
Pilot Job Accounting and Auditing in Open Science Grid

Igor Sfiligoi
Fermilab, Batavia, IL, USA

sfiligoi@fnal.gov

Chris Green
Fermilab, Batavia, IL, USA

greenc@fnal.gov

Greg Quinn
The University of Wisconsin, Madison, WI, USA

gquinn@cs.wisc.edu

Greg Thain
The University of Wisconsin, Madison, WI, USA

gthain@cs.wisc.edu

Abstract

The Grid accounting and auditing mechanisms
were designed under the assumption that users would
submit their jobs directly to the Grid gatekeepers.
However, many groups are starting to use pilot-based
systems, where users submit jobs to a centralized
queue and are successively transferred to the Grid
resources by the pilot infrastructure. While this
approach greatly improves the user experience, it
does disrupt the established accounting and auditing
procedures. Open Science Grid deploys gLExec on
the worker nodes to keep the pilot-related accounting
and auditing information and centralizes the
accounting collection with GRATIA.

1. Introduction

Job accounting and auditing information is
important both for the economics of the Grid and for
detecting anomalous behavior. However, while the
original Grid authentication, authorization,
accounting and auditing mechanisms were designed
under the assumption that users would submit their
jobs directly to the Grid gatekeepers, direct
submission accounted for only a tiny fraction of job
submissions. With the proliferation of Grid sites,
most users prefer to submit their jobs to an
intermediate queue and have a workload management
system (WMS) distribute their jobs among the Grid
sites.

Over the past few years, many groups have started
to use pilot-based WMSes for their ability to keep
Grid-wide fair share between their users. These
systems do not submit the jobs directly to the Grid
gatekeepers, but send only so-called pilot jobs. Once
a pilot job starts on a Grid resource, it will fetch a

real user job and execute it. The traditional Grid
authentication, authorization, accounting and auditing
mechanisms are not used by the pilot, subverting the
established accounting and auditing procedures.
Examples of pilot-based WMSes are DIRAC[1],
glideinWMS[2] and PanDa[3].

Open Science Grid (OSG)[4] addresses these
problems with gLExec and GRATIA.

2. Accounting and auditing problems of
the traditional Grid model

In the traditional Grid model, the site Grid
gatekeeper is responsible for authenticating and
authorizing a user based on the provided X.509
proxy certificate. If a user is accepted, his/her job is
submitted to a local batch system that handles the
job from that moment on. The accounting and
auditing systems monitor the gatekeeper and the
batch system activity, extracting the needed
accounting and auditing information. See Figure 1 for
an overview.

Figure 1. Traditional Grid workflow

Grid Site

Local
Queue

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71318553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pilot-based WMSes have quite a different
workflow. Here, users submit jobs to a WMS
specific batch system and their presence triggers a
pilot factory to send pilot jobs to various Grid sites.
The pilot jobs then follow the path user jobs would
and eventually start on a set of worker nodes. Each
pilot job then pulls a user job from the WMS batch
system and executes it. See Figure 2 for an overview.

However, the accounting and auditing systems are
still only monitoring the site provided gatekeeper
and batch system. They cannot distinguish between
resources used by the final user jobs from resources
used by the pilot infrastructure. Thus all the
processes will result as being ran by the pilot user
and the resources will be accounted to the pilot itself.
This is often unacceptable from both the pilot
owner's and the site administrator's points of view.

Having accurate per-user accounting information
can be important when justifying the requisition
orders. Many sites receive financing both from VO
sponsors and from local community sponsors. A site
may need to demonstrate that local users actually
used the resources sponsored by the local
community.

Having detailed auditing information is also
essential. If a process is found to be performing
unauthorized or illegal activity, the responsible
person must be accurately identified. Sites usually
need to be able to determine this information without
involving the pilot owner. At the same time, the pilot
owners do not want to be held responsible for the
actions of users they are serving.

3. Installing a gatekeeper on every worker
node

In order to get proper accounting and auditing
information, pilot jobs need to inform the local
security system when running a user job. However,
pilot jobs cannot be blindly trusted by the Grid sites,
so the sites need a trusted, local tool with the
following requirements:
• Resources will be accounted to a user if and only

if a pilot job is able to demonstrate that that user
entrusted it with his/her job. Possession of a
valid users's X.509 proxy certificate is the
minimum requirement.

• The tool must be able to automatically compute
the user job's accounting information and
distinguish between user and pilot processes for
auditing purposes. In other words, the tool must
not rely on the pilot job to provide this
information.

OSG has started deploying gLExec[5], a X.509-
aware derivative of the Apache suexec[6], on its
worker nodes. gLExec is a privileged executable
that, given a X.509 proxy certificate, authenticates
and authorizes the user and runs the associated user
job under the appropriate local identity, allowing for
reliable auditing and accounting. In other words, it is
like having a gatekeeper on every worker node.

Once gLExec is deployed on the worker nodes,
pilot jobs can use it to launch the users' jobs. With
the accounting and auditing systems now also
monitoring the “gatekeepers” on the worker nodes,
the accounting and auditing information is once again
correct. See Figure 3 for an overview.

Figure 3. Pilot workflow with WN
gatekeepers

Grid Site

Local
Queue

Pilot
factory

WMS
Queue

Figure 2. Pilot workflow in a traditional
Grid setup

Grid Site

Local
Queue

WMS
Queue

Pilot
factory

4. Accounting and auditing information
provided by gLExec monitoring in OSG

On OSG resources, gLExec is configured to
interface to the GUMS[7] authorization and mapping
system, and is using a OSG-specific monitoring
process that is launched at user job startup. The
monitoring process logs both the information
involved in the authorization and the information
about the user job's processes. All of these data can
be used for auditing and accounting purposes.

4.1. User authorization information

gLExec logs all the invocation attempts. If a valid
X.509 proxy certificate is presented, the following
information, the same that is sent to GUMS, is also
logged:
• The X.509 Subject, also known as the

Distinguished Name (DN).
• The Fully Qualified Attribute Name (FQAN) of

an eventual VOMS extended attribute.
• The VO name and Issuer DN of the FQAN in the

VOMS extended attribute.
If GUMS authorizes the user, the following

information is also logged:
• The UNIX User Identifier (UID) the user job

processes will run as.

4.2. Collecting job information

Once a user job starts, the monitoring process
starts tracking the job process tree and measuring its
CPU usage.

In general, tracking process families can be
difficult to do reliably. The OSG gLExec monitoring
relies on the Condor[8] procd daemon, that uses a
novel approach of dedicated tracking secondary
Group Identifiers (GIDs) to achieve the goal. A
detailed description of the process is presented in the
next section.

The monitoring process logs accounting and
auditing information of long running processes,
defined as lasting more than 5 minutes. Shorter lived
processes are not considered important enough to
warrant the additional log space. Moreover, auditing
and accounting information of the job as a whole are
logged, too.

The auditing and accounting data logged for each
process/job are:
• Start time and end time, effectively obtaining the

wallclock time used by the process/job.
• CPU used by the process/job, split between CPU

used in user state and CPU used in system state.

• The parent process id of the monitored process.
The information is collected by polling the

process tree at regular intervals, currently fixed at 1
minute. Since only long running processes are
logged, no interesting auditing information is lost.
However, the process accounting information can be
underestimated by up to one minute.

It is also worth noting that while the total
wallclock time is always accurately reported, the job
total CPU usage can be significantly underreported if
the user job spawns a large amount of very short,
CPU intensive processes, and does not wait for them
to finish. Although this is a real problem, it was not
deemed worth the additional monitoring load
necessary to properly handle it.

5. Reliable process family tracking

Tracking process families can be difficult to do
reliably. The basic approach is to use process parent-
child relationships as shown in Figure 4.

However, while the above method works well for
a large class of well behaved jobs, a determined user
can easily circumvent it. The parent-child
relationship can easily be broken by terminating the
parent while leaving the child alive, as shown in
Figure 5. Such processes are typically called
daemonized processes.

This technique can be very effective in evading
process relationship tracking. If the parent lives for a
very short time, even periodic polling and recording

Figure 5. Broken parent-child
relationship

Process 1
PID: P1 PPID: P0

Process 2
PID: P2 PPID: P1

Process 3
PID: P3 PPID: 1

Terminated
Parent link

lost

Figure 4. Parent-child relationship

Process 1
PID: P1 PPID: P0

Process 2
PID: P2 PPID: P1

Process 3
PID: P3 PPID: P2

Spawn

Spawn

of the complete process tree will miss a large
fraction of daemonized processes.

It should be noted that while there is no real need
for any non-malicious job to produce daemonized
processes, using them can sometimes ease the
maintenance of grid job scripts. A classical example
is represented by a network transfer companion to a
CPU intensive application. Using a nested script to
start the companion binary will almost certainly
break the parent-child relationship. While this could
be avoided by directly invoking the companion, the
flexibility of using scripts certainly represents a valid
use case that should be supported.

5.1. The ideal process tracker

In order to reliably track the process family tree,
an additional unique token can be used. If the parent-
child relationship is broken as described above, any
process containing the token is known to be part of
the user's job. See Figure 6 for an overview.

In the context of token-based tracking, an ideal
tracking system would satisfy all of the requirements
listed below:

1) The token must be inherited across forks and
execs.

2) The token doesn't effect the semantics of the
children.

3) Only a process with root privilege can insert a
token.

4) The token cannot be removed by the child
processes.

5) Root privilege is not needed to read the tokens
from any process on the systems.

6) Multiple tokens are allowed in the system, so
that multiple independent groups can be
tracked.

7) Multiple tokens are allowed in any process,
allowing for nested groups to be tracked.

We are not aware of any system that meets all of
these requirements. In the next sections we describe
a few widely used methods, followed by the method
used by the gLExec monitor.

5.2. Using process groups for process tracking

A popular approach for process tracking is based
on process groups. The job's initial process starts a
new session, becoming the session leader, and all the
children inherit the same process group. The UNIX
shell and the PBS batch system[9] are known to
heavily rely on this method.

This method violates the rules #3, #4 and #7. Rule
#4 is the most troublesome, i.e. the process group is
not protected information and can be changed by the
child processes at any time. So it cannot be used to
obtain reliable monitoring and accounting
information.

5.3. Using environment variables for process
tracking

The environment associated with a process can
also be used for tracking. Any variable stored in the
initial process environment is inherited by the child
processes. By using well structured unique variable
names it is easy to track the process tree. The Condor
batch system has been relying on it for years.

This method violates the rules #3 and #4. Again,
the violation of rule #4 prevents it from being used
for reliable monitoring and accounting. Indeed, any
child process can add, change or remove any
environment variable.

5.4. Using user identifiers for process tracking

A reliable token that all UNIX processes posses is
the User Identifier (UID). Only a tools with root
privilege can change the UID of a process. The
Condor batch system is known to support this option
for dedicated batch system resources.

This method violates the rules #2 and #7. The
violation of rule #2 makes it usable in very limited
setups only. However, when using dedicated UIDs
for process tracking is an acceptable option, this
method is very reliable.

5.5. Using secondary group identifiers for
process tracking

Secondary Group Identifiers (GIDs) are also a
reliable feature of all the UNIX processes. Only a
tool with root privilege can add or remove a

Figure 6. Process tracking using a
unique token

Process 1
PID: P1 PPID: P0

Token

Process 2
PID: P2 PPID: P1

Token

Process 3
PID: P3 PPID: 1

Token

Tracking
Token

Terminated
Parent link

lost

secondary GID to/from the list. The OSG gLExec
monitor and recent Condor versions use this method.

This method violates the rule #2. However, it is
relatively easy for a system administrator to set aside
a dedicated set of GIDs, making this reliable method
deployable in most batch setups.

Figure 7 shows an overview of secondary GIDs
for process tracking.

6. Integration with the OSG accounting
system

GRATIA[10] is the official OSG accounting
system. GRATIA has a modular architecture based
on probes that allows for a flexible collection of
information. GRATIA probes exist for all the major
batch systems deployed in OSG as well as for
gLExec.

Grid sites can be configured to report to a local or
to the OSG-central collector. When a local collector
is used, (a subset of) collected data is also forwarded
to the OSG-central collector. Detailed message
passing description is however beyond the scope of
this paper. See Figure 8 for an overview.

To obtain correct accounting information for pilot
jobs, one needs to subtract the resources accounted
to the final users by the gLExec probe, from the
resources accounted to the pilot job by the batch
system probe.

In OSG this can be done only in an aggregated
mode (as opposed to job by job accounting) today,
as there is no direct correlation between the
information provided by the batch system probe,
running on the Grid gatekeeper, and the gLExec
probe, running on one of the worker nodes. We
expect that future versions of GRATIA will address
this problem.

7. Conclusions

Job accounting and auditing information is
important both for the economics of the Grid and for
detecting anomalous behavior. However, pilot-based
WMSes circumvent the established accounting and
auditing mechanisms. To properly detect the jobs
handled by pilot-based WMSes, OSG is relying on
gLExec, deployed on each and every worker node, to
properly track the user processes and account for the
user CPU consumption. The accounting records are
aggregated in a centralized store by the GRATIA
system.

A distinguishing characteristic of the described
system is the use of group identifiers for job
tracking, allowing for reliable auditing and
accounting even in the event of daemonized
processes.

8. Acknowledgements

Fermilab is operated by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359
with the United States Department of Energy.

 This work was also supported in part by the
National Science Foundation.

9. References

[1] A. Tsaregorodtsev, V. Garonne, and I. Stokes-
Rees, “DIRAC: A Scalable Lightweight Architecture
for High Throughput Computing”, Fifth IEEE/ACM
International Workshop on Grid Computing
(GRID'04), 2004, pp. 19-25,
http://doi.ieeecomputersociety.org/10.1109/GRID.2004.22.

[2] I. Sfiligoi, “ Making science in the Grid world: using
glideins to maximize scientific output”, Nuclear Science
Symposium Conference Record, 2007. NSS '07. IEEE 2,
Honolulu, HI, USA, 2007, pp. 1107-1109, ISBN 978-1-4244-
0923-5

Figure 8. GRATIA accounting system

Collector

Probe

Probe

Probe

Web
presentation

Grid site

Collector

Web
presentation

OSG

Batch

CE

ProbeWNWNWN Probe

Probe

Probe

Batch

CE

WNWN

Grid site

ProbeProbeProbeWN

Figure 7. Process tracking using
secondary Group Identifiers

Process 1
PID: P1 PPID: P0

GIDs: ...,GT

Process 2
PID: P2 PPID: P1

GIDs: ...,GT

Process 3
PID: P3 PPID: 1

GIDs: ...,GT

Tracking GID
preserved

Terminated
Parent link

lost

[3] “The PanDA Production and Distributed Analysis
System”, https://twiki.cern.ch/twiki/bin/view/Atlas/
PanDA, Accessed April 2008.

[4] Ruth Pordes, et. al., “The open science grid”, Journal of
Physics: Conference Series 78 , Institute of Physics
Publishing, 2007 (15pp),
http://www.iop.org/EJ/abstract/1742-6596/78/1/012057/

[5] D. Groep, O. Koeroo, G. Venekamp, “David Groep,
Oscar Koeroo, Gerben Venekamp”, To be published in
Journal of Physics: Conference Series (JPCS) CHEP2007,
Preprint: http://www.nikhef.nl/grid/lcaslcmaps/glexec/
glexec-chep2007-limited.pdf

[6] “suEXEC Support”, http://httpd.apache.org/docs/2.2/
suexec.html, Accessed April 2008.

[7] M. Lorch, et. al., “Authorization and Account
Management in the Open Science Grid”, Proceedings of
the 6th IEEE/ACM International Workshop on Grid
Computing, IEEE Xplore, Seattle, 2005.
http://ieeexplore.ieee.org/servlet/opac?punumber=10354

[8] “The Condor Project”, http://www.cs.wisc.edu/
condor/, Accessed April 2008.

[9] “OpenPBS”, http://www.openpbs.com, Accessed
April 2008.

[10] ”Gratia”, https://twiki.grid.iu.edu/twiki/bin/
view/Accounting/WebHome, Accessed April 2008.

