krylov-based interative 
solvers in place of direct solution methods. Details of the stabilization method used here are 
discussed in the following section. 
 
3.2.1. Pressure Stabilization 
 
In order to circumvent the LBB condition, one must either use a compatible pair of finite element 
basis functions or add stabilization terms to relieve the mathematical restrictions. Many types of 
stabilization exist, the most common being Galerkin least squares (GLS) or pressure stabilized 
Petrov-Galerkin (PSPG) popularized by Hughes and coworkers [Hughes, 2000]. These methods 
work well for moderate to high Reynolds’ number applications, but have issues at the Stokes 
limit. Other complexities arise relating to the scaling of the stabilization term and many papers 
have been written trying to determine the best scaling coefficient. 
 
Here, we employ the stabilization technique developed by Dohrmann and Bochev [2004], which 
was developed for the Stokes problem and is termed pressure stabilized pressure projection 
(PSPP). In addition to being computationally efficient and easy to implement, this stabilization 
method is also easy to use since it requires no special treatment for boundary conditions. 
Numerically, this method simply requires an additional volume integral term in the weak form of 
the continuity equation. Scaling of the stabilization term relies on dimensional analysis and does 
not contain an explicit mesh scaling. The first term is the standard Galerkin continuity weighted 
residual, while the second term is the stabilization. 
 

 
( ) ( )( )

/
e e

M
continuity

i i pspp i i
elemV

V V

R N v v dV N N p p dV
t

p pdV dV

ρρ ρ τ π π

π

∂⎡ ⎤= ∇ + + ∇ + − −⎢ ⎥∂⎣ ⎦

=

∑∫

∫ ∫

i i
 (49) 

 
For multiphase level set problems, there exist a pressure jump and the fluid-gas interface due to 
surface forces. Because we are applying a stabilization method developed for a single phase 
problem to a multiphase one, we have made a slight modification to stabilization method that 
allows us to capture the pressure jump at the fluid-gas interface. Instead of stabilizing on the 
pressure variable, we stabilize on the product of the time derivative of the pressure and the time 
step size as shown below. 
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1 ( ) ( )( )

/
e e

M
c

i i pspp i i
elemV

V V

p pR N v v dV t N N dV
t t t

p pdV dV
t t

ρ ρ τ π π
ρ

π

⎡ ⎤∂ ∂ ∂
= ∇ + + ∇ + Δ − −⎢ ⎥∂ ∂ ∂⎣ ⎦

∂ ∂
=

∂ ∂

∑∫

∫ ∫

i i
 (50) 

 
This method has shown itself superior for mass conservation in level set problems compared to 
equation (48) either with a single or dual pressure formulation. 
 
3.2.2. Taylor-Galerkin Upwinding for Level Set Equation 
 
The level set equation is purely hyperbolic, while the Galerkin finite element works most 
effectively on elliptic differential equations. For that reason, we apply a Taylor-Galerkin 
upwinding term to the level set equation to help it behave well away from the interface. In the 
Taylor-Galerkin weighted residual of the level set advection equation (25), the first two terms are 
the standard weighted residual advection operator, while the third term is the upwinding term. 
 

 
1

1 1( ) ( ) ( )( )
2

n n
n n n n ni i

i i i i i
V V V

tN dV N v dV v N v dV
t

φ φ φ φ
+

+ +− Δ
= − ∇ − ∇ ∇

Δ∫ ∫ ∫i i i  (51) 

 
Since the magnitude of the gradient of the level set function is by definition a nearly constant 
value, the Taylor-Galerkin contribution is relatively small. This points to one of the advantages 
of using a smooth function to represent the interface location. 
 
 
3.2.3. Streamline Upwind Petrov-Galerkin for the Momentum Equation 
 
As we move from the Stokes’ regime to a moderate Reynolds’ number, we find that the 
differential equation changes from purely elliptic to hyperbolic-elliptic and some stabilization 
method is useful for the momentum equation. As our gas is displaced by foam in the mold, the 
gas phase velocity increases, resulting in a Reynolds’ number in the 10-100 range. This can 
trigger numerical issues such as oscillations in the solution. We have found that adding some 
streamline upwinding Petrov-Galerkin (SUPG) improves the performance of the momentum 
equations and reduces oscillations in the pressure and velocity. The SUPG method involves a 
modified weight function, Wi, consisting of the shape function plus the velocity dotted into the 
gradient of the weight function multiplied by a scaling factor based on element size. 
 

 ( )
M

i
i i supg elem

elem

v NW N h
v

τ ∇
= + ∑ i  (52) 

 
The weight function is applied only to the terms that are not integrated by parts, since a gradient 
cannot be integrated by parts. This makes the SUPG method an inconsistent method for low to 
moderate Reynolds’ numbers where the total stress dominates the residual. However as the 
element size goes to zero it will asymptote to the correct partial differential equation. 
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 ( ( ) ( ) : ) 0momsupg
i i i i

V S

vR W v v g eN dV n eN dS  
t

ρ ρ ρ σ σ∂
= + ∇ − − ∇ + =

∂∫ ∫i i i  (53) 

 
The SUPG primarily offers upwinding in the steamwise direction. 
 
 
3.3. Matrix Equations and Krylov-Based Iterative Solvers 

 
Once the residual equations are integrated, we obtain a set of nonlinear algebraic equations on 
each element that must be gathered into a global matrix, and solved for the nodal unknowns. We 
solve the level set equation in a separate matrix from the rest of the unknowns, since decoupling 
the equations seems to make the method more robust and improve convergence. 
 

 
( , , , ) 0
( ) 0

F v p T
G

ξ
φ

=
=

 (54) 

 
This system of equations is linearized and solved with the Newton-Raphson method, where F 
has been expanded in a Taylor series about the kth iterate: 
 

 

1 1 1 1

1

( , , , ) | ( ) | ( ) | ( ) | ( ) 0

| ( ) 0

k k k k k k k k k k k k

k k k

F F F FF v p T v v p p T T
v p T

G

ξ ξ ξ
ξ

φ φ
φ

+ + + +

+

∂ ∂ ∂ ∂
+ − + − + − + − =

∂ ∂ ∂ ∂
∂

− =
∂

. (55) 

 
All the terms involving the kth iterate are gathered and placed on the right-hand-side of the 
equation. This results in a matrix equation of the form: 
 
 1( )k kK x x f+Δ =  (56) 
 
where K is an analytical Jacobian matrix and we solve for the unknown update from the last 
iteration, 1kx +Δ . We have one matrix equation for the bulk fluid unknowns and one for the level 
set unknowns. 
 
As discussed above, in 2D we generally solve the fluid matrix equations with direct Gaussian 
elimination, but in 3D this becomes impossible since the matrix bandwidth is so much larger. 
Instead, we use Krylov-based iterative solvers from Trilinos, an open source parallel solver 
library developed at Sandia National Laboratories [Trilinos, 2008]. The stabilization of the 
continuity equation, equation (46), has an additional benefit besides allowing equal order 
interpolants: it also adds a pressure term to the pressure equation, improving the diagonal 
dominance of the matrix equations (56), and reducing the matrix condition number. Needless to 
say, it would be near impossible to use iterative solvers on equation (56) without stabilization. 
The discretized level set matrix equations, on the other hand, tend to be well-behaved as long as 
the velocity is well-behaved. 
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ARIA/SIERRA can be run in serial or parallel, where the parallel implementation is based on 
MPI. For the problem discussed here, we focus on parallel solution run on 30-68 processors on 
the Engineering Sciences LAN and Sandia National Laboratories capacity computing platform, 
Thunderbird. Though processors are slower on Thunderbird than the LAN, run times are faster 
since communication speeds between processors are faster than on the LAN. Each run on 
Thunderbird would take about 16-25hrs, depending on the physics models used. 
 
Parallel iterative solvers always require preconditioning. Some of the preconditioners suitable for 
level set foaming problems are ILU and ILUT, with fill factors of 1-3. Note, as we increase the 
fill factors, the time to solve the matrix equations increases sharply. (Others have had luck with 
ML preconditioning, though we have not tested it on the foam expansion problem yet.) Solvers 
used here range from BiCGStab to GMRES. Generally, when the solvers are having difficulty, 
we resort to ILUT(3)/GMRES, which is the most robust, and most expensive, choice. 
 
3.4. Geometry, Mesh, Initial Conditions, and Boundary Conditions 

 
KCP, the production encapsulation facility for the W76-1 firing sets, has developed a quality 
assurance tool that is pictured in Figure 15 [Mahoney, 2007].  This geometry is an unlimited 
release version of the firing set geometry called the firing set quality assurance (QA) fixture. 
Mahoney has also developed a similar QA fixture for the AFS foaming. These fixtures can be 
used to test new foaming processing techniques and protocols without wasting expensive WR 
components. 
 
For the QA fixture, a complex channel is machined in an aluminum block and a clear acrylic 
cover is held on the front face with screws. To monitor the quality of the foam during an 
encapsulation process, this mold is filled with the foam encapsulant and monitored to make sure 
that it fills the part.  Filling is through injection ports in the left hand corner of either the inner 
cup shape or the outer serpentine shape as shown in Figure 15. We took this mold, copied it, and 
instrumented it with four thermocouples. The first, thermocouple TC101, is in the injection port 
machined through the back wall.  It is not quite into the main reservoir. Thermocouples TC102 
and TC103, are in the foam channel as pictured, about halfway between the front face of the 
back wall and the inner surface of the front cover and about halfway across the channel width.  
The fourth, TC104, is within the mold itself, centered in the aluminum block about 0.16 cm (1/16 
in.) from the inner face of the back wall, and so never touches foam. 
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Figure 15. Kansas City mold (left), as seen in the videos and annotated (right). 

 
The outer mold, consisting of narrow sections and serpentine routes for the foam to penetrate, 
was used for model validation studies.  The inner cup was filled in the initial trials, but later 
ignored. 
 
3.4.1. Finite Element Mesh and Boundary Conditions 
 
We received a mesh based on this QA fixture geometry from KCP [Mahoney, 2007]. This mesh 
was used to test our foam expansion model and is given in Figure 16.  
 

 
Figure 16: Tetrahedral Mesh for QA Test Fixture 
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The mesh consists of 31,627 nodes and 129,272 tetrahedral elements. The QA fixture contains 
flow restrictions and sharp corners making it a good test of real materials and processes as well 
as numerical algorithms. We have tested the method discussed in the previous sections on this 
geometry. 
 
The mesh includes only the regions of fluid flow and not the aluminum mold, which could be 
included for heat transfer calculations. Instead of adding the mold for nonisothermal runs, we 
instead use a heat transfer coefficient at all solid boundaries of the form: 
 
 ( )ovenq h T T= − . (57) 
 
We estimate a heat transfer coefficient of roughly h=2.5 J/Kcm2 s. We could have also directly 
applied the mold temperature from experiment to the surface of the mold, since this seemed to 
hold constant at the oven temperature, e.g. a Dirichlet condition of 
 
 ovenT T=  (58) 
may also be appropriate. 
 
Boundary conditions are also necessary for the velocity equation to indicate solid surfaces from 
which the foam cannot leak through. Foam is notorious for slipping, so here we apply a Navier-
slip condition in the tangential direction and a no penetration condition in the normal direction, 
 

 
1 ( )

0

sn t v v t

v n

τ
β

= −

=

i i i

i
 (59) 

 
where β is the Navier slip coefficient, estimated from experiments to range from 0.01-0.001, t is 
the surface tangent, and vs is the velocity of the surface, here taken to be zero. In our simulations, 
we have found that β smaller than 0.01 creates numerical problems such as entrained air layers. 
We are currently investigating material dependent slip models, since the gas phase is thought to 
slip more than the foam phase, a reality not incorporated in the standard Navier slip condition 
with a constant β. 
 
Because these boundary conditions are stated in a normal/tangential form, they require rotation 
of the momentum residuals into this form. This was a new feature implemented in ARIA for this 
project this year. 
 
The geometry is vented in the upper right had corner, where we have also added an outflow 
boundary. At this outflow boundary, we apply no boundary condition allowing the natural 
boundary condition to guide the flow out of the mold. 
 
3.4.2. Initial Conditions 
 
The level set requires an initial condition defining the level set zero and the fluid-gas interface, 
which indicates the amount of foam precursor material that is injected into the mold before 
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foaming begins. This initial condition is shown in Figure 17 and was chosen to roughly match 
the experimental initial condition. 
 

 
Figure 17. Initial Condition for Level Set Function 
 
 
The temperature of the foam precursor is mixed to 43oC. However, the injection port is located 
very close to the aluminum mold wall and the material heats up rapidly to a temperature of 
52.7oC. Thus, we could use either temperature for our initial condition.  
 
The initial condition is estimated from mixing and injection times to be roughly 0.6. 
 
 
3.5. Mass Conservation 

 
Level set methods are not inherently mass conserving. For the finite element method in general, 
mass conservation occurs on a global basis, not a local one, since our shape functions are Co and 
continuous across element boundaries. This can lead to areas with mass sources and sinks, which 
then lead to either increase or decrease in the mass of phase A and B. Foam self-expansion can 
be particularly susceptible to mass loss issues compared to incompressible flow problems since 
volume and velocity generation occur via the continuity equation, which also includes the 
stabilization terms. Mass conservation can be estimated in the high-end visualization tool 
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Ensight [Ensight, 2008] by integrating the density over the foam phase to get the mass as a 
function of time and comparing this to the and initial mass. 
 
Some sources of mass loss and amelioration schemes are listed below: 
 

1. Surface tension – use least square projection for normal reconstruction. 
2. Time integration – use constant, small time step ( tΔ = 0.05s-0.10s for foam rise on 

the order of 200s-500s). Variable time stepping seems to aggrevate mass loss issues, 
probably related to level set advection equation. 

3. Pressure stabilization – use Dohrmann-Bochev stabilization on p t
t

∂
Δ

∂
instead of  p 

alone as this seems to handle pressure jumps better than two discontinuous pressures, 
which seem to be underspecified for a bilinear velocity interpolant. 

4. Level set advection scheme – use Taylor-Galerkin to improve performance of 
advection operator as velocity is increase. Make sure you have your time step size set 

that you are below the Courant limit, 1
elem

v t
h

Δ
≤ , where tΔ is the time step size, and h is 

the element size [Finlayson, 1992]. In practice, we actually set the Courant number to 
be less than 0.25. 

5. Renormalization – use constrained renormalization, and limit the number of times 
your renormalize to greater than every 3 time steps but no less than 20.   

6. Leaky boundary conditions – use rotated boundary conditions with edge conditions 
(these are under development). 

7. Diffuse interface interacting with small geometric features and large curvatures – 
adaptive mesh refinement may help with this. 

 
The most important components for successful mass conservation of the foam phase are 
determined by observation to be 1) a constant time step for the time integration and 2) non-leaky 
rotated boundary conditions with slip 3) transient implementation of PSPP. The current 
implementation of the rotated boundary conditions demonstrates some leakage at sharp corners, 
an issue we are working on for future releases of ARIA.  
 
For the time-dependent density function, using renormalization every 3 times step maximum, 
based on checking the gradient of the level set function, mass is conserved to 2%. For the full 
model with all variable properties and a large, increasing shear viscosity, the mass conservation 
is worse at about 10%. We are still investigating why these differences exist and what can be 
done to improve mass conservation for variable properties and large viscosity jumps between 
phases. 
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4. RESULTS 
 
In this section, we summarize the experimental validation studies in the QA fixture and the 
results from the finite element/level set modeling within ARIA. 
 
4.1. Experimental Validation Studies in QA Fixture 

 
A series of frames from a video taken of a test with the oven at a nominal temperature of 65°C is 
shown in Figure 18.   
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Figure 18. Experimental validation data for QA test fixture 
 
These can be used to validate the model’s prediction of the shape and location of the leading 
fluid front with time. The frame stamp is in right top corner.  The frame rate is 30 frame/s. The 
temperature shown in the video (lower left, sideways) is being measured by thermocouple 
TC101 in foam near the injection port near the bottom left of the image. Here, we take time zero, 
when the computational model starts, to be at the end of the injection procedure. Foam hits the 
bottom of the inner curve at 10.43 s.  At 58.10 s, both arms of the front hit the first corner on the 
inner wall, approximately the height of the thermocouple TC103 on the right side. By about 100 
s the foam in the left channel has reached the level of thermocouple TC102 and TC104. The right 
channel fills faster than the left, and at 117.43 s the right arm has started around the top corner. 
At 236.43 s the two arms just touch, and an arrow points just to the right of the knit line. By 
337.07 s, foam has appeared in the right corner, seemingly spontaneously.  This seems to be an 
experimental artifact, possibly caused by a leak in the front cover, although it may be that a large 
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bubble has appeared between the upper right corner and the square wave section of the channel.  
Also of interest is that a void appears at the dead-end on the upper left hand side of the mold, but 
disappears quickly either by leaking out of the mold or by diffusing into the foam. 
 
Temperature monitoring from the four thermocouples mentioned in the previous paragraph are 
shown in Figure 19.  
 
 
 

 
Figure 19. Temperature as a function of time at various locations in the QA test fixture. 
 
 
From this figure, we see that the temperature at the thermocouples high up in the mold, e.g. 
TC104 and TC102 stay at a constant temperature of 65oC (338.15K), the oven temperature, 
throughout the experiment. TC101 is located at the inflow and so records the lowest temperature. 
Because the inflow is so close to the preheated aluminum mold, the material heats up from its 
mixing temperature of 43oC (316.15K) to 52.7oC (325.85K), which is the temperature we see at 
the end of injection, when the modeling begins. Away from the walls, the material does not heat 
up as quickly as seen from thermocouple TC103, which is at the oven preheat temperature of 
65oC before the flow front reaches it. Once the cooler foam hits TC103, the temperature drops 
and then begins to heat up again from the hot oven and mold. 
 
Another important component for the model is the final density in the mold. Here we measure 
the final density through post-test x-ray CT, the results of which are shown in Figure 20 
[Thompson, 2008]. 
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Figure 20. X-ray CT of a part giving density of the final part. The value in the box outlined 
by a dotted line represents the difference between the lowest and highest boxed region 
density values. 
 
From the CT data, we can see that the final density varies from 0.163 g/cc at the top left hand 
corner of the mold to 0.205 g/cc in the bottom of the mold. A layer of unfoamed material has 
also settled to the bottom of the mold. This data shows at least a 20% variation in foam density 
within the mold. An average value of foam density of 0.185 g/cc was used for the modeling 
work. 

 
4.2. Finite Element Results 

 
Here we examine the modeling results for three different constitutive equation formulations. The 
first is a simplified model including the time-dependent density model discussed in previous 
sections, a constant viscosity, and an isothermal domain. The second includes temperature 
effects and uses all the complex, material models discussed in Section 2 for viscosity and thermal 
properties using the time- and temperature-dependent density model. The third uses the full 
model except simplifies the viscosity model to include only the curing epoxy and not the effects 
of gas bubbles. 
 
4.2.1. Isothermal, Time-Dependent Density Model 
 
We can compare the results of our simplest foam self-expansion model using a constant 
viscosity, and ignoring curing, heat transfer, and the dilatational viscosity. We can look at the 
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shape of the interface marked by the level set zero and compare it with the results from the flow 
visualization studies (Figure 21). 
 
 

T=236.4sT=78.6sT=0s T=337.1s T=474.0sT=184.1s T=236.4sT=78.6sT=0s T=337.1s T=474.0sT=184.1s
 

Figure 21. Comparison of ARIA results with flow visualization data. Simulations fill 
slower initially than the experiments, than fill faster at later times. 
 
From this figure we see the simulations show fairly good agreement with the experiments, with a 
few qualifications. First, the rate of filling for the simulations seems slower than the experiments. 
Second, once the material reaches the top of the mold, the simulations become faster than the 
experiments. Thus, the rate of filling is slightly different in the experiment than in the model. 
 
We also compare the time and location for the two arms of the flow front to come together and 
form a knit line. This is seen in Figure 22. 
 
 

 
Figure 22. Time and place where knit lines come together for ARIA simulations for time-
dependent density model and experimental flow visualization: Left is simulation at 
time=156.1s and right is data at time=236.4s. Red arrows indicate the place where knit 
lines join in the mold. 
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From this figure, we can see that the experiment has its knit line form at 236.4 s while the 
simulation does this at 156.1 s. In addition, the location of the front coming together is different 
in the simulation, where the right arm is much faster than the experiments. From viewing the 
movie and the stills, we find that there are several discrepancies between experiment and model. 
First, the upper right hand channel looks much narrower in the experiment, and because of the 
fineness of the channel we find single bubbles moving though this part of the domain like red 
blood cells in a capillary. In other words, the bubbles are displaying non-continuum effects not 
accounted for in our model where we need to have at least 6-10 bubbles across the domain to 
assume a continuum. Another issue that can affect the ARIA results is the choice of slip model 
and the value of the Navier-slip coefficient. Using a Navier-slip coefficient from the PIV data 
lead to an entrained gas layer at the solid surfaces. However, we may be getting too much slip at 
the boundary, and we may need to investigate other wetting models. Other discrepancies 
between model and experiment occur in the density model itself and the choice of parameters to 
populate it, which will be discussed in the following section. 
 
We compare the volume in the mold as a function of time for the simulation and experiment in 
Figure 23. 
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Figure 23. Comparison of volume as a function of time for the ARIA results and flow 
visualization experimental data [Grillet, 2008].  Experiments fill faster than simulation at 
early times and then fill slower than simulation at later times.   
 
Here again, we can see that the simulation is slower than the experiment at early times and then 
reverses itself by being faster than the experiment at late times. The sinusoidal pattern at the top 
of the mold fills almost instantaneously for the simulation, which may be a numerical issue 
related to the frequency of level set renormalization, an artifact we are investigating. The model 
predicts a full mold at about 200 s, while the experiment is as full as it is going to get between 
400 s and 450 s. Very little change in volume is observed between 240 s and 474 s, so the model 
may not be too far off. In the end, the overall match between volumes for the model and data is 
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extremely good for an engineering model and should be sufficiently accurate for design studies 
to determine location of voids, knit lines, and fill times, and to optimize vent and gate locations. 
 
4.2.2. Nonisothermal, Time- and Temperature-Dependent Density Model, Full Variable 
Property Models 
 
We have also tested the full model with variable shear and bulk viscosity, polymerization, heat 
transfer, and variable thermal properties as discussed in the continuum model section. The results 
are shown in Figure 24. 
 

 
Figure 24. Simulation results for foam self-expansion as a function of time using full 
model with all variable properties. 
 
For the more complete model, we also see an overall faster fill time than the experiments. This 
simulation could not be taken to 500s as was done in the previous section. Numerical issues 
arose as the viscosity increased three orders of magnitude, leading to the loss of convergence of 
the method. The level set method is well-known for experiencing numerical problems if the ratio 
of the fluid viscosity to the gas-phase viscosity increases above 1000 [Rao, 2006]. Future 
methods seek to address this issue by implementing a sharp-interface method in conjunction with 
enriched nodal variables along the interface. 
 
Because this simulation did not run as long as the experiment, we have a limited number of time 
planes to compare (Figure 25). 
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T=78.6sT=0s T=184.1s
 

Figure 25. Comparison between simulation (top) using the full model with variable 
properties, heat transfer, and polymerization, and experiment (bottom). 
 
 
This figure clearly demonstrates that the full model is filling much faster than the experiments, 
similar to the previous model but with an estimated fill time of 160 s: considerably more quickly 
than the previous model’s fill time of 200 s. 
 
We compare the time for knit lines to come together as seen in Figure 26. 
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Figure 26. Time and place where knit lines come together for ARIA simulations for full 
model and experimental flow visualization: Left is simulation at time, 132.1 s, and right is 
data at 236.4 s. Red arrows indicate the place where knit lines join in the mold. 
 
Again, the knit lines are coming together much sooner for the simulation than the experiment and 
also in different places. The reasons for this discussed in the previous section are also pertinent 
here. 
 
We can examine the volume as a function of time from simulation and experiment (Figure 27). 
Here we have also added the theoretical volume calculated from the density model used in the 
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simulations, using an initial density of 1.14 g/cc and a final density of 0.2 g/cc and an exponent 
of 1/70 s at 65oC. 
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Figure 27. Comparison of volume as a function of time for the full ARIA model and flow 
visualization experimental data.  Experiments fill faster than simulation at early times and 
then are slower than simulation at later times, though numerical issues ended the 
simulation early. The theoretical volume from the density model used in simulations is 
also plotted for reference (pink squares). 
 
 
By comparing the theoretical volume from the density model used in the simulation, we see that 
this model is inconsistent with experimental volume data. This implies that the final volume 
determined from x-ray CT is inconsistent with the volume versus time data. We can determine a 
density function consistent with this data by varying the parameters until they match the data, as 
seen in Figure 28. To match the volume data the initial density is 1.14 g/cc, the final density is 
0.36 g/cc and the time dependent exponent is 1/55 s at 65oC. This final density is consistent with 
the density determined from converting the initial mass to the volume obtained from Figure 27. 
 
We can hypothesize that the inconsistency between the x-ray CT density and that determined 
from other analyses arises from the fact that the CT data is calibrated for densities of foam in the 
range of 0.1-0.3 g/cm3. However, the bright zone in the bottom is pure unfoamed liquid, possibly 
containing a higher concentration of fluorinert than the original mixture since fluorinert is denser 
than epoxy resin and has a tendency to settle. This bright zone in the CT could have a density of 
1.1-1.4 g/cm3, which would be far outside the calibration range. 
 
There is obviously uncertainty in the initial and final density data. The initial density can range 
from 0.9-1.14 g/cm3. The final can range from 0.2-0.3 g/cm3, but can also vary spatially from 
0.15-1.4 g/cm3. The difference between the initial and final density determines the rate of filling 
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for the simulation. The larger the difference, the faster the mold will fill. The higher the initial 
density, the more material there is available for filling the mold.  
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Figure 28.  Volume as a function of time for flow visualization experiments (blue) fit to a 
theoretical volume, based on a consistent density model (pink squares). To match the 
volume data the initial density is 1.14 g/cc, the final density is 0.36 g/cc and the time 
dependent exponent is 1/55 s at 65oC. 
 
This density model should fill the mold more slowly and match with experiment better if we 
used it; however, we strive to populate our material models from independent experiments and 
not the validation data. The issue of populating the density model seems to be rife with 
uncertainty and needs to be investigated further. 
 
From the full model, we can examine the property variations in the foam as a function of time for 
density, shear viscosity, bulk viscosity, heat capacity, thermal conductivity, and gas volume 
fraction in Figure 29. 
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Figure 29. Property variation in the foam as a function of time for density, shear 
viscosity, bulk viscosity, heat capacity, thermal conductivity, and gas volume fraction. 
 
 
In Figure 29, the density has decayed to almost its minimum value even though the simulations 
have only proceeded to 150 s. The shear viscosity begins at a low, uncured value of roughly 40 P 
and then increases due to curing and bubble evolution resulting in a final viscosity of 4000 P. 
The effect of bulk viscosity is largest initially, when the gas fraction is small and the divergence 
of velocity is its largest and decays to a small value at 150 s. The heat capacity is dominated by 
the continuous epoxy phase and its volume fraction dependence can be safely ignored in favor of 
a constant value. The thermal conductivity, on the other hand, changes by a factor of three during 
the blowing process and should therefore be included as a gas volume-fraction dependent 
function. 
 
Other variables of interest are the extent of reaction and the temperature. The maximum values 
of these variables are given in Figure 30. 
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Figure 30. Maximum temperature and extent of reaction as a function of time. 
 
From Figure 30, we can see that the extent of reaction increases fairly linearly from the initial 
condition of 0.06 and reaches a maximum of 0.14, still far from the gel point of 0.6 but enough 
to produce heat above the oven temperature of 338 K. We can also look at temperature contours 
taken on a slice in the center of the mold (Figure 31). Note, if we look at the temperature at the 
wall it would be quite uninteresting, since it is set to the oven temperature as a Dirichlet 
condition. From this figure, we can see that that the material starts off at the initial condition of 
43oC, which is below the boiling temperature of fluorinert. This implies that the foam precursor 
in the center bottom section of the mold should not be foaming, which is contrary to our 
experimental observation that foaming begins immediately. This implies that a more correct 
initial condition may be that developed from TC101, which is 52.7oC. 
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Figure 31. Temperature contours at a slice in the center of the mold. 
 
From Figure 31, we note that the gas phases stays at the oven temperature while the foam 
material slowly heats up, reaching the oven temperature after 145.6 s.  
 
We also examine the temperature in the ARIA simulations at locations similar to TC101, the 
inflow, and TC103, the thermocouple located in the side wall. These results are shown in Figure 
32 for a simulation using an initial condition for temperature of 43oC. The other two 
thermocouples are uninteresting as they just track the oven temperature and do not change during 
the foaming process. 

 
Figure 32. Temperature profiles from simulation for TC101 (blue), TC103 (yellow) for a 
temperature initial condition of 43oC. 
 
Comparing the results from the simulation, Figure 32, to the experiments, Figure 19, we can see 
that we do a good job of representing the drop in temperature associated with the cool foam 
hitting TC103 at roughly 70s and its subsequent heating back up to the oven temperature; though 
in the simulation TC103 heats back up more slowly than in the experiment. For the inflow 
thermocouple, TC101, we seem to start off at a much lower temperature, but heat up in a similar 
manner to the experimental data. This issue could be related to using a wrong initial temperature, 
e.g. 43oC instead of 52.7oC. This thermocouple is very close to the wall and heats up because of 
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this fact. For areas in the center of the mold, the temperature does not rise as quickly. We will 
investigate this in the future by adding additional thermocouples to the mold in regions that are 
potentially colder initially and then hotter due to the exothermic polymerization reaction. 
 
As with the simple time-dependent density model, we feel the full model gives a fairly good 
comparison to experiment for an engineering model for properties we can measure such as 
temperature, filling profile, and void location.  
 
We used the full model to investigate an initial condition more consistent with the data. If we use 
an initial condition of 52.7oC, we get a result that looks more like the experimental data 
(Figure 33). 
 

 
Figure 33. Temperature profiles from simulation for TC101 (blue), TC103 (yellow) for a 
temperature initial condition of 52.7oC. 
 
 
4.2.3. Nonisothermal, Time- and Temperature-Dependent Density Model, Variable 
Property Models with a Simplified Viscosity Model 
 
We have also tested a third model, similar to the one discussed in the previous section but with a 
slightly different viscosity model. Here, the viscosity varies as the epoxy continuous phase with 
degree of polymerization and temperature, but we ignore the effects of bubbles on the foam, e.g., 
equation (11). This seems to be a reasonable model, since it is unclear exactly what viscosity the 
fluid sees during self-expansion and how different this viscosity is from the one seen in a 
pressure driven or viscometric flow. Here, the foam expansion leads directly to velocity from the 
continuity equation and not to a pressure driven flow. 
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For the simplified viscosity model, the simulation ran as long as the experiment. Comparison 
between the two is given below for an initial density of 1.14 g/cm3 and a final density of 
0.33 g/cm3 (Figure 34). 
 

T=236.4sT=78.6sT=0s T=337.1s T=474.0sT=184.1s T=236.4sT=78.6sT=0s T=337.1s T=474.0sT=184.1s
 

Figure 34. Comparison between simulation and experiment for full model with variable 
properties, heat transfer and polymerization, but using a curing epoxy viscosity model 
without the effects of gas bubbles. 
 
 
This figure clearly demonstrates that the full model with the simplified viscosity is filling much 
faster than the experiments, similar to the previous model but with an estimated fill time of 200s: 
similar to the time-dependent density model. Because the difference between the initial and final 
density is a smaller than the previous simulation, the mold fills more slowly even with the same 
exponent. 
 
We can also compare the time for knit lines to come together as seen in Figure 35. 
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Figure 35. Time and place where knit lines come together for ARIA simulations for full 
model and experimental flow visualization: Left is simulation at 164.0 s and right is data 
at time, 236.4 s. Red arrows indicate the place where knit lines join in the mold. 
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Again, the knit lines are coming together much sooner for the simulation than the experiment, 
but in a similar place for this slower and lower viscosity simulation. The reasons for this 
mismatch are discussed in the previous sections are also pertinent here. 
 
We can examine the volume as a function of time from simulation and experiment (Figure 36).  
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Figure 36. Comparison of volume as a function of time for ARIA simulations and flow 
visualization experimental data. Similar to the other models, the experiments fill faster 
than the simulation at early times and then slower than the simulation at later times. 
 
 
This plot looks very similar to the time-dependent density model with the same caveats of the 
simulation filling too slowly initially and then too fast at the end. 
 
 
We can also examine the material properties for the reduced viscosity model (Figure 37). The 
density, heat capacity, conductivity, and gas volume fraction look very similar to the previous 
simulation results (Figure 29). The shear viscosity is much smaller and has a maximum of 200 P 
instead of 4000 P for the simulation where the effect of gas bubbles was included. Because the 
shear viscosity is so much lower than in the previous simulation, we can run the simulation to 
500 s without incurring the numerical difficulties associated with the higher viscosity case. 
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Figure 37. Property variation in the foam as a function of time for density, bulk viscosity, 
shear viscosity, heat capacity, conductivity, gas volume fraction for simpler curing 
viscosity model. 
 
Since the thermal properties are unchanged, the thermal results should be similar. To determine 
the effect of the exotherm, in future, we would have to carry the simulation out past the filling 
stage. We have done similar work before on the neutron generator where the full fluid-thermal-
curing simulations were carried out until the epoxy reached the gel point, at which point a 
thermal-curing simulation was begun to determine the maximum temperatures attained in the 
mold. It would be good to also have our validations experiments extended through cure. 
 
As discussed before, the model could be improved by reexamining the curve fit for the density 
function, as this is at the heart of the model.  
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5. CONCLUSIONS AND FUTURE WORK 
 
 
We have developed a production scale model, which can be used to study foam self-expansion in 
complex geometries. The model is based on a finite element/level set implementation in the 
ARIA module of the SIERRA mechanics framework. ARIA can be run either in serial or 
massively parallel modes. The foam model is based on continuum theory that homogenizes the 
effects of gas bubbles into a time-dependent density model. ARIA was run on 68 processors of 
Thunderbird to obtain results for a simpler foam self-expansion model in the QA test fixture, 
where the density is variable, obeying an exponential decay function, the viscosity is Newtonian, 
dilatational effects are ignored, and the domain is assumed to be isothermal with including 
polymerization of the epoxy. A second model was run in the QA test fixture that included 
nonisothermal effects, in addition to curing, variable properties, and dilatational viscosity. The 
results from the models were compared to flow visualization data. Both models performed fairly 
well, though there were some quantitative differences between the filling rates and shapes 
thought to come from uncertainties in the density model. 
 
This is an engineering design tool that will allow us to study processing variable such as 
temperature and fluorinert and air concentrations, as well as the effect of gate and vent location 
for optimizing the foam encapsulation process. It has many good features: 1) It is reasonable 
robust numerically, especially the time-dependent density model 2) It is fast enough that it can be 
run in complex geometries of real components such as that of the firing set and AFS. 3) It is 
fairly easy to understand and populate via simple experiments and experimental analysis, and can 
be applied to other foams such as REF and even polyurethanes, 4) It can predict trends for 
engineering optimization. 
 
However, there is obviously room for improvement and we would like to develop a more 
quantitative model. We are currently developing a detailed treatment of the fluorinert nucleation 
and growth that does not rely wholly on the density model for the correct foaming. Missing from 
our current model is this effect, along with the density gradients created by the buoyancy of the 
gas bubbles relative to the epoxy that result in creaming. For future work, we plan to incorporate 
a fluorinert nucleation and growth model based on cavitation theory and cloud-physics theory, 
where nucleation is thought to occur from collisions of gas bubbles rising with fluorinert droplets 
settling (see Figure 34 for an illustration).  
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Figure 38. Conceptual representation of the foam nucleation process. Blue bubbles 
represent the gas phase. The black bubbles represent fluorinert liquid-phases inside a 
continuous epoxy phase, shown as white. Due to the different densities between the 
black and blue phases, there exists a relative motion leading to enhanced collisions. 
 
 
We will include the effects of bubble transport using a model similar to models for glass 
microballoons in the neutron generator, which proved useful for predicting the complex flow of 
floating microballoons in curing epoxy in complex geometries [Rao et al, 2007]. 
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APPENDIX A:  FOAM MATERIAL PROPERTIES AND ARIA INPUT FILE 
 
Foam properties 
 
${R=1.987} cal/mol K 
 
${ca = 90} degrees 
${vw = 1.93e-1}  cm/s 
${cg= 1/.497} 
${tau= 1.} 
${sigma = 39.8 } dyn/cm 
${elem_size = 0.01} 
 
${beta = 0.01} 
${g = 980.} g/cm3 
${m_air = 0. } mass fraction air 2.66E-4 - Harry's uses this 
${m_epoxy = 0.954074} mass fraction epoxy 
 
${rho_liq = 1.14} g/cm^3 
${rho_gas = 0.001} g/cm^3 should be .00055 
${rho_fluor_l = 1.68} g/cm^3  
${rho_fluor_g = 1.39E-2} g/cm^3  
 
#Foam density parameters 
${rhof_i = 1.14} g/cm^3 
${rhof_f = 0.27} g/cm^3 
${CT = 116250}  
${DT = 274.26}  
 
#Foam viscosity parameters 
${mua = 6.e-8} P includes factor of 1.5 from fluorinert 
${T_mu = 0. } K In the code this removes the linear term 
${mub = 0.0 } P  
${nmu = -3.5 } 
${mmu = 1. } 
${Emu = 1.30e4 } cal/mol 
${xi_0 = 0.058 } extent of rxn after injection 
${xi_c = 0.6 } extent of rxn at gel pt 
 
 
${mu_liq = 65 } P #should be ?? 
${mu_gas = 0.1} P #should be .01 
 
${ergtoJ = 1.e-7} Merg/erg 
#Thermal properties 
${k_liq = 1.8E4*ergtoJ} erg/(cm sec K) liquid conductivity 
${k_air = 2.5E3*ergtoJ} erg/(cm sec K) air conductivity 
${k_foam = 4540.*ergtoJ} erg/(cm sec K) foam conductivity Gill and Dobranich, 
SAND2002-1769 
${cp_foam = 1.48e7*ergtoJ} erg/ g K foam heat capacity Gill and Dobranich, 
SAND2002-1769 
${cp_liq = 2.0e7*ergtoJ} erg/g K liquid heat capacity 
${cp_air=1.02e7*ergtoJ} erg/g K air heat capacity 
${h = 2.5e7*ergtoJ} erg/cm^2 K s 
${hrxn = -2.23e9*ergtoJ} erg/g Heat of reaction for epoxy cure from Adolf 
${hevap = 8.71164e8*ergtoJ} erg/gm Heat of evap for fluorinert 
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${T_i = 325.85} K temperature of fluid as it goes in the mold 
${T_oven = 338} K for first hour 
${T_max = 410} K maximum temperature for density model applicability 
 
 
 
#Extent of reaction 
${N = 1.4} curing exponent 
${E1 = 1.10e4} cal/mol  
${a = 8600.} 1/s 
 
 
______________________________________________________________________________ 
 
 
 
# {include("foam.def")} 
 
begin sierra myJob 
    
   Begin Aria Material multiphase 
      Level Set Heaviside = Smooth 
      Level Set Width   = Constant width={alpha=0.3*2.54} 
      Surface Tension   = Constant sigma={sigma} 
      Density             = Phase_Average 
      Viscosity           = Phase_Average 
      thermal_conductivity = Phase_Average 
      specific_heat       = Phase_Average 
      Volume_Fraction_Gas = Phase_Average 
      Bulk_Viscosity = Phase_Average 
   End 
 
   Begin Aria Material fill 
 
      #Density     = Constant rho = {rho_liq} 
      #Density              = Exp_Decay Rho_Initial=1.14 Rho_final=0.27 
K=0.0125  
      Density         =  Foam_Time_Temp  RHO_INITIAL={rhof_i} 
RHO_FINAL={rhof_f} C_PARAM={CT} D_PARAM= {DT} T_MAX = {T_max}   
      #Momentum Stress    = Incompressible_Newtonian 
      #Viscosity       =  Constant  mu = {mu_liq} 
      Momentum Stress = Formal_Newtonian 
      #Bulk_Viscosity  = Constant  kappa = 0.1 
      Viscosity       = Curing_Foam mu_a={mua} T_mu ={T_mu} mu_b={mub} 
n_mu={nmu} E_mu={Emu} R={R} ksi_c={xi_c} m_ksi_c={mmu} extent_subindex=0 
      Bulk_Viscosity  = Curing_Foam mu_a={mua} T_mu ={T_mu} mu_b={mub} 
n_mu={nmu} E_mu={Emu} R={R} ksi_c={xi_c} m_ksi_c={mmu} extent_subindex=0  
      Heat Conduction     = Fouriers_Law 
      #SPECIFIC HEAT       = CONSTANT  CP = {cp_foam} 
      #THERMAL CONDUCTIVITY        = CONSTANT   K = {k_foam} 
      SPECIFIC HEAT       = CURING_FOAM CP_G={cp_air} CP_L ={cp_liq} RHO_G = 
{rho_gas} RHO_L = {rho_liq} 
      THERMAL CONDUCTIVITY        = CURING_FOAM K_G = {k_air}    K_L = 
{k_liq}   
      species diffusion_0 = Ficks_Law 
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      species diffusivity_0 = CONSTANT D = 5.0E-4  
      #VOLUME_FRACTION_GAS = FROMDENSITY RHO_LIQUID = {rho_liq}  RHO_GAS = 
{rho_gas} RHO_INITIAL = {rhof_i} 
      VOLUME_FRACTION_GAS = FromFoamTimeTemp RHO_INITIAL = {rhof_i} 
MassFraction_air={m_air} rho_air={rho_gas} rho_vaporFluorinert={rho_fluor_g} 
rho_liquidFluorinert={rho_fluor_l} 
 
   End 
 
   Begin Aria Material gas 
      Density     = Constant rho = {rho_gas} 
      Viscosity     = Constant  mu = {mu_gas} 
      Momentum Stress    = Incompressible_Newtonian  
      Heat Conduction     = Fouriers_Law 
      SPECIFIC HEAT       = CONSTANT  CP = {cp_air} 
      THERMAL CONDUCTIVITY        = CONSTANT   K = {k_air} 
      species diffusion_0 = Ficks_Law 
      species diffusivity_0 = CONSTANT D = 5.e-2 
      VOLUME_FRACTION_GAS = CONSTANT value = 0.0 
      Bulk_Viscosity       = Constant  kappa = 0.0 
   End 
    
   begin trilinos equation solver UMF 
      solution method = amesos-umfpack 
      Matrix Scaling  = row-sum 
      matrix reduction = fei-remove-slaves 
   end 
   begin trilinos equation solver SUPERLU 
      solution method = amesos-superludist 
      Matrix Scaling  = row-sum 
   end 
 
   begin aztec equation solver iterative 
      preconditioning method = dd-ilu 
      #solution method = bicgstab 
      solution method = gmres 
      maximum iterations      = 500 
      param-int AZ_kspace value 500 
      residual norm tolerance = 1.e-6 
      ilu threshold = 1.e-3 
      preconditioner subdomain overlap = 2 
   end 
    
   begin trilinos equation solver iterative1 
      preconditioning method = dd-ilut 
      solution method = gmres 
      residual norm tolerance = 1.e-6 
      maximum iterations      = 500 
      param-int AZ_kspace value 500 
      ilu threshold = 1.e-6 
      ilu Fill = 3 
      preconditioner subdomain overlap = 2 
   end 
 
  begin aztec equation solver gmres_ilut 
      solution        method  = gmres 
      preconditioning method  = dd-ilut 
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      maximum iterations      = 600 
      param-int AZ_kspace value 600 
      residual norm tolerance = 1.e-4 
      param-real AZ_drop value 1.e-4 
      param-int AZ_ilut_fill value 3 
      preconditioner subdomain overlap = 2 
      Matrix Scaling = row-sum 
   end 
 
   begin aztec equation solver gmres_ilu 
      solution        method  = gmres 
      #solution method = bicgstab 
      preconditioning method  = dd-ilu 
      maximum iterations      = 600 
      param-int AZ_kspace value 600 
      residual norm tolerance = 1.e-4 
      param-real AZ_drop value 1.e-6 
      preconditioner subdomain overlap = 2 
      Matrix Scaling = row-sum 
   end 
 
   Begin Finite Element Model foam 
      database Name = art3d_cm.g 
      coordinate system is cartesian 
      begin parameters for block block_1 
  material multiphase 
  phase a = fill 
  phase b = gas 
      end 
   End 
    
   Begin Procedure myProcedure 
       
      Begin Solution Control Description 
  Use System Main 
   
  Begin Initialize My_Init 
    Advance LS_Region 
           Advance Fluid_Region  
    #Advance SOLUTION_LEVEL_SET_REDISTANCE 
  End 
   
  Begin System Main 
     #Use Initialize My_Init 
     Simulation Start Time      = 0.0 
     Simulation Termination Time      = 500.0 
     Simulation Max Global Iterations = 30000 
     Begin Transient Stepper 
        Transfer Fluid_to_LS 
        #Begin Subcycle The_Subcycle_Block 
                  Advance LS_Region 
    #Event LS_CONSTRAINED_REDISTANCE when "(CURRENT_STEP - 
LAST_LS_CONSTRAINED_REDISTANCE_STEP) >= 50 || (LS_GRADIENT_ERROR_NORM(0.) > 
0.09 && (CURRENT_STEP - LAST_LS_CONSTRAINED_REDISTANCE_STEP) >= 20)" 
    Event LS_CONSTRAINED_REDISTANCE when "(CURRENT_STEP - 
LAST_LS_CONSTRAINED_REDISTANCE_STEP) >= 20 || (LS_GRADIENT_ERROR_NORM(0.) > 
0.05 && (CURRENT_STEP - LAST_LS_CONSTRAINED_REDISTANCE_STEP) >= 3)" 
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               #End                
               Transfer LS_to_Fluid 
               Transfer PROJ_LS_to_Fluid 
               Advance Fluid_Region   
               #Advance Fluid_Region when "CURRENT_STEP % 10 == 0" 
               #Event LS_CONSTRAINED_REDISTANCE 
               Event LS_COMPUTE_SIZES 
               Event LS_COMPUTE_INTERFACE_NORMAL_VELOCITY 
 
     End 
  End 
  Begin Parameters For Transient Stepper 
            Begin Parameters For Aria Region Fluid_Region 
        Initial Time Step Size = {dt = 0.1} 
               #Minimum Resolved Time Step Size = {dt} 
               Minimum Time Step Size = {dt/1000} 
        #Time Step Variation    = Adaptive 
               #PREDICTOR-CORRECTOR TOLERANCE = 0.001 
        #Courant Limit = 0.2 
        Time Step Variation    = Fixed 
     End 
            Begin Parameters For Aria Region LS_Region 
        #Initial Time Step Size = {1000*dt} 
        Initial Time Step Size = {dt} 
        Time Step Variation    = Fixed 
     End 
  End 
      End 
       
      Begin Transfer Fluid_to_LS 
         Copy Volume Nodes From Fluid_Region To LS_Region 
         Send Field solution->VELOCITY State New To solution->VELOCITY State 
New 
         Send Field solution->VELOCITY State old To solution->VELOCITY State 
old 
      End 
      Begin Transfer LS_To_Fluid 
         Copy Volume Nodes From LS_Region To Fluid_Region 
         Send Field solution->LEVEL_SET State New To solution->LEVEL_SET 
State New 
         Send Field solution->LEVEL_SET State old To solution->LEVEL_SET 
State old 
      End 
      Begin Transfer PROJ_LS_To_Fluid   
         Copy Volume Nodes From LS_Region To Fluid_Region 
         Send Field solution->PROJECTED_Level_Set_Curvature State New To 
solution->PROJECTED_Level_Set_Curvature State New 
         Send Field solution->PROJECTED_Level_Set_Curvature State old To 
solution->PROJECTED_Level_Set_Curvature State old 
      End 
        
      Begin Aria Region LS_Region 
           
         Use Linear Solver iterative 
         use Finite Element Model foam 
           
         Nonlinear Solution Strategy    = Newton 
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         Maximum Nonlinear Iterations   = 5 
         Nonlinear Residual Tolerance   = 1e-6 
         #Nonlinear Correction Tolerance = 1e+12 # LINEAR 
         Nonlinear Correction Tolerance = 1e-6 
         Nonlinear Relaxation Factor    = 1.0 
           
         EQ Level_Set for Level_Set on block_1 Using Q1 with Mass Adv 
Taylor_Galerkin 
         #IC Linear on block_1 Level_Set COEFF = -11.9 0.  1.0  0. 
         IC Linear on block_1 Level_Set COEFF = -1.13 0.  1.0  0. 
 
 
         BC Disting for Level_Set on surface_1 = Polynomial 
Variable=Dt_Level_Set Order=1 C1=1 
          
         EQ Momentum for Velocity on block_1 using Q1 with XFER 
         Predictor Fields = Not Velocity 
 
  EQ Lumped_Div_Projection for Projected_Level_Set_Curvature on block_1 
Using Q1 with Def 
         Predictor Fields = Not Projected_Level_Set_Curvature 
 
         BC Flux for Lumped_Div_Projection on surface_1 = Curvature 
  BC Flux for Lumped_Div_Projection on surface_3 = Curvature 
 
         BEGIN LEVEL SET INTERFACE LS 
           Distance Variable = solution->LEVEL_SET 
           Velocity Variable = solution->VELOCITY 
           NARROW BAND WIDTH = {3.0*alpha} 
         END LEVEL SET INTERFACE LS 
 
     end aria region LS_Region 
       
      begin aria region Fluid_Region 
   
  #use linear solver iterative 
         #use Linear Solver SUPERLU 
  use linear solver gmres_ilut 
  #use linear solver gmres_ilu 
  use Finite Element Model foam 
   
         nonlinear solution strategy    = Newton 
         nonlinear residual tolerance = 1e-8 
         nonlinear correction tolerance = 1e-6 
         nonlinear relaxation factor = 1.0 
  Maximum Nonlinear Iterations   = 10 
   
         EQ Level_Set for Level_Set on block_1 Using Q1 with XFER 
         EQ Lumped_Div_Projection for Projected_Level_Set_Curvature on 
block_1 Using Q1 with XFER 
  Predictor Fields = Not Level_Set 
         Predictor Fields = Not Projected_Level_Set_Curvature 
 
  EQ continuity_A for pressure on block_1 using Q1 with mass adv 
         EQ continuity_B for pressure on block_1 using Q1 with div 
 
  Predictor Fields = Not Pressure 
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         PRESSURE STABILIZATION is PSPP_TRANSIENT with scaling = 0.15 
 
         EQ momentum_A for Velocity on block_1 using Q1 with Diff Mass Adv 
Src SUPG 
         EQ momentum_B for Velocity on block_1 using Q1 with Diff Mass Adv 
Src SUPG 
 
  # width = {width = 1.0*alpha} 
 
         mesh group slip_boundary = surface_1 surface_3 
         #BC Flux for Momentum_A on slip_boundary = Oriented_Slip 
Beta_Normal=1.e-7 Beta_Tangent=1.e-1 
         #BC Flux for Momentum_B on slip_boundary = Oriented_Slip 
Beta_Normal=1.e-7 Beta_Tangent=1.e-1 
 
 
         BC Flux for Momentum_A on slip_boundary = Slip Beta= {beta}  
         BC Flux for Momentum_B on slip_boundary = Slip Beta= {beta} 
         BC Rotated for Momentum_A on slip_boundary = Kinematic 
         BC Rotated for Momentum_B on slip_boundary = Kinematic 
 
 
  Source For Momentum_A on block_1 = Hydrostatic gx = 0 gy = {-g} gz = 0 
  Source For Momentum_B on block_1 = Hydrostatic gx = 0 gy = {-g} gz = 0 
 
         SOURCE FOR momentum_A ON block_1 = LS_CAPILLARY 
         SOURCE FOR momentum_B ON block_1 = LS_CAPILLARY 
 
         # ----------- ENERGY EQUATION FORMULATION --------------------------
---- 
 
         EQ Energy_A For Temperature On block_1 Using Q1 With Mass Adv Diff 
Src 
         #SOURCE for Energy_A on block_1 = CURING_FOAM_HEAT_OF_RXN 
RHO_INITIAL = {rhof_i} RHO_FINAL={rhof_f} RHO_LIQUID = {rho_liq}  RHO_GAS = 
{rho_gas} RHO_EPOXY = {rho_liq} H_rxn = {hrxn} 
  SOURCE for Energy_A on block_1 = CURING_FOAM_HEAT_OF_RXN H_rxn = 
{hrxn}   Mass_Fraction_epoxy={m_epoxy}  extent_subindex=0 
  #SOURCE for Energy_A on block_1 = Curing_Foam_Latent_Heat 
         SOURCE for Energy_A on block_1 = CONSTANT value = 0.0 
 
         EQ Energy_B For Temperature On block_1 Using Q1 With Mass Adv Diff 
Src 
         SOURCE for Energy_B on block_1 = CONSTANT value = 0.0 
 
         IC Const on block_1 Temperature = {T_i} 
 
         #BC Flux for Energy_A on surface_1 = Nat_Conv T_ref={T_oven} H={h} 
         #BC Flux for Energy_B on surface_1 = Nat_Conv T_ref={T_oven} H={h} 
         #BC Flux for Energy_A on surface_2 = Nat_Conv T_ref={T_oven} H={h} 
         #BC Flux for Energy_B on surface_2 = Nat_Conv T_ref={T_oven} H={h} 
         #BC Flux for Energy_A on surface_3 = Nat_Conv T_ref={T_oven} H={h} 
         #BC Flux for Energy_B on surface_3 = Nat_Conv T_ref={T_oven} H={h} 
 
 
         BC Const Dirichlet at surface_3 Temperature =  {T_oven} 
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         BC Const Dirichlet at surface_2 Temperature =  {T_oven} 
         BC Const Dirichlet at surface_1 Temperature =  {T_oven} 
 
         # ----------- EXTENT OF RXN EQUATION FORMULATION -------------------
--------- 
         # 
         EQ Species_0_A for Species_0 on block_1 using Q1 with Mass Adv diff 
Src Taylor_Galerkin 
         SOURCE for Species_0_A  
 

   Postprocess Volume_Fraction_Gas on block_1 
         Postprocess Bulk_Viscosity on block_1 
 
  Begin Results Output fluid output 
            database Name = soln.e 
            At Step 1, Increment is 20 
            Title Aria 3D Mold Filling 
     Nodal Variables = solution->Velocity  as V 
     Nodal Variables = residual->Velocity  as RV 
     Nodal Variables = solution->Level_Set as F 
            Nodal Variables = solution->Pressure as P 
            Nodal Variables = residual->Pressure as RP 
     Nodal Variables = solution->Projected_Level_Set_Curvature  as GradF 
            Nodal Variables = solution->Temperature as T 
            Nodal Variables = residual->Temperature as RT 
            Nodal Variables = solution->Species_0 as x0 
            Nodal Variables = residual->Species_0 as Rx0 
            Nodal Variables = pp->Div_Velocity as DV 
     Nodal Variables = pp->Density as rho 
            Nodal Variables = pp->Viscosity as MU 
            Nodal Variables = pp->thermal_conductivity as k 
            Nodal Variables = pp->specific_heat as Cp 
     Nodal Variables = pp->Volume_Fraction_Gas as vol 
     Nodal Variables = pp->Bulk_Viscosity as kappa 
  End 
   
      end aria region Fluid_Region 
       
   end procedure myProcedure 
    
end sierra myJob 
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