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Abstract

Non-equilibrium sorption of contaminants in ground water systems is examined
from the perspective of sorption rate estimation. A previously developed Markov tran-
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sition probability model for solute transport is used in conjunction with a new con-
ditional probability-based model of the sorption and desorption rates based on break-
through curve data. Two models for prediction of spatially varying sorption and des-
orption rates along a one-dimensional streamline are developed. These models are
a Markov model that utilizes conditional probabilities to determine the rates and an
ensemble Kalman filter (EnKF) applied to the conditional probability method. Both
approaches rely on a previously developed Markov-model of mass transfer, and both
models assimilate the observed concentration data into the rate estimation at each ob-
servation time. Initial values of the rates are perturbed from the true values to form
ensembles of rates and the ability of both estimation approaches to recover the true
rates is examined over three different sets of perturbations. The models accurately
estimate the rates when the mean of the perturbations are zero, the unbiased case. For
the cases containing some bias, addition of the ensemble Kalman filter is shown to
improve accuracy of the rate estimation by as much as an order of magnitude.
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Introduction

Mass transfer of solute between the mobile and immobile domains in permeable media
is strongly controlled by the processes of diffusion and sorption and the development of
models that parameterize these processes has been a longstanding area of research (e.g.,
van Genuchten and Wierenga [1976]). More recent work [Brusseau et al., 1991; Chen and
Wagenet, 1997; Cunningham and Roberts, 1998; Goltz and Roberts, 1986; Haggerty et
al., 2000; Jaekel et al., 1996; Miller and Weber, 1986; Pedit and Miller, 1994; Quinodoz
and Valocchi, 1993] has focused on identifying heterogeneous rates of mass transfer that
are due to local scale variability in the diffusion and sorption properties of the permeable
media. As pointed out by Haggerty et al. [2004], variability in sorption strength increases
variation in mass transfer time scales. Here we focus on the estimation of varying sorption
and desorption rates. These rates tend to slow the average travel time of a solute through
the permeable media and also influence mass transfer by increasing the capacity of the
immobile zone to retain solute as well as decreasing the mass-transfer rate between the
two zones. Techniques are developed that accommodate real-time data assimilation for the
estimation of sorption and desorption rates.

Our focus here on real-time assimilation, as opposed to off-line inverse parameter esti-
mation, is driven by the eventual goal of developing parameter estimation techniques that
can utilize natural stimuli in the updating of models. Interest in using natural stimuli as
energy sources for the investigation of natural systems is increasing with relevant examples
found in ground water hydrology and seismology (e.g., Xiang and Yeh, [2005]; Gret et al.,
[2005]). Here we initiate development of such techniques using a relatively simple example
of a known contaminant source employing a previously developed particle tracking based
model of non-equilibrium sorption processes.

Particle-based approaches provide an efficient means of modeling solute transport where
mass-transfer between mobile (advective) and immobile domains is an important process.
Relative to Eulerian approaches, particle-based approaches have the advantage of eliminat-
ing numerical dispersion and can often be computationally efficient in strongly heteroge-
neous media (e.g., Tompson, [1993]; LaBolle et al., [1996]). Particularly, Markov models
are an attractive choice for modeling the sorbed and non-sorbed phases of the particle
with transition probabilities representing the sorption and desorption rates [Andricevic and
Foufoula-Georgiou, 1991; Mishra et al., 1999; Valocchi and Quindooz, 1989].

Here we examine the specific problem of non-equilibrium sorption processes occur-
ring in series within discrete zones along a single streamline. A different pair of forward
and reverse sorption rates is defined for each discrete zone. This problem is analogous to
solute transport through a column experiment with a series of different materials or field-
scale transport through different geochemically distinct hydrofacies (e.g., vertical transport
through a sedimentary sequence).

The Kalman filter [Kalman, 1960] is a well known technique for prediction of sys-
tem behavior. The Kalman filter is a “predictor-corrector” method that uses observa-
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tion/measurement data to correct model predictions, and correction of model predictions is
determined by tracking of error statistics in the form of an error covariance matrix [Welch
and Bishop, 2003]. The Kalman filter can be applied when system variables, or the states
of the system, are modeled with a linear stochastic difference equation (e.g., Assouline,
[1993]). The Kalman filter is well-suited for rapid updating of model predictions as it only
requires information about the system for the previous time step, not all previous times,
in order to predict system behavior at a future time step. This feature of the Kalman filter
can provide a significant time and computational savings over other techniques, such as
parameter estimation, that require information from all previous times.

A limitation of the Kalman filter is that it is only applicable to linear systems, but the
extended Kalman filter algorithm has been applied to nonlinear systems. The extended
Kalman filter uses linearization techniques to approximate error statistics and incorporates
these statistics into the Kalman filter framework [Welch and Bishop, 2003]. However, the
extended Kalman filter has had limited success for “highly” nonlinear systems. The ensem-
ble Kalman filter (EnKF), developed specifically for nonlinear systems, was first introduced
by Evensen [1994] and has been used for a variety of applications (see Evensen [2003] for
a thorough listing of EnKF applications). The EnKF uses Monte Carlo sampling to create
an ensemble of input parameters, and error statistics are estimated with the ensemble of
model predictions.

The fundamental goal for tracer tests in aquifers is the determination of in-situ aquifer
properties based on experimental results. Here we examine the specific issue of accu-
rately estimating the spatially varying sorption and desorption rates from the concentration
measurements obtained along the flow path. The robustness of the estimation approach
is tested by varying the amount of bias in the initial estimates of the rates. Furthermore,
if these rates can be estimated accurately, can this estimation occur within an assimila-
tion framework where each new measurement in time is used to update previous estimates.
This paper describes and tests a set of models and techniques that we have developed for
accurate, real-time estimation of spatially varying sorption and desorption rates.
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Problem Set Up

Physical Set Up

We consider one-dimensional fluid flow. A solute is injected into a fluid with a Dirac pulse
at time zero at the upstream end of a streamline. The solute is initially in an aqueous phase,
and it transitions between an aqueous phase and a sorbed phase as it travels along the flow
path. At the local scale, an Eulerian discretization of the 1-D advective-dispersive equation
with rate-limited sorption and desorption is given as:

∂C
∂ t

+
∂S
∂ t

= D
∂ 2C
∂x2 −ν

∂C
∂x

, (1)

where C is the aqueous concentration (M/L3), D is the hydrodynamic dispersion coefficient
(L2/T ), ν is the pore velocity (L/T ) and S is the sorbed concentration per volume of aquifer
material (M/L3). Under the case of non-equilibrium, linear sorption examined here,

∂S
∂ t

= k fC− krS, (2)

where k f and kr are the sorption (forward) and desorption (reverse) rate coefficients such
that Kd = k f /kr under the conceptual model of linear sorption. The local scale transport
equation is solved using appropriate boundary and initial conditions.

Here we consider that the rates of sorption and desorption vary in space but not time.
Sensors are placed at intervals of varying length along the streamline, and these sensors
measure the concentration of the solute at their respective locations as the tracer passes.
For the purposes of this article, the concentration measured is relative to the initial concen-
tration at the influent end of the flow path, resulting in a normalized unitless quantity.

Temporal and Spatial Discretization

Time is discretized in uniform step sizes of length Δt, and the streamline is divided into
Nz zones of varying length. The rates of sorption and desorption are assumed constant
within each discrete zone. Each zone is further subdivided into subintervals of uniform
length Δx = vΔt where v denotes the fluid velocity. Furthermore, we assume that each
sensor is positioned at the end of a zone and takes a concentration reading at the end of
each time step. Figure 1 provides an example of how a streamline with five zones might be
discretized.
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Figure 1. Discretization of a Five Zone Streamline

Markov Process Model of Sorption-Desorption and Rate Estimating
Models

Andricevic and Foufoula-Georgiou [1991] model the sorption-desorption process as a Markov
process with constant rates, and Mishra et al. [1999] use this framework to establish a
model for spatially varying rates. In each of these models, a set of probabilities describes
the likelihood of a particle of solute transitioning between the sorbed and aqueous phases.
We use the following notations for these probabilities:

1. p̂( j) - the probability that a particle in the aqueous phase stays in the aqueous phase
for one time step in zone j.

2. [1− p̂( j)] - the probability that a particle in the aqueous phase becomes sorbed for
one time step in zone j.

3. p̃( j) - the probability that a particle in the sorbed phase transitions to the aqueous
phase for one time step in zone j.

4. [1− p̃( j)] - the probability that a particle in the sorbed phase stays in the sorbed phase
for one time step in zone j.

We denote the solute’s rates of sorption and desorption by k f ( j) and kr( j), respectively,
with the distribution coefficient, Kd( j) = k f ( j)/kr( j), and the probabilities p̂( j) and p̃( j)
are defined in terms of the rates:

p̂( j) = 1− k f ( j)Δt, and (3)
p̃( j) = kr( j)Δt. (4)

These definitions require that the time discretization is fine enough so that the probabilities
are bounded between 0 and 1. Derivation of these probabilities is discussed by Andricevic
and Foufoula-Georgiou [1991].
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These probabilities, in conjunction with the following assumptions, form the basis of
our particle tracking model:

1. At time t = 0 all solute particles are in the aqueous phase at the the influent end of
the streamline.

2. The decision about sorption/desorption is made at the beginning of each time step.

3. A solute particle advances one spatial step per time step and only if it is in the mobile
aqueous phase.

4. Following Mishra et al. [1999a], it is assumed that no dispersion takes place. How-
ever, this model is developed for 1-D transport along streamlines and dispersion
could be simulated using multiple streamlines or hybrid Lagrangian-Eulerian tech-
niques [DiDonato et al., 2003] or additional Markov processes [Mishra and Gutjahr,
1999].

Sorption Rate Estimation Model

Mishra et al. [1999] provide the initial basis for developing the model for sorption rate esti-
mation. Whereas Mishra et al. [1999] assume explicit knowledge of the rates to determine
the concentration of solute at the end of the streamline, we attempt the inverse problem:
using the concentrations to estimate the rates.

Let z j denote the number of subintervals comprising the jth zone, and

t j =
j

∑
i=1

zi.

That is, t j denotes the total cumulative number of subintervals in the first j zones . Since a
particle can advance at most one spatial step per time step, the concentration readings from
the jth sensor are zero for all times less than t = t jΔt. In order for a particle to reach the
jth sensor at the t jth time step, the particle must remain in the aqueous phase for all t j time
steps. Thus, the probability that a solute particle reaches the jth sensor precisely at time
t = t jΔt is

j

∏
i=1

[p̂(i)]zi . (5)

When tracking a large number of particles, the concentration reading from the jth sensor
after t j time steps is approximately equal to the probability defined in (5). We define C(t)
to be the the NZ × 1 vector whose jth entry, C j(t), is the concentration reading from the
jth sensor at time t. Equating the probability in (5) with the concentration C j(t jΔt) and
application of (3) leads to the following model for estimating k f ( j) :
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k f ( j) = (Δt)−1

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1−
[
C j(t jΔt)

]1/z j , j = 1

1−
[
C j(t jΔt)

]1/z j

{
j−1

∏
i=1

[p̂(i)]zi

}1/z j
, j �= 1. (6)

Desorption Rate Estimation Model

We introduce a simple example to motivate development of the desorption rate model. Con-
sider a streamline that traverses two zones, and the first zone contains three subintervals.
For the first four time steps, a particle must sorb for precisely one time step and remain
in the aqueous phase for all other time steps to be measured by the first sensor during the
fourth time step. Table 1 indicates the different pathways and associated probabilities that
would allow a particle to contribute to C1(4Δt). Note that the sensors only measure the
particles in solution.

Table 1 shows that the probability that a particle contributes to C1(4Δt) is

PT (1) = 3 [1− p̂(1)] p̃(1) [p̂(1)]2 . (7)

Replacing PT (1) with C1(4Δt) in (7) and application of (4) leads to the following model
for estimation of the desorption rate kr(1) :

kr(1) =
C1(4Δt)

3Δt [1− p̂(1)] [p̂(1)]2
. (8)

We use similar logic to calculate the desorption rate for a zone consisting of z j intervals.

The probability that a particle is in solution at the jth sensor at the
(
t j +1

)
th time step

is

PT ( j) =

{
j

∏
k=1

[p̂(k)]zk

}
j

∑
i=1

{
zi [1− p̂(i)] p̃(i)

p̂(i)

}

. (9)

Table 1. Possible Pathways for Solute Particle to Remain in
Sorbed State for 1 Out of the 4 First Time Steps

t = 0 Δt 2Δt 3Δt 4Δt Probability
A S A A A [1− p̂(1)] p̃(1) [p̂(1)]2

A A S A A [1− p̂(1)] p̃(1) [p̂(1)]2

A A A S A [1− p̂(1)] p̃(1) [p̂(1)]2
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This probability includes the probability that the particles could transition into the sorbed
phase in previous zones. To estimate the desorption rate, our model requires that we know
what fraction of the particles sorb in the jth zone. In practice, one would not know this
quantity, but we can estimate it using a conditional probability. Given that a particle has
remained in the aqueous phase for all but one of the first t j +1 time steps, the conditional
probability that the solute particle remains in the aqueous phase while traveling through the
first ( j−1) zones is

PC( j) = [PT ( j)]−1 ×

{
z j [1− p̂( j)] p̃( j)

p̂( j)

} j

∏
k=1

[p̂(k)]zk . (10)

Replacing PT ( j) with C j(t jΔt +Δt) in (10) results in the following model for estimation
of kr( j) :

kr( j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

PC( j)C j(t jΔt +Δt)
z j (Δt)[1− p̂( j)] [p̂( j)]z j−1 , j = 1

PC( j)C j(t jΔt +Δt)p̂( j)
z j (Δt) [1− p̂( j)]

{
j

∏
k=1

[p̂(k)]zk

}−1

, j �= 1.

(11)

Rate Estimation

This section describes how we implement the Markov model to estimate the sorption and
desorption rate for each zone. We start with a set of “true” sorption and desorption rates.
We use these rates in the particle tracking solute transport model to generate a set of con-
centrations that are analagous to sensor readings in a tracer test. Ultimately, these are the
true rates that we try to recover with the rate estimation models. We create an ensemble
consisting of Ne sets of rates by perturbing each of the true sorption and desorption rates
with percentages randomly sampled from a uniform distribution on (pmin, pmax). We use
the notation ki

f ( j) and ki
r( j) to denote the sorption and desorption rates, respectively, for the

jth zones of the ith ensemble member. In order to recover the true rates that are perturbed to
create the ensemble, the rates for each ensemble member are input to the particle tracking
model, concentrations are calculated at each sensor, and rates are estimated using the rate
models. Then, the mean rates are calculated across all ensemble members. These rates
are estimated without the EnKF and are referred to, herein, as the Markov rates. Figure 2
illustrates the process for calculating the Markov rates.
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Figure 2. Logic Flow for Calculating Markov Rates

Implementation of the EnKF

This section outlines the procedure that we use to incorporate the EnKF with our rate
estimation scheme. In addition to the ensemble of input values, the EnKF requires a set
of observation measurements that are used to refine the model rate estimates. The particle
tracking code is run using the true rates to recover a set of observed concentrations. We use
the notation C̄ j to denote the vector of observed concentrations for the jth sensor, and the
lth entry of C̄ j is the observed concentration for the jth sensor at time t = lΔt.

We use the following iterative procedure to estimate the true rates in the streamline:

1. For each ensemble member,

(a) Starting with j = 1, use the particle tracking code and ki
f ( j) and ki

r( j) to com-
pute the solute concentrations at all times for the jth sensor, Ci

j.

(b) Estimate the sorption rate for the jth zone using Ci
j and (6). Denote this esti-

mated rate by k̂i
f ( j).

(c) Estimate the desorption rate for the jth zone using Ci
j, k̂i

f ( j), and (11). Denote
this estimated rate by k̂i

r( j).

2. For each ensemble member we define the jth state for the EnKF to be xi
j =

[

k̂i
f ( j) k̂i

r( j)
(

Ci
j

)T
]T

.

Incorporation of the time varying concentration in the definition of the state facilitates
real-time assimilation of the concentration data in the rate estimation. We calculate
the estimated state error covariance matrix Pj with the equation

Pj(m,n) = (12)

Ne

∑
i=1

[
xi

j(m)−μ j(m)
]

Ne −1
[
xi

j(n)−μ j(n)
]
,

where the vector μ j denotes the average state across all ensemble members, xi
j(m)

and μ j(m) denote the mth entries of the vectors xi
j and μ j, respectively, and Pj(m,n)

denotes the entry in the mth row and nth column of the matrix Pj.
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3. The matrix H in the Kalman filter algorithm represents the linear function that relates
the state to the measurement. Commonly, H is the “model” by which the physical
relationships and boundary and initial conditions are applied to the state to estimate
the measurement. In the Kalman filter algorithm, this relationship is defined with the
following equation:

z = Hs+d.

The variable z represents estimate of the the measured observation, s represents the
state, and d represents measurement error. For our specific application, the vector of
concentrations Ci

j is the estimated set of observed measurements, and for simplicity,
we do not artificially add measurement noise (i.e., d = 0). Thus, for our problem, we
define the matrix H so that

Ci
j = Hxi

j. (13)

Each ensemble member state xi
j is updated with the following equation:

x̃i
j = xi

j +Kj
[
C̄ j −Hxi

j
]
. (14)

The gain Kj is defined by the EnKF as

Kj = PjHT (
HPjHT +R

)−1
, (15)

where R is the measurement error covariance matrix. In general applications of the
Kalman filter, R should be determined by knowledge of the accuracy of the measure-
ments and the methods used to make the measurements [Evensen, 2003]. In practice,
R is not always known explicitly. It is common practice use a matrix that has been
determined through iterative testing to yield acceptable state estimates.

4. For each ensemble member, replace ki
f ( j) and ki

r( j) with x̃i
j(1) and x̃i

j(2), respec-
tively.

5. Repeat steps 1 through 4 for the ( j +1)th zone until all rates are estimated.

Note that estimation of the rates for the jth zone incorporates the improved estimates of the
rates from the previous zones. Also, this estimation can be updated incrementally as new
observational data becomes available at each time step.
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Numerical Simulations

Calculations are performed to estimate the sorption and desorption rates for a 50 meter
length streamline. Sensors are assumed to be placed at distances of 10, 15, 30, 45, and 50
meters from the upstream end of the streamline, and the fluid velocity is 0.1 m/day.

The particle tracking model described previously is run once with 10,000 particles and
the rates listed in Table 2 to calculate the set of observation measurements. Particle tracking
simulations for rate estimations use only 2,000 particles to reduce computational times, but
the smaller number of particles reduces the resolution with which the concentrations can be
measured and effectively introduces measurement error. For all simulations, concentration
measurements are made for a total of 600 days at time intervals of 1.0 days. For EnKF
simulations, we use an R matrix of the form

R = β × I600, (16)

where I600 is the 600 by 600 identity matrix, and β is a constant. Use of the identity
matrix here assumes that measurement errors are not correlated in time and therefore can
be modeled as white noise. Trial and error assessment of different definitions of R also
showed that (16) yielded accurate rate estimates. The value of the constant that we use
depends on the simulation, and we selected values of β that were iteratively determined to
increase performance of the EnKF. In practice, determination of this value would take into
account sensor specific information on the repeatability of the measurements.

Three sets of calculations are performed to assess the performance of the rate estima-
tion models with and without the EnKF. The calculations differed only by the percentages
with which the rates in Table 2 are perturbed to create the ensembles of rates. For the first
set of calculations, the perturbation percentages are randomly sampled from a uniform dis-
tribution on the interval (−40.0,40.0). For the second and third sets of calculations, pertur-
bation percentages are sampled from uniform distributions on (0.0,80.0) and (50.0,80.0),
respectively. These simulations are referred to as LOW, MED, and HIGH, respectively,
to indicate the magnitude of the perturbations. Rates are estimated for ensemble sizes of
10,25,50,75,100, and 150, and we use β values of 10−3,10−4, and 10−6 for LOW, MED,
and HIGH simulations, respectively.

Table 2. True Rates Used for Observation Calculations

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
k f ( j) (1/day) 5E-3 5E-3 1E-3 9E-3 1E-3
kr( j) (1/day) 5E-3 5E-6 9E-3 1E-3 1E-4
Kd( j) (-) 1E+0 1E+3 1.1E-1 9E+0 1E+1
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For each simulation, rates are estimated two different ways. The “Markov” rates are
estimated using only the sorption and desorption rate models , and EnKF rates are estimated
using the EnKF algorithm in combination with the sorption and desorption rate models. All
rates discussed in the following results are the mean values calculated across all members
of the ensemble.
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Results

Two metrics are used to compare performance of the Markov models and the EnKF. The
first metric is the absolute value of the relative percent errors (REs) between the mean
estimated rates and the true rates used to create the observed measurements. For example,
the RE for the first zone’s ( j = 1) sorption rate is calculated as follows

RE =
|mean{ki

f (1)}− ktrue
f (1)|

ktrue
f (1)

. (17)

However, in the general case, the true rates are unknown. A traditional method for
evaluating the performance of a parameter identification algortithm is to take the parameter
estimates, input them into the model, and compare the resulting predictions with a set
of corresponding observed measurements. For our specific problem this entails using the
means of the estimated rates as input to the particle tracking model and comparing the
resulting concentrations with the observed concentration data. We use this technique and
calculate the least squares error between the observed concentrations and the concentrations
predicted from the estimated rates. The least squares error (LSE) is calculated with the
following equation:

LSE =
NZ

∑
j=1

[
C̄ j −C j

]T [
C̄ j −C j

]
, (18)

where C( j) denotes the vector of concentrations at all times that result from the estimated
rates and are measured at the jth sensor.

LOW Simulation Results

Figure 3 shows the REs for Markov and EnKF rate estimation. For the first four sorption
rates, both techniques yield REs less than 0.05 for almost all ensemble sizes. The Markov
REs for the fifth sorption rate are approximately 0.05 for most ensemble sizes, but the
EnKF requires an ensemble size of 150 members to reduce the RE to less than 0.05 for the
fifth zone. The errors in rate estimation affect rate estimation for downstream zones, so the
REs are largest for the fifth zone.

Desorption rate REs estimated with both approaches are less than 0.15 for most ensem-
ble sizes for the first four zones. For the fifth zone, Markov REs are approximately 0.2 or
larger, and EnKF REs are less than 0.25. For an ensemble consisting of 150 members, the
EnKF RE is less than 0.01.

In general, desorption REs are larger than sorption REs, and this can be attributed to
three factors. First, estimation of a desorption rate depends on the estimated sorption rate
for the same zone, and any errors in the calculation of the sorption rate are compounded
in estimation of the desorption rate. Secondly, as discussed in Section , the desorption rate

20



1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Zone

R
el

at
iv

e 
E

rr
or

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Zone
R

el
at

iv
e 

E
rr

or

(c)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

Zone

R
el

at
iv

e 
E

rr
or

(b)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Zone

R
el

at
iv

e 
E

rr
or

(d)

Ne=10 Ne=25 Ne=50 Ne=75 Ne=100 Ne=150

Figure 3. Rate REs for LOW Perturbations: (a) Markov Sorption
Rates, (b) EnKF Sorption Rates, (c) Markov Desorption Rates, (d)
EnKF Desorption Rates

estimation model uses a conditional probability to estimate the percentage of particles that
sorb in a particular zone. The conditional probability may differ slightly from the actual
percentage, so its use may affect the rate estimation results. Finally, most of the desorption
rates are smaller than the sorption rates, even by several orders of magnitude smaller for
some zones. Large REs in the desorption rate estimates do not have as large an effect on
the concentrations as do large REs in the sorption rate estimates. Since the EnKF adjusts
the rate estimates based upon how well the estimated concentration matches the observed
concentration, the EnKF does not correct the desorption rates as well as it corrects the
sorption rates.

Table 3 shows the concentration LSEs that result when the estimated rates are input into
the particle tracking model. For LOW simulations, the EnKF does not significantly reduce
rate REs in comparison to the Markov REs. As a result, the EnKF LSEs in Table 3 are
similar in magnitude to the Markov LSEs.

MED Simulation Results

Markov estimates result in sorption rate REs for MED simulations that are approximately
0.40 (Figure 4), the mean MED perturbation value. EnKF sorption rate REs, when Ne ≥
25, are less than 0.1 for the first four zones, and the RE for the fifth zone is about 0.15
for an ensemble with 150 members. The lower EnKF REs indicate that the EnKF can
overcome some of the MED perturbation bias, but without the EnKF, REs resemble the
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Table 3. LSEs for LOW Simulations

Ne EnKF Markov
10 1.95E-04 2.21E-04
25 1.52E-04 1.06E-04
50 6.90E-05 1.23E-04
75 9.05E-05 7.53E-05
100 1.21E-04 5.68E-05
150 7.96E-05 2.23E-05

mean perturbation.

The range of desorption rate REs is wide in comparison to the sorption RE ranges.
Markov estimates of desorption rate result in REs that tend to increase with ensemble size.
EnKF desorption rate REs are generally smallest with ensembles of 25 and 50 members,
but EnKF desorption rate REs for ensembles with 75 or more members are smaller than
their Markov approach counterparts, with the exception of the fifth zone.

The LSEs in Table 4 confirm that the EnKF rate estimates are better than the Markov-
based rate estimates. For all ensemble sizes, the LSEs resulting from EnKF concentrations
are two orders of magnitude smaller than Markov LSEs.

Table 5 lists concentrations that resulted when the estimated rates were input into the
particle tracking model. The observed concentrations used for the EnKF are also listed. The
concentrations listed correspond to the two shortest times required for a particle to travel
from solute injection site to the sensors, and because the probability that an individual par-
ticle will remain in the aqueous phase is relatively large, the first concentration represents
the peak concentration. The Markov rates are consistently larger than the true rates and
lead to an underprediction of peak concentrations at the sensors. This underprediction is
attributed to the overestimation of the sorption rates resulting in decreased probabilities of
particles in solution staying in solution.

It should be noted that increasing the ensemble size does not significantly decrease the
LSEs for both the EnKF and the Markov methods. This behavior occurs because the mean
MED perturbation value is 0.40, not 0.

HIGH Simulation Results

For all zones and ensemble sizes, Markov-based sorption rate REs are approximately 0.65,
which is the mean value of the HIGH perturbation. EnKF sorption rate REs predicted with
10 member ensembles are similar. For larger ensembles, EnKF sorption rate REs for the
first three zones are less than 0.2, and the REs for the fourth zone do not exceed 0.4. The
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Table 4. LSEs for MED Simulations

Ne EnKF Markov
10 2.96E-04 5.12E-02
25 2.06E-04 5.20E-02
50 1.57E-04 4.79E-02
75 2.05E-04 5.11E-02
100 2.71E-04 4.96E-02
150 2.39E-04 5.07E-02

Table 5. MED Concentrations for Ne = 150

Sensor Time Obs. Conc. EnKF Conc. Markov Conc.
(days) (-) (-) (-)

1 100 6.04E-01 6.06E-01 4.93E-01
101 1.70E-03 1.90E-03 2.60E-03

2 150 4.69E-01 4.62E-01 3.47E-01
151 1.50E-03 1.70E-03 1.90E-03

3 300 4.06E-01 3.96E-01 2.80E-01
301 1.60E-03 1.80E-03 2.30E-03

4 450 1.05E-01 1.03E-01 4.12E-02
451 5.00E-04 5.00E-04 5.00E-04

5 500 9.90E-02 9.57E-02 3.87E-02
501 5.00E-04 5.00E-04 5.00E-04
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Figure 4. Rate REs for MED Perturbations: (a) Markov Sorption
Rates, (b) EnKF Sorption Rates, (c) Markov Desorption Rates, (d)
EnKF Desorption Rates

EnKF calculates sorption rates near 0.08 day−1 for the fifth zone, approximately eight times
larger than the true sorption rate, 0.01 day−1, and thus are off the vertical scale in Figure 5.

The EnKF underpredicts the fourth sorption rate by almost 40% which leads to higher
overprediction of concentrations at the fourth sensor (Table 6). As a result, the EnKF
overpredicts the fifth zone’s sorption rate so that the predicted concentrations more closely
match the observed data.

Markov-based desorption rate REs are similar to their sorption rate counterparts. EnKF
desorption rate REs vary considerably by zone and ensemble size. EnKF desorption rate
REs are much smaller than the Markov REs for the first, third, and fourth zones, but they
are larger for the second and fifth zones. The second and fifth rates are the smallest rates
that we try to estimate (Table 2), and these zones are the shortest zones in the streamline.
Hence, large relative errors that are small in magnitude have small impacts on predicted
concentrations. Since the EnKF rate calculations depend upon the differences between
predicted concentrations and observed concentrations, the second and fifth desorption rates
are not as well estimated as other rates.

Table 7 lists the LSEs for HIGH simulations, and these differences are larger than the
LSEs for the LOW and MED simulations. However, EnKF LSEs are still two orders of
magnitude smaller than non-EnKF LSEs, indicating more accurate rate estimates. Because
the mean HIGH perturbation value is not zero, increasing the ensemble size does not sig-
nificantly decrease the LSEs.
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Figure 5. Rate REs for HIGH Simulations: (a) Markov Sorption
Rates, (b) EnKF Sorption Rates, (c) Markov Desorption Rates, (d)
EnKF Desorption Rates

Table 6. HIGH Concentrations for Ne = 150

Sensor Time Obs. Conc. EnKF Conc. Markov Conc.
(days) (-) (-) (-)

1 100 6.04E-01 6.37E-01 4.35E-01
101 1.70E-03 1.60E-03 3.70E-03

2 150 4.69E-01 4.71E-01 2.86E-01
151 1.50E-03 1.30E-03 2.30E-03

3 300 4.06E-01 4.07E-01 2.21E-01
301 1.60E-03 1.50E-03 2.60E-03

4 450 1.05E-01 1.77E-01 2.42E-02
451 5.00E-04 9.00E-04 4.00E-04

5 500 9.90E-02 1.16E-01 2.22E-02
501 5.00E-04 7.00E-04 4.00E-04
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Table 7. LSEs for HIGH Simulations

Ne EnKF Markov
10 7.38E-03 1.11E-01
25 7.19E-03 1.10E-01
75 6.89E-03 1.09E-01
50 6.51E-03 1.09E-01
100 6.38E-03 1.09E-01
150 6.55E-03 1.09E-01
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Conclusions

Two parameter estimation models have been introduced that when implemented with a pre-
viously developed Markov model of solute transport with sorption can be used to estimate
spatially varying sorption and desorption rates along a ground water streamline. It has
been shown that when the ensemble of input rates has a mean perturbation value of zero,
both models can estimate rates with less than five percent relative error, and addition of
the EnKF to the rate estimation procedure does not significantly improve rate estimates.
When mean perturbations are not zero, the EnKF can significantly improve estimation of
relatively large rates and reduce concentration LSEs by two orders of magnitude, relative
to the Markov model approach. The EnKF does have limitations when used in combination
with the rate estimation models. The EnKF can have difficulty estimating relatively small
rates that have lesser impacts upon concentration estimates. However, the improved pre-
diction of large rates can reduce concentrations LSEs by two orders of magnitude despite
the large relative errors for small rates.

Development of these approaches to rate estimation provides a means of using observed
concentration data to identify sorption rates that vary between discrete regions. Several ex-
tensions of this work are considered: 1) The immobile zone in any one region may be more
complex than a single pair of rates and estimation of more compex sorption processes can
be examined. 2) The spatial variation of rates may be continuous and parameters describ-
ing this continuous variation, e.g., spatial covariance, may be amenable to estimation with
these approaches. 3) Example calculations shown here were conceptualized as estimation
from tracer test results, but the real-time assimilation capability demonstrated herein may
open possibilities of using long-term monitoring networks to continuously update aquifer
properties from observations of natural variations in water chemistry.
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