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Mercury Oxidation via Catalytic Barrier Filters 
 

ABSTRACT 
 

In 2004, the Department of Energy National Energy Technology Laboratory awarded the 
University of North Dakota a Phase II University Coal Research grant to explore the 
feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in 
coal combustion flue gas streams.  Oxidized mercury is substantially easier to remove 
than elemental mercury.  If successful, this technique has the potential to substantially 
reduce mercury control costs for those installations that already utilize baghouse barrier 
filters for particulate removal.  Completed in 2004, Phase I of this project successfully 
met its objectives of screening and assessing the possible feasibility of using catalyst 
coated barrier filters for the oxidation of vapor phase elemental mercury in coal 
combustion generated flue gas streams.  Completed in September 2007, Phase II of this 
project successfully met its three objectives.  First, an effective coating method for a 
catalytic barrier filter was found.  Second, the effects of a simulated flue gas on the 
catalysts in a bench-scale reactor were determined.  Finally, the performance of the best 
catalyst was assessed using real flue gas generated by a 19 kW research combustor firing 
each of three separate coal types. 
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Mercury Oxidation via Catalytic Barrier Filters 
 

EXECUTIVE SUMMARY 

The emission of mercury from pulverized coal combustion has drawn attention 
due to potential dangers for the ecosystem.  Coal-fired utility boilers account for about 
one-third of the total U.S. anthropogenic mercury emission (40 to 50 tons annually).[1]  
Although oxidized gaseous and particulate forms of mercury are deposited near their 
source, the lifetime of elemental mercury in the atmosphere is estimated to be up to two 
years.  Moreover, elemental mercury can transport over trans-continental distances.  
While equilibrium calculations predict that elemental mercury should be almost 
completely converted to oxidized forms of gas or solid phase mercury (Hg2+) upon 
cooling, measurements of flue gas from boilers burning a variety of coals typically show 
only 35% to 95% oxidation.[1] 

In order to further explore the feasibility of oxidizing elemental mercury in coal 
combustion flue gas, a project was initiated to study the oxidation of mercury using 
catalytic material impregnated onto fabric barrier filters.  Barrier filtration is a well-
known and accepted method for separating fly ash particles from a flue gas stream.  In 
fabric filtration, the fly ash-loaded gas flows through a number of microporous filter bags 
placed in parallel, removing the ash particles by the fabric.[2]  The excellent gas-catalyst 
contact that can be provided by barrier filters is expected to overcome the current gas-
diffusion limitations of competing technologies, i.e. packed beds and entrained injection.  
This should substantially reduce the amount of catalyst required to accomplish removal 
of elemental mercury.  Further, for existing and planned facilities utilizing barrier filters, 
this oxidation can be accomplished with virtually no additional capital expense. 

The objectives of this project were 1) to screen potential catalyst coating methods 
and determine their ability to maintain ample and uniform loading under back-pulse 
cleaning cycles similar to those experienced in a baghouse, 2) to test the impact of 
important flue gas constituents on the performance of catalyst coated filters in a bench-
scale reactor using a simulated flue gas stream, and 3) to test the performance of catalyst 
coated filters under actual combustion conditions in a baghouse that services a 19 kW 
downflow laboratory combustor.    

Phase I of this project screened three potential catalysts, Al2O3, TiO2, and 
Pd/Al2O3 and found that Pd/Al2O3 was the most attractive candidate with elemental 
mercury oxidation rates on the order of 90%.  TiO2 also shows possible potential with 
oxidation rates on the order of 70%.  By contrast, Al2O3 was found to be completely 
ineffective for elemental mercury oxidation under the experimental conditions utilized.  
The use of gold in oxidation processes has shown promise,[3, 4] so Phase II of this project 
included an investigation of the oxidation performance of Au/TiO2.  TiO2 and Pd/Al2O3 
were also further considered. 

In Phase II we studied different fabric filter catalyst coating techniques.  A test 
apparatus was constructed to automatically simulate back pulses of the filters.  Filter 
samples were back pulsed up to 1000 times to determine the long term integrity of the 
catalyst loading.  A simple spray coating process appears to be the most simple and 



 

effective technique.  A double dip coating method is also effective but involves a more 
complex process than spray coating.  Increases in pressure drop across a catalyst-coated 
filter were found to be insignificant when compared to a bare filter.  We also found that 
UV light can damage the types of fabric filters we used when TiO2 was applied to them.  
Therefore UV activated TiO2 is not a viable option for this technology. 

The oxidation performance of the catalyst-coated filters was tested using a 
simulated flue gas stream in a bench-scale reactor under conditions similar to those in a 
commercial coal-fired power plant baghouse.  The impact of important flue gas 
constituents on mercury oxidation was investigated parametrically using Cl2, HCl, SO2, 
and NO.  Mercury measurement was accomplished using a Horiba DM-6B continuous 
emissions monitor type atomic absorption spectrometry-based mercury analyzer.  The 
sample gas was pretreated using a wet conditioning system consistent with the Ontario-
Hydro method.  Au/TiO2 and Pd/Al2O3 performed well in the presence of Cl2.  Pd/Al2O3 
performed the best with the addition of Cl2 and SO2.  Pd/Al2O3 had the best overall 
performance and was selected for use in the small pilot-scale testing. 

The third objective of this project involved testing the performance of Pd/Al2O3 in 
a single-bag baghouse that services a 19 kW research combustor.  The bag in this 
baghouse is 76 cm (30 in.) long with a 15 cm (6 in.) diameter.  Three study coals were 
used: Illinois #6 bituminous, Eagle Butte subbituminous, and Falkirk lignite.  Tests were 
performed for 4 to 6 hours.  Very little elemental mercury could be measured in the 
Illinois #6 flue gas because of its high chlorine and sulfur content.  Eagle Butte and 
Falkirk flue gases were tested with Pd/Al2O3 and 90% mercury oxidation was achieved.  
Ontario-Hydro verification of the on-line Hg measurements was also successfully 
performed during these tests. 

A longer verification test was performed with the Eagle Butte.  After 36 hours, the 
high level of mercury oxidation previously witnessed was reduced to <20%.  This is 
expected to be the result of the catalyst mostly adsorbing mercury and reaching saturation 
over time, the catalyst being deactivated by some component, or the catalyst not properly 
adhering to the fabric filter and is being lost to the flue gas over time, possibly due to the 
pulse-jet cleaning cycles.  However, this single longer term test is insufficient to properly 
ascertain the performance of catalytically coated filter bags under realistic conditions and 
additional future tests are warranted to determine the ultimate feasibility of the 
technology. 
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1.  BACKGROUND 

Mercury as a Pollutant 
 
The Clean Air Act Amendments of 1990 (CAAA) address 189 hazardous air 

pollutants (HAPs) believed to be detrimental to human health and the environment and 

highlighted mercury and its compounds as one of the highest priority pollutants to 

investigate.  The CAAA required the U.S. Environmental Protection Agency (EPA) to 

conduct a mercury emissions study, including those from electric utility steam generating 

units.  In 1997, EPA released the Mercury Study Report to Congress which analyzed 

mercury emissions from power plants and investigated control technologies.  In 1998, 

EPA released the Utility Air Toxics Study which also showed mercury as a top priority 

pollutant due to its multi-pathway exposure potential and its ability to bio-accumulate and 

persist in the environment as methyl mercury.[5, 6] 

Mercury can exist in the environment in three forms: elemental mercury (Hg0), 

oxidized mercury (mercurous [Hg2
2+] or mercuric [Hg2+]), and particulate-bound mercury 

(HgP).[7]  Much of the mercury released into the atmosphere is in the form of elemental 

mercury.  Elemental mercury can persist in the atmosphere for up to two years[8] and 

travel thousands of miles, thus creating a global issue.  Most of the oxidized and 

particulate-bound mercury will deposit in nearby water and soils, thus creating a local or 

regional issue.  Bacteria can convert all forms of mercury to organic mercury, namely 

methyl mercury, most efficiently in the aquatic food chain.  Once methyl mercury enters 

water, it can bio-accumulate in fish and other aquatic animals.  Humans are primarily 

exposed to mercury through the consumption of fish and other aquatic animals that come 

from contaminated lakes and streams.[5] 
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Regulatory Status 

On March 15, 2005, EPA issued the final Clean Air Mercury Rule (CAMR), 

which builds on EPA’s Clean Air Interstate Rule (CAIR) to significantly reduce mercury 

emissions from coal-fired power plants.  When fully implemented, these rules will reduce 

utility emissions of mercury from 48 to 15 tons per year, a reduction of nearly 70 percent. 

The Clean Air Mercury Rule establishes “standards of performance” limiting 

mercury emissions from new and existing utilities and creates a market-based cap-and-

trade program that will reduce nationwide utility emissions of mercury in two distinct 

phases.  In the first phase, due by 2010, emissions will be reduced by taking advantage of 

“co-benefit” reductions – that is, mercury reductions achieved while reducing sulfur 

dioxide and nitrogen oxides under CAIR.  In the second phase, due in 2018, utilities will 

be subject to a second cap, which will reduce emissions to 15 tons per year upon full 

implementation.[9] 

EPA was asked to reconsider the CAMR by several states and organizations.  On 

May 31, 2006, EPA issued a final rule to reconsider its regulatory finding on utility 

emissions and on the CAMR.  EPA reaffirmed its regulatory decision and made small 

technical changes and clarifications to the CAMR. 

 As of June 2006, seven states (Connecticut, Maryland, Massachusetts, Minnesota, 

New Hampshire, New Jersey, and Virginia) have established more stringent emission 

limits.[10]  These limits require reductions ranging from 80 to 95 percent and will be 

implemented sooner than the federal limits set by the CAMR.  The state regulations also 

prohibit sources from trading mercury credits.  Ten more states (Delaware, Florida, 
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Georgia, Illinois, Michigan, Montana, New York, North Carolina, Pennsylvania, and 

Washington) are in the process of proposing similar standards. 

 

Mercury Control Technologies 

While there are a significant number of possible approaches to control mercury 

emissions, there is presently no single best technology that can be broadly applied.  

Therefore, a technology based standard would be very difficult to implement nation wide.  

Based on the current state of development, costs for mercury control are estimated to 

range from $11,000 to $150,000 per kg ($5000 to $70,000 per pound) of mercury 

removed which may add up to $0.005 per kWh to power cost.[11]  Remediation costs 

range from $2500 to $1.1 million per kg ($1100 to $500,000 per pound) of mercury 

isolated from the environment, generally making mercury control at the source a better 

option.[12]   

A variety of potential mercury oxidation catalysts have been investigated under 

experimental conditions ranging from short laboratory-scale tests using simulated flue 

gas to full-scale tests performed over several months.[13]  Gold has been used to catalyze 

mercury oxidation[3, 4] and has been shown to be very useful since it adsorbs mercury and 

chlorine, but does not adsorb other species such as nitric oxide, sulfur dioxide, and 

water.[3]  Gold has also demonstrated its ability to adsorb mercury and form an amalgam 

as a means of control in large-scale facilities.[14]  Palladium is a promising candidate that 

has been shown to oxidize >95 percent of elemental mercury in pilot-scale testing.[4]   
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Iron oxides, Fe2O3 and Fe3O4 in fly ash, have been shown to promote mercury 

oxidation.[15, 16]  While fly ash seems to promote mercury oxidation, studies have shown 

that only a small amount of the active surface area (1 to 3 percent) plays a role in the 

process.[17, 18]  Fe2O3 has also been used as an effective catalyst in small-scale systems.[19, 

20]  Two components of refractory, Al2O3 and TiO2, have been shown to oxidize a portion 

of elemental mercury.[21, 22]  Other metal catalysts shown to promote mercury oxidation 

include iridium[23], MnO2
[20], and CuO.[20]  Photochemical oxidation of mercury using 

ultraviolet irradiation, with particular promise in the presence of TiO2, is another 

emerging technology being investigated for use in coal-fired power plants.[24-27]  

 Selective catalytic reduction (SCR) technology, which achieves high levels of 

NOx emission reduction (>90%) for power plants, has been found to oxidize mercury at 

rates as high as 70 percent in lab-scale studies.[28]  The application of SCR technology 

also affects the speciation of mercury in coal combustion flue gases.  Mercury oxidation 

is generally low (<20%) for lignite and subbituminous coals and high (>70%) for 

bituminous coals.[29-31]  This most likely occurs because of the high chlorine content in 

most bituminous coals, which assists in catalytic oxidation, and low chlorine content in 

lignite and subbituminous coals. 

 Flue gas desulfurization (FGD) systems are primarily used to remove SO2 

emissions from boiler flue gases.  However, they can also be effective in removing 

mercury from boiler flue gas.  Wet FGD systems, those that use a scrubbing solution, are 

installed on about 25 percent of the coal-fired utility generating capacity.[32]  The 

efficiency of a FGD system to remove mercury depends on the form of mercury present 

in the incoming flue gas.  Oxidized mercury is much more water soluble than elemental 
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mercury which allows oxidized mercury to be scrubbed from the flue gas, whereas 

essentially zero elemental mercury is removed. 

The reduction of oxidized mercury back to its elemental form is a concern in wet 

FGD units.  The presence of aqueous S(IV) species (as sulfite and/or bisulfite) can reduce 

oxidized mercury to elemental mercury in a wet FGD system.[33]  One full-scale study 

focused on the use of additives at two locations to inhibit the reduction of oxidized 

mercury across wet FGD units.[32]  One location averaged 77 percent mercury removal 

efficiency over a four month duration, while the other location showed significant 

chemical reduction and a mercury removal efficiency of 50 percent. 

In a full-scale study where an SCR and FGD unit were present, greater than 90 

percent mercury removal was obtained at a plant firing a bituminous coal.[34]  Selective 

catalytic reduction and FGD units will play a major role in meeting mercury emission 

requirements for utility boilers that employ their use which warrants further study of their 

mercury capture capabilities. 

 

Mercury Reaction Chemistry 

 Significant advances in control technology will depend on an improved 

understanding of the chemical mechanisms of mercury oxidation and capture.  The 

United States Geological Survey’s (USGS) COALQUAL database indicates average 

mercury content in coal in the range of 0.08 to 0.22 ppmw, or 2.1 to 16 kg/1015 J (4.8 to 

36.4 lb of Hg/1012 Btu) on an energy basis.[35]  In the high temperature region of the 
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combustion zone, all mercury is expected to vaporize into the elemental form (Hg0) 

regardless of its original form in the coal.[36] 

The coal combustion flue gas will typically contain vapor concentrations of 

mercury in the range of 1 to 30 μg/Nm3.[37, 38]  As flue gas cools in the post-combustion 

zone, mercury can undergo many transformations including oxidation and/or adsorption 

on materials such as fly ash or it can remain as elemental mercury.  The range of oxidized 

mercury (Hg2+) can vary from 10 percent to >90 percent of the total mercury in the flue 

gas and depends on several factors such as coal type, concentration of Hg, flue gas 

temperature and composition, concentration and physical characteristics of entrained ash, 

and residence time in the flue gas duct.[1, 7] 

Hg2+ and particulate-bound mercury (HgP) are relatively easy to remove from flue 

gas using typical air pollution control devices (APCD).  HgP is captured in electrostatic 

precipitators (ESP) and/or baghouses.  Hg2+ is soluble in water and is removed with high 

efficiency by wet FGD equipment.  However, Hg0 is difficult to capture.  It is insoluble in 

water and is therefore not removed by FGD. 

It is generally agreed that oxidation of mercury with chlorine containing species 

(Cl, HCl, and Cl2) is the most important oxidation mechanism with mercuric chloride 

(HgCl2) being the most likely product.  Coal chlorine converts to HCl in the combustion 

zone.[37]  Cl2 is considered to be much more reactive than HCl but the conversion to Cl2 is 

kinetically limited, most likely by the Deacon process in the presence of a catalyst[21]: 

 2HCl + ½O2 → Cl2 + H2O   (1) 
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Sliger et al.[39] described the transformation of Hg0 first with Cl to form HgCl, and then 

with Cl, Cl2, or HCl to the more stable HgCl2 (M stands for intermediate): 

 Hg0 + Cl + M → HgCl + M   (2) 

 HgCl + Cl → HgCl2    (3) 

 HgCl + Cl2 → HgCl2 + Cl   (4) 

 HgCl + HCl → HgCl2 + H   (5) 

Sliger et al.[39] found that virtually all of the oxidation occurred through equations 2 and 3 

through a super-equilibrium Cl concentration process.  Widmer et al.[40] expanded this 

mechanism by introducing other possible initiation reactions with HCl, Cl2, and HOCl: 

Hg0 + Cl2 → HgCl + Cl  (6) 

 Hg0 + HCl → HgCl + H  (7) 

Hg0 + HOCl → HgCl + OH  (8) 

 HgCl + HOCl → HgCl2 + OH  (9) 

Niksa et al.[41] suggested that the essential reaction sequence for mercury oxidation 

involves a Cl-atom recycle process.  Once a pool of Cl atoms is established, Hg0 is first 

oxidized by Cl into HgCl (equation 2) which is then oxidized by Cl2 into HgCl2 (equation 

4) with an associated regeneration of Cl atoms.  In addition, Edwards et al.[42] suggested 

that there is a competition between Cl atoms and Hg0.  If the recombination reaction: 

 2Cl → Cl2   (10) 
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is fast enough, then Hg0 will react directly with Cl2 to form HgCl2, although this is a 

much slower reaction. 

 Hg0 + Cl2 → HgCl2   (11) 

 Frandsen et al.[43] showed that HgCl2 is stable in the temperature range of 105 to 

425 °C (224 to 800 °F).  Below this range Hg is expected to transform to crystalline 

sulfate, which is more stable at lower temperatures: 

 HgCl2 + SO2 + O2 → HgSO4 + Cl2   (12) 

Above this range Hg is expected to transform to an oxide: 

 HgCl2 + H2O → HgO + 2HCl   (13) 

The concentration of HgO reaches a maximum around 525 °C (980 °F).  Above this 

temperature, HgO is predicted to decompose to Hg0.[43]  Several studies[43-45] have shown 

that HgO makes up only 1 to 10 percent of the total mercury in flue gas at any give time 

in the flue gas duct. 

 O2 is a weak promoter of homogenous mercury oxidation[22, 41, 42, 44] due to kinetic 

limitations and short residence time in the flue gas duct and therefore plays a small role in 

Hg oxidation (equation 14). 

 Hg0 + ½O2 → HgO  (14) 

However, equation 14 has been shown to be heterogeneously catalyzed, possibly in the 

presence of refractory materials such as Al2O3 and TiO2.[21, 22] 

 Nitric oxide (NO) has been shown to either have no effect on homogenous 

oxidation with mercury[19, 41] or has been shown to play an inhibitory role in homogenous 
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oxidation.[41, 46, 47]  Niksa et al.[41] concluded that the inhibitory role of NO was due to its 

consumption of OH radicals as shown in equation 15.  The depletion of OH radicals did 

not allow for the formation of HOCl, one of the important oxidizing species. 

 NO + OH + M → HONO + M   (15) 

Agarwal et al.[48] suggest that NO can react with Cl2, thereby reducing the amount of Cl2 

available for mercury oxidation as shown in equation 16. 

 2NO + Cl2 → 2NOCl  (16) 

Zhao et al.[47] also propose that NO, in the presence of H2O, can react with Cl2 and Cl, 

forming HCl which has much less oxidizing capability than Cl2 possibly through 

equations 17 and 18. 

 NO + Cl2 + H2O → NO2 + 2HCl   (17) 

 NO + Cl + H2O → HONO + HCl   (18) 

Nitrogen dioxide (NO2) is expected to promote mercury oxidation.[49]  Hall et al. propose 

a mechanism for mercury oxidation by NO2: 

 Hg0 + NO2 → HgO + NO   (19) 

However, this is a slow reaction and since HgO decomposes above temperatures around 

525 °C (980 °F) this mechanism is not expected to be important.  Several intermediate 

nitrites and nitrates may occur here, but they are generally unstable above 100 °C (212 

°F).  Overall, nitrogen oxides (NOx) have been shown to oxidize mercury in the presence 

of fly ash and thus may be important.[19, 38, 46] 
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 Similar to NO, sulfur dioxide (SO2) generally plays an inhibitory role in mercury 

oxidation.  SO2 can consume OH radicals, which is an important species in the oxidizing 

intermediate HOCl as is shown in equations 20 and 21.[47] 

 SO2 + OH + M → HOSO2 + M   (20) 

 SO2 + OH + M → SO3 + H + M   (21) 

Agarwal et al.[48] suggest that SO2 can react with Cl2, thereby reducing the amount of Cl2 

available for mercury oxidation as shown in equation 22. 

 SO2 + Cl2 → SO2Cl2  (22) 

Several studies[15, 21, 47] have suggested that SO2, in the presence of H2O, can deplete Cl2 

and Cl, forming HCl which has a lesser oxidizing capability. 

 SO2 + Cl2 + H2O → 2HCl + SO3   (23) 

 SO2 + Cl + H2O → HCl + HOSO2   (24) 

 Heterogeneous mercury oxidation is of particular interest in mercury 

transformations that occur in the flue gas duct.  Gas phase interactions alone are not 

enough to account for the observed extents of mercury oxidation.[50]  There are still many 

unknowns for how mercury and other flue gas constituents react on different particle 

surfaces.  There are two possible mechanisms that occur between two species adsorbed to 

a surface.  The first is a Langmuir-Hinshelwood mechanism[51]: 

  A(g) → A(ads)  (25) 

  B(g) → B(ads)  (26) 

  A(ads) + B(ads) → AB(ads)  (27) 
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  AB(ads) → AB(g)  (28) 

For mercury oxidation, A is Hg0 and B is either HCl or Cl2.  The second considers the 

possibility that one of the components does not adsorb (or is weakly adsorbed) to the 

surface and is an Eley-Rideal mechanism[51]: 

  A(g) → A(ads)  (29) 

  A(ads) + B(g) → AB(g)  (30) 

Depending on the surface, A in equation 29 could be either Hg0 or a chlorine containing 

component such as HCl or Cl2. 

 

Coating Technology 

Catalyst coating on a surface is a function of several factors including:  solution 

viscosity, coating the fabric surface or fabric penetration, surface properties, desired 

coating uniformity, production speed, and drying conditions.[52]  For the case of coating 

bag house fabric, the catalyst must penetrate into the fabric to provide for more contact 

surface between the catalyst and elemental mercury, but must also leave sufficient 

porosity to keep the bag open to flue gas flow.  The catalyst must also resist poisoning 

from constituents in the flue gas and/or fly ash.  The surface and open areas of the fabric 

will factor into the catalyst loading of the fabric by either trapping the catalyst particles or 

allowing the catalyst to be removed by normal flue gas flow or the cleaning back pulse.   

The insolubility of the catalyst substrate (e.g. alumina) in water is another factor 

in selecting a coating method.  A commercially feasible technology will not require the 

use of expensive, environmentally deleterious, or hazardous solvents to apply the catalyst 
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and substrate to the fabric.  Keeping the catalyst slurry in suspension is necessary to 

facilitate a uniform penetration and to prevent clogging of the final process equipment. 

The drying capacity of the coating limits the production speed of the coater while 

fabric composition will set an upper temperature limit that can be used in the dryer to 

prevent fabric damage.  The calcination temperature of the catalyst will be much higher 

than the temperature the baghouse fabric can withstand.  Therefore the catalyst must be 

calcined before it is applied to the fabric.  The process necessary to drive off the catalyst 

solvent (water) and open the active sites on the catalyst may also limit fabric coating 

production speed; increasing the minimum required time for drying.  Thus the coating 

process is expected to be dryer speed limited. 

 Several coating methods are standard practice in the industry depending on the 

factors listed above.  These methods include:  dip coating, rod coating, blade or air knife 

coating, spray coating, curtain or slide coating, gravure coating, reverse roll coating, and 

extrusion coating.  The objective of catalyst loading will be to penetrate into the fiber 

web while minimizing the pressure loss across the filter thus maintaining fly ash removal 

as the primary function of the filter. 

 Surface coating methods are used to provide a smooth even coating on a substrate.  

Surface coating methods are eliminated from the options considered in this study because 

they will inhibit stack gas flow by closing up the web surface to air flow.  Coating 

methods that provide an even smooth surface include:  rod coating, knife coating, blade 

coating, gravure coating, and air knife coating.  These methods are all eliminated from 

consideration in order to maintain flue gas flow, keep fabric pressure losses to a 

minimum, and reduce boiler fan electrical costs. 
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 Curtain and slide coaters are used for application of several layers on to the web 

surface usually with layers being of different composition for various purposes.  Curtain 

and slide coatings are eliminated from consideration since only a single catalyst 

application is considered in this work.  Extrusion coating is used with high fluid 

viscosities like hot melts.  This technique is eliminated since the catalyst slurry does not 

match the hot melt fluid properties in terms of viscosity behavior, temperature, and 

coating thickness.  The reverse roll coater is used for application of thick films to the web 

and again is not applicable for web penetration of the flue gas through the fabric. 

 The remaining two commonly utilized options for penetrating the catalyst solids 

into the fabric are dip coating and spray coating.  The oldest method of coating is dip 

coating and can be used when the web is strong enough to be pulled through the coating 

solution without breaking.  Figure 1 shows a dip coating schematic.  For the catalyst 

application, the challenge will not be the fabric strength, but will be keeping the catalyst 

in suspension and the ability of the fabric to absorb the catalyst slurry.  As the catalyst 

particles are drawn away into the fabric, additional catalyst will have to be added to the 

dip tank in order to maintain catalyst concentration and a uniform application to the 

fabric.   

This coating method was modeled in the lab by dip coating fabric samples in a 

catalyst/water slurry followed by rolling the fabric sample with a rolling pin to facilitate 

penetration throughout the fabric depth. 

 15



 

 

Figure 1:  Schematic of the dip coating process 

 Spray coating, the second option, provides more opportunity to keep an even 

slurry concentration in the spray and more penetration options by varying the spray 

pressure.  The catalyst loading in the fabric may be more uniform using this method than 

dip coating because the suspension problem is eliminated.  Figure 2 presents a spray 

coating schematic.  The spray method could be limited by plugging tendencies of the 

spray nozzle and the ability of the fabric to absorb to saturation to provide sufficient 

catalyst loading.  The spray coat was modeled by 1) applying the spray coat with an art 

sprayer using commercially canned air at approximately 205 kPa (15 psig), 2) a surface 

scrape using a lab scoop to provide an even distribution of the slurry puddle on the fabric 

surface, 3) a second spray coat,  and 4) a second scrape. 

 In addition to the wet coating processes listed above, a dry coat method was used.  

When starting with new bags, a bag house is pretreated with a conditioning agent.  The 

conditioning agent is a powdered material that acts as a filter cake on the fabric to assist 

in initial fly ash collection.  If the dry powder stays on the bag surface, the application of 

the catalyst can be achieved simply by normal bag pretreatment procedures.  The process 
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was simulated in the laboratory using just the catalyst support to see what levels of 

doping could be achieved with a dry application and how well it would stay on the bag 

surface.  The catalyst support is the base alumina or titanium dioxide that the metal 

catalyst will be deposited on. 

 

 

Figure 2:  Schematic of the spray coating process 

 

Catalysts and Fabrics 

 Three noble metal catalysts were chosen for the oxidation of mercury.  TiO2 and 

Pd/Al2O3 were identified as promising catalysts during the Phase I work.  Gold has also 

been shown to oxidize mercury[3, 4] and was studied in this work as Au/TiO2.  The two 

fabrics tested in this project were both provided by GE Energy BHA Group, Inc.  RY805 

is a yellow felt and is composed of a proprietary blend of Procon and Torcon.  PC012 is a 

white woven fabric and is composed of 100% Procon.  According to the vendor, both of 

these fabrics are considered to be common in coal-fired utilities. 
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2.  EXPERIMENTAL 

Project Objective and Scope 

The objective of this project was to explore the feasibility of oxidizing elemental 

mercury in coal combustion flue gas using catalytic material impregnated onto barrier 

filters. Barrier filters provide excellent contact between the mercury and catalyst and 

reduce the gas-film transport limitations observed for other contacting configurations. 

The excellent gas/catalyst contact that can be provided by barrier filters is expected to 

overcome the current gas-diffusion limitations of competing technologies, i.e. packed 

beds and entrained injection. This should substantially reduce the amount of catalyst 

required to accomplish removal of elemental mercury. Further, for existing and planned 

facilities utilizing barrier filters, this oxidation can be accomplished with virtually no 

additional capital expense.   

Accomplishment of Phase II involved achieving three objectives: 

1) Determine the best method of catalyst coating and evaluate the effectiveness 

of coating under simulated back pulse cleaning cycles. 

2) Perform parametric bench-scale tests to determine catalyst performance using 

simulated flue gas. 

3) Perform small pilot-scale testing using a 19 kW combustor firing a wide range 

of coals to determine the performance of the most promising catalyst. 
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Experimental Apparatus and Procedure 

Objective 1- Catalyst Coating 

The goal of this research was to determine the catalytic coating method for the 

baghouse fabric.  The noble metals, Au and Pd, considered as catalysts are expensive 

compared to the alumina or titanium dioxide catalyst supports.  Since the weight of the 

noble metal was 0.5 to 1 wt% on the support, the preliminary coating methods were 

tested only using the supporting alumina or titanium dioxide.  The catalyst support was 

tested in a bench scale reactor for coating stability, assessed by the fraction of catalyst 

support mass that remained on the fabric after experiencing a substantial number back 

pulse shocks. 

3.2 m3/105 s (4 L/min) of air was fed into the bench reactor to simulate the flue 

gas flow.  This flow rate yielded an air-to-cloth ratio of 0.03 m/s (6 ft/min) compared to a 

power industry average of 0.02 m/s (4 ft/min).  A higher air-to-cloth ratio was used to 

insure that the conditions experienced in the test system were more rigorous than those 

typically encountered commercially.  A counter-current pulse-jet flow using 780 kPa 

(113 psig) air was used to simulate the back pulse cleaning cycle of a commercial 

baghouse.  These pulses of air were electronically controlled using a solenoid valve and 

lasted for a duration of 30 to 100 milliseconds.  A schematic of the bench reactor system 

is shown in Figure 3.  The purpose of this work was to determine the fraction of catalyst 

that remained on the fabric when exposed to the continuous flow of flue gas through the 

fabric and to numerous back pulse shocks experience in typical baghouse cleaning cycles.  

The weight of the catalyst on the fabric was checked in intervals after a set number of 

cleaning pulses and a loss was calculated. 

 19



 

Figure 3: Schematic of the lab-scale test apparatus used to assess the adherence of catalyst 
support material applied to the clean side of typical baghouse fabrics by four separate application 
methods 

 

Four methods of fabric coating were considered.  The dip coat method consisted 

of soaking the filter sample in a slurry of alumina or titanium dioxide, removing it from 

the slurry, and then squeezing it with a rolling pin.  Since the catalyst substrates chosen 

were not water soluble, a slurry was formed and kept agitated in order for the solids to 

remain in suspension for filter application.  Slurries of 17.5 wt% were used.  The filter 

sample was placed on the bottom of a 1000 mL beaker that allowed the filter sample to 

lie flat.  The fabric was oriented with the “clean” side of the up so that this side was 

exposed to the slurry suspension which was added to the beaker over the fabric.  By 

applying the catalyst to the “clean side”, the back pulse shocks tend to force the catalyst 

into the fabric instead of out of the fabric (if applied from the “dirty” side).  A magnetic 

stirrer was used to keep the solids in suspension.  The fabric was removed by holding it in 

a horizontal position while it was placed in a plastic tray.   
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A weighted rolling pin was used to provide a consistent force to press the slurry 

into a more even distribution on the fabric surface and possibly through its pores.  This 

simulates what a fabric would experience on a production coater since it would go 

through a nip between two rolls to squeeze excess water out of the sample.  The samples 

were dried over night in a 375 K (216 ºF) oven. 

The second method was a double dip coat method.  The single dip coating method 

was modified to obtain a double dip coating method.  Fabric samples were soaked in 17.5 

wt% water slurry of substrate for 120 seconds.  After the dip, the sample was rolled six 

times under a custom rolling pin filled with lead weight.  The dip procedure was repeated 

a second time and samples were dried overnight in a 375 K (216 °F) oven.  

The third method was a spray coating method using an artist’s hobby sprayer with 

canned propellant to spray the “clean” side surface of the filter fabric.  The pressure in 

the propellant can varied with the contents of the can but started out at approximately 203 

kPa (2 atm).  The slurry was agitated with a magnetic stirrer during spraying to keep the 

catalyst support in suspension.  The slurry tended to puddle on the surface of the filter so 

a laboratory scoop was used as a blade to gently scrape the filter surface and evenly 

distribute the slurry.  A second coat was immediately applied until the sample was 

saturated as determined by the wetness of a paper towel located under the sample.  The 

sample was then dried over night in a 375 K (216 ºF) oven. 

 The fourth method was a dry method of application using a Buchner funnel under 

vacuum generated by a vacuum pump.  The catalyst support was sprinkled over the 

“clean” side of the filter fabric with a saltshaker and induced into the fabric under a 17 
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kPA (125 mm Hg) vacuum.  Excess powder was shaken off and vacuum was applied for 

a second time.  The vacuum was applied for one minute during each vacuum cycle. 

Objective 2- Bench-Scale Testing 

 A Horiba DM-6B Dry-Mercury Speciation Continuous Emission Monitor (DM-

6B) was used to measure elemental and total mercury.  The DM-6B comes equipped with 

a MS-D1 Dry-Mercury Speciation Conditioning Unit (MS-D1), a MG-1 Mercury 

Standard Gas Generator (MG-1), and a SO2 Scrubbing Unit.  Figure 4 shows a 

photograph of the complete Horiba unit.  Figures 5 and 6 show schematics of the MS-D1 

and DM-6B, respectively. 

The DM-6B analyzer uses cold-vapor atomic absorption spectrometry (CVAAS) 

for measurement.  It is equipped with two separate detecting lamps: one each for 

measuring elemental and total mercury.  In order to maintain accurate measurements, the 

DM-6B is calibrated daily using a mercury standard generated by the MG-1 unit.  A zero 

adjustment is also performed hourly during measurement. 

The MS-D1 unit first conditions the sample gas by passing it through a dust filter 

and then separating it into two samples: elemental and total mercury.  In the elemental 

mercury side, the sample is separated into gas and liquid fractions in a gas-liquid 

separation tube where any interfering substances are removed in the liquid phase.  The 

gas sample is then dehumidified and sent to an absorption column which removes any 

oxidized mercury (Hg2+) from the sample.  The gas then passes through a potassium 

hydroxide (KOH) scrubbing solution in the scrubbing unit (to capture SO2) before being 

sent to the DM-6B for measurement. 

 22



 

 
Figure 4:  Photograph of the complete Horiba unit.  The DM-6B analyzer is on the right, the MS-
D1 conditioning unit is on the left, the MG-1 mercury generator is in the center, and the SO2 
scrubber is located on top of the MG-1 
 
 

 
Figure 5: Schematic of the MS-D1 dry catalyst conditioning unit for mercury analysis 
pretreatment.  P1-P4 are pumps used to cycle moisture in and out of the unit.[53] 
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Figure 6: Schematic of the Horiba DM-6B mercury analyzer.  P1 and P2 are vacuum pumps, V1 
and V2 are three-way solenoid valves, F1 and F3 are zero gas filters, F2 and F4 are activated 
carbon filters, FC1 and FC2 are flow controllers, and FM1 and FM2 are rotameters.  VR is the 
reference light signal and VS is the absorbed light signal.[53] 
 
 

On the total mercury side, the sample is first sent to a catalytic reduction column 

which reduces any Hg2+ to Hg0.  The sample is then separated into gas and liquid 

fractions in a gas-liquid separation tube where any interfering substances are removed in 

the liquid phase.  The gas sample is dehumidified and sent to the scrubbing unit where it 

passes through a KOH scrubbing solution (to capture SO2) before being sent to the DM-

6B for measurement.  The DM-6B analyzer continuously transmits mercury 

concentrations to a desktop PC via RS-232 communication cable. 

 It was very difficult to obtain consistent results with the dry conditioning unit 

packaged with the analyzer, so a wet conditioning unit was assembled and utilized 

instead.  We found the wet conditioning unit to be much more reliable since the 
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conditioning catalyst is continuously regenerated.  In addition, the wet conditioning unit 

appears to be the method used almost exclusively for research purposes.  Figure 7 shows 

a schematic, and figure 8 a photograph, of the wet solution conditioning system. This 

system uses two impingers containing chemical solutions in order to condition the sample 

gas. 

Figure 7: Schematic of wet solution conditioning system for sample gas pretreatment 
 

The elemental mercury impinger contains a solution of 1 M potassium chloride 

(KCl) and 1 M sodium hydroxide (NaOH).  The KCl captures oxidized mercury and the 

NaOH captures SO2.  The total mercury impinger contains a solution of 2% stannous 

chloride (SnCl2) and 1 M NaOH.  The SnCl2 reduces the oxidized mercury in order to 

obtain a total mercury measurement.  The NaOH captures SO2. 

Fresh solutions are continuously fed to the impingers at a rate of about 1.5 

mL/min by using peristaltic pumps.  This is done to avoid any residual buildup in the 
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impinger system.  Both of these impingers are followed by an empty impinger held in an 

ice bath to collect liquid overflow before being sent to the DM-6B analyzer. 

 
Figure 8: Photograph of wet solution conditioning system for sample gas pretreatment 
 

 

A PS Analytical 10.534 Mercury Calibration System was used as a defined 

mercury source in these experiments.  This unit works on the principle of diluting a 

saturated Hg0 vapor at known temperature.  A low flowrate (0-20 mL/min) is delivered 

over a Hg0 reservoir using a mass flow controller.  A dilution gas (0-20 L/min) is 

supplied using a mass flow controller and dilutes the Hg0 vapor to the concentration of 

interest.  Cylinder air or nitrogen is used with the unit.  Figure 9 shows a photograph of 

the PS Analytical 10.534 Mercury Calibration System while a schematic is shown in 

Figure 10. 
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Figure 9: Photograph of PS Analytical 10.534 Mercury Calibration System (PSA Hg generator) 
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Figure 10: Schematic of PS Analytical 10.534 Mercury Calibration System (PSA Hg generator).  
MFC is mass flow controller.[54] 
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 This project investigated the mercury oxidation performance of three catalysts.  

Two of the catalysts, titanium dioxide (TiO2) and palladium on alumina (Pd/Al2O3), were 

identified in Phase I as promising catalysts.  The third, gold on titanium dioxide 

(Au/TiO2), was shown to be a possible catalyst for mercury oxidation in other work [3, 4]  

The TiO2 used was Aeroxide TiO2 P25 (Degussa).  The Pd/Al2O3 (Sigma-

Aldrich) contains 1 %wt Pd on Al2O3 substrate.  The Au/TiO2 was produced in the lab 

using a method developed by Mallick et al.[55]  This method produces nano-sized Au 

particles on a TiO2 substrate (1.0 %wt Au) by using sodium borohydride (NaBH4), 

hydrogen tetrachloroaurate(III) trihydrate (HAuCl4·3H2O), and TiO2 as precursors.  

NaBH4 and HAuCl4·3H2O were purchased from Sigma-Aldrich. 

 The bench-scale testing primarily used filter type RY805 with some spot testing 

performed using filter type PC012.  The small pilot-scale testing used filter type PC012 

because this is the type that the manufacturer recommended and supplied to this project.  

To coat the fabric, a slurry solution is first prepared with deionized water to yield a 

concentration of 15 wt % of catalyst/catalyst support.  An art-style paint sprayer and 

cylinder air at a pressure of 275 kPa (40 psig) was used to spray the catalyst solution onto 

the fabric filters until the fabric was thoroughly coated with solution.  The filters were 

then oven dried at 380 K (221 °F) for 12 hours. 

 A bench-scale test system was built to determine the effects of prominent flue gas 

constituents on mercury oxidation as shown in Figure 11.  This system was used to test 

the performance of each type of catalytically impregnated fabric filter.  A designed set of 

experiments was performed to test the significance of each of the flue gas components on 

mercury oxidation capabilities. 
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A baseline model simulated combustion flue gas was generated using N2, O2, 

H2O, and Hg0.  Additional flue gas components tested during the parametric study 

include SO2, NO, HCl, and Cl2.  The Hg0 was generated using the PSA Hg Generator 

with the carrier gas consisting of cylinder quality air.  The moisture was generated by 

pumping a low flow of water into a heated stream of nitrogen and air.  Table 1 gives the 

simulated flue gas concentration and experimental conditions of the reactor. 

The simulated flue gas was routed at a flow rate of 4 L/min (0.14 ft3/min) to the 

heated reactor, which was maintained at 425 K (300 °F) using a rope heater (Omega 

FGR), PFA-lined thermocouple (Omega), and controller (Watlow 935A).  This flowrate 

yielded a filtering velocity of 0.03 m/s (6.1 ft/min), which is near the high range of 

filtering velocities in the utility industry.   

The reactor was constructed of a 45.7 cm (18 in) length by 6 cm (2 in nominal) 

diameter NPS steel pipe with a pair of 6 cm pipe flanges installed approximately 23 cm 

from each end of the pipe.  These flanges were used to hold the test fabric filter samples 

in the reactor.  The reactor was internally coated with Teflon to minimize mercury 

adsorption onto the walls of the reactor.  PFA Teflon tubing and fittings (Swagelok) were 

used where mercury was present in the simulated flue gas in order to prevent any 

mercury surface adsorption.  Sample tubing was heated to 425 K (300 °F) using heating 

tape (Omega HWTC).   

The Horiba CEM measured the mercury concentration of the simulated flue gas at 

the outlet of the reactor.  The simulated flue gas was then dehumidified using an impinger 

held in an ice bath and then filtered by activated carbon (Pall) before being vented to the 

atmosphere. 
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Figure 11: Bench-scale baghouse filter test system for parametric mercury tests 

  

Table 1: Simulated flue gas composition and experimental conditions 

Gas Concentration Conditions   

Cl2 10 ppm Reactor temperature 425 K (300 °F) 
HCl 50 ppm Heated tubing 425 K (300 °F) 
SO2 1000 ppm Total gas flow rate 4 L/min (0.14 ft³/min) 
NO 100 ppm Filtering velocity 0.03 m/s (6.1 ft/min) 
O2 4% Catalyst mass 0.2 g 
H2O 10%   
N2 Balance   
Hg0 20-30 μg/m³     

 

 A screening design was used to determine the extent of significance for each of 

the flue gas constituents being tested.  Table 2 shows the experimental design that was 
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used for each combination of catalyst and bag type.  An “x” denotes the respective gas 

was added in the experiment.  Run order was randomized to reduce systematic error.  

Results from the bench-scale testing were used to determine which catalyst is best suited 

for additional testing under full combustion conditions. 

 

Table 2: Design of experiments for bench-scale parametric mercury tests 

Condition Cl2 HCl SO2 NO 
1 x    
2  x   
3   x  
4    x 
5 x x   
6 x  x  
7 x   x 
8  x x  
9  x  x 
10   x x 
11 x x x x 

 

 

Objective 3- Small Pilot-Scale Testing 

The UND Department of Chemical Engineering operates a 19 kW laminar down-

flow research combustor.  This combustor is equipped with two single-bag pulse-jet 

baghouses in parallel.  The combustor is described in detail elsewhere.[56]  Figure 12 

shows a detailed schematic of the research combustor.  The baghouse filters are 15.2 cm 

(6 in) in diameter and 76.2 cm (30 in) in length.  The baghouse filter is cleaned with 

pulses of house air at a pressure of 690 kPa (100 psig).  The pulses are manually 

controlled at a length of about 0.1 s and are performed once the pressure drop across the 
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filter bag is above 1.3 kPa (5 in H2O).  Figure 13 shows a photograph of the baghouses.  

Figure 14 shows a photograph of the baghouse filter cage and baghouse filter used in the 

baghouse. 

 Three coals were studied in this work: Illinois #6 (eastern bituminous), Eagle 

Butte (Powder River Basin subbituminous), and Falkirk (North Dakota lignite).  Table 3 

gives the ultimate and proximate analyses as well as the mercury and chlorine content of 

each coal, as determined at the UND Energy and Environmental Research Center.  For 

each coal, a 4 hour experiment was performed with a bare filter to determine the baseline 

outlet mercury concentration.  Then, for each coal, a 6 hour experiment was performed 

with a catalyst coated filter.  The baghouse outlet mercury concentration was 

continuously monitored during these experiments.  The Eagle Butte coal was chosen for 

use in a 24-48 hour test to investigate the integrity of the catalyst over time. 

In order to verify the mercury measurements given by the DM-6B analyzer, the 

Ontario Hydro method was performed in selected experiments using a special impinger 

train.  The first impinger contained 1 M KCl to absorb oxidized mercury.  A second 

impinger contained 4% KMnO4 and 10% H2SO4 to absorb all remaining mercury.  These 

two solutions were analyzed for mercury at the UND Environmental Analytical Research 

Laboratory (EARL) using cold vapor atomic absorption spectrometry (CVAAS) 

equipped with a mercury conditioning unit. 
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Figure 12: Schematic of UND Chemical Engineering 19 kW research combustor[56] 
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Figure 13: Photograph of two single-bag baghouses removing ash for the UND Chemical 
Engineering 19 kW research combustor 

 34



 

 
Figure 14: Photograph of baghouse filter cage and baghouse filter used in baghouses for UND 
Chemical Engineering 19 kW research combustor 
 

Table 3: Coal analysis for test coals used in small pilot-scale testing 

 Illinois #6 Eagle Butte Falkirk 
Proximate analysis (wt%)       
    Moisture 7.5 24.9 23.8 
    Volatile matter 38.8 33.3 36.2 
    Fixed carbon 43.7 36.7 33.7 
    Ash 10.0 5.0 6.3 
        
Ultimate analysis (wt%)       
    Hydrogen 4.7 5.0 4.5 
    Carbon 67.5 67.0 63.6 
    Nitrogen 1.5 1.3 1.2 
    Sulfur 3.3 0.8 0.8 
    Oxygen 12.1 19.2 21.6 
        
Higher heating value  
(kJ/kg) 26,300 20,300 17,200 
 (Btu/lb)  11,300  8700  7400 
    Mercury (μg/g) 0.061 0.075 0.035 
    Chlorine (μg/g) 96 8.5 13 
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3.  RESULTS AND DISCUSSION 

Objective 1- Catalyst Coating 

Initial Catalyst Loading 

Figure 15 summarizes the initial and final catalyst loadings for both fabric types 

as well as each of the coating methods: spray, single dip, double dip, and dry.  Catalyst 

loading was measured by determining the weight of the fabric filter before and after 

coating.  These weights were then used to calculate the mass fraction of the total weight 

of the filter sample due to the catalyst support.  The initial loading was measured after the 

filter was coated and the fabric was dried, as described for each coating method in the 

experimental section, above.  The final loading was measured after 400 – 1000 back 

pulse shocks (depending on the method) had been applied to the sample.   
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Figure 15: Summary of results for fabric coating.  Initial and final mass loadings for each method 
and both fabrics are shown.  1000 back pulse shocks (400 for the dry coat method) were 
performed prior to measuring the final catalyst loading 
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Spray Coating 

Spraying gave the highest average initial catalyst loadings of any of the methods.  

Type RY805 fabric averaged 22.3 ± 1.7 wt% initial catalyst support loading rate. The 

final loading rate averaged 21.6 ± 1.5 wt% after 1000 cleaning pulses.  Figure 16 

summarizes the catalyst loss as a function of pulses for the spray coated RY805 blended 

fabric.  Each run is defined by its initial catalyst loading.  Catalyst support loss appears to 

be a simple linear function of the number of back pulses with a moderate slope of the 

function line suggesting that this method of catalyst loading is feasible. 
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Figure 16: Losses as a function of number of back pulse shocks for spray coated fabric 
type RY805 

 

The initial loading rate of type PC012 averaged 17.2 ± 1.8 wt%.  The net average 

final loading after 1000 pulses was 16.6 ± 2.8 wt%.  Figure 17 summarizes the catalyst 

loss as a function of pulses for the spray coated PC012 fabric.  In general the same trend 

is seen as for the RY805, although the loss appears to level off for at least one test and the 

slope of the loss regression line is a bit steeper than for RY805.  Again, these results 

suggest that this method of catalyst loading is feasible. 
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Figure 17: Losses from pulsing for spray coating on fabric type PC012 
 

Inspection of the reactor in between the sample runs showed that the catalyst was 

coming out on the “dirty” side of the felt sample.  This means that the flue gas flow rate 

had very little to do with the loss of catalyst in the fabric.  The catalyst loss came from 

the 780 kPa air pulses blowing the catalyst through the fabric and out on the “dirty” side 

of the reactor where the flue gas would enter.  In an actual test, where the dirty side of the 

fabric will become coated with a layer of the collected ash, this effect should be inhibited 

somewhat.  Thus these results represent a worst case scenario. 

Single Dip Coating 

A single dip coat in a 20 wt % alumina slurry was used on the fabrics followed by 

a “nip” roll using an empty piece of two-inch pipe.  A nip roll is commonly used in web 

processes to force a fluid through the web and to distribute the fluid evenly through the 

web.  Figure 18 shows the losses of catalyst as a function of the number of back pulse 

shocks for fabric type RY805.  Two of the three trials showed a low catalyst loss but the 
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third was not consistent with the behavior of the other.  The one with the highest loss was 

the sample that had the lowest initial loading.  This test is considered an anomaly. 
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Figure 18: Losses from pulsing for single dip coating on fabric type RY805 

 

Figure 19 shows that the losses for fabric type PC012 varied from less than 1% to 

4% overall.  The starting catalyst doses on all of these runs varied widely and were low 

compared to the spray coat method.  In all of the runs, the catalyst load was only the 

weight of alumina, the support material. 
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Figure 19: Catalyst support losses as a function of number of back pulse shocks for single 
dip coated fabric type PC012 
 

Double Dip Coating 

The single dip coating method was modified to obtain a double dip coating 

method.  Fabric samples were soaked in 17.5 wt% water slurry of substrate for 2 minutes.  

After the dip, the sample was rolled six times under a custom rolling pin filled with lead 

weight.  The dip procedure was repeated a second time and samples were dried overnight 

in a 375 K (216 °F) oven.  The heavier weight was added to properly saturate the fabric.  

Modification to the slurry concentration, mixing pressure, and nip pressures applied after 

each dip were all required to obtain consistent dosing between samples. 

 Figures 20 and 21 show the catalyst lost as a function of number of back pulse 

shocks for the double dip coated fabrics.  The initial catalyst loadings were higher than 

the single coat and approached the spray coat loadings as shown in Figure 15.  The 

double dip coat averaged 19.7 ± 3.1 wt% on fabric RY805 and 16.6 ± 3.1 wt% on fabric 

PC012.  The average losses were 6.6% for fabric RY805 and 4.9% for fabric PC012.  The 
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double dip method for catalyst loading on the fabric provides the closest loading to the 

spray coat method.  Higher loadings are desirable to provide the highest catalyst 

concentration for mercury oxidation to occur. 
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Figure 20: Catalyst support losses as a function of number of back pulse shocks for double dip 
coated fabric type RY805 
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Figure 21: Catalyst support losses as a function of back pulse shocks for double dip coated fabric 
type PC012 
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Dry Coating 

Starting up a baghouse with new filter bags requires the application of a pre-coat 

to protect the new bags from plugging with fine fly ash particulate.  The pre-coat consists 

of a conditioning powder that when deposited on the bag actually filters the fly ash with 

support from the bag.  The hypothesis was made that if the catalyst could be mixed with 

the conditioning agent or applied as a precursor to the conditioning agent, the simplest 

method to apply the catalyst would be a dry application method similar to applying the 

conditioning agent.  A laboratory dry trial was attempted to determine potential loading 

rates and losses. 

All of the runs were discontinued after only 400 back pulse shocks due to 

excessive losses.  Dry coat dosing resulted in the lowest catalyst loading of all the 

methods investigated.  Loading averaged only 4.9 ± 0.5 wt% for fabric RY805 and 3.4 ± 

0.6 wt% for fabric PC012.  Not only did the dry coat method have the lowest initial loads, 

it also gave the highest catalyst losses in the shortest number of pulses.  Fabric RY805 

losses averaged 44.2 ± 8.2% and fabric PC012 losses averaged 39.4 ± 3.7%.  The 

excessive application losses, cleaning pulse losses, and low dosing capabilities suggest 

that the dry coat method is not feasible.  No further testing was performed using this 

method. 

Pressure Drop across Filter 

The pressure drop across the filter bags in a baghouse is important because it 

impacts the power consumption of the boiler’s induced draft fan and the frequency of the 

jet-pulse used for cleaning.  The operating cost of the power plant is affected by increased 

electrical cost and increased air consumption for cleaning with increasing pressure drop 
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across the bag.  Adding the catalyst to the filter fabric increases the pressure drop across 

the filter and assessing this impact was an important parameter in our tests. 

As part of the laboratory testing program the differential pressure was logged at 

the beginning of each run with the catalytic filters.  The differential pressure for bare 

fabrics was logged at the operating conditions of the bench reactor.  The flue gas flow 

rate was 4 L/min corresponding to a 0.03 m/s (6 ft/min) face velocity with a supply 

pressure of 179 kPa (10 psig) to the flow meter.  The bare fabrics both had a pressure 

drop of 0.025 kPa (0.1 inches of H2O) under the bench reactor operating conditions.  

Table 4 summarizes the differential pressure data for the spray coating method.  Each run 

is defined by its initial catalyst loading. 

The 24.2% initial load RY805 fabric run showed the same differential pressure at 

zero pulses as the bare fabric at 0.1” H2O.  All the other runs showed a slight increase of 

0.025-0.05 kPa (0.1 to 0.2 inches of H2O) in the differential pressure except the 15.5% 

initial load PC012 sample which showed an increase of 0.17 kPa (0.7 inches of H2O) 

over the bare fabric drop.  The initial load of the catalyst does not directly correlate to 

increasing pressure drop. In general, the pressure drop of the catalytic filter can be 

expected to be slightly higher than the bare filter. 

Two of the type RY805 fabric runs showed pressure drop increases across the 

filter of 0.025 kPA (0.1 inches of H2O) which remained constant as a function of the 

number of pulses applied.  Two of the type PC012 fabric runs showed an increase of 0.05 

kPA (0.2 inches of H2O) over the bare fabric pressure drop, even though they had lower 

initial loadings than type RY805 fabric.  The pressure drop remained constant over the 

1000 pulses applied to the fabric.  The 15.5% initial load run on PC012 showed a larger  
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Table 4: Pressure drop across filters for spray coating method 

Init. Load 21.7% 24.2% 21.1% 16.9% 15.5% 19.1% 
Fabric RY805 RY805 RY805 PC012 PC012 PC012 
Pulses ∆P (“H2O) ∆P (“H2O) ∆P (“H2O) ∆P (“H2O) ∆P (“H2O) ∆P (“H2O)

0 0.2 0.1 0.2 0.3 0.8 0.3 
100 0.3 0.1 0.3  0.7  
200    0.3  0.3 
300 0.2 0.2 0.2    
400    0.2  0.3 
500 0.2 0.2 0.3  0.4  
600    0.1  0.3 
700 0.2 0.2 0.3  0.3  
800    0.3  0.3 
900       

1000    0.3   
AVG 0.2 0.2 0.3 0.3 0.6 0.3 
STD DEV 0.04 0.05 0.05 0.08 0.24 0.00 

 

Note:  1 “H2O (inches of H2O) pressure drop = 0.25 kPa 

initial increase in pressure drop of 0.2 kPa (0.8 inches of H2O) but the filter pressure drop 

decreased to 0.07 kPa (0.3 inches of H2O) after 700 pulses.  The pressure drop trends 

cannot be explained by any of the laboratory observations noted during this run. 

Table 5 summarizes the pressure drop data for the double dip coat method of 

catalyst application.  The zero pulse differential pressure drop for all runs was equal to or 

showed only a 0.025 kPa (0.1 inches of H2O) increase over the bare fabric pressure drop.  

No trend for pressure drop with increasing pulses for the double dip coat method was 

apparent. The 0.025-0.075 kPa (0.1-0.3 inches of H2O) increase in pressure drop 

observed in both the dip coat and spray application trials indicate that a slight increase in 

pressure drop can be expected in commercial applications.  This increase is not expected 

to play a significant role in commercial applications. 
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Table 5: Pressure drop across filters for double dip coating method 

Init. Load 22% 16.3% 20.6% 18.6% 18.0% 13.00% 
Fabric RY805 RY805 RY805 PC012 PC012 PC012 
Pulses ∆P (“H2O) ∆P (“H2O) ∆P (“H2O) ∆P (“H2O) ∆P (“H2O) ∆P (“H2O)

0 0.1 0.1 0.2 0.1 0.2 0.1 
200 0.2 0.2 0.1 0.1 0.20 0.1 
400 0.2 0.2 0.2  0.10 - 
600 0.1 0.2 0.2 0.1 0.10 0.1 
800 0.2 0.1 0.1 0.1 0.10 0.1 

1000  0.1  0.1   
AVG 0.2 0.2 0.2 0.1 0.1 0.1 
STD DEV 0.05 0.05 0.05 0.00 0.05 0.00 

Note: 1 “H2O pressure drop = 0.25 kPa 

UV Exposure to Titania 

Kon Corporation of Japan makes an anatase sol, TPX-220, which is primarily 

used as a building coating to prevent dirt and degradation by air pollution.  The coating is 

applied like paint to the building exterior and by exposure to sunlight acts to clean the 

building by oxidizing the contaminants.  TPX-220 is a 2.2% by weight solution of 

peroxotitanic acid and titanium dioxide and was sprayed onto the fabrics using the spray 

bottle’s internal pump. 

Two coats were applied to the “clean” side of the fabric.  After each of the coats, 

a lab spatula was used as a knife blade for even distribution of the solution over the fabric 

surface.  The samples were then dried over night in a 375 K (212 °F) oven.  In the 

morning the samples looked splotchy and appeared to be not quite dry.  The oven 

temperature was then increased to 398 K (257 °F) to complete the drying for 3 hours.  

After this second drying, the samples had a reverse “grilled” appearance; white where the 

oven grill impacted the sample and light brown in the air-exposed areas.  

We postulated that the sol-gel had not been completely removed and was taking 

up some of the catalyst active sites.  The samples were then exposed to ultraviolet light in 
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order to clean up the active sites.  The samples were treated overnight which darkened the 

lighter colored spots and lightened the dark areas to even out the color.  The cleaning 

appeared to be working so the samples were left under ultraviolet light for an entire 

weekend.  The samples then turned a darker medium brown instead of cleaning up to the 

white color of the fabric.  Obviously, a reaction was taking place. 

At this point it was uncertain if a large source of residual sol-gel was reacting 

with the catalyst or if the catalyst was oxidizing the fabric.  The side of the fabric that 

was not being treated with the ultraviolet light remained at the fabric’s original color.  In 

the oven, the sample only turned color on the side toward the bottom of the oven, not the 

topside of the fabric.  The topside of the fabric was the side of the fabric that had been 

sprayed with the sol-gel.  Further ultraviolet testing of the top side was done and it also 

turned brown showing signs of reaction.  The heat emanating from the oven bottom must 

have been sufficiently different on the bottom surface compared to the top of the fabric to 

facilitate the reaction.  Also, only the side of the fabric exposed to the ultraviolet light 

showed signs of color change (reaction). 

Since the samples were degraded, no weighing for dosage was made.  A water 

slurry with TiO2 as a catalyst was then prepared to determine if the catalyst was oxidizing 

the fabric or if the sol-gel reacted with the catalyst.  Since water is inert to the fabrics, if 

the samples turn brown during oven drying this would indicate that the fabric was 

oxidized by the catalyst application.  After coating with the TiO2 slurry, overnight drying 

of the fabric did not cause the samples to turn brown.  These fabric samples were dosed at 

an average level of 8.7 wt% on fabric PC012 and 9.5 wt% on fabric RY805.  However, 
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when the samples were subjected to ultraviolet light the samples turned brown indicating 

oxidation takes place with titanium dioxide as a catalyst. 

Fabric type RY805 is reported to have poor collection efficiency above 15% 

oxygen.[57]  This performance is predicted without catalyst application.  Even though the 

sample did not oxidize in an overnight thermal drying cycle, the titanium dioxide catalyst 

can be expected to oxidize the fabric itself under ultraviolet light and shorten the life 

cycle of the fabric. 

Summary of Coating Methods 

Spray coating the fabrics with a 25 wt% slurry under approximately 138 kPa 

pressure and a cone shaped spray gave the highest catalyst loadings.  The spray method is 

easier to control to a constant slurry concentration than the dip coating method because of 

free mixing in the slurry (the fabric is not in the slurry to interfere with the mixing).  As 

long as the spray pressure and flow rate to the spray nozzle remain constant the coating 

process is simple.  This also applies to the commercial scale of the project.  If a proper 

nozzle is chosen for the desired spray pattern and design pressure, the spray coat method 

will provide the highest catalyst loading and have the simplest operation.  The best 

scenario for a coating method is to spray the catalyst on at a low pressure (under 345 kPa) 

and to use a felted fabric. 

Dip coat application can achieve relatively high dosage levels approaching doses 

of 20 wt%.  The dip coat method has more variables that can give inconsistent dosing 

from sample to sample compared to the spray coating method.  The highest coating levels 

(approaching 20 wt%) were achieved with two successive dip coats with each dip 

followed by rolling the sample under a weighted rolling pin.  If two coats were required 

 47



 

in production this would require two successive dip tanks with each dip followed by 

pressing in a low pressure roll press to assure distribution of the slurry into the fabric.   

 Since the catalyst support is not water soluble, the coating is a slurry not a 

solution.  The dip tanks require adequate mixing to keep the catalyst in suspension and 

since catalyst is continually removed with the fabric, the catalyst concentration is not 

constant.  Maintaining a constant slurry concentration in the dip tank will require a make-

up stream of catalyst slurry.  The challenge becomes monitoring a process variable that 

will allow the proper control of the make-up stream. 

The pressure applied to the nip roll may also become a variable dependent on 

fabric properties.  If too much pressure is applied, more water will be squeezed out of the 

fabric acting much like a paper machine press.  Fine particles will come with the water; 

how much will depend on the fabric structure, fiber size, and composition.  If more than 

one type of fabric would be run on a coating line, adjustments to the nip roll might have 

to be made based on the fabric type running at the time.  A danger exists in applying too 

much pressure such that the fabric compresses and is less permeable to air flow. 

The dry method of application attempted to simulate the application of the 

catalyst as a pre-coat to the bag.  The dry application was done under vacuum.  The 

particle size was so small that the catalyst support was pulled directly through the fabric 

or formed a splotchy buildup that readily fell off during sample handling.  The dosing 

was very low at less than 5 wt% and 40% of that fell off after 400 cleaning pulses.  Dry 

application is not considered a viable option due to the excessive application and pulsing 

losses. 
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Objective 2- Bench-Scale Testing 

 The main filter fabric type for the bench-scale testing is type RY805.  For the gold 

catalyst, random spot tests were also performed using fabric type PC012 to test for any 

differences between bag types.  The baseline gas consists of 4% O2, 10% H2O, 20-30 

μg/m3 Hg0, and a balance of N2.  All of the experiments performed in this project were 

performed using the wet solution conditioning system on the DM-6B mercury analyzer.  

We were not able to get the manufacturer’s dry catalyst conditioning system to work 

properly for any significant amount of time.  It has been determined that the acid gases 

used in this research significantly interfere with the conditioning catalyst’s ability to 

function properly. 

Data Interpretation 

 This section will explain how figures and graphs are used in this chapter.  Figure 

22 shows an example of an experiment using TiO2.  The dashed line in the figure 

represents the concentration of mercury that is added to the reactor.  The numbers above 

the gases listed are experimental condition numbers.  These experimental condition 

numbers are unique for each combination of gases and are consistent throughout the 

entire set of bench-scale tests.  From the figure, the total mercury concentration very 

closely follows that of the elemental mercury concentration.  It was first assumed that the 

addition of various gases resulted in changes in elemental mercury adsorption rates. 

However, it was suggested that TiO2 might adsorb oxidized mercury.  To test for this, an 

oxidized mercury spiking system was constructed.  Figure 23 shows the oxidized  
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Figure 22: Example of an experiment using TiO2 to demonstrate total mercury shift 
 

 mercury spiking system that uses mercuric chloride (HgCl2) as a source of oxidized 

mercury.  

Figure 24 shows the data from an experiment using oxidized mercury with no 

filter in the reactor and for an experiment utilizing a filter loaded with TiO2.  The filter 

with the TiO2 adsorbed about 60 

percent of the oxidized mercury.  Also, 

as shown in Figure 22 when no 

oxidation occurs, the elemental and 

total mercury concentrations are both at 

the inlet baseline.  Consequently, we 

conclude that the observed shift in the 

total mercury concentration was the 

result from adsorption of oxidized  
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Figure 23: Oxidized mercury spiking system 
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Figure 24: A comparison of mercury outlet concentrations with and without a TiO2 coated filter 
using an oxidized mercury (HgCl2) spiking system 

 

mercury by TiO2. 

To determine the extent of mercury oxidation resulting from the bench-scale tests, 

two types of oxidized mercury were considered.  The first type was mercury that makes 

its way through the reactor with the flue gas and is termed gaseous oxidized mercury. The 

other type of oxidized mercury was adsorbed by the catalyst substrate and is termed 

adsorbed oxidized mercury.  The gaseous oxidized mercury was found by taking the 

difference between the total mercury concentration and the elemental mercury 

concentration.  The adsorbed oxidized mercury was found by taking the difference 

between the total mercury concentration and the baseline addition of mercury, which is 

represented by the dashed line in each figure.  Figure 25 shows an experiment using 

Au/TiO2.  This figure shows the differences between the two types of oxidized mercury 

considered in this research. 

 51



 

0

10

20

30

40

50

60

4 5 6

Time (hours)

H
g 

co
nc

en
tra

tio
n 

(μ
g/

m
3 )

Hg0
HgT

1000 ppm SO2

1000 ppm SO2
10 ppm Cl2

50 ppm HCl
10 ppm Cl26

5

Adsorbed oxidized 
mercury

Gaseous oxidized 
mercury

 
Figure 25: Typical experiment using Au/TiO2 to demonstrate the different types of oxidized 
mercury quantified in this study 

 

Bare Filter – RY805 

As a baseline control, testing was performed using a fabric sample containing no 

catalyst.  The baseline gas did not oxidize any mercury during any of the bench-scale 

testing.  Figures 26-29 show the effect of each of the acid gases Cl2, HCl, SO2, and NO, 

respectively on mercury oxidation.  For the bare filter experiments, nearly all of the 

oxidized mercury is in the gaseous form.  The mercury oxidation that occurs is either 

homogenous oxidation, or heterogeneous oxidation due to catalysis by the fabric 

material, or both.  As seen in the figures, the amount of oxidation that occurs in most of 

the tests is around 20 to 35 percent.  SO2 appeared to have the greatest effect on mercury 

oxidation, both when alone and in the presence of the other gases.  Table 6 summarizes 

the bare filter results.   
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Figure 26: The effect of Cl2 on mercury oxidation for uncoated (bare) filter type RY805 (baseline 
gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 27: The effect of HCl on mercury oxidation for uncoated (bare) filter type RY805 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 28: The effect of SO2 on mercury oxidation for uncoated (bare) filter type RY805 
(Baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 29: The effect of NO on mercury oxidation for uncoated (bare) filter type RY805 (baseline 
gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Table 6: Results for uncoated filter tests using filter type RY805  

(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 

Condition Cl2 (ppm) HCl (ppm) SO2 (ppm) NO (ppm) Hg oxidation (%) 
1 10       3 
2   50     20 
3     1000   33 
4       100 9 
5 10 50     0 
6 10   1000   37 
7 10     100 0 
8   50 1000   30 
9   50   100 30 

10     1000 100 33 
11 10 50 1000 100 37 

 

TiO2 on RY805 

Experiments using the TiO2 catalyst were performed using 5 cm (2 inch) diameter 

samples of RY805 fabric coated with 0.2 g of catalyst, resulting in a catalyst loading rate 

of about 10 mg/cm2.  The baseline gas did not oxidize any mercury during these tests.  

Figures 30-33 show the effect of Cl2, HCl, SO2, and NO, respectively for filter type 

RY805 coated with TiO2.  None of the spiked gases result in a significant increase in 

mercury oxidation.  In fact, nearly every test with the presence of TiO2 resulted in lower 

rates of mercury oxidation than a bare filter. 

This is likely the result of systematic error since the tests were performed over a 

large time frame (about 5 months).  The surfaces of the bench-scale mercury system can 

relatively easily adsorb elemental and oxidized mercury even though Teflon and glass are 

the only materials present in the system.  Over time, it is expected that mercury 

concentrations will vary and create differences significant enough to explain the 

difference observed between a bare filter and a filter loaded with TiO2. 
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Nearly all of the oxidized mercury is adsorbed oxidized mercury.  This is an 

expected observation.  Homogenous oxidation most likely occurs in the reactor, as 

witnessed from the bare filter tests.  The oxidized mercury is then adsorbed by the TiO2.  

A small amount of mercury could also be oxidized by the TiO2 catalyst and then 

adsorbed by the TiO2 catalyst.  However, this is not expected to play a significant role 

since there is no increase in the amount of mercury oxidation with the TiO2 loaded filter 

versus the bare filter.  Table 7 summarizes the TiO2 results. 
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Figure 30: The effect of Cl2 on mercury oxidation for filter type RY805 coated with TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
 

 56



 

0

20

40

60

80

100

2 5 8 9 11

Experimental Condition

M
er

cu
ry

 o
xi

da
tio

n 
(%

)

Adsorbed
Gaseous

50 ppm HCl

50 ppm HCl
10 ppm Cl2

50 ppm HCl
1000 ppm SO2

50 ppm HCl
100 ppm NO

50 ppm HCl
10 ppm Cl2

1000 ppm SO2

100 ppm NO

 
Figure 31: The effect of HCl on mercury oxidation for filter type RY05 coated with TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 32: The effect of SO2 on mercury oxidation for filter type RY805 coated with TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 33: The effect of NO on mercury oxidation for filter type RY805 coated with TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 

 

Table 7: Results for filter type RY805 coated with TiO2  
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 

Condition Cl2 (ppm) HCl (ppm) SO2 (ppm) NO (ppm) Hg oxidation (%) 
1 10       20 
2   50     0 
3     1000   0 
4       100 0 
5 10 50     17 
6 10   1000   5 
7 10     100 23 
8   50 1000   0 
9   50   100 26 

10     1000 100 19 
11 10 50 1000 100 21 

 

Au/TiO2 on RY805 

 Experiments were performed using Au/TiO2 catalyst.  0.2 g of catalyst was 

applied to a 6 cm (2 inch nominal) diameter piece of type RY805 fabric, resulting in a 

catalyst loading rate of about 10 mg/cm2.  Unlike TiO2, Au/TiO2 first adsorbed a 
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significant amount of total mercury during the baseline testing with O2, H2O, N2, and 

Hg0.  It took about one to two hours to reach the saturation point of the Au/TiO2 catalyst.  

Once the reactor outlet concentration reached 90 percent of the inlet concentration, the 

desired acid gases were spiked accordingly. 

Figure 34 shows the effect of Cl2 when mixed with combinations of the other 

gases.  When Cl2 is added in the presence of gold, the rate of mercury oxidation is around 

60 percent.  When any of the other flue gas constituents were added with Cl2, the rate of 

oxidation remained around 60 percent.  Previous research has shown that NO[41, 46-48] and 

SO2
[15, 21, 47, 48] can play an inhibitory role in mercury oxidation.  However, most previous 

research only considers homogenous mercury oxidation.  The Cl2-gold interaction 

appears to be strong enough to overcome any inhibitory effects from NO and SO2.  The 

extent of mercury oxidation with Cl2 and gold is similar to that found in a study by Zhao 

et al.[3]  The study by Zhao et al. also showed oxidation rates of about 60 percent with no 

significant inhibitory effects from NO and SO2. 

Figures 35-37 show the results of testing with Au/TiO2 for HCl, SO2, and NO, 

respectively.  Without Cl2 present, only 10 to 15 percent mercury oxidation is achievable 

in all of the other conditions with one exception.  When HCl and NO are present, 

experimental condition 9, the amount of oxidation increases to 40 percent.  There appears 

to be a synergistic effect between HCl and NO in the presence of gold.   
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Figure 34: The effect of Cl2 on mercury oxidation for filter type RY805 coated with Au/TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 35: The effect of HCl on mercury oxidation for filter type RY805 coated with Au/TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 36: The effect of SO2 on mercury oxidation for filter type RY805 coated with Au/TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 37: The effect of NO on mercury oxidation for filter type RY805 coated with Au/TiO2 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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A similar effect is found in a study done by Norton et al.[46]  This study shows an 

increase in oxidized mercury when both HCl and NO are present along with fly ash.  The 

study by Norton et al. found that this interaction was significant.  Table 8 summarizes the 

Au/TiO2 results. 

Pd/Al2O3 on RY805 

Experiments were performed using 0.05 g of Pd/Al2O3catalyst applied to a 6 cm 

(2 inch nominal) diameter piece of fabric (type RY805).  The resulting catalyst loading 

rate was about 2.5 mg/cm2.  A lower catalyst loading was used for this catalyst because of 

the large amount of mercury that can be adsorbed by palladium.  Using a larger amount 

of catalyst requires a significant amount of time to reach saturation.  Similar to Au/TiO2, 

a significant amount of mercury was adsorbed during the baseline testing with O2, H2O, 

N2, and Hg0.  It took two to four hours to reach the saturation point of the Pd/Al2O3 

catalyst.  Once the reactor outlet concentration reached 90 percent of the inlet 

concentration, the desired acid gases were spiked accordingly. 

Table 8: Results for filter type RY805 coated with Au/TiO2  
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 

Condition Cl2 (ppm) HCl (ppm) SO2 (ppm) NO (ppm) Hg oxidation (%) 
1 10       60 
2   50     9 
3     1000   11 
4       100 10 
5 10 50     53 
6 10   1000   65 
7 10     100 60 
8   50 1000   14 
9   50   100 41 

10     1000 100 15 
11 10 50 1000 100 62 
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Figure 38 shows the effect of Cl2 on mercury oxidation using Pd/Al2O3.  Similar 

to Au/TiO2, 60 percent oxidation was obtained when Cl2 was added.  However, there is 

also a significant increase in mercury oxidation when SO2 is added in the presence of Cl2 

(oxidation increases to above 80 percent).  Thus there is a probable synergistic effect 

between Cl2 and SO2 in the presence of palladium, although the activity of palladium 

might also be increased by the addition of SO2.  Figure 39 shows the increased mercury 

oxidation that occurs when SO2 and Cl2 are added in the presence of Pd/Al2O3. 

Figure 39 also shows mercury concentrations above the spiked level.  This is observed at 

various conditions for all of the catalysts.  This increase is due to the desorption of 

mercury previously adsorbed by the catalyst during that particular experiment. 
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Figure 38: The effect of Cl2 on mercury oxidation using filter type RY805 coated with Pd/Al2O3 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 39: Oxidation promotion by SO2 in the presence of Cl2 and Pd/Al2O3 (filter type RY805) 
  

Experimental conditions 5 and 7 (Figure 38) gave unusual results.  The observed 

amounts of oxidation are much lower than expected because the elemental mercury 

concentration is higher than the total mercury concentration.  Figures 40 and 41 show the 

unusual trends for Cl2 and HCl, and Cl2 and NO, respectively.  It was first thought that 

these results were due to experimental artifacts.  However, these conditions were 

duplicated in random succession and the same unusual trend was observed.  One possible 

reason for the high levels of elemental mercury is due to the reduction of oxidized 

mercury in the elemental mercury conditioning solution.  Fry[58] et al. found that SO2 and 

NO can significantly reduce oxidized mercury in the KCl solution of the conditioning 

system.  The newly formed elemental mercury is then released from solution resulting in 

high levels of elemental mercury. 
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Figure 40: Spike in elemental mercury concentration with Cl2 and HCl addition using filter type 
RY805 coated with Pd/Al2O3  
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Figure 41: Spike in elemental mercury concentration with Cl2 and NO addition using filter type 
RY805 coated with Pd/Al2O3   
  

There may be a similar phenomenon occurring in this research when Cl2 and HCl 

or Cl2 and NO are added to the KCl solution.  This observation, however, is specific to 

Pd/Al2O3 as it was not witnessed when using TiO2 or Au/TiO2.  There may be a specific 
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mercury or chlorine containing species formed on the Pd/Al2O3 surface that is causing 

this phenomenon to occur.  However, at least 50 percent mercury oxidation is expected 

for these two conditions due to adsorbed oxidized mercury.  This is determined from the 

difference of total mercury concentration and the baseline mercury concentration. 

The effects of HCl, SO2, and NO are shown in Figures 42-44, respectively.  The 

synergistic effect between HCl and NO (experimental condition 9, Figure 42) is also seen 

with Pd/Al2O3 as it was with Au/TiO2.  Figure 43 shows the increased mercury oxidation 

rates due to the promotion of oxidation by SO2, which is likely due to increased catalytic 

activity.  Table 9 summarizes the Pd/Al2O3 results. 
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Figure 42: The effect of HCl on mercury oxidation using filter type RY805 coated with Pd/Al2O3 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Figure 43: The effect of SO2 on mercury oxidation using filter type RY805 coated with Pd/Al2O3 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 

 

0

20

40

60

80

100

4 7 9 10 11

Experimental Condition

M
er

cu
ry

 o
xi

da
tio

n 
(%

)

Adsorbed
Gaseous

100 ppm NO

100 ppm NO
10 ppm Cl2

100 ppm NO
50 ppm HCl

100 ppm NO
1000 ppm SO2

100 ppm NO
10 ppm Cl2
50 ppm HCl

1000 ppm SO2

 
Figure 44: The effect of NO on mercury oxidation using filter type RY805 coated with Pd/Al2O3 
(baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 
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Table 9: Results for filter type RY805 coated with Pd/Al2O3  
(Baseline gas is 4% O2, 10% H2O, 20-30 μg/m3 Hg0, and balance N2) 

Condition Cl2 (ppm) HCl (ppm) SO2 (ppm) NO (ppm) Hg oxidation (%) 
1 10       57 
2   50     4 
3     1000   5 
4       100 49 
5 10 50     10 
6 10   1000   84 
7 10     100 10 
8   50 1000   45 
9   50   100 58 

10     1000 100 75 
11 10 50 1000 100 75 

 

Comparison of Catalysts 

 Three catalysts were considered for mercury oxidation in this bench-scale testing.  

Figures 45 and 46 show the levels of mercury oxidation achieved for each of the catalysts 

at each experimental condition.  Pd/Al2O3 performed the best at each of the conditions 

with the exception of conditions 5 and 7.  These conditions produced unusual trends as 

discussed above. 

 None of the catalysts performed particularly well in the presence of HCl or SO2, 

experimental conditions 2 and 3, respectively.  Au/TiO2 is a promising catalyst in the 

presence of Cl2, otherwise it does not oxidize a significant amount of mercury, with the 

exception of experimental condition 9 in the presence of HCl and NO.  TiO2 itself does 

not oxidize an appreciable amount of mercury at any condition. 
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Figure 45: A comparison of mercury oxidation achieved for the three study catalysts under 
experimental conditions 1-6 
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Figure 46: A comparison of mercury oxidation achieved for the three study catalysts under 
experimental conditions 7-11 
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Comparison of Filter Types 

Two types of filters were recommended by the manufacturer for use in this 

project.  Filter type RY805 was used exclusively throughout the bench-scale study.  Filter 

type PC012 is the type that the manufacturer prepared for use in the small pilot-scale 

study for this project.  To test for any difference in bag type, a small set of random tests 

were performed using the Au/TiO2 catalyst at the bench-scale using PC012.  Figure 47 

shows a comparison of the two filter types. 
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Figure 47: A comparison of mercury oxidation achieved with the two study filter fabric types 
under various experimental conditions 

 
 As shown in Figure 47, mercury oxidation with the PC012 filter is only slightly 

lower than with the RY805 filter.  However, there does appear to be a difference in the 

noise of the measurements between bag types.  Figures 48 and 49 show the random 

spiking that can occur in the mercury measurements using filter type RY805.  Figure 50 
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shows the relative smoothness of the measurements that is obtained using filter type 

PC012. 
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Figure 48: Typical measurement spiking profile for experiments with fabric type RY805 coated 
with Au/TiO2 
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Figure 49: Typical measurement spiking profile for experiments with fabric type RY805 coated 
with Pd/Al2O3 
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Figure 50: Typical measurement spiking profile for experiments with fabric type PC012 coated 
with Au/TiO2.  Note the relateive smoothness of the measurements compared to figures 48 and 
49.   

The sharp spiking that occurs is expected to be due to pressure and flow 

fluctuations that occur from the catalyst-loaded filter.  A plugged filter would create flow 

restrictions causing these sharp spikes in mercury concentration, whereas an unplugged 

filter would allow the gas to flow freely.  The floats in the flow meters would sharply 

bounce at regular intervals that correspond directly with the spikes in mercury 

concentration.  In addition, the pressure in the analyzer would sharply bounce at the same 

regular interval.  Thus, the observed measurement profiles suggest that catalyst plugging 

of the pores in the RY805 filter was experienced.    

The filter plugging is attributed to the texture of the filter used.  Type RY805 has 

a rigid cardboard-like texture whereas type PC012 has a soft blanket-like texture.  The 

fabric integrity of type RY805 could be decreased relatively easily by bending the fabric 

or applying a high loading of catalyst to it.  Type PC012 is expected to overcome these 

limitations due to its larger thickness and slightly greater porosity, as indicated in the 

manufacturer’s specifications. 
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Objective 3- Small Pilot-Scale Testing 

Three test coals (analyses in Table 3) were fired during the small pilot-scale 

testing in the UND Chemical Engineering 19 kW research combustor: Illinois #6 (eastern 

bituminous), Falkirk (North Dakota lignite), and Eagle Butte (Powder River Basin 

subbituminous).  Each coal was fired at a feed rate of 1.8 kg/hr (4.0 lb/hr) and 20 percent 

excess air resulting in a flue gas oxygen concentration of about 3.2 vol%. 

The fabric type used in these tests was type PC012.  All of the experiments 

performed in this testing were performed using the wet solution conditioning system on 

the mercury analyzer, as described in the experimental section, above.  Detailed 

combustor information is described elsewhere.[56] 

Mercury emissions were monitored at the outlet of the baghouse that services the 

research combustor.  Each of the parallel baghouses contains one 15 cm (6 in) diameter 

filter that is 76 cm (30 in) in length.  For each coal, baseline mercury concentrations were 

obtained using a bare filter.  Mercury concentrations were then measured using a catalyst 

loaded filter.  The temperature of the baghouse was maintained at 413 K (284 °F) using 

electric heaters. 

Pulse-jet cleaning cycles were performed after the pressure drop across the 

baghouse reached 1.5 kPa (6 inches of H2O), or approximately every 30 minutes.  The 

cleaning cycle had no effect on mercury concentration.  Fly ash samples were analyzed 

for unburned carbon using a Shimadzu total carbon analyzer at the UND Environmental 

and Analytical Research Laboratory (EARL). 
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 The Pd/Al2O3 catalyst was chosen for use in the small pilot-scale study for the 

following reasons which are based on the bench-scale study: 

• Overall increase in mercury oxidation rates, 

• Apparent increase in catalytic activity in the presence of SO2, 

• Lower mass loading rate required, 

• Higher observed adsorption capacity, and 

• Commercial availability of palladium catalysts versus gold catalysts. 

The catalyst mass loading used was 2.5 mg/cm2, the same as in the bench-scale tests.  

Catalysts were loaded on the bags using the spray coating method. 

Initial tests were conducted with uncatalyzed filter bags in order to define a 

baseline to assess the oxidation efficiency of the catalyzed filters. 

 

Illinois #6 

Figure 51 shows the elemental and total mercury concentrations measured at the 

outlet of the baghouse for Illinois #6 for an uncoated (no catalyst) filter bag.  The 

lefthand side of the figure shows the elemental mercury concentration was less than 1 

μg/m3 for the duration of the test.  With this low elemental concentration, it would be 

impossible to assess the effectiveness of the catalyst for mercury oxidation.   

An attempt was made to obtain an appreciable amount of elemental mercury by 

using the PSA Hg generator to dope Hg0 directly into the baghouse.  As seen in the right  
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Figure 51: Elemental and total mercury concentrations at the outlet of a baghouse fitted with 
uncoated (no catalyst) filters attached to a 19kW combustor firing Illinois #6 coal (doping results 
are based on injecting Hg0  directly into the baghouse at a concentration of 6 μg/m3)  

 

hand portion of Figure 51, Hg0 doping at a concentration of 6 μg/m3 did not increase the 

amount of mercury in the baghouse outlet. 

This is most likely due to the oxidation of elemental mercury by chlorine and 

sulfur containing species, which is then catalyzed and adsorbed by the fly ash filter cake.  

The oxidized mercury adsorbs to the fly ash since there was no increase in the total 

mercury concentration.  Illinois #6 has a relatively high chlorine and sulfur content, as 

shown in Table 3.  The fly ash had an unburned carbon content of 10.2 percent, as 

determined at UND EARL. 

 Fly ash is expected to play a large role in mercury oxidation and adsorption, 

particularly due to the amount of unburned carbon in the fly ash.  A study by Hassett and 

Eylands[59] demonstrated a direct correlation between carbon content and mercury 

partitioning.  Kellie et al.[60] found that chlorine promotes the chemisorption of mercury 
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onto fly ash and that sulfur can promote the oxidation of elemental mercury.  Kellie et 

al.[61] suggest that the removal of vapor phase mercury by fly ash is mostly due to the 

removal of oxidized mercury.  Kolker et al.[62] postulates carbon sites to be Lewis bases.  

Oxidized mercury can bind to these sites.  Acid gases (HCl, SO2, NO2, NO) can also bind 

to the sites and adsorb and subsequently oxidize elemental mercury. 

For most bituminous coals like Illinois #6, the vast majority of the mercury 

emitted from a commercial combustion system is in the oxidized form.  However, the 

higher surface area to gas volume within the 19kW combustion system, and specifically 

within the baghouse, provides additional sites that contribute to higher levels of mercury 

oxidation compared to a commercial system.  As a consequence, Illinois #6 was not used 

to assess the oxidation efficiency of catalyzed filter bags in this study. 

Falkirk 

 Figure 52 shows the mercury concentrations at the outlet of the baghouse fitted 

with uncoated filters when firing a North Dakota lignite coal (Falkirk).  As shown in the 

lefthand portion of the figure, the elemental mercury concentration is less than 1 μg/m3.  

To obtain an appreciable amount of elemental mercury, the PSA Hg generator was used 

to dope 10 μg/m3 Hg0 directly into the baghouse.  As seen in the righthand side of Figure 

52, the Hg0 doping resulted in a baghouse outlet elemental mercury concentration of 

about 5 μg/m3.  The Falkirk coal was then fired using a Pd/Al2O3 catalyst-coated fabric 

filter in the baghouse.  Figure 53 shows the results from this six hour experiment with a 

Hg0 doping concentration of 10 μg/m3 throughout the testing. 

As shown in Figure 53, the catalyst oxidized virtually all of the elemental 

mercury.  There was also an increase in the adsorption of mercury onto the fabric filter, 
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as shown by the decrease in total mercury concentration.  By using the Pd/Al2O3 catalyst, 

the amount of elemental mercury emitted decreased by 90 percent and the amount of 

oxidized mercury emitted decreased by 60 percent. 
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Figure 52: Elemental and total mercury concentrations at the outlet of a baghouse fitted with 
uncoated (no catalyst) filters attached to a 19kW combustor firing Falkirk lignite (doping results 
are based on injecting Hg0  directly into the baghouse at a concentration of 10 μg/m3)  
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Figure 53: Elemental and total mercury concentrations at the outlet of a baghouse fitted with 
Pd/Al2O3 catalyst coated  filters attached to a 19kW combustor firing Falkirk lignite (doping 
results are based on injecting Hg0  directly into the baghouse at a concentration of 10 μg/m3)  
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The fly ash carbon and coal chlorine and sulfur content do not play as large of a 

role with the Falkirk coal as for the Illinois #6 coal.  The chlorine content in the Falkirk is 

nearly an order of magnitude less than Illinois #6, the sulfur is 75 percent less, and the 

unburned carbon content is 4.8 percent, compared to 10.2 percent for Illinois #6 fly ash.  

The lower unburned carbon content and low coal chlorine and sulfur content most likely 

resulted in very low oxidization of the additional Hg0 doped into the Falkirk flue gas 

without the assistance of the catalyst.  These tests demonstrate that, for combustion 

systems where appreciable elemental mercury is present in the flue gas, catalyzed filter 

bags can provide substantial mercury oxidation. 

 Ontario-Hydro (OH) method sampling and off-line mercury analysis were 

performed to verify some of the measurements given by the DM-6B mercury analyzer.  

The OH method is very similar to the online analyzer method.  Both methods use 

potassium chloride (KCl) to capture oxidized mercury.  The OH method uses potassium 

permanganate (KMnO4) to capture elemental mercury.  Both of the methods then use 

cold vapor atomic absorption spectrometry (CVAAS) to analyze for mercury.  Figure 54 

shows the comparison between the two methods of measurement for the Falkirk tests 

with and without the Pd/Al2O3 catalyst in the baghouse.  The results are statistically 

similar as expected due to the similarities in measurement methods. 
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Figure 54: A comparison of mercury measurements for the DM-6B mercury analyzer method and 
the Ontario-Hydro (OH) method for Falkirk tests with and without the Pd/Al2O3 catalyst 

 

Eagle Butte 

Figure 55 shows mercury concentrations at the outlet of the baghouse fitted with 

uncoated filters when firing an Eagle Butte subbituminous coal in the 19kw combustor.  

The lefthand side of the figure shows that the elemental mercury concentration is less 

than 1 μg/m3.  In order to try and obtain an appreciable amount of elemental mercury, the 

PSA Hg generator was used to dope Hg0 directly into the baghouse.  As seen in the right 

hand portion of Figure 55, Hg0 doping resulted in a baghouse outlet elemental mercury 

concentration of about 6 μg/m3.  Similar to Falkirk, the Eagle Butte flue gas without the 

catalyst did not oxidize all of the doped elemental mercury.   

The Eagle Butte coal was then fired using a Pd/Al2O3 catalyst-coated fabric filter 

in the baghouse.  Figure 56 shows the results from this six hour experiment employing a 

Hg0 doping concentration of 10 μg/m3 for the entire test.  
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Figure 55: Elemental and total mercury concentrations at the outlet of a baghouse fitted with 
uncoated (no catalyst) filters attached to a 19kW combustor firing Eagle Butte coal (doping 
results are based on injecting Hg0  directly into the baghouse at a concentration of 10 μg/m3) 
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Figure 56: Elemental and total mercury concentrations at the outlet of a baghouse fitted with 
Pd/Al2O3 catalyst coated  filters attached to a 19kW combustor firing Eagle Butte coal (doping 
results are based on injecting Hg0  directly into the baghouse at a concentration of 10 μg/m3)  

 

The unburned carbon content of the Eagle Butte fly ash is high, 17.5 percent.  

However unlike Illinois #6, the Eagle Butte coal has a much lower chlorine and sulfur 
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content, resulting in less mercury oxidation.  However, in the presence of the Pd/Al2O3 

catalyst, the elemental mercury appears to be oxidized.  The amount of elemental 

mercury emitted decreased by 90 percent and the amount of oxidized mercury emitted 

decreased by 50 percent. 

A comparison of mercury measurement methods (on-line vs. Ontario Hydro) was 

performed during the Eagle Butte tests.  The results for the Eagle Butte comparison were 

similar to the results obtained from the Falkirk comparison.  The two methods of 

measurement produce statistically similar results due to the similarities in sample 

conditioning and analysis.  Figure 57 shows the comparison between the two methods of 

measurement for the Eagle Butte tests with and without the Pd/Al2O3 catalyst in the 

baghouse. 
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Figure 57: A comparison of mercury measurements for the DM-6B mercury analyzer method and 
the Ontario-Hydro (OH) method for Eagle Butte tests with and without the Pd/Al2O3 catalyst  
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 The Eagle Butte coal was chosen for use in a longer verification test to determine 

the catalyst performance over a longer period of time.  Figure 58 shows the result of this 

test which also uses Pd/Al2O3 with Hg0 doping of 10 μg/m3. 
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Figure 58: Verification test for Eagle Butte using Pd/Al2O3 catalyst during small pilot-scale 
testing (Hg0 is injected directly into the baghouse at a concentration of 10 μg/m3) 

 

 Figure 58 shows a decrease in catalyst performance after 35 hours.  The initial 

observed mercury oxidation was around 90 percent, comparable to the short-term results 

shown in Figure 55.  However, after 35 hours, the elemental mercury concentration rose 

to above 80 percent of the concentration measured when using a bare filter, shown in 

Figure 55.  One or more of three hypothesized events is likely occurring: 1) the catalyst is 

mostly adsorbing mercury and reaches saturation over time, 2) the catalyst is being 

deactivated by some component of the flue gas, and//or 3) the catalyst is not properly 

adhering to the fabric filter and is being lost to the flue gas over time, possibly due to the 
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pulse-jet cleaning cycles.  Note, the bench-scale tests predict that the latter two events 

likely would not occur. 

 The bench-scale tests showed that the Pd/Al2O3 adsorbed a significant amount of 

mercury before reaching a saturation point.  The bench-scale testing also showed that Cl2 

was necessary to oxidize an appreciable amount of elemental mercury.  The Eagle Butte 

coal contains a relatively low amount of chlorine.  In order to test for the significance of 

the presence of Cl2 in the flue gas, Cl2 doping tests were performed.   

First, Cl2 injection was performed using a bare filter.  Figure 59 shows the result 

of doping 10 ppm Cl2 using a bare filter and Hg0 doping at 10 μg/m3.  As expected, the 

fly ash appears to act as a catalyst in the presence of Cl2.  The addition of Cl2 results in 

elemental mercury oxidation of around 80 percent.   
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Figure 59: Mercury measurement at baghouse outlet for Eagle Butte during small pilot-scale 
testing with Cl2 doping (Hg0 is injected directly into the baghouse at a concentration of 10 μg/m3 
and Cl2 is injected at a concentration of 10 ppm) 
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Figure 60 shows the result of doping 10 ppm Cl2 using a filter loaded with 

Pd/Al2O3 and Hg0 doping of 10 μg/m3.  The same filter from the verification test was 

used to determine if there was any catalyst activity remaining.  The Pd/Al2O3, in the 

presence of Cl2, slightly enhances the elemental mercury oxidation to about 90 percent.  

In order for there to be an additional amount of mercury oxidation there appears to be 

unpoisoned catalyst on the fabric filter.  Therefore, the most likely explanation is that the 

filter became saturated with mercury during the long-term tests and that the lower 

performance in the long-term tests was due to a lack of oxidation source.   
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Figure 60: Mercury measurement at baghouse outlet for Eagle Butte using Pd/Al2O3 catalyst 
during small pilot-scale testing with Cl2 doping (Hg0 is injected directly into the baghouse at a 
concentration of 10 μg/m3 and Cl2 is injected at a concentration of 10 ppm) 

 

Thus, even when using a catalyst, there is a minimum level of oxidant required in 

the gas stream for effective mercury oxidation.  However, the level of oxidant addition 

required is likely to be much smaller than would be required without the coated filter 

bags and this level may prove low enough to mitigate corrosion and deposition concerns 
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in downstream 

systems.  These 

issues must be 

explored further 

prior to final 

commercialization 

of the technology. 

Table 10: Summary of results from Falkirk and Eagle Butte coals, 
short test is 6 hours and long test is 35 hours (All tests have Hg0 
doping of 10 μg/m3 and Cl2 doping is 10 ppm for Eagle Butte) 

Falkirk Eagle Butte    Hg Oxid % Hg Oxid % 
Bare filter (short test) 40 33 

Pd/Al2O3 (short test) 90 90 

Bare filter w/ Cl2 doping (long test) -- 80 

Pd/Al2O3 w/ Cl2 doping (long test) -- 90 

Table 10 summarizes the results from the Falkirk and Eagle Butte coals. 
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4.  SUMMARY OF PHASE II 

Spray coating the fabrics with a 25 wt% slurry under approximately 138 kPa 

pressure and a cone shaped spray gave the highest catalyst loadings.  The spray method is 

easier to control to a constant slurry concentration because of free mixing in the slurry.  

The fabric is not in the slurry to interfere with mixing.  As long as the spray pressure and 

flow rate to the spray nozzle remains constant the coating process is simple.  This also 

applies to the commercial scale of the project.  If a proper nozzle is chosen for the desired 

spray pattern and design pressure, the spray coat method will provide the highest catalyst 

loading and have the simplest operation.  The best scenario for a coating method is to 

spray the catalyst on at a low pressure (under 345 kPa) and use a felted fabric. 

Dip coat application can achieve relatively high dosage levels approaching doses 

of 20 wt%.  The dip coat method has more variables that can give inconsistent dosing 

from sample to sample.  The highest coating levels approaching 20 wt% were achieved 

with two successive dip coats with each dip followed by rolling the sample under a 

weighted rolling pin.  If two coats were required in production this would require two 

successive dip tanks with each dip followed by pressing in a low pressure roll press to 

assure distribution of the slurry into the fabric.   

 The parametric testing in this project investigated the effects of three catalysts on 

mercury oxidation.  The catalysts were TiO2, Au/TiO2 (1% Au), and Pd/Al2O3 (1% Pd).  

The bench-scale testing was performed with a small test reactor and used a simulated flue 

gas.  The baseline gas included O2, H2O, N2, and Hg0.  Parametric testing was performed 

and included Cl2, HCl, SO2, and NO.  Two types of fabric were considered: RY805 and 
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PC012.  The majority of the work used type RY805 and a set of verification tests used 

type PC012 to determine differences between filter types. 

 TiO2 was found to be ineffective at oxidizing elemental mercury.  However, TiO2 

adsorbs oxidized mercury.  This was seen in the oxidized mercury spiking tests and was 

observed when a bare filter produced nearly all gaseous oxidized mercury and a TiO2 

filter produced nearly all adsorbed oxidized mercury. 

 Au/TiO2 is an effective catalyst in the presence of Cl2.  The gold-Cl2 interaction 

appears to be strong enough to overcome any inhibitory effects from SO2 and NO often 

seen in other research.  Without Cl2, little elemental mercury is oxidized with one 

exception.  There is a synergistic effect between HCl and NO that produces increased 

levels of mercury oxidation, but not as much as Cl2.  SO2 slightly increased mercury 

oxidation in the presence of Cl2. 

Pd/Al2O3 is as effective as Au/TiO2 in the presence of Cl2.  However, in the 

presence of Cl2 and SO2, mercury oxidation increased to higher levels likely due to 

increased catalytic activity.  The synergistic effect between HCl and NO was also 

observed with Pd/Al2O3.  Pd/Al2O3 is considered to be the best catalyst for the following 

reasons: overall increase in mercury oxidation rates, apparent increase in catalytic activity 

in the presence of SO2, lower mass loading rate required, higher observed adsorption 

capacity, and commercial availability of palladium catalysts versus gold catalysts. 

No difference was observed for mercury oxidation between the two fabric types.  

However, PC012 was found to be better because of the higher air permeability of the 

fabric.  The higher permeability inhibited the plugging from the catalyst that was 

observed by type RY805. 
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Recommendations for future work include investigating the phenomenon that 

occurred with the wet conditioning system during the testing with Pd/Al2O3.  When Cl2 

and HCl or Cl2 and NO were added in the presence of Pd/Al2O3, mercury was released 

from the elemental mercury conditioning solution.  This created a significant bias in the 

mercury measurement. 

Sulfated alumina or titanium dioxide could be looked at to determine the effect 

that sulfur has on mercury oxidation.  This would give a better idea as to how sulfur 

promotes mercury oxidation on the catalyst surface.  

Small pilot-scale testing was performed using three coals: Illinois #6, Falkirk, and 

Eagle Butte.  For all of the coals, Hg0 had to be doped into the baghouse to generate an 

appreciable amount of Hg0.  For Illinois #6, none of the Hg0 was recovered, most likely 

due to the high chlorine and sulfur contents in the coal.  Chlorine and sulfur oxidize the 

mercury and it is then most likely adsorbed by the fly ash. 

The Falkirk coal has low chlorine and sulfur content and produced Hg0 in the flue 

gas.  When using Pd/Al2O3, initial mercury oxidation of 90 percent was observed.  The 

Eagle Butte coal also has low chlorine and sulfur content and also produced Hg0 in the 

flue gas.  The Eagle Butte flue gas also produced mercury oxidation of 90 percent in the 

presence of Pd/Al2O3. 

Eagle Butte was chosen for a longer verification test.  After 35 hours, the 90 

percent mercury oxidation dropped to less than 20 percent mercury oxidation.  Cl2 was 

then doped into the baghouse both with and without Pd/Al2O3.  Fly ash alone, in the 

presence of doped Cl2, oxidized about 80 percent of the elemental mercury while 
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Pd/Al2O3 oxidized near 90 percent of the elemental mercury.  From this, at least a portion 

of the catalyst appears to be having an effect on mercury oxidation. 

The online analyzer mercury measurements were verified using the Ontario-

Hydro method.  The two methods produced statistically similar results due to the 

similarities in the methods. 

This method of mercury control is expected to overcome limitations seen in 

previous research.  Other studies using palladium catalysts[4, 63] have shown mercury 

oxidation rates around 90 percent.  However, a large amount of catalyst is required in 

previous studies.  Results from this research show that a much smaller amount of metal 

catalyst can achieve 80 percent mercury oxidation.  The method used in this project 

allows the mercury to come into close contact with the catalyst, whereas other methods 

use catalyst screens with a much smaller surface area. 

Recommendations for future work include performing additional testing to 

determine the catalyst loading in an actual combustion environment.  During the bench-

scale testing, it was observed that TiO2 was very soluble in water, while Au/TiO2 and 

Pd/Al2O3 were slightly hydrophobic.  Additional tests could be performed to determine 

the catalyst loading over a longer period of time with several cleaning cycles in an actual 

combustion environment. 

Additional testing could also be performed to determine whether or not the 

catalyst is being poisoned over a long period of time (more than 48 hours) for all of the 

coals.  Analytical methods could be explored to find out how to examine a piece of fabric 

to determine the integrity of the catalyst before and after use in a combustion system. 
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Parametric testing could be examined in the actual flue gas in order to determine 

the effects of various flue gas components in an actual combustion environment.  This 

would give a better idea as to how certain components affect the catalyst’s performance 

in an actual combustion flue gas. 

Bench-scale tests could be performed with fly ash to determine the effect of fly 

ash from a number of different coals.  Using comprehensive fly ash analyses, it would be 

helpful to know the effect of various fly ash components on mercury oxidation and 

adsorption. 

This method of mercury control shows promise for meeting abatement 

compliance in the future.  Much of the work in this project showed mercury oxidation of 

80-90 percent, exceeding the current expected regulation of 70 percent. 
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