
Towards an Accurate Performance Modeling of Parallel Sparse

Factorization

Laura Grigori Xiaoye S. Li

May 26, 2006

Abstract

We present a performance model to analyze a parallel sparse LU factorization algorithm on
modern cached-based, high-end parallel architectures. Our model characterizes the algorithmic
behavior by taking account the underlying processor speed, memory system performance, as
well as the interconnect speed. The model is validated using the SuperLU DIST linear system
solver, the sparse matrices from real applications, and an IBM POWER3 parallel machine. Our
modeling methodology can be easily adapted to study performance of other types of sparse
factorizations, such as Cholesky or QR.

1 Introduction

Finding the solution of sparse linear systems of equations by a direct method is at the heart of
many scientific and engineering applications and its performance has an important impact on the
application’s overall performance. There has been much research dedicated to efficient parallel
implementation of the sparse LU factorization. Although the factorization has been made more
and more scalable, loss of performance is often observed with increasing number of processors, and
more so with very sparse and unsymmetric problems. It is difficult to predict the performance of a
parallel sparse factorization, which largely depends on the sparsity of the matrix, and the sparsity
patterns vary with applications. Several analytical results exist in the literature [3, 8, 12], which
were obtained for particular classes of matrices arising from the discretization of certain PDEs.

In our previous work we have considered a supernodal right-looking parallel factorization on two
dimensional grids of processors, using static pivoting [7]. We have derived an analytical estimation
of the parallel runtime for arbitrary input matrices. This was obtained by considering a simple
machine architecture and by making several simplified assumptions on the parallel algorithm. We
assumed that the floating-point operations are performed at a constant rate throughout the fac-
torization, and that the messages are transferred at a fixed bandwidth value independent of their
sizes. We also assumed that the load and the data is evenly distributed among processors. The
analytical model allowed us to obtain performance upper bounds on parallel computers, to perform
scalability analysis, and to derive a relation between parallel runtime and matrix sparsity. We used
the SuperLU DIST [11] solver to compare its actual runtime with the model’s predicted speed, and
observed that the speedup predicted by the analytical performance model started to deviate above
the measured speedup of SuperLU DIST with increasing number of processors.

In this paper we present a much refined model that removes the unrealistic assumptions. In
addition, our new model takes account not only the speeds of CPU and interconnect network, but
also the memory system performance. We will show that the new model can accurately predicit the
actual performance of the code. First, we develop a runtime model for the sequential algorithm.
Instead of estimating the runtime by counting the floating-point operations alone and assuming that
they are performed at a constant speed, we also evaluate the cost of memory accesses, because in a
sparse factorization, a nontrivial amount of time is often spent in streaming through data. The cost
of memory accesse is different when the data is already in cache or when it has to be fetched from

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71318567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


main memory. Thus, different latencies are incurred when the data are fetched at different levels of
the memory hierarchy. Second, for the parallel runtime, we include the classical latency-bandwidth
communication cost model, but with varying bandwidth values which were calibrated off-line based
on the message size distribution throughout the factorization. We validate our performance model
using the right-looking factorization algorithm implemented in SuperLU DIST, the representative
matrices from several application and an IBM POWER3 parallel machine.

The rest of the paper is organized as follows. Section 2 introduces a performance analysis model
for the right-looking sparse LU factorization. Section 3 analyzes the performance of the numerical
kernels. Section 4 describes our methodology for estimating the number of cache misses. Section 5
describes a performance model that estimates the execution time of the sequential and parallel
factorization. The results validating the performance model are presented in Section 6 and Section 7
draws the conclusions.

2 Background

Algorithm 1 presents a right-looking algorithm that factorizes a sparse unsymmetric n × n matrix
A into the product of a unit lower triangular matrix L and an upper triangular matrix U . The
matrix is partitioned into N × N blocks of submatrices using unsymmetric supernodes (columns of
L with the same nonzero structure). The algorithm loops over N supernodes. At the k-th step, the
first k − 1 block columns of L and block rows of U are already computed. Now, the block column
L(k : N, k) is factored, the triangular solves are performed to compute U(k, k + 1 : N), and the
trailing matrix is updated using L(k + 1 : N, k) and U(k, k + 1 : N). The last step requires most of
the work and also exhibits most of the parallelism in the right-looking approach.

Algorithm 1 Right-looking factorization

for k := 1 to N do

(1) Factorize block column L(k : N, k)
(2) Perform triangular solves: U(k, k + 1 : N) := L(k, k)−1 × A(k, k + 1 : N)
for j := k + 1 to N with U(k, j) 6= 0 do

for i := k + 1 to N with L(i, k) 6= 0 do

(3) Update trailing submatrix:
A(i, j) := A(i, j) − L(i, k) × U(k, j)

end for

end for

end for

The parallel algorithm in SuperLU DIST uses a data distribution on a two dimensional process
grid and a look-ahead technique to overlap communication and computation, as shown in Algo-
rithm 2. Figure 1 illustrates the data distribution on a 2D grid of six processors. The blocks of the
matrix partitioned by supernodes are distributed among Pr × Pc (= P ) processors using a block
cyclic distribution. A block at position (i, j) of the matrix (0 ≤ i, j < N) will be mapped on the
process at position (i mod Pr, j mod Pc) of the grid. U(k, j) (L(k, j)) denotes a submatrix of U (L)
at row block index k and column block index j. We use (L + U)(k, j) to denote a block of L or U
at block row k and block column j.

The look-ahead technique in Algorithm 2 appears in the update of the trailing matrix. At step
k, we first update the block column (k + 1) and perform the block factorization (steps (3.1) and
(1.2)). The column processes owning block column k + 1 then send it to all the processes that need
it using nonblocking sends, while the potential receivers post nonblocking receives (steps (a.3) and
(a.4)). Afterwards, the rest of the trailing matrix (block columns k +2 : N)) is updated (step (3.2)),
which overlaps with the communication in steps (a.3) and (a.4). Steps (c.1) and (c.2) contains the
matching waits for the nonblocking send and receive from steps (a.3) and (a.4).

The performance model we developed has the following characteristics:

2



1 20 0

3

0 1

4

2

5

01 21 20 0

3 345

0 1

3 5

0 1 2

3 5

0 1 2

4

4

2

3 4 5

3

0

3

0

4

4 35

1 2 0

5 3

1 2 0

Distributed matrix Grid of processors

Figure 1: Illustration of parallel right-looking factorization

Algorithm 2 Parallel right-looking factorization in SuperLU DIST

let myPE be my process number
if myPe owns blocks of the block column L(:, 1) then

(1.1) Factorize block column L(:, 1)
(a.1) Nonblocking Send L(:, 1) to processes in my row that need it

else

(a.2) Nonblocking Receive L(:, 1) from a process in my row
end if

for block k := 1 to N do

if myPe owns blocks of the block column L(:, k) then

(c.1) Wait for posted send of L(:, k) to complete
else

(c.2) If myPe needs L(:, k), wait for posted receive of L(:, k) to complete
end if

if myPe owns blocks of the block row U(k, :) then

(2) Perform triangular solves: U(k, k + 1 : N) := L(k, k)−1 × A(k, k + 1 : N)
(b.1) Send U(k, :) to processes in my column that need it

else

(b.2) Receive U(k, :) from a process in my column if I need it
end if

if (k + 1) ≤ N then

if myPe owns blocks of the block column L(:, k + 1) then

(3.1) Update A(:, k + 1) := A(:, k + 1) − L(:, k) × U(k, :)
(1.2) Factorize block column L(:, k + 1)
(a.3) Nonblocking Send L(:, k + 1) to processes in my row that need it

else

(a.4) Nonblocking Receive L(:, k + 1) from a process in my row if myPe needs it
end if

end if

for j := k + 2 to N with U(k, j) 6= 0 do

for i := k + 2 to N with L(i, k) 6= 0 do

if myPe owns block A(i, j) then

(3.2) Update trailing submatrix: A(i, j) := A(i, j) − L(i, k) × U(k, j)
end if

end for

end for

end for

3



• Our model differentiates which part of the code is spent time mostly on floating-point opera-
tions (i.e., flops-bound) and which part of the code is spent time mostly on streaming through
data (i.e., memory-bound). Flops-bound means that the number of cycles spent in floating-
point operations is larger than that spent in loads and stores, and hence we consider that the
loads and stores are overlapped with computation. For the loops that are flops-bound, the
model uses one parameter to describe the processor’s speed, denoted as γ, which is the time
taken to perform one flop. For in-cache data, we assume that the processor performs at the
peak speed.

• We consider a hierarchy of caches with a perfect nesting and that accessing different memory
levels incurs different latencies. We use αi to denote the level i cache access latency (in cycles),
and αmem to denote the main memory access latency. We only account for the capacity and
compulsory misses but ignore the conflict misses. We assume that the cache memories are
fully associative.

• We do not model TLB misses in detail. But in our experimental section, we count the effect of
TLB misses by considering a value for αmem that includes a memory access and a TLB miss.

• For interprocessor communication, we estimate the time for sending a message of m items
between two processors as α + mβ, where α denotes the latency and β the inverse of the
bandwidth. We ignore the effect of message collisions. The value of the bandwidth is dependent
on the size of message being transferred.

3 Performance Analysis of the Relevant BLAS Routines

In this section we model the performance of the numerical kernels used in Algorithm 2: the matrix
multiply and update routines (steps (3.1) and (3.2)), the triangular solve routine (step (2)) and the
rank one update routine (steps (1.1) and (1.2)). In SuperLU DIST, these correspond to calls to the
BLAS routines DGEMM, DGER and DTRSV.

The triangular solve and the rank one update operations (DTRSV and DGER) are memory-bound,
since there is only O(1) flop associated with each data item and most of the time is spent in
streaming through data. For the matrix multiply and update operations (DGEMM), depending on
the size of the matrices, the model determines if the routine is memory-bound or flops-bound. We
assume that all the computing kernels are implemented using register blocking, which ensures that
the number of loads/stores between registers, cache and main memory are reduced and that the
multiple functional units can be effectively utilized. When using the vendor-supplied BLAS library,
the number of registers used for every routine is not known. We determined the number of registers
experimentally such that the hardware counter results match well with our estimations.

Analysis of DGEMM. Most of the computation in SuperLU DIST takes place in the rank-k
updates (steps (3.1) and (3.2) of Algorithm 2, which are performed using DGEMM. The operation is
C = aAB + bC, where C is an M × N dense matrix, A is an M × K dense matrix, B is an K × N
dense matrix and a and b are scalars. We use the superscalar implementation [9, 10] described in
Algorithm 3 to analyze DGEMM.

Algorithm 3 Superscalar matrix multiply routine

for J = 1 to N step NB do

for L = 1 to K step KB do

for I = 1 to M step MB do

T1 = a × A(I, L)
C(I, J) = bC(I, J) + T T

1 B(L, J)
end for

end for

end for

4



The algorithm is designed for cache reuse: a block of matrix B is brought into cache and is
then reused by looping over block rows of matrix A. At each step of inner loop, a block of matrix
A is multiplied with a and copied into a temporary buffer T1, which avoids bad leading dimension
problem. Then a block of matrix C is updated with the result of the product of T1 with a block of B.
Loop unrolling is used to ensure good performance of the innermost in-cache matrix multiplication,
which we assume is done as follows. Ea registers are used for the elements of T1, Eb registers are
used for the elements of B and EaEb registers are used for the elements of C. An Ea ×Eb block of
C(I, J) is computed in the innermost loop. First, the Ea × Eb block of C is multiplied with b and
stored in the registers, second, the registers are updated with elements of the product T T

1 B(L, J),
and third, the content of the registers are stored back to the block of C. The innermost loop for the
product T T

1 B(L, J) requires (Ea + Eb) loads and (2 × Ea × Eb) multiply and add operations.
For the in-cache matrix multiply operation C(I, J) = bC(I, J) + T T

1 B(L, J), the number of
floating-point operations for multiplying C with b is given by the second term of Equation (3). The
number of loads and flops for the product T T

1 B(L, J) are given in Equation (1) and the first term
of Equation (3). The number of stores for copying the registers to a block of C is given in Equation
(2).

Loads =
MBNBKB

Eb
︸ ︷︷ ︸

Matrix T1

+
MBNBKB

Ea
︸ ︷︷ ︸

Matrix B

(1)

Stores = MBNB
︸ ︷︷ ︸

Matrix C

(2)

F lops = 2MBNBKB
︸ ︷︷ ︸

Multiply−Add

+ MBNB
︸ ︷︷ ︸

Multiply

(3)

If the innermost loop is flops-bound and the blocks are all in cache, the performance of the
in-cache block multiplication C(I, J) = bC(I, J)+T T

1 B(L, J) can be estimated by using the number
of Stores in Equation (2) and the number of Flops in Equation (3), which gives (2MBNBKB +
MBNB) × γ + MBNB × α1. If the innermost loop is memory-bound, the performance can be
estimated as MBNB × γ + (MBNB + MBNBKB/Eb + MBNBKB/Ea) × α1.

If the innermost loop of the in-cache matrix multiplication is flops-bound, the overall performance
of Algorithm 3 is given by:

Loads = MNK/NB
︸ ︷︷ ︸

Copy A into T1

(4)

Stores = MNK/NB
︸ ︷︷ ︸

Copy A into T1

+ MNK/KB
︸ ︷︷ ︸

Copy from registers to C

(5)

F lops = 2MNK
︸ ︷︷ ︸

Multiply−Add

+ MN
︸︷︷︸

Multiply

(6)

The choice to base our simulation on the superscalar matrix multiplication routine was motivated
by the experiments presented in the IBM POWER3 Introduction and Tuning Guide [2] (page 155),
which compare its performance to the performance of DGEMM implemented in IBM’s ESSL POWER3-
enhanced library. The results showed the performances are close for square matrices. The authors
expect that ESSL may perform better for rectangular matrices.

The routine DGEMM is used at each step k of Algorithm 2, step (3) for the rank-k update of
a block of the trailing matrix. To estimate the performance of step (3), we use the following
notations. F lopsdgemm denotes the number of floating-point operations for all the calls to DGEMM that
is computed as follows. For the flops-bound calls is computed as in Equation (6). For the memory-
bound calls, only the second term in Equation (6) is added to F lopsdgemm. Loadsdgemm denotes the
the number of loads computed in Equation (4). When the matrix multiplication is memory-bound,
the number of loads computed with Equation (1) is added to Loadsdgemm. Storesdgemm denotes
the number of stores of all calls to DGEMM as computed in Equation 5.

5



Analysis of DGER. Consider the rank one update A = A − xyT , where A is a M × N dense
matrix, x is a dense vector of dimension M and y is a dense vector of dimension N .

Since the matrix uses a column oriented storage, we assume that the outermost loop loops over
columns, which minimizes the cache and TLB misses. The optimal unrolling factor of the innermost
loop should be such that the size of each subcolumn is the same as the cache line size. But because
of the floating-point register limitation, the unrolling factor may be restricted to a smaller number.
The innermost loop then will operate on the number of columns in a vertical block. We denote the
unrolling of the outermost loop as Ey and of the innermost loop as Ex. The number of loads and
stores are calculated as:

Loads = MN
︸︷︷︸

Matrix A

+
MN

Ey
︸ ︷︷ ︸

V ector x

+ N
︸︷︷︸

V ector y

(7)

Stores = MN
︸︷︷︸

Matrix A

(8)

The routine DGER is used in step (1) of Algorithm 2 for factorizing block column L(k : N, k).
This factorization is based on rank-1 updates and scaling. We estimate the memory accesses of step
(1) by summing the loads and stores corresponding to all the calls to DGER, which are denoted as
Loadsdger and Storesdger .

Analysis of DTRSV. Consider the triangular solve Lx = y, where L is a N ×N lower triangular
dense matrix, and x and y are dense vectors. In our analysis we consider a column oriented (axpy)
algorithm. The estimation of the number of loads and stores is similar to the one described by
Vuduc et al. [14]. It assumes that register blocking is used such that the matrix is partitioned into
register blocks of size EL × EL, which leads to EL vector loads for each register block.

Loads =
N(N + 1)

2
︸ ︷︷ ︸

Matrix L

+
N

2

(
N

EL

+ 1

)

︸ ︷︷ ︸

V ector x

+ N
︸︷︷︸

V ector y

=
N2

2

(

1 +
1

EL

)

+
3N

2
(9)

Stores =
N

2

(
N

EL

+ 1

)

︸ ︷︷ ︸

V ector x

(10)

The computation of the row block U(k, :) (step (2)) of Algorithm 2 is performed through calls
to DTRSV. An estimation of the memory accesses of this step can be therefore computed by adding
the number of loads and stores associated with all the calls to DTRSV, which we denote as Loadsdtrsv

and Storesdtrsv .

4 Estimation of Cache Misses

In this section we first present analytical lower and upper bounds for the number of cache misses.
We then describe a method that provides better estimation of the cache misses by simulating the
factorization algorithm.

Considering the Lq cache, we use lq to denote its line size and Cq to denote its capacity, both in
doubles.

At step k of Algorithm 2, the working storage consists of the space needed to store the block
columns k and k+1 of L, the block row k of U , the blocks of the trailing matrix that will be updated,
and several temporary arrays used during the updates.

We now give lower and upper bounds for the number of times each block of L and U is brought
into cache. Consider block L(i, j), we use xij to denote the number of updates performed on L(i, j),

6



and yij to denote the cost of finding L(i, j) when it is the destination of an update. Cj denotes the
number of nonzero blocks in block row j of U , which equals the number of updates performed at
step j and for which L(i, j) is the source of an update. We denote sz(L(i, j)) as the size (in doubles)
of the block L(i, j) (nonzero values and indices). Our estimation takes into account the storage by
columns, the leading dimension and the line size of the cache.

A lower bound ML on the number of cache misses is obtained by assuming that there is only one
compulsory miss for every block. That is, during the first update on the block L(i, j), this block is
brought into cache, and it will stay in cache throughout the rest of the updates when it is either
source or destination, and during its own factorization.

ML ≈
1

lq

N∑

i,j=1

(sz(L + U)(i, j) + yij) (11)

An upper bound MU for the number of misses is obtained by assuming that for every block,
there is a compulsory/capacity miss each time when it is the destination of an update, when its
factorization is computed, and when it is the source of an update.

MU ≈
1

lq

N∑

i,j=1

((xij + Cj + 1) sz(L + U)(i, j) + xijyij) (12)

Note that these analytic bounds do not take into account the working space needed at each step
of the algorithm compared to the size of the cache Cq . If the working space fits in cache, at most one
compulsory/capacity miss is generated for each element of the working space. If some of the blocks
updated at step k − 1 are also updated at step k and the blocks are still in cache, then fewer misses
will be incurred. If the working space does not fit in cache, it means that the cache is not large
enough to hold the block row U(k, :) and the block column L(:, k) during the column factorization,
triangular solves and the update of the trailing matrix. Then, when updating the trailing matrix,
in addition to the misses incurred for every updated block, there is one additional capacity miss for
the elements of U(k, :) (values and indices), and for every block of U(k, :), there is one capacity miss
for the elements of L(:, k) (values and indices). This discussion shows that it is difficult to derive
realistic analytic bounds for the number of cache misses. We expect that at the beginning of the
factorization, when the matrix is very sparse, the working space will fit in cache. But when the
trailing matrix becomes denser, the working space will no longer fit in cache.

Hence, to obtain accurate account of cache misses, we developed a simulator that simulates the
factorization algorithm and the memory system behavior. Every level of cache is associated with a
policy for evicting blocks from cache when necessary, such as the least recently used (LRU) or the
round robin policy. Every time a block of the matrix is accessed, the simulator checks if the block is
already in cache and at which level. If it exists and the eviction policy is LRU, this block is marked
as the least recently used. If the block is not in cache, it is is brought in cache, and the counter
for the cache misses is incremented. When the cache capacity is exceeded, some blocks are evicted.
The experimental results in Section 6 show that this simulation leads to results close to the cache
misses obtained from the hardware counters.

5 Runtime Estimation

We first present an estimation of the sequential algorithm, and then describe the communication
model that extends the sequential runtime estimation to an estimation of the parallel runtime.

Sequential runtime estimation. In an earlier work on performance analysis of sparse matrix-
vector multiply [14], only the cost of memory accesses needs to be accounted, because that algorithm
is entirely memory-bound and there is little data reuse. Sparse factorization algorithms on the other

7



hand contains both flops- and memory-bound kernels, and the kernel mix changes at different stages
of the factorization, which complicates our analysis.

Assume that there are C cache levels. We denote by hi the number of hits and by mi the number
of misses at the ith cache level. The hits for i ≥ 1 are computed as hi+1 = mi−mi+1. The sequential
runtime is estimated as follows:

Tseq = F lopsdgemmγ +
C−1∑

i=1

hiαi + mCαmem (13)

The memory access cost is computed using the number of loads and stores performed for the
memory-bound parts of Algorithm 2. For steps (1.1) and (1.2), the number of loads and stores
is given by Loadsdger and Storesdger . For step (2), the number of loads and stores is given by
Loadsdtrsv and Storesdtrsv. For steps (3.1) and (3.2), we sum up the number of loads and stores in
the calls to DGEMM (denoted by Loadsdgemm and Storesdgemm), and the number of loads and stores
in copying the matrix blocks into a temporary buffer to prepare for the call to DGEMM (denoted by
Loadstemp and Storestemp). The L1 cache hit h1 is computed as follows:

h1 = Loadsdger + Storesdger + Loadsdtrsv + Storesdtrsv + Loadsdgemm + Storesdgemm +

+Loadstemp + Storestemp − m1

As described in Section 3, Loadsdgemm represents the number of loads performed in the memory-
bound loops of DGEMM, plus the number of loads involved in copying the matrix blocks to temporary
buffers. Storesdgemm represents the number of stores involved in copying into the temporary buffers
or copying from the registers back to the matrix destination. The time spent in the flops-bound
loops of DGEMM is counted in the first term of Tseq in Equation (13) (F lopsdgemmγ).

Parallel runtime estimation. In our previous work, under some simplyed assumptions, we have
established the following parallel runtime estimation using a square grid of processors [7]:

T (N,
√

P ×
√

P ) ≈
F

P
γ + (2N +

1

2
N log P )α +

(2nnz(L) + 1

2
nnz(U) logP )

√
P

β , (14)

where, N is the order of the matrix; F is the total number of flops in the factorization; nnz(L)
is the number of nonzeros in the off-diagonal blocks of L; nnz(U) is the number of nonzeros in
the off-diagonal blocks of U . The first term represents the parallelization of the computation. The
second term represents the number of broadcast messages. The third term represents the volume of
communication.

For more accurate modeling of the parallel runtime, we performed a simulation of Algorithm 2.
This simulation has several purposes. First, the simulation can provide a rather accurate estimation
of the cache misses which cannot be determined analytically otherwise. Second, the simulation also
allows us to include load imbalance factor in the model. Third, using simulation we can analyze
the critical path behavior by considering load balance at each step and the amount of overlap of
computation and communication.

We use the commonly adopted latency-bandwidth cost model to analyze the interprocessor com-
munication. An improvement we made is that different values of the inverse of the communication
bandwidth β are used based on the size of the messages.

The time spent in each computation step is estimated using Equation (13), where the number of
loads, stores, flops and cache misses are the numbers associated with that step.

The time spent in communication is estimated as follows. In steps (b.1) and (b.2), messages
are communicated using blocking sends and receives, which is implemented as follows. Consider for
example that processor PE0 needs to send a message of size m to processors PE1 and PE2. PE0 first
sends it to PE1 and then sends it to PE2. The time spent by all the processors PE0, PE1 and PE2

8



in this communication is estimated as 2(α +mβ). In steps (a.1), (a.2), (a.3) and (a.4), messages are
communicated using nonblocking sends and receives, in which case the time is estimated as (α+mβ).

The parallel runtime of Algorithm 2 is obtained by computing for each processor the runtime
of the steps that lie on the critical path as follows. The time spent in the initialization of the
look-ahead technique is added to the runtime of the participating processors (steps (1.1), (a.1) and
(a.2)). The computation of a block row of U via triangular solves (step (2)) and the send/receive
of a block row of U (steps (b.1) and (b.2)) lie on the critical path, and their times are added to the
runtime of the processors involved in these steps. For the processors that own blocks of the block
column L(:, k + 1), the update and the factorization of block column L(:, k + 1) lie on the critical
path. Then, the larger of the time spent in the non-blocking send (step (a.3)) and the time spent in
updating the trailing submatrix (step (3.2)) is counted as on the critical path. For the processors
that do not own blocks of the block column L(:, k + 1), the larger of the time spent in receiving
block column L(:, k + 1) (step (a.4)) and the time spent in updating the trailing matrix (step (3.2))
is added to the parallel runtime. This communication/computation overlap is determined in steps
(c.1) and (c.2), when several processors belonging to the same row of the grid of processors wait for
the posted sends and receives to complete. Their runtime is then determined by the processor that
waits the longest.

6 Experimental Results

In this section we compare the analytic bounds and the simulation results against the actual per-
ormance of the code. We used the IBM SP RS/6000 distributed memory machine at NERSC
(National Energy Research Scientific Computing Center). The system contains 2944 compute pro-
cessors distributed among 184 compute nodes. Each node of 16 processors has 16 to 64 Gbytes of
shared memory. Each POWER3 processor is clocked at 375 Mhz and has a peak performance of 1.5
GFlops. It has a L1 data cache of 32 KBytes and a L2 cache of 8192 KBytes. The cache line for
both L1 and L2 is 128 bytes. The L1 access latency is α1 = 1 cycle. A data access that misses L1
but hits L2 incurs a load latency of α2 = 9 cycles. A data access that misses both L1 and L2 cache
incurs a latency αmem between 35 and 139 cycles [14]. Each processor has two floating-point units,
each of which can execute one compound floating-point multiply-add (FMA) operation per cycle.
Hence POWER3 can execute up to four floating-point operations per cycle. In addition, POWER3
can commit two loads/stores per cycle, and so the L1 access latency α1 is divided by two in our
estimations.

We used several medium to large size matrices from different application domains. The char-
acteristics of the matrices are given in Table 1, which includes the matrix order, the number of
nonzeros in the input matrix A, the number of nonzeros in the factors L and U , and the number
of floating-point operations in the factorization. The matrices are available from the University of
Florida Sparse Matrix collection [5].

Matrix Order nnz(A) nnz(L + U) F lops

×106 ×109

af23560 23560 484256 11.5 5.02

bbmat 38744 1771722 35.6 25.34

ecl32 51993 380415 41.9 60.66

fidapm11 22294 623554 26.7 26.81

inv-extr1 30412 1793881 28.9 28.73

stomach 213360 3021648 140.6 145.18

Table 1: Benchmark matrices.

9



The goal of our experiments is three-fold. Firstly, we want to compare our estimation of the
sequential runtime with that of SuperLU DIST. This would validate the accuracy of our model
in counting the number of loads, stores and cache misses incurred throughout the factorization.
Secondly, we want to compare the model predicted parallel runtime with the parallel runtime of
SuperLU DIST with varying number of processors. And thirdly, we use our model to analyze the
performance characteristics of SuperLU DIST.

Our model uses several parameters that have to be tuned on the target machine for which the
simulation is performed, such as block size used in DGEMM. When there is no documentation, we
determined their values as follows. The computing kernels were executed on the target architecture
and the PAPI [4] results for loads, stores and cache misses were collected. Then we choose the
parameters that provide a good fit for our estimation of number of loads, stores and cache misses.

In the parameter tuning phase, we have to estimate the size of the blocks MB, NB and KB
used in the superscalar matrix multiplication algorithm presented in Section 3. In our experiments
we have used MB = 32, NB = 48 and KB = 48. We also have to estimate the number of registers
used for loop unrolling. For the DGEMM routine, we have found that a 4 by 2 unrolling matches
well our estimation of number of loads. Note that this is also the unrolling level used on the IBM
POWER2 [1], which ensures that the multiple functional units are fully utilized.

To estimate the number of cache misses, our simulation can consider different policies for replacing
lines in cache. For L1 cache, POWER3 replaces lines using a round-robin policy within a congruence
class. The congruence class is defined by the 128-way associativity of the L1 cache. For L2 cache, real
addresses are directly mapped to the cache. In our simulation, we assume cache is fully associative,
and we use round-robin for L1 cache and least recently used policy for L2 cache.

Figure 2 presents the number of loads and stores obtained by our performance model, and
compares with the PAPI results of loads and stores obtained for SuperLU DIST. Our model estimates
well the number of loads for all the matrices, but does not do so well with the number of stores—the
estimation can be smaller than PAPI numbers (up to 44% for matrix bbmat). We also observed
such underestimation when tuning our DGEMM model for the POWER3 architecture. We think that
the overhead incurred by a call to DGEMM is nontrivial and is not taken into account by our model.
This overhead affects the overall number of stores. But since the number of stores is generally 3 or
4 times smaller than the number of loads, the underestimation of number of stores does not have
much impact on the overall estimation.

Figure 2 also presents the results of cache misses comparing our estimation, the analytic lower
and upper bounds, and the PAPI results. The lower and upper bounds do not depend on the cache
size, and are the same for L1 and L2 cache. For the sake of clarity, we do not include the upper
bound in the plot of the L2 results. The lower bound underestimates severely the number of L1
misses (by two orders of magnitude). It also underestimates the number of misses in L2 cache, very
often by one order of magnitude. For L1 cache, the upper bound is usually twice the number of PAPI
misses. But as expected, it overestimates severely the number of L2 cache misses. These results
show that it is difficult to identify analytic bounds for the number of misses for sparse factorizations.

Our estimation predicts well the number of cache misses, both for L1 and L2 caches. For the
L1 cache, our simulation underestimates up to 17% for matrix af23560 and overestimates up to
15% for matrix bbmat, when compared to the PAPI L1 cache miss results. For the L2 cache, for
three matrices our estimation underestimates the number of L2 cache misses (up to 33% for matrix
fidapm11).

In the plot depicting the L2 cache misses we also include the number of TLB misses. Note that
SuperLU DIST incurs large number of TLB misses. For af23560, the number of TLB misses is
larger than the number of L2 misses. For bbmat, the number of TLB misses is half the number of
L2 misses, and for the other matrices it is less than half. This indicates that using the minimum
value of the memory access latency would lead to an underestimation of the runtime.

Figure 3 presents the performance results in number of cycles. The lower bound is obtained by
using the minimum value of memory access latency for αmem (35 cycles) in Equation (13), which
assumes a TLB hit. The upper bound is obtained by taking the maximum value for αmem (139
cycles), which assumes a TLB miss. Both bounds are smaller than the measured runtime. The

10



1 2 3 4 5 6
0

1

2

3

4

5

6

7
x 10

10

matrix number

no
 o

f l
oa

ds

Number of loads on IBM Power3

 

 

PAPI

estimation

1 2 3 4 5 6
0

2

4

6

8

10

12
x 10

9

matrix number

no
 o

f s
to

re
s

Number of stores on IBM Power3

 

 

PAPI

estimation

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

9

matrix number

no
 o

f m
is

se
s

L1 Misses on IBM Power3

 

 

PAPI L1

Lower bnd L1

Estimation L1

Upper bnd L1

1 2 3 4 5 6
0

2

4

6

8

10

12
x 10

7

matrix number

no
 o

f m
is

se
s

L2 and TLB Misses on IBM Power3

 

 

PAPI L2

PAPI TLB

Lower bnd L2

Estimation L2

Figure 2: The two upper plots show the number of loads/stores obtained by our estimation and
by PAPI measurements. The two lower plots show the number of cache misses obtained by our
estimation (Estimation L1 and Estimation L2), by PAPI measurements (PAPI L1 and PAPI L2),
and the analytical lower and upper bounds (Lower bnd L1, Lower bnd L2, and Upper bnd L1). The
last plot also includes the number TLB misses obtained from PAPI (PAPI TLB).

11



1 2 3 4 5 6
0

1

2

3

4

5

6

7

8
x 10

10

matrix number

no
 o

f c
yc

le
s

Performance estimation

 

 

Measured
Estimation α

mem
 min

Estimation α
mem

 max

Figure 3: Uniprocessor performance in number of cycles.

upper bound can underestimate the runtime with up to 32% for bbmat. The underestimation is
larger for the lower bound (around 40% for bbmat, fidapm11 and inv-extr1.

For parallel runtime estimation, we first need to determine the two parameters α and β used in
the communication cost model. To this end, we ran the point-to-point pingpong micro-benchmark
available at the NERSC web site [13] to callibrate the times needed to transfer messages of various
sizes that appeared throughout the factorization. The latency value α is 8.0 microseconds. The
bandwidth values used for β are tabulated in Table 2. This approach is an improvement over our
previous work, where we used a single bandwidth value independent of the message size.

Message size (Bytes) 10 102 103 104 105 106 107

Bandwidth (MB/s) 1 10 81 278 274 437 430

Table 2: Bandwidth values used in the model, which depends on the message size.

Figure 4 compares the runtimes in number of cycles obtained by our simulation and by Su-
perLU DIST with increasing number of processors. We also present in Table 3 the runtimes in
seconds of SuperLU DIST. Our simulation predicts well the actual performance of SuperLU DIST.

Our performance model examines the amount of computation on the critical path. In Algo-
rithm 2, the computation performed in steps (2), (3.1) and (1.2) lies on the critical path. That is,
the computation of a block row of U , the update and the factorization of block column k + 1 of
L lie on the critical path. Since the algorithm implemented in SuperLU DIST uses a look-ahead
technique, the computation corresponding to step (3.2) (update of the trailing matrix at step k) is
overlapped with the communication involved in steps (a.3) and (a.4) (send/receive of block column
k+1 of L). Hence at each step of the algorithm, we add the computation corresponding to step (3.2)
to the critical path if it is more important than the communication involved in steps (a.3) and (a.4).
In Figure 4 we include the plots of the amount of computation on the critical path. The difference
between the estimated runtime and the computation on the critical path corresponds to the amount
of communication lying on the critical path. These plots show that on small number of processors,
the computation is overlapped with the communication and the computation dominates the critical
path. With increasing number of processors, the critical path is dominated by communication. This
is because there are more messages of smaller size, and the time spent in communication is larger.

12



1 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5
x 10

9

no of processors

no
 o

f c
yc

le
s

AF23560

 

 
Measured
Estimation
Computation on CP

1 4 8 16 32 64
0

0.5

1

1.5

2

2.5
x 10

10

no of processors

no
 o

f c
yc

le
s

BBMAT

 

 
Measured
Estimation
Computation on CP

1 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

10

no of processors

no
 o

f c
yc

le
s

ECL32

 

 
Measured
Estimation
Computation on CP

1 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

10

no of processors

no
 o

f c
yc

le
s

FIDAPM11

 

 
Measured
Estimation
Computation on CP

1 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3
x 10

10

no of processors

no
 o

f c
yc

le
s

INV−EXTR1

 

 
Measured
Estimation
Computation on CP

1 4 8 16 32 64
0

1

2

3

4

5

6

7

8
x 10

10

no of processors

no
 o

f c
yc

le
s

STOMACH

 

 
Measured
Estimation
Computation on CP

Figure 4: Runtimes in number of cycles. “Measured” represents the number of cycles obtained from
running SuperLU DIST. “Estimation” represents the number of cycles obtained by our simulator.
“Computation on CP” represents the number of cycles due to computation that lies on the critical
path.

13



P=1 P = 4 P = 8 P = 16 P = 32 P = 64

af23560 time 9.11 4.08 3.11 2.69 2.68 3.14

LB 1.00 1.39 1.98 2.74 4.50 7.03

bbmat time 64.13 19.31 11.90 7.80 6.00 5.64

LB 1.00 1.23 1.48 1.72 2.38 3.26

ecl32 time 97.6 27.24 15.81 9.93 7.24 6.76

LB 1.00 1.12 1.32 1.52 1.92 2.39

fidapm11 time 49.83 14.08 8.26 5.19 3.77 3.44

LB 1.00 1.17 1.40 1.65 2.22 2.92

inv-extr1 time 77.45 18.14 10.54 6.50 4.84 4.23

LB 1.00 1.16 1.37 1.59 2.08 2.63

stomach time 205.33 63.96 40.26 28.47 24.19 24.10

LB 1.00 1.18 1.44 1.73 2.46 3.46

Table 3: Runtimes (in seconds) and load distribution (LB) for right-looking factorization on 2D grid
of processors

Note that for af23560 our simulation overestimates the runtime. We believe this is due to the loss
of accuracy associated with the communication cost model.

We also examined load balance LB throughout the parallel factorization. We define the load
L to be the computation involved in the entire factorization. We then compute the load lying
on the critical path LCP by adding at each step the load of the most loaded processor. More
precisely, consider lpi being the load of processor p at step i (i.e., the computation in number of
cycles performed by this processor at step i, which takes into account the number of loads/stores

and cache misses as in Equation (13)). Then, LCP =
∑N

i=1
maxP

p=1 lpi. The load balance factor

is computed as LB = LCP P
L

. In other words, LB is the load of heaviest processors lying on the
critical path divided by the average load per processor. The closer is this factor to 1, the better
balanced is the workload. Table 3 shows that the workload distribution is good on a small number
of processors. But it can degrade quickly for some matrices, such as af23560, leading to quick
performance degradation.

7 Conclusions

We developed a performance model to analyze a parallel sparse LU factorization algorithm on
modern cached-based, high-end parallel architectures. Our model characterizes the algorithmic
behavior by taking account the underlying processor speed, memory system performance, as well as
the interconnect speed.

Unlike Level 2 sparse BLAS operations, such as sparse matrix-vector multiply or sparse triangular
solution, where performance is usually solely dominated by memory system performance, the sparse
factorization algorithms usually contain a mixture of Level 2 and Level 3 BLAS routines. Depending
on sparsity of the matrix, which changes at different stages of factorization, the kernels can be either
memory-bound or flops-bound. We have taken into account this feature in our analysis, and our
new model is more accurate in predicting performance.

Another improvement over the previous work is to use different bandwidth values to model
interconnect communication speed for different message sizes. This is very important for sparse
factorization algorithms, because throughout factorization, the message sizes can differ by several
orders of magnitudes.

14



We have validated our model using the SuperLU DIST linear system solver on an IBM POWER3
parallel machine, and showed that the model-predicted runtime is close to the measured time. Thus,
this model can be realistically used to predict code performance on newly designed architectures and
for new matrices.

Furthermore, our model reveals that the loss of parallel efficiency on a large number of processors
is due to load imbalance and the communication cost. This points to the possible future work
to improve the code. For example, we can use better matrix distribution scheme to reduce load
imbalance, and use a higher level of look-ahead scheme to futher the overlap of communication with
computation.

Finally, our modeling methodology can be easily adapted to study performance of other types of
sparse factorizations, such as Cholesky or QR.

References

[1] R. C. Agarwal, F. G. Gustavson and M. Zubair Exploiting functional parallelism of POWER2
to design high-performance numerical algorithms. IBM J. Res. Develop., 38(5):563–576, 1994.

[2] S. Andersson, R. Bell, J. Hague, H. Holthoff, P. Mayes, J. Nakano, D. Shieh, and J. Tuccillo.
RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning Guide. Inter-
national Business Machines, October 1998. http://www.redbooks.ibm.com.

[3] C. Ashcraft. The fan-both family of column-based distributed Cholesky factorization algorithms.
In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse Matrix

Computation, pages 159–191. Springer Verlag, 1994.

[4] S. Browne, J. Dongarra, N. Garner, G. Ho, P. Mucci. A Portable Programming Interface for
Performance Evaluation on Modern Processors. The International Journal of High Performance

Computing Applications, 14(3):189–204, 2000.

[5] T. Davis University of Florida Sparse Matrix Collection. NA Digest, vol. 92, no. 42, October
16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest, vol. 97, no. 23, June 7, 1997
http://www.cise.ufl.edu/research/sparse/matrices

[6] J. K. Dongarra, R. A. van de Geijn, and D. W. Walker. Scalability Issues Affecting the Design of
a Dense Linear Algebra Library. Journal of Parallel and Distributed Computing, 22(3):523–537,
1994.

[7] L. Grigori and X. S. Li. Performance Analysis of Parallel Right-Looking Sparse LU Factorization
on Two-Dimensional Grid of Processors. Proceedings of PARA’04 Workshop on State-of-the-art
in Scientific Computing, LNCS 3732, pp 768–777, 2005.

[8] A. Gupta, G. Karypis, and V. Kumar. Highly Scalable Parallel Algorithms for Sparse Matrix
Factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5):502–520, 1997.

[9] B. K̊agström, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: High-performance
Model Implementations and Performance Evaluation Benchmark. ACM Trans. Math. Software,
24(3):268–302, 1998.

[10] B. K̊agström, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: Portability and Opti-
mization Issues . ACM Trans. Math. Software, 24(3):303–316, 1998.

[11] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140, June 2003.

[12] R. Schreiber. Scalability of sparse direct solvers. In Alan George, John R. Gilbert, and Joseph
W. H. Liu, editors, Graph Theory and Sparse Matrix Computation, pages 191–211. Springer
Verlag, 1994.

15



[13] D. Skinner. IBM SP Parallel Scaling Overview.
http://www.nersc.gov/news/reports/technical/seaborg scaling

[14] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, Katherine A. Yellick. Automatic Per-
formance Tuning and Analysis of Sparse Triangular Solve. ICS 2002: Workshop on Performance

Optimizations via High-Level Languages and Libraries, June 2002.

[15] R. C. Whaley, A. Petitet and J. K. Dongarra. Automated Empirical Optimization of Software
and the ATLAS Project. Parallel Computing, 27(1-2):3–25, 2001.

16


