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Abstract 
 
A unique composite nanoscale architecture that combines the self-organization 
and molecular dynamics of lipid membranes with a corrugated nanotextured 
silicon wafer was prepared and characterized with fluorescence microscopy and 
scanning probe microscopy.  The goal of this project was to understand how such 
structures can be assembled for supported membrane research and how the 
interfacial interactions between the solid substrate and the soft, self-assembled 
material create unique physical and mechanical behavior through the confinement 
of phases in the membrane.   The nanometer scale structure of the silicon wafer 
was produced through interference lithography followed by anisotropic wet 
etching.  For the present study, a line pattern with 100 nm line widths, 200 nm 
depth and a pitch of 360 nm pitch was fabricated.  Lipid membranes were 
successfully adsorbed on the structured silicon surface via membrane fusion 
techniques.   The surface topology of the bilayer-Si structure was imaged using in 
situ tapping mode atomic force microscopy (AFM).  The membrane was observed 
to drape over the silicon structure producing an undulated topology with 
amplitude of 40 nm that matched the 360 nm pitch of the silicon structure.  
Fluorescence recovery after photobleaching (FRAP) experiments found that on 
the microscale those same structures exhibit anisotropic lipid mobility that was 
coincident with the silicon substructure.  The results showed that while the lipid 
membrane maintains much of its self-assembled structure in the composite 
architecture, the silicon substructure indeed influences the dynamics of the 
molecular motion within the membrane. 
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Introduction 

 

 Supported lipid bilayers have garnered a large body of interest from researchers in areas 

as dispersed as cellular membrane function to drug discovery.  A major driving force in this area 

is the movement toward the isolation and study of cellular membrane proteins.  Membrane 

proteins include a vast array of structure types that vary widely in function, including ion 

channels, motor proteins, cell adhesion proteins, and the T cell receptors and major 

histocompatibility complex that form the immunological synapse.i  The major issue in dealing 

with these membrane proteins is that they require a proper lipid membrane environment, which 

includes correct lipid phase and functionality, for correct folded structure and function.  A 

number of different membrane forms can be used to capture and study the proteins as well as 

utilize them in applications, such as sensingii, ,iii iv and drug testing. v  The most common form is 

the spherical lipid vesicle, also known as the liposome.vi  Another form that is in common use 

today is the bicelle, which is a disk-like membrane structure composed of long and short chain 

lipids.vii  The ability to transfer these solution phase membrane structures to a solid surface 

allows a number of characterization techniques to be used and device structures to be realized.  

These supported lipid bilayers (SLB)viii can be prepared either on a flat, solid surface or 

suspended across a hole through a variety of techniques (e.g. vesicle fusionix).  In the latter case, 

the hole spanning membrane is called a black lipid membrane  (BLM) and is generally limited to 

use in an electrochemical cell for the study of ion channels and protein-membrane interactions.x  

The former case has associated with it a number of varied architectures and device applications.   

 Novel substructure architectures for supported lipid membranes have arisen mainly as 

means to restore molecular mobility in the membrane that can become inhibited when adjacent 

to solid surfaces.  On solid hydrophilic surfaces, such as silicon, supported lipid bilayers 

typically rest upon a thin cushion of water of thickness between 0.5 – 1 nm.xi  By increasing the 

hydration layer between the substrate and the membrane, molecular mobility can be recovered.   

One useful method is the insertion of hydrogels, such as polymethacrylic acid,xii polyethylene 

glycol,xiii,  xiv and polyelectrolytes,xv between the membrane and substrate.  The hydrogel provides 

a water-like support to the membrane, but it too is not completely void of interference with the 

membrane’s molecular mobility.xvi Tethering with long chain molecules has also been 

successfully employed to increase the separation between the membrane and the substrate.xvii,xviii  
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Bacteriorhodopsin,xix bacterial surface layer proteins (S-layer proteins)xx, and multi-bilayersxxi 

can also be used as spacers to improve lipid mobility in the supported membrane.   Although 

these constructs can support lipid membranes and maintain membrane protein function, the 

ability to exchange solutions on the supported side of the membrane, and do so in a 

compartmentalized fashion, is not currently feasible.  

 Nanoscale patterning of silicon wafers has recently been developed by Brueck et al. to 

generate a variety of structures over a large area with good uniformity.xxii, ,xxiii xxiv  The patterning 

technique used is called laser interferometric lithography, which uses an optical interference 

pattern to develop a photolithographic mask.  The silicon structure is then prepared using 

anisotropic wet etching followed by thermal oxidation.  The approach has most recently been 

used to prepare a nanofluidic structure that uses electrophoresis for fluid transport.xxv  

Configuring such a patterned structured material with a supported lipid bilayer could offer (1) a 

suspended lipid membrane that is separated tens to hundreds of nanometers from the underlying 

substrate thereby eliminating substrate interfacial interactions, (2) conferring an innate 

nanofluidic architecture for potential biosensor/bioseparations applications, and (3) a novel 

nanocomposite material with its own unique physical and mechanical characteristics that may 

yield new insights on asymmetric molecular dynamics in self-organized materials. 

 The goal of this project was to generate a composite material composed of molecularly 

dynamic lipid membranes with the nanostructured silicon described above in an effort to develop 

a new materials architecture that could be applied towards membrane protein studies, biosensor 

systems, and biocompatible nanofluidics.   This unique composite also provides a route into 

understanding how interfacial interactions and structures dictate physical and mechanical 

behavior through the confinement of phases and/or lipid and protein assemblies in the 

membrane.  We have accomplished the successful fusion and detection of mono- and bi-phasic 

lipid membranes on the nanostructured silicon surface using both fluorescence microscopy and 

in situ tapping mode AFM.  In this work the membranes were found to span the ridges of the 

structure creating an undulated topology, much like how a canvas canopy drapes over a trellis.  

Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale 

those same structures exhibit anisotropic lipid mobility that was coincident with the silicon 

substructure.  The results showed that while the lipid membrane maintains much of its self-
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assembled structure in the composite architecture, the silicon substructure indeed influences the 

dynamics of the molecular motion within the membrane. 

 
 

Results and Discussion 

Nanostructured silicon wafer 

Nanolithographically defined silicon wafers in stripes or post patterns with a pitch of 

~500 nm were prepared according to O’Brien and coworkers (2003).   We have based our 

fabrication efforts on optical lithography, which is well developed, reliable, and flexible.  

Interferometric lithography (IL), a maskless technique based on the interference of two or more 

coherent beams, allows one to inexpensively and quickly pattern nanoscopic features over large 

surface areas with easily varied feature dimensions (e.g., pitch size and channel width).  With IL 

two coherent light beams of wavelength λ are crossed at an angle 2θ, producing a regular 

interference pattern with d = λ/(2×sinθ) describing the period. With an ultraviolet light source, 

one can easily obtain periods on the order of hundreds of nanometers and transverse pattern 

features in the sub-100 nm range, well beyond the scales available from traditional optical 

lithography approaches.  Developments such as deeper ultraviolet sources and immersion 

techniques promise to reduce these scales to sub-100 nm periods and ~10 nm channel widths. A 

principal advantage of this nanopatterning method over more conventional methods (e.g. e-beam 

lithography) is the ease by which macroscopic patterned areas can be created. 

Silicon <100> wafers were cleaved into 3 cm × 4 cm chips, cleaned in piranha solution (1 

part H2O2, 2 parts H2SO4 by volume), triple-rinsed with deionized (DI) water, dipped in HF acid 

(to remove the native oxide layer and any remaining inorganic contaminants), and again triple-

rinsed with DI water.  A 150 nm thick layer of XHRiC-16 (Brewer Science, Inc.) anti-reflective 

coating (ARC) was spin-deposited (4000 rpm, 30 sec) and hard baked at 175 °C for 3 min.  This 

was followed by spin-deposition (4000 rpm, 30 sec) of a 200 nm layer of positive photoresist 

[SPR510a photoresist diluted by an equal amount of EC-11 solvent (Shipley, Inc.)] and soft-

baking at 95 °C for 3 min.  The exposure source was the frequency-tripled (λ = 355 nm) output 

of a YAG-Nd laser (Infinity 40-100, Coherent Inc.).  The laser beam is expanded and illuminates 

a right-angle assembly containing a mirror and a vacuum chuck to hold the Si sample.  Although 
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we have focused on pitches of 500 nm (θ ~26°), the reflector assembly can be rotated to produce 

a variety of grating pitches.   

After exposure, each sample was soft-baked at 110 °C for 1 min., developed using 

undiluted MF702 developer (Shipley, Inc.) and rinsed with water, leaving a photoresist grating.  

The developed chip was placed in an e-beam evaporator where a thin (35 to 40 nm) layer of Cr 

was deposited.  The remaining photoresist (and the Cr on top of it) was then lifted off using an 

airbrush acetone spray, leaving a negative-tone Cr etch mask layer on top of the remaining ARC 

(which is impervious to the acetone).   

Once the etch masks are completed, the chips are placed within a parallel-plate reactive 

ion etcher (RIE).  Within such a device, the samples sit on the lower plate while the upper plate 

has numerous holes to deliver etchant gases into the chamber.  At low (few mTorr) pressures, RF 

oscillatory potentials are applied between the plates.  These electric fields ionize the normally 

inert etchant gases, liberating the molecular radicals that will etch the substrates.  Once ionized, 

the (relatively) straight electric field lines between the capacitor plates will drive the (charged) 

ions anisotropically towards the substrates.   

An etch process was used that employs CHF3 and O2 gases.  The mechanism behind 

these gas interactions with respect to etching is well known.  Once ionized, CHF3 molecules 

supply the needed fluorine radicals to etch silicon.  However, the radicals from the CHF3 

molecules also recombine into a hydrocarbon polymer that deposits itself on the sample, 

providing a shield against further etching.  This shielding phenomenon is known as 

"passivation."  Ionized oxygen radicals, however, will burn up this hydrocarbon polymer.  

Because the oxygen radicals are driven along the straight electric field lines between the 

capacitor plates, they can be used to burn up the polymer at the horizontal surfaces of the sample 

at a rate faster than it is deposited, while leaving the vertical sidewalls passivated.  This sidewall-

passivation scheme yields superior etch anisotropy and is achieved by finding a "recipe" of etch 

parameters (pressure, RF power, gas flow parameters) for each individual RIE unit by trial-and-

error.   

After etching, the samples are exposed to pure oxygen plasma to burn away the 

remaining polymer.  Subsequent immersion in piranha solution disintegrates residual organics.   
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A field-emission scanning-electron microscope (FE-SEM) image of etched silicon wafer 

before and after oxidation is shown in Figure 1. 

 
(A) (B)

 

Figure 1.  FE-SEM images of etched samples: (A) silicon wafer after etching, and (B) the same wafer after 
oxidation. All samples have been sputtered with gold prior to imaging to reduce charging effects.  The 
scale bars indicate distances of 100 nm. 

 

Supported lipid bilayers on planar and nanostructured silicon – fluorescence microscopy 

 For the fluorescence microscopy studies both vesicular and bicelle structures were used 

to generate the membrane-fused materials.  The vesicular structures were prepared by extrusion 

or sonication using egg-phosphatidyl choline (egg-PC) doped with 0.5% of fluorescent-labeled 

phosphatidylethanolamine (PE) lipid.  Fusion of the lipid bilayers on the substrates was 

accomplished by simply incubating the lipid vesicles with either the oxidized planar or 

nanostructured silicon.  Homogeneous lipid bilayer films were successfully prepared on both 

surfaces as evidenced by the homogeneous fluorescence covering the substrates (Figure 2).  

 

 B  A  
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Figure 2. Confocal microscopy image of lipid bilayers formed on either (A) planar silicon or (B) nanostructured 
surfaces using single unilamellar vesicles made of 0.5 mol% fluorescent lipid (rhodamine labeled) within 
an egg-PC membrane.  (Image sizes are (A) 900 µm, and (B) 1.8 mm). 

The FRAP experiments consisted of photobleaching a small area of the bilayer with 

intense light over a short period of time, then following the recovery of the fluorescence in that 

area over time as the peripheral lipids permeate and exchange positions with the photobleached 

lipids.  It is expected that strong coupling of the nanostructured silicon surface with the 

supported lipid membrane would lead to an anisotropic fluorescence recovery.  Furthermore, the 

anisotropy on the patterned surface should significantly slow the total recovery time.  

Chronological sets of fluorescence microscopy images of the supported lipid membranes on the 

planar and nanostructure silicon following photobleaching are shown in Figures 3 and 4, 

respectively. 

 

Bleached 5 min

20 min 30 min

Bleached 5 min

20 min 30 min
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Figure 3. FRAP on bilayers supported on non-patterned silica.  Shown are images immediately after bleaching, and 
5, 20 and 30 minutes after recovery.  (Image sizes are 1.2 mm) 

 

Photobleaching of the membrane was done using the maximum intensity of a confocal 

instrument.  On the planar silicon, fluorescence recovery was complete in 30 minutes and 

proceeded isotropically, as expected.   In comparison, recovery of the bilayers supported on the 

grooved, nanostructured silicon took significantly longer with incomplete recovery after 90 

minutes.  In addition, the recovery was anisotropic with the fluorescence recovery parallel to the 

grooves occurring much faster than that perpendicular to the grooves, thus indicating greater 

mobility of the lipids in the direction of the grooves.  

 

30 60 90 

Bleach 5 20 

 

Figure 4.  FRAP on patterned surfaces.   Arrows in figure marked “bleach” indicate the direction of the grooves.  
Numbers below each image are the minutes following photobleaching.  (Image sizes are 900 µm) 

 

In a subsequent experiment, subtracted images were used to quantify recovery anisotropy 

on the patterned surfaces.  Figure 5 shows a series of background subtracted images, from the 

time of bleaching (time 0) through 15 minutes of recovery. Line profiles of these images 

indicated significant recovery in the direction of the grooves, while recovery perpendicular to the 
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grooves was less significant, once again suggesting greater mobility of the lipids in the direction 

of the grooves.  

 

Time 0 30sec 1 min

5 min 10 min 15 min

Time 0 30sec 1 min

5 min 10 min 15 min

Figure 5.  Background subtracted images of FRAP of supported bilayers on grooved substrata.  Arrows indicate 
direction of grooves. 

 

Supported lipid bilayers prepared with bicelles were formed successfully using two-

component membranes of 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) and 1,2-

dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) at a molar of ratio of 1 : 2.8.  Bicelles are 

disc-shaped lipid membrane structures, as shown in Figure 6, that utilize the lamellar bilayer 

structure favored by long chain PC (16 – 18 carbons) lipids combined with the high curvature 

structures, such as would be found at the edges of a lipid bilayer, favored by short chain PC (6 – 

8 carbons) lipids.  The two lipids should naturally phase separate as their chain lengths are 

considerably different in size.  The lipid phases will tend to be gel-like for the long chain lipids 

and fluid-like for the short chain lipids.  The supported membranes formed by fusion of bicelles 

to planar and textured silicon readily formed as detected by fluorescence microscopy (Figure 7).  

 

 

bicelle  

40 � 
 

 13



 

Figure 6. Schematic representation of a bicelle. Bicelle size: function of the molar ratio q = [long-chain]/[short 
chain] - several hundred angstroms  

 

 
A 

B 

 

 

Figure 7. Confocal microscopy image of lipid bilayers formed on either (A) planar wafers or (B) nanotextured 
surfaces using bicelles made of a mix of 0.1 mol% bodipy-labeled short-chain lipid within DHPC with 0.5% 
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rhodamine-labeled long chain PC within DPPC. The first panel to the left shows rhodamine fluorescence, the 
one to the right shows bodipy fluorescence, and the third one shows the two panels superimposed on each 
other. 

 

We attempted to photobleach the rhodamine-labeled long-chain lipid and the bodipy-

labeled short-chain lipid using the confocal microscope on the planar and nanostructured silicon. 

The fluorescence images of Figure 8 show that the long-chain lipids were slightly photobleached 

whereas the short-chain ones appeared resistant to photobleaching.  Since photobleaching of the 

bodipy fluorophore should occur under the conditions of this experiment an alternative 

explanation is that the short-chain lipids may have recovered so rapidly that photobleaching was 

not detectable.  Interestingly, no recovery was detected for the long-chain lipids up to 15 minutes 

post-photobleaching. Since the FRAP experiment was attempted at room temperature we intend 

to repeat it at 43 °C, which is higher than the transition temperature for the long-chain PC, to see 

if the biphasic structure of the membrane may be contributing to these results. 

 

 

 
 

Figure 8. Confocal microscope images of the DHPC/DPPC bilayers on the planar silicon immediately after 
photobleaching. 
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Supported lipid bilayers on planar and nanostructured silicon – AFM imaging

In situ AFM images of the 2.8 : 1 DPPC/DHPC bilayers on both planar and the 

nanostructured silicon yielded a number of interesting observations.  Imaging was performed in 

situ in deionized water in tapping mode.  On the planar substrate, the supported lipid membrane 

exhibited a biphasic structure of small 100 nm domains consisting of taller lipids embedded in a 

continuous fluid-like phase of smaller molecules (Figure 9).  The taller domains were found to 

extend 13 – 17 Å above the surface of the fluid phase areas, consistent with the height difference 

between DPPC and DHPC.  Defects in the bilayer facilitated measurement of the height of the 

membrane relative to the silicon surface, and was found to be 55 – 60 Å.  The observed height of 

the membrane is consistent with that obtained in other AFM studies of similar lipid membranes.   

 

5 um x 5 

Figure 9. Tapping mode AFM images of 2.8 : 1 DPPC/DHPC on planar silicon. (A) White arrow points to hole in 
bilayer, red arrows point to regions of DPPC, yellow arrows point to regions of DHPC. (B) Heights: red - 
56 Å (hole in bilayer), and green - 14 Å (height difference between DPPC and DHPC). 
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On the nanostructured silicon surface the lipid membranes were found to span over the 

trenches between the raised line structures.  Figure 10 shows the nanostructured surface (A) 

before and (B) after bilayer fusion in both height and amplitude modes.  It is clear that the 

trenches have been covered in a bilayer membrane with undulated topology that is in registry 

with the corrugated substructure of the textured silicon.  Small features 10’s of nanometers in 

size observed running down the center and sides of the raised lines in Figure 10A are presumably 

artifacts of the etching process.  Figure 10B appears to show that the bilayer has conformal 

coverage over these smaller features. 

 

A B

 

Figure 10. Tapping mode AFM images of (A) nanostructured silica and (B) nanotextured silica with 2.8:1 
DPPC:DHPC bilayer fused to it in height and amplitude modes (image size - 2 microns). 

 

Topographic imaging of this unique composite structure finds that the membrane sags in 

between the line structures, much like how a cloth canopy might drape over a trellis or grated 

structure (Figure 11).  Cross sectional analysis of the topography images revealed the membrane 

dips to a depth of ca. 40 nm, approximately one fifth the depth of the channel.  The heights 

measured and features observed over the surface were fairly uniform.  A schematic of the 

structure is shown in Figure 12, illustrating the draping of the membrane over the structure 

silicon.  It is not know at this time if any bilayer material fills the channel below the channel-

spanning membrane nor the exact cause of the observed undulation of the bilayer on the silicon 

substrate. 
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Red: depth = 25 nm
Green: depth = 19 nm
White: depth =  43 nm

Red: depth = 100 nm
Green: distance = 170 nm

 

 

Figure 11. Height profiles of nanostructured silicon (A) before and (B) after coating with 2.8 : 1 DPPC/DHPC 
bilayer. 

 

 
  

100

200

360

 

Figure 12. Schematic of the nanocomposite architecture showing the lipid bilayer supported by the tops of the 
raised line features (360 nm pitch, 100 nm width) and spanning the 200 nm deep trenches.  A close up of 
the bilayer interfacing the structured silicon is also shown for scale. 
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The AFM imaging was also able to resolve the gel-like domains of the DPPC aggregates 

from the fluid phase areas rich in DHPC within the sections of the membrane that span the raised 

lines of the silicon substrate.  Figure 13 shows a highly magnified area that reveals features and 

heights that are consistent with the biphasic membrane observed in Figure 9, with the taller 

DPPC domains coexisting with the shorter DHPC-rich membrane.  A hole in the bilayer can also 

be observed in Figure 13.  Probing through the hole to evaluate subsurface features could not be 

performed due to size limitations of the relatively large AFM tip prohibiting entry into the hole.  

Lipid membrane upon the raised line features could not be resolved into their gel and fluid phase 

domains due to the roughness of the silicon surface.   

Quantification of the gel and fluid phases could reveal the physical preference of the lipid 

phases for the raised silicon features, or for convex and concave stretches of the membrane 

defined by the corrugated silicon substrate.  This would be of interest for future research 

involving membrane-associated proteins, which typically have selective affinity for specific lipid 

phases, as well as in the general understanding of the mechanical behavior of lipid membranes. 

hole in bilayer

 

Figure 13. High magnification of specific areas shows possible DPPC domains (red arrow) in DHPC-rich areas 
(purple arrow).  Height difference between these two areas is 25 Å.  Black box in image shows hole in 
bilayer.   
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Conclusions 

 Through this work we have shown that lipid bilayer membranes can be readily 

configured with a nanostructured silicon surface and that the composite shows (1) the membrane 

spans over the corrugation of the silicon surface creating an undulated architecture, (2) lipid 

mobility was influenced by the patterned substructure, and (3) the structure is continuous over 

the micron to nanometer scale.  This unique architecture provides a number of possibilities in the 

study of lipid membranes and device applications.  While molecular mobility in the membrane 

can be directed through electrostatic, chemical, and physical interactions of tethered structures, 

through the use of this composite material we can now begin to explore the influence of the 

mechanics of membrane curvature and periodic structuring on the dynamics of membrane 

behavior.  The asymmetric mobility of membrane lipids also means that embedded membrane 

proteins would also experience this compartmentalization in specific channels.  If so, this could 

lead to addressable systems for membrane protein studies and novel biosensor applications.  

Further characterization and modification of the structure are continuing in an effort to realize 

some of the potential research and technological applications for this nanocomposite material. 

 

 

 

Experimental 

 
Preparation of phospholipid vesicles 

Unilamellar vesicles were prepared using egg phosphatidylcholine (egg-PC). An 8 mM 

solution of egg-PC containing 0.5 mole% rhodamine labeled phosphatidyl-ethanolamine (PE) in 

chloroform was dried. The dried lipids were resuspended in 75 mM phosphate buffer, pH 7.0, 

and incubated at 63oC for 30 min, then extruded through 0.6 um polycarbonate filter. 

 

Preparation of bicelles 

A 104 mM solution of 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC) containing 

0.1 mole% bodipy-PE was prepared by drying the chloroform solution of the lipid, followed by 

dissolving in phosphate buffer saline (PBS), pH 7.4. Multilamellar vesicles of 72 mM 1,2-
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dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) containing 0.5 mole% PE-rhodamine in 

chloroform were prepared by drying then resuspending in PBS, and incubating at 63oC for 30 

min. Bicelles were formed by adding DHPC to DPPC while mixing so that the final 

concentrations were 10 mM and 28 mM respectively [q ratio (molar ratio of long to short-chain 

PC) of 2.8:1]. 

 

Formation of SLB for fluorescence microscopy 

A silicon wafer (1 cm2) was cleaned by a quick dip in piranha and then thoroughly rinsed 

with water. The bilayer was formed by fusion of either phospholipid vesicles or bicelles by 

placing the wafer over a 40ul drop of the desired lipid suspension in a Petri dish for 10 minutes. 

The dish was then filled with distilled water and shaken gently to rinse away excess lipids. The 

silicon wafer was inverted and transferred to a small container while being maintained under 

water during this process. 

 

Formation and imaging of bilayers with AFM 

Silicon wafer squares (1 cm x 1cm) were cleaned with piranha solution (30% H2O2/70% 

H2SO4), followed by liberal washing with deionized water.   A 40 µL drop of the bicelle solution 

was then placed inside a clean petri dish and the inverted Si piece was placed atop the drop.  The 

Si was gently shaken for 10 minutes to ensure formation of the bilayer.   The sample was then 

rinsed by submerging the petri dish in a larger crystallizing dish filled with deionized water and 

the assembly gently shaken for 5 minutes. The sample was then flipped upright and the rinsing 

was repeated twice more.   

The Si sample was transferred to the AFM liquid cell by placing the O-ring of the liquid 

cell on the sample while under water.   The O-ring was then clamped to the sample using 

tweezers and carefully removed from the water so that the sample surface remains submerged 

under water.  The bottom of the sample was carefully dried with a towel, and the sample attached 

to an AFM puck on the scanner with double-sided tape.  The liquid cell was then quickly 

assembled and filled with deionized water.  

AFM experiments were performed with a Nanoscope IIIa Multimode scanning probe 

microscope (Digital Instruments, Santa Barbara, CA).  The images were acquired in tapping 

mode in solution using a commercially available liquid cell (Digital Instruments) with 120-µm 
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oxide-sharpened silicon nitride V-shaped cantilevers.  The nominal spring constant of the 

cantilever was 0.35 N/m.  Images were collected with the E-scanner, which has a maximum 

range of 15 µm x 15 µm, operating at a scan rate of 2 Hz.  Data was collected with 256 data 

points per line. 

 
  

  

References 
                                                 
i)  Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. 1994. Molecular Biology of The 

Cell. New York: Garland Publishing. 

ii)  Burns CJ, Field LD, Morgan J, Petteys BJ, Prashar J, Ridley DD, Sandanayake KRAS, 

Vignevich V. 2001. Components for Tethered Bilayer Membranes:  Synthesis of 

Hydrophilically Substituted Phytanol Derivatives. Aust. J. Chem. 54:431 - 438. 

iii)  Anrather D, Smetazko M, Saba M, Alguel Y, Schalkhammer T. 2004. Supported membrane 

nanodevices. J. Nanosci. Nanotech. 4:1 - 22. 

iv)  Melzak KA, Ellar DJ, Gizeli E. 2004. Interaction of Cytolytic Toxin CytB with a Supported 

Lipid Bilayer:  Study Using an Acoustic Wave Device. Langmuir 20:1386 - 1392. 

v)  Stora T, Lakey JH, Vogel H. 1999. Ion-Channel Gating in Transmembrane Receptor 

Proteins:  Functional Activity in Tethered Lipid Membranes. Angew. Chem. Int. Ed. 38:389 - 

392. 

vi)  New RRC. 1990. Liposomes. Rickwood D, Hames BD, editors. New York: Oxford 

University Press. 301 p. 

vii)  Gohon Y, Popot J-L. 2003. Membrane protein-surfactant complexes. Curr. Opin. Coll. 

Interf. Sci. 8:15 - 22. 

viii)  Tamm LK, McConnell HM. 1985. Supported Phospholipid Bilayers. Biophys. J. 47:105 - 

113. 

ix)  Kalb E, Frey S, Tamm LK. 1992. Formation of supported planar bilayers by fusion of 

vesicles to supported phospholipid monolayers. Biochim. Biophys. Acta 1103:307 - 316. 

x) Krull UJ. 1987. Planar artificial biomembranes optimized for biochemical assay. Anal. Chim. 

Acta 197:203 - 215. 

 22



 

                                                                                                                                                             
xi) Koenig BW, Krueger S, Orts WJ, Majkrzak CF, Berk NF, Silverton JV, Gawrisch K. 1996. 

Neutron Reflectivity and Atomic Force Microscopy Studies of a Lipid Bilayer in Water 

Adsorbed to the Surface of a Silicon Single Crystal. Langmuir 12:1343 - 1350. 

xii) Feng VZ, Granick S, Gewirth AA. 2004. Modification of a Supported Lipid Bilayer by 

Polyelectrolyte Adsorption. Langmuir 20:8796 - 8804. 

xiii) Krishna G, Schulte J, Cornell BA, Pace R, Wieczorek L, Osman PD. 2001. Tethered Bilayer 

Membranes Containing Ionic Reservoirs:  The Interfacial Capacitance. Langmuir 17:4858 - 

4866. 

xiv) Wagner ML, Tamm LK. 2000. Tethered Polymer-Supported Planar Lipid Bilayers for 

Reconstitution of Integral Membrane Proteins:  Silane-Polyethyleneglycol-Lipid as a 

Cushion and Covalent Linker. Biophys. J. 79:1400 - 1414. 

xv) Kugler R, Knoll W. 2002. Polyelectrolyte-supported lipid membranes. Bioelectrochemistry 

56:175 - 178. 

xvi) Seitz M, Park CK, Wong JY, Israelachvili JN. 2001. Long-Range Interaction Forces 

between Polymer-Supported Lipid Bilayers Membranes. Langmuir 17:4616 - 4726. 

xvii) Seitz M, Ter-Ovanesyan E, Hausch M, Park CK, Zasadzinski JA, Zentel R, Israelachvili 

JN. 2000. Formation of Tethered Supported Bilayers by Vesicle Fusion onto Lipopolymer 

Monolayers Promoted by Osmotic Stress. Langmuir 16:6067 - 6070. 

xviii) Yoshina-Ishii C, Boxer SG. 2003. Arrays of mobile tethered vesicles on supported lipid 

bilayers. J. Am. Chem. Soc. 125:3696 - 3697. 

xix) Sharma MK, Jattani H, Lane M. Gilchrist J. 2004. Bacteriorhodopsin conjugates as anchors 

for supported membranes. Bioconj. Chem. 15:942 - 947. 

xx) Györvary E, Wetzer B, Sleytr UB. 1999. Lateral Diffusion of Lipids in Silane-, Dextran-, 

and S-Layer-Supported Mono- and Bilayers. Langmuir 15:1337 - 1347. 

xxi) Hughes AV, Goldar A, Gerstenberg MC, Roser SJ, Bradshaw J. 2002. A hybrid SAM 

phospholipid approach to fabricating a 'free' supported lipid bilayer. Phys. Chem. Chem. 

Phys. 4:2371 - 2378. 

xxii) Zaidi SH, Chu A-S, Brueck SRJ. 1996. Optical properties of nanoscale, one-dimensional 

silicon grating structures. J. Appl. Phys. 80:6997 - 7008. 

 23



 

                                                                                                                                                             
xxiii) Brueck SRJ, Zaidi S, Chen X, Zhang Z. 1998. Interferometric lithography - from periodic 

arrays to arbitrary patterns. Microelec. Engn. 41/42:145 - 148. 

xxiv) Zaidi SH, Brueck SRJ. 1999. Interferometric lithography for nanoscale fabrication. Proc. 

SPIE-Int. Soc. Opt. Eng. 3618:2 - 8. 

xxv) O'Brien, M. J., Bisong P, Ista LK, Rabinovich EM, Garcia AL, Sibbett SS, Lopez GP, 

Brueck SRJ. 2003. Fabrication of an integrated nanofluidic chip using interferometric 

lithography. J. Vac. Sci. Tech. B 21:2941 - 2945. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24



 

                                                                                                                                                             
 

 

 

 

DISTRIBUTION: 

 
5 Prof. Gabriel P. Lopez 

Department of Chemical and Nuclear Engineering 
University of New Mexico 
Albuquerque, New Mexico 87131 

 
2 Prof. S. R. J. Brueck 

Center for High Technology Materials 
University of New Mexico 
Albuquerque, New Mexico 87106 

 
  
10 MS 1413 D. Sasaki 
1  1413 A. Slade 
1  1413 P. Dressendorfer 
1  1413 T. Michalske 
1  0123 D. Chavez, 1011 
1  9018 Central Technical Files, 8945-1 
2  0899 Technical Library, 9616 

 

 

 25


	Lipid Membranes on Nanostructured Silicon
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Results and Discussion
	Nanostructured silicon wafer
	Supported lipid bilayers on planar and nanostructured silicon-fluorescence microscopy
	Supported lipid bilayers on planar and nanostructured silicon-AFM imaging

	Conclusions
	Experimental
	Preparation of phospholipid vesicles
	Preparation of bicelles
	Formation of SLB for fluorescence microscopy
	Formation and imaging of bilayers with AFM

	References
	Distribution List

