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Abstract 

We have found that developing a computational framework for reconstructing error control 
codes for engineered data and ultimately for deciphering genetic regulatory coding sequences 
is a challenging and uncharted area that will require advances in computational technology 
for exact solutions. Although exact solutions are desired, computational approaches that yield 
plausible solutions would be considered sufficient as a proof of concept to the feasibility of 
reverse engineering error control codes and the possibility of developing a quantitative model 
for understanding and engineering genetic regulation. Such evidence would help move the 
idea of reconstructing error control codes for engineered and biological systems from the high 
riskhigh payoff realm into the highly probablehigh payoff domain. Additionally this work will 
impact biological sensor development and the ability to model and ultimately develop defense 
mechanisms against bioagents that can be engineered to cause catastrophic damage. Under- 
standing how biological organisms are able to communicate their genetic message efficiently in 
the presence of noise can improve our current communication protocols, a continuing research 
interest. 

Towards this end, project goals include: 1) Develop parameter estimation methods for n 
for block codes and for n, k ,  and m for convolutional codes. Use methods to determine error 
control (EC) code parameters for gene regulatory sequence. 2) Develop an evolutionary com- 
puting computational framework for near-optimal solutions to the algebraic code reconstruction 
problem. Method will be tested on engineered and biological sequences. 
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Summary 

We employed information theory, cryptographic analysis, and evolutionary computing methods to 
achieve the goals of this project. The primary goal was the development of an evolutionary com- 
puting framework for determining near optimal solutions for the reconstruction of algebraic error 
control codes in systematic form. We developed algorithms for the code reconstruction problem. 
The algorithms were used to study the fitness landscape of the (7, 4) Hamming code. The fitness 
landscape contains neighborhoods with multiple local maxima. The overall fitness landscape ap- 
peared surprisingly regular. Landscape studies helped determine the most viable fitness coefficients 
for the cost function of our genetic algorithm (GA). The optimal cost function weights the number 
of zeros in the syndrome matrix of a candidate code significantly higher than the number of non- 
zero terms in the parity matrix of the code. As the coefficients in the cost function approach optimal 
values, the (7,4) code’s fitness landscape forms three distinct regions. The majority of codes fall in 
the 0.5 fitness range followed by the 0.67 range. Very few codes fall in the 0.84 range and only one 
code (the solution) has a fitness value of 1. Exploration of the fitness landscape also suggested that 
modifications of candidate solutions in integer space may prove an effective approach for exploring 
neighborhoods. The reconstruction algorithms were used to develop a GA that uses local search to 
find the optimal code for a set of codewords. 

The secondary objective was to develop parameter estimation methods for key error control 
code values such as the number of information bits (k) ,  codeword length (n), and memory length for 
convolutional codes. Expanding the modified entropy approach, we applied the entropy algorithm 
to codebooks with multiple code configurations to gain insight into codeword length approxima- 
tion methods. The value of k (number of information bits) in the current algorithm is bounded 
by Zog~(Number of codewords in codebook) for binary codes. Additionally errors in codewords 
can distort results. For codebooks composed of concatenated codes (a sequence is composed of 
two codewords produced by two different codes) the coding parameter for the larger code (larger 
k )  masks the k value of the smaller code. Further investigation continues into a more robust and 
extendable approach for code parameter estimation for a generic sequence set. 

In addition to parameter estimation for generic binary codebooks, we explored error control cod- 
ing characteristics of genetic sequences. More decisive linearity measures for biological sequences 
were investigated. We developed a biological channel capacity model using a relay channel frame- 
work to represent DNA transmission via genetic replication. Using the relay channel framework 
we found that channel capacity for eukaryotic organisms is less for the entire genome than for the 
effective genome, suggesting the presence of error control codes of rates less than e as we origi- 
nally believed. The relay channel model was also used to perform a cursory study of the relationship 
between channel capacity and cellular aging and death. The model investigates the correlation be- 
tween the number of times genomic DNA is replicated in an organism’s life time and the capacity 
of the replication channel. The reduction in capacity over replication time suggests the necessity of 
significant error control in the long term transmission of DNA. 
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Deciphering the Genetic Regulatory Code 
Using an Inverse Error Control Coding 

Framework 

1 Introduction 

In the later part of the 1980s the increase in genomic data spurred a renewed interest in the use 
of information theory in the study of genomics [24, 27, 121. Information measures based on the 
Shannon entropy [33] have been used in recognition of DNA patterns, classification of genetic 
sequences, and other computational studies of genetic processes [24,22,2,29, 28,3, 26,21,9,32, 
34, 23, 16, 30, 311. Informational analysis of genetic sequences has provided significant insight 
into parallels between the genetic process and information processing systems used in the field of 
communication engineering [13, 35, 11,311. 

1.1 The Central Dogma as a Communication System 

To determine the algorithm used by living systems to transmit vital genetic information, several 
researchers have explored the parallel between the flow of genetic information in biological systems 
and the flow of information in engineering communication systems, re-examining the central dogma 
of genetics from an information transmission viewpoint [13, 35, 24, 6, 171. The central premise 
of genetics is that genes are perpetuated in the form of nucleic acid sequences but function once 
expressed as proteins [ 141. Investigators have developed models that attempt to capture different 
information theoretic aspects of the genetic system [13,35,24, 20, 251. 

The inclusion of error control mechanisms is fundamental in the design and implementation of 
an effective engineering communication system. In a similar manner, one can reason that the inclu- 
sion of error control mechanisms is also fundamental to the survival and propagation of biological 
systems. May et al., discuss the role of error correction in molecular biology as well as various 
communication system models for molecular biology [ 191. 

Development of coding theoretic frameworks for molecular biology is an ongoing endeavor. 
Although the existence of redundancy in genetic sequences is accepted and the possibility of that 
redundancy for error correction and control is being explored and exploited, mathematically deter- 
mining the encoding algorithm particularly for regulatory regions remains a major research chal- 
lenge. Devising a method for reconstructing the error control code of a received, noisy, signal is a 
challenge that if met will provide a way to construct mathematical models of molecular machines 
(macromolecules such as ribosome, RNA polymerase, and initiation factors) involved in the regula- 
tion of genetic processes. To this end, the main focus of this work, which is discussed in the section 
which follows, is the development of a quantitative framework for reverse engineering error control 
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codes in engineering systems with the intention of using this framework for discovering and reverse 
engineering biological error control mechanism. Supporting this primary objective, secondary ob- 
jectives include further investigation into parameter estimation algorithms for EC sequences and 
coding theoretic analysis of genetic sequences. Current findings are presented in Section 3 .  

2 A Quantitative Framework for Reverse Engineering EC Codes 

2.1 Linear Block Codes and Generator Matrices 

Each codeword, v, in a (n,  k )  linear block code's codebook can be produced using a generator 
matrix, G, which encodes the information vector, u, in a deterministic manner [ 151. The relationship 
between u, v, and G is as follows: 

v = UG (1) 

where G is k by  n, u is 1 by  k ,  and v is 1 by  n. The parity-check matrix (also referred to as the 
dual code of G), H,  is a (n  - k )  by  n matrix that relates to the generator as follows [15,4]: 

G H ~  = O  (2) 

where H T  is the transpose of the parity-check matrix. As its name suggests, the parity-check matrix 
is used to check for transmission errors in the received sequence, r = v + e. In the absence of errors, 
e = 0, the syndrome vector s (the n - k symbol pattern that results from multiplying the received 
sequence by the transpose of the parity-check matrix) will be an all zero vector: 

( 3 )  T s = rH = (v+e)HT =vHT=O 

If Cn,k represents the codebook (Le. contains all codewords v) for a linear ( n , k )  block code, then 
based on Equation 3 we can state the following: 

where Z is the all zero matrix. Therefore, given a set of codewords produced using a linear block 
code, it is feasible to determine the dual code, H and ultimately the corresponding generator, G, for 
the codebook. This is the rational used in constructing a framework for reverse engineering an EC 
encoded data stream. 
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To further simplify the process, all linear block codes can be written in systematic form. For 
systematic (n,  k )  codes, G and H are of the form 
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where P is a k by  (n  - k )  matrix and I represents the k by k (or ( n  - k )  by (n  - k)) identity matrix 
[15,4]. Assuming a systematic code reduces the number of unknowns in the H matrix by (n  - k ) 2 .  
The systematic form also simplifies conversion from H back to G. 

In our initial investigation of computational approaches for solving Equation 4 we found that de- 
veloping an integer program for discovering exact solutions was computationally infeasible. There- 
fore as a proof of concept to the feasibility of reverse engineering error control codes and the pos- 
sibility of developing a quantitative model for understanding and engineering genetic regulation we 
consider evolutionary computing approaches that yield near optimal solutions, specifically genetic 
algorithms (GA). 

2.2 Genetic Algorithms for Reverse Engineering EC Codes [7] 

Genetic algorithms are numerical optimization techniques based on a generalized view of the theory 
of evolution, natural selection, and genetics. Invented in the 1960s by John Holland, GAS have been 
effectively applied to a wide range of optimization problems of varying size and complexity. Appli- 
cation areas include image processing, three dimensional protein structure predictions, time series 
analysis, and many other fields. Genetic algorithms perform especially well in problems where 
the solution space is filled with numerous local optima. The optimal EC code for the translation 
initiation system resides in such a solution space. 

2.2.1 Overview of Genetic Algorithms 

An optimization algorithm searches a possibly infinite list of viable solutions, the search space, 
for the solution(s) that best solves the posed question (i.e. the global optimum). The fitness of a 
solution is a measure of how successfully the candidate solution solves the problem. To preserve 
the concept of a search space for multi-dimensional problems, it must be possible to evaluate the 
fitness of individual solutions and define a measure of the distance between solutions. 

Traditional algorithms for locating the optimal solution in a given search space include enu- 
merative searches and direct searches. Enumerative searches estimate the value of the unknown 
parameter(s) by solving the given problem for a large set of possible solutions. They select the best 
solution based on minimization of a cost or objective function. Enumerative searches are suitable 
for problems with a small number of parameters and a rapid algorithm for calculating the objec- 
tive function. For problems with large search spaces or with computationally intensive objective 
functions, enumerative searches are not efficient. 

Direct searches begin with two possible solutions and based on the value of the objective func- 
tion at those solution points the next point is selected at a distance 6 from the current point. The 
incremental step size, 6, used to compute the next solution point can be dynamically adjusted. The 
drawbacks of direct search algorithms include: the algorithm can not be universally applied and the 
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final solution is dependent on the initial starting point. Direct search algorithms can become trapped 
in a local optima and fail to locate the optimal solution. In addition, there is a lower confidence as- 
sociated with the final answer since it is dependent on the algorithm’s starting point. Therefore, in 
complex search spaces with multiple local optima, the direct search algorithm is impractical. 

Although simulated annealing algorithms and random searches have been used to find optimal 
solutions in complex search spaces, random searches guided by concepts that parallel evolution and 
genetics, have been the most effective of these types of algorithms. Genetic algorithms fall into the 
random search category. 

2.2.2 Components of a Genetic Algorithm 

There are four elements which constitute a typical genetic algorithm: 

0 A population of possible solutions from the problem’s solution space. Each possible solution 
is called an individual. For the linear block code, we define an individual as follows: 

s t r u c t  i n d i v i d u a l  { 

/ *Def ine  c o n t e n t s  o f  a member of  t h e  p o p u l a t i o n ;  
s t o r e s  i m p o r t a n t  i n f o  f o r  e a c h  i n d i v i d u a l * /  

i n t  b i n v e c  [ (N-K)  *K] ; 
d o u b l e  decTag; / / d e c i m a l  d i g i t  r e p  t h e  i n d i v i d u a l  f o r  t r a c k i n g  
i n t  gen [ K ]  [ N ]  ; 
i n t  h [N-K]  [ N ]  ; 
i n t  h t r a n s  [ N ]  [N-K]  ; 

i n t  p [ K ]  [N-K]  ; 
i n t  p t r a n s  [N-K]  [ K ]  ; 
i n t  nzS; / /numb z e r o s  i n  syndrome m a t r i x  
i n t  nzP; //numb z e r o s  i n  p a r i t y  m a t r i x  
d o u b l e  f i t n e s s ;  / / f i t n e s s  o f  i n d i v i d u a l  
d o u b l e  s f i t n e s s ;  / / s c a l e d  f i t n e s s  o f  i n d i v i d u a l  
i n t  t s r ;  / / t a r g e t  s ampl ing  r a t e  

/ / b i n a r y  r e p  o f  i n d i v i d u a l  ( code )  

/ / g e n e r a t o r  m a t r i x  
/ / p a r i t y  check m a t r i x  - d u a l  code o f  G 

//H t r a n s p o s e  
/ / p a r i t y  m a t r i x  

//P t r a n s p o s e  

1 ;  

The syndrome matrix is omitted from the individual structure to reduce the memory require- 
ments of the GA. 

0 A method for evaluating thefitness of the individual. Fitness is a measure of how well the 
proposed solution or individual solves the problem being investigated. We use Equation 8 
to evaluate the fitness of an individual. Exploration of the (7, 4) Hamming code’s fitness 
landscape, discussed in Section 2.3, provided insight into selecting coefficients for the fitness 
function. 
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0 An approach for combining the better, or more fit, individuals to form new solution popula- 
tions with higher average fitness values. 

0 A mutation method for preserving diversity within the population of individuals. 

Genetic algorithms are initialized with a population of usually random possible solutions from 
the solution search space. The typical size of the initial population ranges anywhere from twenty 
to one thousand individuals; this number can be smaller or greater depending on the problem. We 
set the population size to 100, choosing to increase compute cycles and minimize memory require- 
ments. Using three main genetic operators, selection, crossover, and mutation, the initial population 
“evolves” over a set number of iterations or generations towards convergence to the global optima. 
The maximum number of generations is set based on the code parameters to ensure only a small 
fraction of the solution space is evaluated. 

Typically, each individual solution is represented as a binary vector called a chromosome. The 
genetic operators, operate on the chromosome. The binary chromosome is converted to the appro- 
priate representation for the given application and the individual solution is evaluated and assigned 
a fitness value. Increasing numbers of GAS are using real-valued encodings instead of binary repre- 
sentations for chromosomes. In this work, binary vectors are used to represent P ,  the parity matrix 
of individuals in the population. 

The following outlines the basic steps for a typical GA: 

1.  Initialize - Set all probability parameters (including crossover and mutation probability thresh- 
olds). 

2. Generation=l 

3. Create Initial Population - Construct a random population of binary strings (chromosomes). 

4. Find Unknowns - Convert the binary chromosomes into the application specific parameters 
(integers, real numbers, etc.). 

5. Assign Fitness - Calculate the fitness of each individual in the population based on some 
optimization criterion. 

6. For Generation = 2 to MAX-NUMBER-OF-GENERATIONS 

0 Loop over current population and select pairs of mates 

e For New-Individual = 1 to POPULATION_SIZE/2 
o Select Parent One 

o Select Parent Two 
o Perform Crossover - Produce children (two at a time) by crossing the binary chro- 

mosomes of selected parents. 
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o Put new individuals into a temporary population 
0 NEXT New-Individual 

0 Mutate - Mutate each individual in the temporary population. 
0 Replace - Replace the old (current) population with the new population (contained in 

0 Find Unknowns - Convert the binary chromosomes (in current population) into the ap- 

0 Assign Fitness - Calculate the fitness of each individual in the current population based 

0 NEXT Generation 

temporary population). 

plication specific parameters (integers, real numbers, etc.). 

on some optimization criterion. 
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7. ENDGA 

2.2.3 Genetic Operators 

There are three main genetic operators used in GAS: selection, crossover, and mutation. Each 
operator helps move the population towards the optimal solution. 

Selection 
The selection operator applies pressure to the population similar to natural selection in biological 
systems. During selection, individuals with high fitness values are selected over low fitness indi- 
viduals to create the new breeding population. Hence, individuals with high fitness values (good 
solutions) have a greater than average chance of passing on their information to the next generation. 
Some of the selection methods used by GAS include: 

0 Select the top fifty percent of individuals (based on fitness values) for reproduction and dis- 
card the rest. This selection technique does not distinguish good individuals from very good 
individuals. Another drawback is that low fitness individuals are completely annihilated. This 
reduces the overall genetic diversity of the population. 

0 Fitness-proportional selection, also referred to as roulette wheel selection, distinguishes be- 
tween good and very good solutions. In fitness-proportional selection, an individual’s proba- 
bility of selection is proportional to the fitness of the individual. Similar to a roulette wheel, 
the higher the fitness value of an individual, the larger the arc associated with the individual 
on a theoretical roulette wheel. The circumference, CIRC, of the wheel is the sum of all fit- 
ness values. The spinning of the wheel is simulated by assigning a ball, B, a random number 
between zero and CIRC. The selection rule is: 

k 
Sumk = fi 

i=O 

IF Sumk > B AND Sumk-1 < B THEN select individual k 
In the summation equation, f i  represents the fitness value for the ith individual. 
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0 Target sampling rates or tsr values can be used to select parents from the current population 
[5].  Each individual is assigned a fitness-associated target sampling rate. An individual’s 
tsr value indicates the number of times they can be selected for mating. For example, an 
individual with tsr = 3 can be selected as a parent three times while a less fit individual with 
tsr = 1 can only be a parent once. Target sampling rates are assigned as follows: 

fi tsr(i) = - 
favg 

(7) 

where favg is the average fitness for the population. Once all tsr values have been assigned, 
selection proceeds as follows: 

1. Select a number, I ,  between 1 and POPULATION-SIZE. 

2. If tsr(Z) > 0 Then 

- Select individual I 
- Update tsr: tsr(Z) = tsr(I)  - 1 

Even though the selection of an individual is not fitness-proportional, the ability to reproduce 
is increased or decreased by an individuals fitness. In current work we use target sampling 
rates to produce the next generation of solutions. 

During each selection iteration, the selection algorithm is applied twice to select a pair of parents to 
mate using the crossover operator. 

Crossover 
The crossover operator is a recombination technique that allows individuals in the current population 
to exchange “genetic” information, similar to the exchange of genetic information by biological 
organisms during sexual reproduction. In a GA, crossover occurs with probability Pc. Typical 
values for PC range from 0.4 to 0.9; we use a crossover rate of 0.7 in this work. There are several 
crossover methods. The main techniques are described below. 

0 Single Point Crossover: In single point crossover, the pair of individuals or parents, P1 and 
P2, selected using the selection operator are crossed at a single position in their binary chro- 
mosomes. Single point crossover proceeds as follows: 

1. Generate a random number, pc ,  between 0 and 1. 

2. If pc 5 PC then proceed with crossover (goto next step); else set 

child1 = P1 

child2 = P2 

3.  Randomly select a position, POS, in the chromosome; POS will be between 1 and 
LENGTH-CHROMOSOME - 1. 

15 



4. Swap the information to the right of POS to produce child1 and child2. 

For example, assume the following parents, P1 and P2, are selected: 

P 1 = 1 1 0 0 1 0  

P 2 = 0  1 0  1 0  1 

If the crossover point is randomly selected as, 

POS = 2 

Then child1 is composed of the first two bits of P1 and the last four bits of P2 while child2 
contains the first two bits of P2 and the last four bits of P1: 

child1 = 1 1 0 1 0 1 

child2=O 1 0 0 1 0 

In single point crossover, if the parents are identical in the region to the right of the crossover 
position, the children will be identical to the parents. 

0 Multipoint Crossover: Multipoint crossover is similar to single point crossover except multi- 
point crossover allows the selection of multiple crossover points. Given a GA that employs 
two point crossover, using the same parents from the previous example, if crossover point 
POSl = 1 and the second crossover point POS2 = 4 the resulting children would be: 

child1 = 1 1 0 1 1 0 

child2=O 1 0 0 0 1 

0 Uniform Crossover: Taking multipoint crossover to its limit, uniform crossover forces bits to 
be exchanged at every point or locus. This can be disruptive and negatively affect the GA. 
But parameterized crossover, a form of uniform crossover, applies a probability to each locus 
to determine whether crossover will occur at that locus[7, 51 The probability of crossover 
occurring at a locus can range from 0.5 to 0.8. Note, this is not Pc. 

As an example, given the above parents, assume the probability of crossover at each locus is 
represented by the following vector of probabilities: 

P~,,,, = 0.51 0.7 0.22 0.02 0.31 0.1 

A crossover mask, the method used by Barnes in [ 5 ] ,  can be generated by putting a 0 where 
the probability is less than the threshold and a 1 where the probability is greater than or equal 
to the threshold. A 0 indicates a non-crossover locus and a 1 indicates a crossover locus. For 
a locus crossover threshold of 0.50, the above P~,,,, vector results in the following crossover 
mask: 

CrossoverMusk = 1 1 0 0 0 0 
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This particular crossover mask produces the following children given the parents from the 
single-point crossover example: 

child1 = 0 1 0 0 1 0 

child2 = 1 1 0 1 0 1 

The crossover operator enables exploration of new regions of the search space. 

Mutation 
In addition to crossover, mutation helps the GA further explore the search space and possibly frees 
the GA from local optima solutions. Mutation randomly flips the binary digits in an individuals 
binary chromosome. Mutation is used sparingly. The probability of mutation (for each binary digit) 
is determined by PM which is generally of the order 0.001. The probability of mutation is application 
dependent. Possible values include: 

1 
PM M 

Lchromosorne 
or 

1 
PM % 

N d G G z z  
where Lchromosome is the length of the binary chromosome vector. A mutation rate of 0.005 is used 
in the current GA implementation, which is less than 1. Given PM, the mutation rule is: 

Lchromosom 

0 Mutation Rule: For each bit in every individual chromosome, randomly select a number, p ,  
between zero and one. If p < PM then flip the binary bit (i.e. if current bit is a zero, change it 
to a one and vice versa); else leave the current binary bit value. 

Mutation is the last genetic operator applied to the temporary population prior to fitness assignment. 
After fitness evaluation, the genetic algorithm can use elitism to increase the fitness of the current 
population. 
Elitism 
During the run of a genetic algorithm there is a chance that the most fit individual from the previous 
generation may not be selected for reproduction. It is also possible that all the individuals in the 
current generation are less fit than the most fit individual (the elite member) from the previous 
generation. To guarantee that the elite member of the current generation is as fit or more fit than the 
elite member of the previous generation, a genetic algorithm can employ elitism. Elitism is carried 
out as follows: 

1. 

2. 

3. 

4. 

If the current generation’s elite member is less fit than the previous generation’s elite member, 
proceed to step 2. 

Randomly select a number, I ,  between 1 and POPULATIONSIZE. 

Replace individual I with the elite individual from the previous generation. 

The elite individual from the previous generation is now the current generation’s elite member. 

17 



2.2.4 Application to (7,4) and (16, l l )  Hamming Codes 

Codebook 
(7,4) Hamming (T=O) 
(7,4) Hamming (T=l) 
(7,4) Hamming (T=2) 

The genetic algorithm was applied to the (7, 4) and (16, 11) Hamming code data set. Table 1 
shows the results for execution on a lGHz PowerPC G4. In Table 1, run time is reported in (h)ours, 

Run Time # Gen/Max Generation Max Fitness 
<Is  9/10 1 .oo 
1s 10/10 0.8125 

<I s  10/10 0.6875 

Table 1. Result of the GA framework for EC code reconstruction. 

(7,4) Hamming (T=3) 
(7,4) Hamming (T=4) 

(16, 11) Hamming (T=l) 
(16 , l l )  Hamming (T=O) 

<Is  10/10 0.7083 
<Is  10/10 0.7500 

52m 45s 3874/5000 1 .oo 
lh 7m 15s 5000/5000 0.6807 

(16, 11) Hamming (T=2) 
(16, 11) Hamming (T=3) 
(16 , l l )  Hamming (T=4) 
(16 , l l )  Hamming (T=5) 

lh 7m 34s 5000/5000 0.5539 
lh 9m 27s 5000/5000 0.5333 
lh 8m 35s 5000/5000 0.5342 
lh 8m 37s 5000/5000 0.5394 

(m)inutes, (s)econds and the generations column reports the generation where the final optimal 
solution, Max Fitness, occurred out of the maximum possible generations. As T (number of errors 
in codewords) increased, suboptimal generators were found. For codebook sets with T > 0 errors, 
the GA iterated for the maximum number of generations and the fitness value for the best solution 
initially decreases with increasing T then increases (after T = 2 for the (7,4) code and after T = 3 
for the (16, 11) code) with increasing T .  A logical explanation for this behavior is that Hamming 
codes have a minimum Hamming distance, dMlN, value of 3, and errors greater than the code’s dMIN 

value move the codebook out of the current coding sphere into a new coding sphere. The data set is 
so noisy it has become or is closer to a different EC code, hence the increase in maximum fitness. 
Studies of the fitness landscape of the (7, 4) Hamming code with T > 0 errors are necessary to 
further understand this phenomenon and validate or refute the explanatory hypothesis. 

2.3 Fitness Landscape of a Linear Block Code 

Critical to the development of an effective optimization-based framework for EC code reconstruc- 
tion is the understanding of the fitness landscape of the potential solution space. Exploration of the 
fitness landscape provides insight into parameters for the fitness function as well as methods for 
traversing the solution space in an efficient manner. 

Using the (7, 4) Hamming code, we explore all 2(N-K)*K = 4,095 possible linear codes in 
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systematic form. All possible solutions for P (including P = Z,  the all zero solution) are interrogated 
and the fitness returned. The fitness scores H using a cost function of the form: 

# Zeros in S # Nonzeros in P 
# Elements in S f R p #  Elements in P 

Fitness(H1P) = Rs 

where S represents the syndrome matrix (each row in S corresponds to the syndrome of a codeword 
in Cn,r) and RS + Rp = 1 .O. Eleven fitness landscapes corresponding to 

Rs = 0.5,0.55,0.6,. . . ,l.O 
are explored. Figure 1 shows the coding landscape (decimal representation of P )  and corresponding 
fitness values for RS = 0.5,0.75,1.0, respectively. As we move from low to higher Rs values, 

- * * r o * u . l A * . n h l c m  
1 1 

‘ I  1 

1111 PYI lllP 

Figure 1. Fitness landscape for the (7, 4) Hamming code for Rs = 
0.5,0.75,1.0. 

the coding landscape divides into four discrete fitness regions for Rs = 1: 0.5, 0.667, 0.833, and 
1.0. Most of the coding solutions fall into the lower fitness categories and only one code, the 
actual solution, falls into highest fitness strata for the Rs = 1.0, Rp = 0.0 fitness landscape. For 
codebook data sets with T = 0 errors, the optimal values for the fitness coefficients in Equation 8 
are (Rs = 1.0,Rp = 0.0). For error containing variants of the (7,4) Hamming codes, this may not 
be the case. 
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We further analyzed the (Rs = 1.0, R p  = 0.0) fitness landscape of the (7, 4) Hamming code to 
determine how to efficiently traverse the coding space. Solutions are represented in binary vectors 
and individual bits are manipulated to generate offspring solutions for GA based optimization (as 
previously described). The relationship between an individual, Pi 

and the corresponding code’s generator, Gi is 

(9) 

The rows of G represent the K basis codewords from which all codewords in the codebook are 
generated. Changing the bits in Pi changes the basis and the code. Using the fitness landscape 
data, we evaluated the relationship between Hamming distance of codes and the change in fit- 
ness. Figures 2 and 3 show the 3D and 2D distribution of codes with x = d~~~~i~~(Ci,Cj),Vi # j 
and y = IdFitness(Cj, Cj)  1, Vi # j .  Our distance-based fitness analysis indicates that dHamming = 6 
changes are the most prevalent and result in the largest absolute fitness difference. We also note 
that the distribution is symmetric, which suggests that with regard to fitness small perturbations 
in the code are as effective as large perturbations. Additionally, the probability of a random sin- 
gle bit perturbation resulting in a large fitness gain or loss is small. To gain additional insight 
into the relationship between the number of changes made to a candidate solution and the change 
in fitness, we analyzed the normalized fitness distribution for each Hamming distance category as 
shown in Figure 4. In Figure 4 the horizontal axis is change in fitness value and the vertical axis is 
Prob(x = AFitnessldHamming). Contrary to our original conclusion, Figure 4 indicates that Hamming 
distance changes of six or greater are the most probable to impact fitness. Perturbations of three bits 
or greater have comparable impact on fitness. 

We repeated this analysis with respect to the optimum solution, the generator for the (7, 4) 
Hamming code (see Figures 5 ,  6, and 7). With respect to the optimal solution, Figures 5 and 6 
suggest that the codes with d ~ ~ ~ ~ j ~ ~  = 3 .  . .6 result in the largest fitness gain or loss. Figure 7 further 
indicates that the majority of two and three bit perturbations of the optimal solution result in the 
median fitness change of 0.333 and more than approximately 80% of perturbations of dHamming 2 5 
result in the maximum fitness loss of 0.5. This is consistent with the distance properties of the (7, 
4) Hamming code, which has a minimum distance value of 3. Hence it is plausible that changes 
greater than dHamming = 3 result in a significantly different code. Results of the distance-based 
fitness studies are used to determine neighborhood boundaries for implementing the genetic local 
search algorithm. 
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Figure 2. 3D fitness distribution for the (7.4) Hamming code 



... 

Figure 3. 2D fitness distribution for the (7,4) Hamming code 
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Figure 4. Normalized fitness distribution for the (7.4) Hamming code 



Figure 5. 3D fitness distribution with respect to the optimal solution for 
the (7,4) Hamming code. 
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Figure 6. 2D fitness distribution with respect to the optimal solution for 
the (7,4) Hamming code. 



Figure 7. Normalized fitness distribution with respect to the optimal 
solution for the (7.4) Hamming code. 

2.4 Genetic Local Search 

Reconstructing the EC code of a codebook is a combinatorial optimization problem and for emr-  
containing data sets, near optimal solutions may be required. Additionally, analysis of the fitness 
landscape of the (7.4) Hamming code revealed surprising regularities and the existence of several 
local optima in neighborhoods of varying Hamming distances. Given the combinatorial nature and 
fitness landscape of the code. reconstruction problem, incorporation of a local search algorithm is 
needed. Specifically we implement a genetic local search (GLS) which is derived from the genetic 
algorithm optimization method. 

The two main steps necessary for developing a local search algorithm are problem formulation 
and neighborhood definition [ 11. The problem formulation and fitness function definition developed 
for the GA optimization framework will be used for the GLS. Building on our initial GA, we define 
code neighborhoods based on data from the fitness landscape studies previously discussed. 

Defining an efficient neighborhood function is problem dependent and critical to the discovery 
of effective local optima. Honkala and Ostergird discuss various neighborhood structures for de- 
signing EC codes [l]. Based on a neighborhood structure proposed for finding constant weight EC 
codes, we define the neighborhood of a solutions as: 
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Code Neighborhood= All solutions produced by replacing N - K bits of any one of K 
basis codewords, C, in the current solution with another codeword, C' such that 

where DMIN is a predetermined Hamming distance. 

The K basis codewords are the K rows of the generator matrix, G. We limit changes to the last 
N - K bits of the codewords to preserve the systematic form of the code. The number of individuals 
in a neighborhood depends on DMIN as follows: 
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- (N-K)!  
- K D ~ ~ ~ !  (N-K-&IN)! 

A recursive algorithm was developed to generate all ( 
for generating neighbors. 

) Hamming distance combinations 

The genetic local search algorithm is implemented as follows [l]: 

1. Initialize - Construct the initial population of POPULATION-SIZE solutions. 

2. Improve - Use local search to replace each solution with POPULATIONSIZE local optima. 

3 .  Recombine - Use crossover and mutation procedures to produce next generation of solutions. 

4. Improve - Use local search to replace each solution in the next generation with local optima 
as applicable. Apply elitism to ensure most fit solution propagates. 

5. Evolute - Repeat Steps 3 to 4 until stop criteria reached. 

The genetic local search algorithm was implemented and applied to the (7,4) and (16 , l l )  Ham- 
ming code data set. Table 2 compares the GA and GLS runs on a lGHz PowerPC G4. The GLS 
implementation although computationally expensive for larger codes, finds the optimal solution in 
fewer generations than the GA alone. GLS implementation for the (7,4) Hamming code shows the 
potential impact of the local search even when the neighborhood is small. Parallel implementation 
of the GLS would reduce the computational expense associated with the local search implementa- 
tion. A parallel execution approach should distribute the local search improvement process among 
available processor nodes. Efficient methods for minimizing communication cost will be crucial. 
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Table 2. Comparison of the GLS algorithm to GA framework for EC 
code reconstruction. 

Codebook (DMIN) 

(7,4) Hamming (DMIN = 2,Nhsize = 12) 
(16, 11) Hamming (OMIN = 3,Nh,ize = 110) 
(16, 11) Hamming (DWN = 4,Nh,;,, = 55) 

GLS GA 
(RunTime, #Generations) (RunTime, #Generations) 

<Is, 2 <Is, 9 
13h 2m 23s, 438 
14h 56m Os, 526 

52m 45s, 3874 
52m 45s, 3874 

3 Parameter Estimation 

3.1 Estimating (n, k) 

Possibilities for n, k are large, hence devising a technique to link properties of the encoded message 
to characteristics of plausible coding models is vital. We previously developed a modified Shannon 
entropy method (Equation 11) to determine k,  the number of information bits given a (n, k )  block 
code where only n is known [ 181. 

Unlike the case for estimating k, there are no preset bounds on n. The modified Shannon entropy was 
applied to various EC encoded data sets to determine whether a variation of the Shannon entropy 
similar to Equation 1 1 could yield localized or regional asymptotes, indicative of plausible estimates 
for n. 

To determine if and how codeword length affects the entropic profile of the codebook, we ap- 
plied the modified Shannon entropy to Codebookl, a data set composed of two concatenated (7, 4) 
Hamming codebooks: 

The concatenated codebook has a length of n = 14. The modified entropy method asymptotically 
approaches the correct k = 4 value for Codebookl . 

The next data set, Codebook2 is composed of the (7,4) Hamming codebook followed by a noisy 
version of the codebook: 
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After testing various instances of the data set, we found that wk exceeds the k = 4 asymptote when 
T > 0 errors. The modified entropy equation is bounded by logM where M is the number of code- 
words in the codebook (equivalent to the number of rows in the data set). This result also implies 
that if the codebook is incomplete, containing less than 2k codewords for binary codes, the correct 
value for wk will not be found. Results for incomplete codebooks lack obvious asymptotic behavior. 

To test if we can select multiple values of k in a nested coding sequence, the final data set is 
composed of a concatenation of the (7,4) Hamming codebook repeated 128 times and the (16,ll) 
Hamming codebook. 

Codebooks = 

We expected the modified entropy profile for Codebook3 to exhibit multi-asymptot behavior cor- 
responding to k = 4 and k = 11 and potentially indicative of plausible n values. We observed a 
single asymptote corresponding to k = 11. The entropic profile of the (16, 1 1) code overrides that of 
the (7,4) code. Based on these results, exploration of two-dimensional modified Shannon entropy 
measures that incorporate the number of codewords in the data set is a plausible next step. 

3.2 Capacity of the Genetic Channel 

The capacity of the communication channel is a key system characteristic that governs the type of 
EC code used in transmission. The genetic communication system presented by May et al., [19] 
parallels the replication process to an error introducing transmission channel. We revisit the genetic 
channel capacity question and take into account genome size and the cumulative nature of mutation 
errors. 

3.2.1 Capacity and Replication, Revisited 

In previous work, we calculated the channel capacity for various eukaryotic and prokaryotic organ- 
isms using the organisms’ base mutation rates, ,&, as reported by Drake et al. [lo, 181. Assuming a 
discrete memoryless channel (DMC), the capacity of the channel, C, is the maximum reduction in 
uncertainty of the input X given knowledge of Y [8]: 

c =sup Z(X, Y )  (12) 
X 

where 
Z(X, Y )  = H ( X )  - H(X1Y)  = H ( Y )  - H ( Y  IX)  
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The Shannon entropy H ( X )  and H(Y  I X )  are defined as: 

The probability p(yj1xk) is the channel error probability. If p(y1x) is specified by the mutation error 
rate ,Ub then p ( y j  Ixk) = ,&, 'dy # x and p ( y j  IXk) = 1 - ,Ub, 'dy = x (where is the mutation rate per 
base per replication cycle). The capacity results for a single base seemed to suggest a near optimal 
transmission channel and very little reduction in the two bit capacity of the replication channel. 
This is misleading. Genome replication is not accomplished through a single use of the replication 
channel. The replication of a genome of size G will require G uses of the replication channel. We 
can model genome replication as a metachannel with error probability Pbc,  the probability of one or 
more errors in G uses of the channel. If X ,  represents the transmitted bases at channel use i and 
represents the corresponding received bases, where i = 1 . . . G  and G = Gsize, the error probability 
for the metachannel is derived from ,Ub as follows. 

Assuming Phi = Pb for all i, we can simplify Equation 16 as follows. 

Figures 8,9, and 1 0  show the capacity of the meta-replication channel as a function of the log of 
the organism's genome size for DNA microbes and higher eukaryotes, respectively, using values 
from Drake et al. [ 101 and channel error matrices where the probability of a transition mutation is 
greater than the probability of a transversion mutation, which is consistent with biological evidence 
[ 181. Prokaryotic organisms have larger channel capacity values than the higher eukaryotes. This 
suggests that for DNA microbes the coding rate R is closer to 5, leaving few bases for EC coding 
as hypothesized in previous work. In contrast, the channel capacity values for higher eukaryotes 
implies a distinctly smaller value for R. This implies that the eukaryotic genome has more bases 
available for EC coding. 

3.2.2 Replication Capacity and Cellular Aging 

Cell division and mitosis are critical to the growth and survival of multicellular organisms. Dur- 
ing mitosis a single cell produces two daughter cells that are identical copies of the parent cell. 
Vital to the successful production of daughter cells is error-free replication of the DNA contained 
in the chromosomes of the cell. Although biological replication is highly accurate with minimal - 
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Figure 8. Capacity of prokaryotic replication channels. 

Replication Channel Capacity of Higher Eukaryotes 

b 1 

Figure 9. Capacity of eukaryotic replication channels. 
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Figure 10. Capacity of eukaryotic replication channels for the effective 
genome. 
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error or mutation, errors introduced during the replication process in mitosis propagate to daughter 
cells. As daughter cells become parent cell and replicate, additional mutations can occur during the 
generation of grand-daughter cells thereby reducing the fidelity of the original transmitted DNA. 
To limit the propagation of error-containing DNA, the number of times a chromosome is copied is 
bounded. Telomeres, the ends of chromosomes, are shortened during each cycle of cell division. 
Once a cell's chromosomes are shortened to a critical length, that cell can no longer produce daugh- 
ter cells nor propagate any accumulated mutations. The enzyme telomerase prevents the shortening 
of telomeres. In normal, adult somatic cells, telomerase is turned off but in some cancerous cells, 
the telomerase gene is reactivated. We can view aging and related mutation engendered diseases 
as inevitable communication failures. Extending the meta-replication channel concept, it is evident 
that for a fixed pb, as G increases, the channel error probability also increases. The result is a re- 
duction in channel capacity. Equation 18 is a simple representation of the probability of error for an 
organisms replication channel after NCD cell divisions. 

l(bG = 1 -(l-/&)G*NcD (18) 

Figure 11 illustrates the reduction in capacity for NCD = 1. .  .75 cellular generations. A compre- 

Figure 11. Capacity of eukaryotic replication channel after M cell divi- 
sions. 

hensive analysis of the replication channel capacity as multiple intput/multiple output relay channel 
would prove beneficial in forming a communication theoretic understanding of the central dogma 
of genetics and cell division as related to the emergence of disease. Additionally, correlations be- 
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tween an organism’s capacity for effectively transmitting its genetic information and quantitative 
measures of virulence (such as minimum infective dose (MID), lethal dose, and morbidity/mortality 
rates) must be developed. We conducted a preliminary search for mutation databases with sufficient 
data for constructing replication channel models. Generally, mutation databases can be classified 
into two types, mutagen induced and loci specific. For a specific gene, mutagen induced databases 
report the spectrum of changes in the DNA base sequence caused by a particular mutagen under 
defined conditions. Loci specific databases generally contain known mutations in a gene that result 
in disease. Further search of mutagen induced databases, such as the Yale Mutation database, may 
yield the sequence information needed to quantify biological channel characteristics. 

3.3 Code detection in RNA sequences 

Cryptology, error correcting codes, and data compression are applied to data streams before trans- 
mission. Data compression is applied first to minimize the amount of data. Cryptographic algo- 
rithms are applied next to secure the data, and error correcting codes are applied last to insure that 
the data sent is not corrupted with errors during transmission. Given a data stream, such as DNA, 
the goal here is to determine which, if any, of the techniques is used to encode the data. 

The first step in striping off encoding techniques is to determine if error correcting codes were 
used and if they were, what was the size of the code. Although this seems similar to cryptanalysis 
on the surface, it is in fact very different. Most cryptanalysis starts with an assumption about what 
technique was used to encrypt the data. Cryptanalysis tries to find the secret key used in the system. 
In this case there is no secret key, only an unknown coding technique. As in cryptanalysis, some 
information about the underlying data must be known if there is any hope of finding the unknown 
element. The most fundamental piece of information is knowledge of the underlying data type or 
language. Is it random or is there some inherent redundancy in the language. With DNA/RNA data 
streams this is a fairly easy piece. There are only 20 amino acids and 64 codons. The character set 
used in the data stream is the set of 64 codons but the character set of the information transmitted 
is the set of 20 amino acids. The redundancy stemming from the multiple codons to the smaller 
number of amino acids is obvious. Less obvious is the redundancy in other parts of the DNA stream 
in relation to the main information section. 

Error correcting codes ensure the correctness of the data by adding redundancy to data streams. 
The amount of redundancy is an indicator of the size of the error correcting code used. One method 
for detecting error correcting codes is to determine the underlying redundancy. This can be used as 
an indicator to the size of the code. 

One of the best ways to check for redundancy is with data compression. Applying various 
compression schemes to the data will give redundancy measures which can then be used to estimate 
parameters of the error correcting code. Once an estimate for the size of the code is obtained we 
can use this to assist our search for actual codes used. 
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File No. 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

File Names 
haml6-11ns.dat 
ham74ns.dat 
CDS.dat 
noncds.dat 
argc.dat 
arog.dat 
asna.dat 
ilve.dat 

File size 
32768 
112 
31860 
62000 
1104 
1152 
1092 
1029 

The following table describes the compression results, using arithmetic codes, for the data files 
listed above. The first data column gives the compression ratio using no straight arithmetic codes 
with no initialization. The following columns give the compression ratios using arithmetic codes 
initialized with tables generated from the various files. Each entry in a row is also labeled with 
a number indicating its position in the ordering of the compression ratios, with (1) given to the 
smallest and (4) given to the largest. Following this ordering is either or J,. This indicates whether 
the compression ratio was better than (I indicating less than) or worse than (T indicating greater 
than) the compression using no table. 

File No. 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 

No table 
0.1384 
0.5268 
0.2732 
0.2919 
0.3614 
0.3594 
0.3636 
0.3673 

0.1358 (1) J, 
0.2232 (1) J, 
0.2734 (4) T 
0.2910 (4) J, 
0.3524 (4) J, 
0.3516 (4) J, 
0.3599 (4) J, 1 0.3547 (4) J, 

F3 
0.1416 (3) T 
0.2946 (2) J, 
0.2703 (2) J, 
0.2901 (3) J, 
0.2772 (1) J, 
0.2795 (1) J, 
0.2793 (1) J, 
0.2770 (1) J, 

F4 
0.1422 (4) 1 
0.3304 (4) 1 
0.2707 (3) I 
0.2899 (2) I 
0.2854 (3) I 
0.2856 (3) I 
0.2866 (3) J, 
0.2867 (3) I 

F6 
0.1411 (2) T 
0.3125 (3) J, 
0.2702 (1) J, 
0.2898 (1) J, 
0.2826 (2) J, 
0.2830 (2) J, 
0.2848 (2) J, 
0.2847 (2) J, 

The files F 1  and F 2  were formed off a straight error compression data code, while files F 3  - F8 
were from various parts of RNA sequences. 

The best compression ratio for F3  occured when the table from F6  was used. Likewise, the best 
ratio for F 6  occured when the table from F 3  was used. This indicates that the underlying language 
was closest between these two files. The best compression ratio for F5  - F8 occured when the table 
from F3  was used. This probably occured because the underlying language was similar and it was a 
good deal larger that the other files and therefore a better estimate for the statistics on the language 
could be formed in the table. Meanwhile, the compression ratios using F 1 were the lowest of all the 
tables examined for compressing 

These results showed that the underlying language of the straight hamming weight codes (F 1 
and F2) did not compare favorably to the underlying language of the RNA sequences. All of the 
RNA sequence files compressed well (> .5) and except for the CDS file compressed using the 
haml6-llns file, the compression ratios improved using any of the other compression tables. This 
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high level of redundancy and the relationships between the files could be an indicator of hidden 
error correction codes 

4 Conclusion 

This work has laid the foundations for future work on methods for reverse engineering EC codes 
and research in coding theoretic analysis of genetic systems. We devised a genetic algorithm based 
computational framework for EC code reconstruction. Incorporation of a genetic local search al- 
gorithm significantly reduced the number of generations required to locate the global optima for 
sample (7, 4) and (16, 11) codebooks. Additional tests using noisy versions of the codebooks are 
needed to determine the robustness of our current framework. Analysis of the fitness landscape 
of the (7, 4) Hamming code provided insight for neighborhood construction as well as insight for 
further improvements of the current GA, such as possible mutation rates and crossover probabilities. 

The current framework assumes that the EC coding parameters n and k are given. In this work 
we investigated methods to determine n and evaluated the robustness of the modified entropy algo- 
rithm for inferring k ,  developed in earlier work. A computationally feasible approach to determine n 
remains an ongoing but achievable challenge. Studies of the capacity of the replication channel us- 
ing the relay channel model correlates an organism’s genome size and number of cellular divisions 
with changes in the replication channel capacity. Results refute our original hypothesis of a coding 
rate of R = 7 for eukaryotic organisms. Further investigation using genetic local search based 
computational framework and insights gained from information theoretic studies is encouraged. 
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