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Abstract

Eighty-nine (89) percent of the electricity supplied in the 35-county Pittsburgh region (comprising parts of

the states of Pennsylvania, Ohio, West Virginia, and Maryland) is generated by coal-fired power plants

making this an ideal region in which to study the effects of the fine airborne particulates designated as

PM2.5 emitted by the combustion of coal. This report demonstrates that during the period from 1999-2006

1) sufficient and extensive exposure data, in particular samples of speciated PM2.5 components from 1999

to 2003, and including gaseous co-pollutants and weather have been collected, 2) sufficient and extensive

mortality, morbidity, and related health outcomes data are readily available, and 3) the relationship

between health effects and fine particulates can most likely be satisfactorily characterized using a

combination of sophisticated statistical methodologies including latent variable modeling (LVM) and

generalized linear autoregressive moving average (GLARMA) time series analysis. This report provides

detailed information on the available exposure data and the available health outcomes data for the

construction of a comprehensive database suitable for analysis, illustrates the application of various

statistical methods to characterize the relationship between health effects and exposure, and provides a

road map for conducting the proposed study. In addition, a detailed work plan for conducting the study is

provided and includes a list of tasks and an estimated budget. A substantial portion of the total study cost

is attributed to the cost of analyzing a large number of archived PM2.5 filters. Analysis of a representative

sample of the filters supports the reliability of this invaluable but as-yet untapped resource. These filters

hold the key to having sufficient data on the components of PM2.5 but have a limited shelf life. If the

archived filters are not analyzed promptly the important and costly information they contain will be lost.
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Executive Summary

The overall goal of the PITT-PM project was to design a feasible retrospective epidemiological study that

would satisfactorily characterize and measure the association between airborne fine particulates (PM2.5)

emitted from coal-fired power plants and human health in the Pittsburgh region. The central element of

this proposed study is a times series design requiring the construction of daily time series for health

impacts (the responses) and potential explanatory exposure factors for the period from 1999 to 2006 and

focusing on the seven-county metropolitan statistical area.

The primary explanatory exposure factors of interest include PM2.5 mass and species concentrations,

source-related latent factors that explain the observed species concentration correlations along with

confounding factors such as weather and co-pollutants. The source-related latent factors would be

determined by using a latent variable multivariate receptor model along with block bootstrapping to

account for time dependencies. Rather than constructing just a single set of daily time series, it is proposed

that as many series as possible be constructed for regions as small as ZIP code areas limited only by the

availability of detailed health impact and exposure data and combined together in an overall random

effects type model. The proposed design requires the construction of a data base containing health impact

data on mortality, morbidity, physician visits, and emergency department data along with data from as

many as 70 exposure monitoring sites. In addition, it is essential that existing archived PM2.5 filters from

monitoring networks be analyzed and included. Where monitors used more than one method of analysis,

measurements will be appropriately calibrated and their precision assessed using the method of latent

variable modeling. The optimum construction of each exposure time series would be guided by the use of

space-time geostatistical methods to allow the proper weighting of multiple monitoring site information

distributed both in time and space. Once the series are constructed, a generalized autoregressive moving

average model would be constructed for each health outcome (for example, cardiovascular hospital

admissions) and the parameters characterizing the relationship between health impact and exposure

estimated. The design is similar to a longitudinal mixed effects model where the subjects are ZIP code

areas with each ZIP code area having a time series as the repeated measure. Having multiple series

available at various spatial locations would allow the overall effects to be determined along with the

heterogeneity of the effects over the region. In order to provide realistic confidence intervals for the

estimated parameters, spatial bootstrap sampling will be needed to accommodate the expected spatial

correlation among the ZIP code area responses.

The majority of the effort in designing this study was devoted to ascertaining and describing what

exposure data and health outcomes data are available for the region comprised of the  city of Pittsburgh,

Pennsylvania, the county of Allegheny and the surrounding  35 counties. Additional effort was expended

in determining the optimum time period and most appropriate and innovative statistical methods for

characterizing the health impacts. The following report provides the design details, characterizes the

available data, and illustrates the statistical methods that would be used.



1 Study Design

1.1 Introduction

The overall goal of the PITT-PM project was to design a feasible retrospective study that would

satisfactorily characterize the nature of any association between fine particulates (PM2.5) emitted from

coal-fired power plants and human health in the Pittsburgh region. Ideally, by statistically controlling for

any plausible confounding factors such as weather, various co-pollutants, vehicle traffic, and so forth,

support for a causal connection could be produced if it existed. A retrospective study is restricted to using

data that likely was collected for purposes other than looking for health impacts from coal-fired power

plant emissions. The optimal data set would contain complete, accurate, and precise information for

individual people such that their health status, exposure to coal-fired particulates and other confounding

factors would be known. Such ideal data was not be expected to be available. Health data is available

readily for hospital admissions and emergency department visits, including dates but limited in spatial

resolution to ZIP code. Health data concerning physician visits, use of medications, and so forth would be

more difficult to obtain. Exposure factors for subjects must be estimated from centrally located ambient

monitoring sites. The actual individual exposure will likely differ not only randomly but systematically

over time. Additionally, pollution monitoring only measures particulate emissions from coal-fired power

plants indirectly thus requiring extra effort to identify and measure the emissions from sources hidden in

the monitoring data. The differences between the optimal and what is actually available would likely tend

to attenuate any relationship so that it will be important to use the available data carefully with the

appropriate statistical methodology to mitigate the attenuation.

In designing this study, it was necessary to identify potential health impact data sets and exposure data sets

that cover the city of Pittsburgh, the surrounding Allegheny County, and nearby counties in Pennsylvania,

Ohio, Maryland, and West Virginia. A small amount of the available data was collected, examined and

used in the exploration of potentially useful statistical methods. The first step in conducting the actual

study will be to construct data bases containing the health impact data and the exposure data. The

exposure data exists at multiple sites often collected using different analytical techniques when measuring

a particular variable. Calibration between different methods will need to be performed to make the

measurements comparable. These data bases will be used to construct a data base of daily health impact

variables and daily exposure variables for ZIP code subareas because of the limitation in spatial resolution

due to the health outcomes data. To construct the daily data base for exposure, space-time geostatistical

methods will be used (as demonstrated in this study) to take measurements from multiple spatially

distributed monitoring sites over time and construct optimal estimates of daily exposure for each ZIP code

area as dictated by the availability of health impact information. To separate and identify emissions due to

coal-fired power plants from other sources, latent source factors will need to be identified and measured

using a latent variable multivariate receptor model. Finally, the use of generalized autoregressive moving

average (GLARMA) time series models would be employed to characterize the relationships between
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various sets of explanatory factors and a number of health impact variables so as to fully characterize the

impact of coal-fired power plant emissions. These results will be compared to results obtained using non-

time series models such as generalized additive models (GAM) and generalized linear models (GLM) and

also to a case crossover analysis.

When exploring the best possible statistical methodologies to accomplish the tasks discussed above, it was

clear that previous studies have not always used the best available methodologies, or even appropriate

methodologies, nor have appropriate methodologies always been used correctly. In particular, the

calibration of measurements from different techniques to measure the same theoretical construct (e.g.,

SO2) using naive regression analysis is known to lead to severe distortions in characterizing analytical bias

yet is still routinely used in place of more appropriate calibration methods. Attempts at source

apportionment (needed for separating coal-fired emissions impacts from other sources) have often

involved the use of exploratory factor analysis even though this method cannot identify sources

appropriately and does not, by itself, account for autocorrelation in the time series. Finally, the use of

generalized additive models and generalized linear models for times series data do not necessarily account

appropriately for the autocorrelation in the response time series resulting in parameters with inflated

statistical significance and confidence intervals that are too narrow. Appropriate procedures for diagnosing

this problem are rarely employed so that the resulting models do not account for all the systematic effects.

Even in a designed prospective study, not all statistical analysis decisions can (or should) be made before

data collection begins - although the major analysis questions should be delineated. Given that this is a

retrospective study, without the actual data in hand, not even all study design questions can be addressed

definitively - additional analysis will be needed to make final decisions on appropriate models and

analysis after the complete data base is assembled.

1.2 Proposed Design

The basic design proposed in the original cooperative agreement was a time series design that would

model health outcomes (typically counts) as a function of explanatory exposure variables. A diagram for

the proposed study is shown in Figure 1.  The PITT-PM study would model health impacts for the seven-

county region over the time period from 1999 to 2006. However, due to limitations in available data as

described below, not all analyses will cover this entire time period.  On the other hand, exposure data from

the entire 35-county region will be used to inform exposure estimates over the seven-county region. The

smallest unit of time available for most health outcome data is a day (24 hours) while the spatial resolution

is limited to at best ZIP code area. This requires exposure data from various multiple-monitor networks for

each measured parameter to be averaged to create daily time series as discussed below. A time series

power analysis was performed and indicated that at least three years of daily data would be needed in

order to reasonably characterize the relationship between PM2.5 and health outcomes. The design for the
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Figure 1: Overview of the proposed PITT-PM retrospective epidemiological study design for the

Pittsburgh region from 1999 to 2006.
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� Daily mortality
� Daily hospitalizations
� Daily emergency room visits
� Include a “control” disease

Methodological Issues
� Calibration of different

  measurement techniques

  using latent variable modeling

  (LVM) & Bland-Altman analysis
� QA/QC Procedures

Analysis of Archived 

PM
2.5

 Filters to 

Provide Additional

Chemical Speciation 

Data

Determine Sources from PM
2.5

 Composition

Apportionment for Coal-Fired Plant Emissions
� Latent variable / multivariate receptor model using partial

  partial profile information with inequality constraints on 

  parameters
� UNMIX (for comparison)
� PMF (for comparison)

Space-Time Geostatistical Analysis
� Variogram estimation using spatial and

  temporal coordinates
� Variogram modeling
� Kriging daily estimates (space-time

  weighted averages)

Poisson Generalized Autoregressive

  Moving Average (GLARMA)

  Time Series Modeling
� Health outcomes as a function of daily 

   exposure factors (including distributed 

  lags), seasonality, day-of-week effects, 

  trend, and zip code or county
� Spatial bootstrapped confidence intervals
� Compared to GLM/GAM non-time series 

   methods and case-crossover analysis

Daily Exposure Time Series Database
� Zip code area estimates
� County area estimates

Daily Health Outcomes Database
� Zip code area counts
� County area counts

QA/QC

Procedures

Assessment of Human Health Effects 

Related to PM
2.5

 Mass,

PM
2.5

 Component Species, and

Coal-Fired Plant Emissions
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study is described in the following subsections.  The technical details and supporting information for the

proposed design are shown below in Sections 2–4. An overall work plan which includes a list of tasks to

be completed and an estimated budget by task and year is shown in Section 5.

1.2.1 Existing Exposure Measurements

There are nine significant sources of PM2.5 mass, PM2.5 speciation, co-pollutant, and meteorological data

for the 35-county (PA, OH, WV, MD) region surrounding Pittsburgh during the period 1999 to 2005 :

� U.S. Environmental Protection Agency's Air Quality System (AQS)

� National Energy Technology Laboratory Office of Science and Technology (NETL/OST)

� Pittsburgh Air Quality Study (PAQS)

� Upper Ohio River Valley Project (UORVP)

� Steubenville Comprehensive Air Monitoring Program (SCAMP)

� Clean Air Status and Trends Network (CASTNet)

� Interagency Monitoring of Protected Visual Environments (IMPROVE)

� Federal Aviation Administration Automated Surface Observing System (ASOS) / Automated

Weather Observing System (AWOS)

� Roadway Weather Information System (RWIS)

Exposure data from 2006 was not generally available at the time of investigation but most of the findings

would likely extend directly to data from 2006. Data was obtained from each of these sources and

inventories were performed for each exposure parameter of interest. Because of the large quantity of PM2.5

total mass, PM10 total mass, gaseous pollutant (i.e., SO2, NO2, CO, and O3), and meteorological data that

were collected in the 35-county region between 1999 and 2005, it was not practical to perform a day-by-

day inventory of these data and instead the data were reviewed to determine the time period, frequency,

time resolution, and method of collection for each parameter at each monitoring site. There were 47

monitoring sites that measured ambient PM2.5 mass concentrations during some or all of the period from

2000 to 2005.  (Sixteen sites in Allegheny County, six additional sites in the Pittsburgh Metropolitan

Statistical Area (MSA) comprising Allegheny, Beaver, Butler, Fayette, Washington, and Westmoreland

counties, and one additional site in Armstrong County in western Pennsylvania collected PM2.5 data during

1999 but a site-by-site inventory was not made for this year.) 
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There were fifteen sites that monitored for a complete suite of PM2.5 chemical components, including ions,

carbon, and trace and crustal elements, during some or all of the period from 1999 to 2005. The site with

the greatest number of days of existing, complete PM2.5 speciation data is the Lawrenceville site in the

City of Pittsburgh.

Co-pollutant data of interest include daily ambient concentrations of SO2, O3, CO, and NO3. A total of

sixty-four sites measured some or all of these gaseous species between 1999 and 2005. A site-by-site

inventory was performed for the years from 2000 to 2005. All of the gaseous pollutant measurements were

made using continuous monitors resulting in data with an hourly or finer resolution that can be used to

compute daily averages or other statistics such as the maximum 1-hour average concentration.

Although numerous sites in the 35-county region collected temperature data, relative humidity or dew

point data, and wind speed and direction data between 1999 and 2005, the thirteen ASOS/AWOS sites

located at airports throughout the region are probably the best source of meteorological data.

1.2.2 Analysis of Archived PM2.5 Filters

Many of the sites that determined ambient air concentrations of PM2.5 chemical species between 1999 and

2005 also collected additional filter-based PM2.5 samples that were not analyzed for chemical composition.

Chemical analysis of these filters, where feasible, would substantially augment the existing speciated

PM2.5 data record. The feasibility of obtaining PM2.5 chemical composition data from these archived filters

depends on the method originally used to sample the particles, the type of filter, and the manner in which

the samples were stored, among other things. Although there are important limitations (such as the

underestimation of semi-volatile components and the inability to assess elemental and organic carbon from

Teflon-filter-based samples using thermal/optical techniques), this data represents a unique and extremely

valuable resource that will disappear if not taken advantage of during the next few years. Eight monitoring

sites located in Allegheny, Greene, Washington, and Westmoreland counties have substantial available

inventories of archived filters consisting of more than 8,400 samples. 

1.2.3 Calibration and QA/QC for Exposure Data

In order to assemble the prerequisite data bases of daily time series for the exposure factors some

methodological issues need to be addressed. The networks used to measure these factors consist of

individual monitoring sites at specific locations and operating during certain periods of time. Before the

geostatistical analysis and modeling can begin, it will be necessary to equilibrate measurements made by

equipment using different techniques to measure the same parameters. Thus it will be necessary to

determine the amount of agreement between sets of measurements so that they can be adjusted for any

bias (systematic error) and that the relative imprecision (random error)of each technique can be assessed.

Many researchers have, unfortunately, attempted to use linear regression and correlation analysis naively
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to address this problem. The error in this approach has been pointed out by numerous researchers

including Bland and Altman, and Ripley. [need references here] We propose using latent variable

modeling to examine the nature of any relative bias and imprecision and determine the appropriate

adjustment to place all measurements on the same footing.

1.2.4 Source Apportionment

In principle, the PM2.5 chemical species data at the monitoring sites indirectly provide information about

the sources of the ambient fine particles. Theoretically, the relationship between the sources (particle

emitters) and receptors (the monitoring sites) could be represented by a chemical mass balance. If enough

source profile information were available, the mass balance equations relating the observed species

concentrations to the emitting sources could be solved using regression analysis. Typically, the required

extensive source profile information is not readily available so that the source profiles also need to be

estimated. Using a very limited number of source profiles, a latent variable multivariate receptor model

can be constructed and the sources identified. Block bootstrap sampling then can be used to account for

the time dependency in the component specie time series to provide realistic confidence intervals for the

parameters as an aid the identification and characterization of sources.  The resulting particulate emissions

source contributions can be used to assess the relationship between a coal-fired power generation plant

source and health outcomes. This methodology was applied to 23 PM2.5 components from the

Lawrenceville (Pittsburgh) site to demonstrate the approach for a five source model based on previous

research by the Allegheny County Health Department.

1.2.5 Space-Time Geostatistical Analysis and Modeling

To produce optimal daily averages requires the appropriate weighting which can be determined by a

space-time geostatistical analysis for each parameter. Each daily time series value for a given parameter

would be an optimally weighted average of measured values distributed in both space and time. Typically,

measured values closer in space and time to the area being estimated should have larger weights than

values farther away. The arrangement of the measurements and the shape and size of the region being

estimated will also affect the weights. For example, two measurements close together in space, or time, or

both will tend to have less total weight than two measurements that are far apart. Computationally, areas

are represented numerically by sets of points on a regular grid with each grid point being individually

estimated and the average of the grid points taken as the the value for the region. The optimal weights

would be determined by using the method of kriging. Kriging requires information about the correlation

among the monitoring site locations and between the monitoring sites and the area being estimated. The

correlation information comes from a model fitted to the estimated space-time variogram for a given

parameter. 
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1.2.6 Daily Exposure Time Series Database

To facilitate the time series and other modeling, the raw exposure data must be assembled into a daily

exposure data base. To minimize exposure misclassification and to match up with the health outcome data,

daily values will be estimated by ZIP code area. County estimates can then be constructed from the ZIP

code area estimates.

1.2.7 Human Health Outcomes

Based on the completed comprehensive inventory and assessment of available mortality and morbidity

datasets, the identified sources are:

� National Center for Health Statisics (NCHS) Division of Vital Statistics

� Pennsylvania Department of Health Bureau of Health Statistics and Research

� Allegheny County (PA) Health Department

� Pennsylvania Health Care Cost Containment Council Hospital Discharge Data Sets (1999-2006)

� Ohio Department of Health

� West Virginia Healthcare Authority Hospital Discharge Datasets

� Emergency Department Visit Data (from individual hospitals)

� UPMC Medical Archival Retrieval System (MARS)

� Real-Time Outbreak and Desease Surveillance (RODS) Data

1.2.8 QA/QC for Health Data

1.2.8.1 Accuracy and Verification of Health Data

As previously described, this proposal for the retrospective epidemiological assessment of the health

effects related to PM2.5 and its component species will make use of existing secondary data on mortality,

hospitalizations and ED visits within the ten county area (or larger) of study. All health datasets to be used

will be obtained primarily at the onset of the project period. 

Mortality data will be obtained from the Pennsylvania Department of Health Bureau of Health Statistics

and Research and verified using National Center for Health Statistics (NCHS) Division of Vital Statistics.

Recent quality analysis comparing these electronic datasets to death certificates suggests that the error rate

PITT-PM 30



1.2 Proposed Design

is 2% or less. Hospitalization data is collected by the Pennsylvania Health Care Cost Containment Council

(PHC4). The data are processed using a series of validation rules before being finalized and made

available for further analysis and public release. PHC4 edits the data and provides error reports to each

data source. The health care facility will make error corrections and provide PHC4 with corrected

information. Compliance across health care institutions in Pennsylvania approaches 100% (99% in

recently released 2006 reports). Emergency department (ED) data will be acquired from individual

hospitals/hospital systems through directed agreements. If necessary, the investigators will utilize an

“honest broker” system to acquire identified ED data from hospitals for use in the study. Verification of

the accuracy and integrity of the ED and other data will be conducted by the data research associate and

will include ID verification, ICD 9/10 verification and reconciliation, data range, and type verification,

and duplicate entry checks. Additional data editing and report generation will be performed quarterly to

assure data integrity and completeness. Any data and data collection ambiguities will be brought to the

attention of the study principal investigator by the data research associate for immediate resolution.

1.2.8.2 Privacy and Confidentiality of Health Data

These health-based datasets will likely contain identifiable subject information and the release of said

information is governed by the privacy and confidentiality regulations of Health Insurance Portability and

Accountability Act (HIPAA) of 1996. The release of datasets containing health outcomes information at

the individual level to external agencies or researchers is governed by the protected access procedures of

the participating agencies. HIPAA's Privacy Rule makes provisions for a "limited data set," authorized

only for public health, research, and health care operations purposes. A limited data set must have all

direct identifiers removed, including:

� Name and social security number; 

� Street address, e-mail address, telephone and fax numbers; 

� Certificate/license numbers; 

� Vehicle identifiers and serial numbers; 

� URLs and IP addresses; 

� Full face photos and any other comparable images; 

� Medical record numbers, health plan beneficiary numbers, and other account numbers; 

� Device identifiers and serial numbers; and 

� Biometric identifiers, including finger and voice prints. 
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� A limited data set could include the following (potentially identifying) information:

� Admission, discharge, and service dates; 

� Dates of birth and, if applicable, death; 

� Age (including age 90 or over); and

� Five-digit ZIP code or any other geographic subdivision, such as state, county, city, precinct and

their equivalent geocodes (except street address). 

Covered entities such as the Pennsylvania Health Care Cost Containment Council (PHC4), and individual

hospitals must condition the disclosure of the limited data set on execution of a "data use agreement.” The

Pennsylvania Department of Health also requires the execution of a data use agreement for access to

mortality datasets. This agreement: 1) Establishes the permitted uses and disclosures of such information

by the recipient, consistent with the purposes of research, public health, or health care operations; limits

who can use or receive the data; and 2) Requires the recipient to agree not to re-identify the data or contact

the individuals. In addition, the data use agreement must contain adequate assurances that the recipient

will use appropriate physical, technical and administrative safeguards to prevent use or disclosure of the

limited data set other than as permitted by HIPAA and the data use agreement, or as required by law.

Alternatively, if a covered entity becomes aware of a violation of the data use agreement, it must take

reasonable steps to remedy the problem or, if unsuccessful, discontinue disclosure of PHI to the recipient

and report the problem to DHHS.

The minimum necessary standard governs covered entities' disclosures, and recipients' uses, of limited

data sets. The covered entity may place reasonable reliance that a requested disclosure is indeed the

minimum necessary for the stated purposes, or make its own determination that a lesser amount of

information would be sufficient.

All health related records and information pertaining to the involvement of human subjects in the

proposed retrospective research study will be kept strictly confidential and housed on password secured

computers and/or in locked file cabinets at the University of Pittsburgh School of Medicine and Graduate

School of Public Health. Only the study investigators and designated staff will have access to the subject

records and data. Any subject names and/or other personal identifiers will be removed from data forms or

electronic files prior to record filing, database preparation and analysis. Individual subject records will be

identified only by a unique study code to ensure subject confidentiality.

1.2.9 Daily Health Outcomes Database

Individual level health outcomes data for the period from 1999-2006 will obtained from the various health

data collection entities/agencies and assembled initially into a series of separate datasets based on the
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outcome of interest, broadly classified as deaths, hospitalizations, ED visits and potentially physicians’

office visits. Daily counts of the health outcomes of interest (deaths, hospitalizations, ED visits and

potentially physicians’ office visits) will be determined from the individual health records and aggregated

at the county and ZIP Code levels. International Classification of Diseases, Revision 9 [ICD-9] and

Revision 10 (ICD-10) codes will be available in the datasets and will be used to categorize cardiovascular

and respiratory/pulmonary outcomes for sub-analyses of specific diseases. Also available for possible

examination and validation is a “composite daily health effects” count variable that would be used to

quantify, for any given day, all cardiovascular and/or respiratory deaths, hospitalizations, ED visits and

potentially physicians’ office visits for time series analyses. 

1.2.10 Poisson Generalized Autoregressive Moving Average Time Series

Modeling

To model the relationships between PM2.5 mass,  constituent species, and latent source factors on the one

hand and health outcomes on the other, the use of generalized autoregressive moving average (GLARMA)

time series models are proposed. This type of model, as with any “generalized” approach allows the

modeling of the observed daily counts as the discrete outcome from a Poission random variable. The

GLARMA model, however, goes further and allows modeling of the autocorrelation in the error that tends

to exist even after accounting for all measured covariates – something which is ignored by the use of

generalized linear models (GLMs) and generalized additive models (GAMs) and its omission tends to

substantially overestimate the statistical significance of the estimated parameters.

The region to be studied should include Allegheny County and the surrounding nine counties although

data from the larger 35-county region would be used to improve the daily kriged estimates of exposure.

The power analyses indicate that the minimum time period would be three years of daily observed counts

and corresponding exposure factors. Rather than trying to produce one daily time series (for each health

outcome and exposure factor) for a single large region, it is proposed to create separate time series for

each ZIP code area and to treat in a conceptual sense the ZIP code areas as if they were “subjects” in a

longitudinal mixed effects analysis. In this approach, each ZIP code area has its own trajectory over time

and the goal is to include all ZIP code areas in the estimation of the overall relationship between PM2.5 and

each particular health outcome count. The benefits of this approach are that there is less opportunity to

average out the relationship between PM2.5 and health outcome count due to spatial heterogeneity in the

timing of changes in exposure and health outcome among different areas and at the same time the nature

of any spatial heterogeneity in the relationship between PM2.5 and health outcome could be examined. The

power to detect the overall (fixed effect) relationship will be enhanced to the extent there is less

heterogeneity in the time series regression (random effect) coefficients for each ZIP code area.

The overall design is conceptually similar to a longitudinal repeated measures design where each “subject”

or experimental unit is a ZIP code area and the repeated measures are a time series of health outcome
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counts with the inclusion of a number of measured covariates to account for confounding factors.1 The

greater the heterogeneity of the ZIP code areas, the wide the confidence intervals on the model parameters

describing the relationship between the explanatory factors and the health outcome counts.

In a typical longitudinal study, the subjects are typically assumed to be statistically independent. The

analysis using ZIP code areas as the experimental units, however, is complicated by the spatial correlation

likely to exist among the ZIP code areas. The daily health outcome counts of two ZIP code areas are likely

to be correlated (contradicting the usual assumption of statistical independence among the experimental

units) and this correlation is likely to be a function of the average distance between the areas – closer ZIP

code areas are likely to be more highly positively correlated than areas far apart. Thus there is no easy way

to account for this spatial correlation which will impact the statistical significance of estimated parameters

and the widths of the corresponding confidence intervals. To address this problem we propose to use a

spatial bootstrap sampling procedure to incorporate the spatial autocorrelation and make it possible to

assess statistical significance and to produce realistic confidence intervals. The spatial bootstrap is similar

in concept to the block bootstrap which handles temporal correlation and is proposed for use with the

latent variable multivariate receptor modeling.

The spatial bootstrapped GLARMA analysis can be compared to generalized additive models (GAMs) and

generalized linear models (GLMs) which are non-time-series methods and to a case-crossover analysis. In

the GAM/GLM approach, the autocorrelated structure is not necessarily accommodated unless the

explanatory factors completely account for all the effects and the resulting residuals are statistically

independent – a highly unusual and unlikely outcome. Typically, the model consisting of all available

measured exposure factors does not produce temporally uncorrelated residuals. Spatial bootstrapping

could be applied to GAM/GLM models but that would not correct for the temporal correlation.  Case-

crossover designs have the potential for better control of subject heterogeneity given that each subject is

his/her own control. Each event (e.g., an outcome that results in hospitalization of the subject) is a “case”

and the exposure factors at the time of the event are matched to a “control” for the same subject which

occurs at a time point either before, or after, or time points both before and after, the event. Spatial

bootstrap sampling can be applied to the case-crossover analysis to account for spatial dependency

between ZIP code areas.

1.2.11 Assessment of Human Health Effects

The analyses described above allow complex models to be fitted to the observed data that characterize the

relationship between the explanatory exposure factors and the various human health outcome counts.

Having controlled for many if not all plausible confounding factors, the resulting model parameter

coefficients for PM2.5 mass, PM2.5 components, and latent coal-fired particulate emission factors should

reflect the impact of fine particulates on human health. The spatial bootstrap sampling procedure should

produce realistic uncertainty bounds for each estimated parameter in the fitted models.
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2.1 Introduction

The design and feasibility of a retrospective epidemiological study of PM2.5 emitted by coal-fired power

plants in the Pittsburgh, Pennsylvania, region depend strongly upon the quantity and quality of air

monitoring data that were collected in the region during the time period of interest.  

In order to ascertain the health effects of ambient fine particles originating from coal-fired power plants,

several types of air monitoring data are required.  Most importantly, detailed PM2.5 speciation data must be

available, as these data provide a means for differentiating between PM2.5 derived from coal-fired power

plants and PM2.5 derived from other types of sources.  In addition to PM2.5 mass concentrations and basic

compositional data, which include concentrations of major ionic and carbonaceous PM2.5 components such

as sulfate (SO4
2-
), nitrate (NO3

-
), elemental carbon (EC), and organic carbon (OC), the concentrations of

trace element species must be known.  These elements are essential for use as tracers in source

apportionment; for example, Se is commonly used as a marker of primary emissions from coal

combustion (Suarez and Ondov, 2002).  Moreover, in spite of their very small ambient air concentrations,

trace metals may have implications for public health.  A number of trace metal species (i.e., Sb, As, Be,

Cd, Cr, Co, Pb, Mn, Hg, Ni, and Se) are classified as Hazardous Air Pollutants (HAPs) in the 1990 Clean

Air Act Amendments, and toxicological evidence suggests that certain transition metals (e.g., Fe, Zn, Cu,

V) in particulate matter that are not listed as HAPs may nevertheless elicit adverse health responses (e.g.,

Carter et al., 1997; Zelikoff et al., 2002; and Adamson et al., 2000).

Concentrations of gaseous pollutants, including carbon monoxide (CO), nitrogen dioxide (NO2), sulfur

dioxide (SO2), and ozone (O3), must also be available.  The U.S. Environmental Protection Agency (EPA)

has set primary National Ambient Air Quality Standards (NAAQS) for all of these gases because of their

potential to adversely affect public health.  Moolgavkar and Luebeck (1996) and Lipfert and Wyzga

(1997) criticized several early particulate matter epidemiology studies (e.g., Schwartz and Dockery, 1992;

Schwartz et al., 1996) for not adequately considering the potential confounding effects of gases such as

CO and NO2.  Several more recent studies (Moolgavkar, 2003; Villeneuve et al., 2003) that considered

both particulate matter and gaseous pollutants found that gases were more strongly associated with

mortality than was particulate matter.  In Pittsburgh, Chock et al. (2000) reported that although PM10 was

significantly associated with daily mortality among those less than 75 years of age in non-seasonal single-

and multi-pollutant models, the use of seasonal models revealed collinearity problems among

concentrations of PM10, CO, NO2, and O3 (spring and summer), casting doubt upon the findings of the

non-seasonal models.  Hence, a PM2.5 epidemiology study in the Pittsburgh region must consider the

potential for the confounding effects of gaseous pollutants and seasonality.  Potential health effects of

PM10-2.5, the coarse particle fraction that along with PM2.5 constitutes PM10, should be considered as well,

because coarse particles have also been epidemiologically associated with mortality (e.g., Ostro et al.,
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2000; Mar et al., 2000).

Finally, meteorological data must be available.  The epidemiological models must account for the effects

of variables such as temperature and relative humidity. Knowledge of wind speed and direction may also

aid source apportionment or geostatistical modeling.  

Thus, the feasibility of performing a retrospective epidemiology study of PM2.5 and its components in the

Pittsburgh region depends on the ability, at a minimum, to assemble a nearly continuous stream of daily

average values of all of these variables such that: (1) the values provide a representative estimate of the

exposure of the population being considered, and (2) the data stream is contiguous enough to provide, in

conjunction with the size of the population being considered, sufficient results so that the advanced

statistical techniques employed can produce reliable and valid conclusions.

A number of air monitoring campaigns collected PM2.5 mass, PM2.5 speciation, co-pollutant, and

meteorological data in Pittsburgh and surrounding areas between 1999 and 2005, and several of these

campaigns have succeeded in applying source apportionment methodologies to PM2.5 speciation data in

order to resolve time series representing the probable contribution of coal-fired power plants to ambient

PM2.5 in the region (e.g., Pekney et al., 2005; Maranche, 2006; Connell et al., 2006; Martello et al., 2006).

However, these air monitoring campaigns generally were not designed with the intent of providing data

for an epidemiology study.  As a result, it is unlikely that any single air monitoring site in the Pittsburgh

region collected a sufficient quantity of data to permit such a study to be performed.  It is likely, though,

that information from the numerous monitoring sites that operated in the Pittsburgh region during 1999-

2005 can be combined to provide daily estimates of the region’s exposure to PM2.5, PM2.5 components, co-

pollutants, and pertinent meteorological parameters over a sufficiently long period for a time series

epidemiology study focusing on the effects of these variables.  Compared with exposure monitoring for a

prospective epidemiology study, in which the monitoring site locations, sampling schedule, sampling and

analytical methodologies, and quality control procedures are designed specifically to meet the study’s

needs, the exposure data for the proposed retrospective study in Pittsburgh must be derived from

monitoring activities that have already been conducted.  As such, there are a number of challenges

associated with merging these data into a coherent exposure database for use in the study, which arise

because the data from the various sites were collected during different time periods, at different

frequencies and time resolutions, and using different measurement techniques.  If these challenges can be

overcome, however, the cost and time required for performing a retrospective study using the Pittsburgh

region’s valuable, expansive set of existing air monitoring data is expected to be substantially less than the

cost and time required for performing a prospective study with its associated sampling and analytical

requirements.

Hence, a major goal of the current study was to determine whether there is a sufficient quantity and

quality of air monitoring data available for the Pittsburgh region from 1999-2005 to permit a retrospective

epidemiologic study of PM2.5 resulting from coal-fired power plant emissions, and if so, to develop a plan
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for using these data in such a study.  This goal was accomplished by completing a series of four subtasks,

as follows:

1. Inventory existing PM2.5 (mass and speciation), co-pollutant, and meteorological data that are

available from the Pittsburgh region during the time period of interest

2. Inventory archived filters that might be analyzed to augment the speciated PM2.5 data record for the

Pittsburgh region during the time period of interest

3. Assess the quality and comparability of the available air monitoring data

4. Develop a plan for the construction of an air monitoring database for use in a retrospective

epidemiologic study of PM2.5 and its components

The results of these subtasks are discussed in the subsections below.

2.2 Inventory of Existing Air Monitoring Data

As discussed above, the design of a retrospective time series epidemiologic study of ambient PM2.5 and its

components in the Pittsburgh region is constrained by the availability of air monitoring data from the

region, which are needed in the time series model to serve as surrogates for the daily exposures of the

region’s population to PM2.5 from coal-fired power plants, PM2.5 from other sources, co-pollutants, and

various other potential confounding factors (e.g., temperature and humidity).  Hence, prior to designing

the study, a comprehensive inventory of existing air monitoring data available from the Pittsburgh region

during the time period of interest was completed.

Because of the retrospective nature of the proposed epidemiology study, the study region is defined

largely by the availability of existing air monitoring and health outcomes data.  (This is in contrast to a

prospective study, in which the data collection strategy would likely be tailored to a pre-defined region of

interest).  Hence, all monitoring sites located in a relatively large 35-county region surrounding Pittsburgh

were considered as part of the air monitoring data inventory.  The counties constituting this region are

listed in Table 1.  Although the final study design may focus on a smaller area, monitoring data from this

larger region will nevertheless be useful for assessing the spatial variability of pollutants and informing

geostatistical models used to compute exposure estimates.  

Table 1: Counties considered in air monitoring data inventory.

State County State County

MD Garrett PA Greene

OH Belmont PA Indiana

OH Carroll PA Jefferson
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State County State County

OH Columbiana PA Lawrence

OH Guernsey PA Mercer

OH Harrison PA Somerset

OH Jefferson PA Venango

OH Mahoning PA Washington

OH Monroe PA Westmoreland

OH Noble WV Brooke

OH Trumbull WV Hancock

PA Allegheny WV Marion

PA Armstrong WV Marshall

PA Beaver WV Monongalia

PA Butler WV Ohio

PA Cambria WV Preston

PA Clarion WV Wetzel

PA Fayette

There are a number of sources of PM2.5 mass, PM2.5 speciation, co-pollutant, and meteorological data from

this 35-county region between 1999 and 2005, as follows:

• The U.S. Environmental Protection Agency’s Air Quality System (AQS) 

AQS includes numerous monitoring sites located throughout the region that sampled for some or all of

the parameters of interest between 1999 and 2005.  The AQS sites in Allegheny County, Pennsylvania

are operated by the Allegheny County Health Department (ACHD); those in the western Pennsylvania

counties other than Allegheny are operated by the Pennsylvania Department of Environmental

Protection (PA DEP); those in eastern Ohio are operated by the Ohio Environmental Protection

Agency (Ohio EPA) or Mahoning-Trumbull Air Pollution Control Agency, and those in northwestern

West Virginia are operated by the West Virginia Department of Environmental Protection (WV DEP).

AQS data were obtained from the U.S. EPA’s Technology Transfer Network

(http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm) for purposes of this inventory.

• The National Energy Technology Laboratory Office of Science and Technology (NETL/OST)

Monitoring Site

The NETL/OST site was situated on the U.S. Department of Energy (DOE) National Energy

Technology Laboratory (NETL) campus in Bruceton, which is located in a suburban area of southern

Allegheny County, Pennsylvania.  The site operated from July 1999 through September 2004, and it

measured PM2.5 mass concentrations, gaseous pollutant concentrations, and meteorological conditions

during much or all of this period, while also including various measurements of PM2.5 chemical

components and intermittent measurements of PM10 mass concentrations.  The site was operated by
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DOE-NETL/OST; data collected there were obtained from Don Martello of DOE-NETL for use in the

inventory presented here.

• The Pittsburgh Air Quality Study (PAQS)

PAQS included extensive air monitoring between May 2001 and September 2002 at a “supersite” in

Schenley Park, which is located in the Oakland section of the City of Pittsburgh.  PM2.5 mass

concentrations, PM2.5 chemical composition, gaseous pollutant concentrations, PM10 mass

concentrations, and meteorological conditions were monitored at the site during most or all of this

period.  PAQS was conducted by Carnegie Mellon University, with funding provided by the U.S. DOE

and U.S. EPA.  Data collected as part of PAQS were obtained from the DOE-NETL Air Quality

Database project (http://www.pmdata.org) or from Allen Robinson, one of the PAQS program’s

principal investigators.

• The Upper Ohio River Valley Project (UORVP)

UORVP included three monitoring sites that were collocated with AQS sites in the Lawrenceville

section of Pittsburgh, in Holbrook, Greene County, Pennsylvania, and in Morgantown, Monongalia

County, West Virginia.  The Lawrenceville and Holbrook sites included intermittent filter-based

measurements of PM2.5 mass, PM2.5 chemical composition, and PM10 mass between February 1999 and

January 2002, and the Lawrenceville site also featured daily PM2.5 mass and speciation sampling from

October 2002 through February 2003.  PM2.5, PM10 (Lawrenceville only), gaseous pollutants, and

meteorological conditions were also monitored continuously at the sites during the study period.  The

Morgantown site included a limited amount of PM2.5 mass sampling between 1999 and 2001 to

supplement the sampling being conducted there by the WV DEP.  UORVP was conducted by

Advanced Technology Systems, Inc. (ATS) under an award from the U.S. DOE; data from the

program were obtained from the DOE-NETL Air Quality Database project (http://www.pmdata.org).

• The Steubenville Comprehensive Air Monitoring Program (SCAMP) 

SCAMP included five monitoring sites located in Ohio, West Virginia, and Pennsylvania that operated

between May 2000 and May 2002.  The central monitoring site on the campus of Franciscan

University of Steubenville in Steubenville, Ohio, measured PM2.5 mass, PM2.5 composition, PM10 and

gaseous pollutant concentrations, and meteorological conditions.  The four satellite sites, which were

located in Wheeling, West Virginia, Tomlinson Run State Park, West Virginia, Hopedale, Ohio, and

Latrobe, Pennsylvania, measured PM2.5 mass and certain PM2.5 species.  The SCAMP ambient air

monitoring program was conducted by CONSOL Energy Inc. Research & Development under a

cooperative agreement with the U.S. DOE; the SCAMP data used in this inventory were obtained from

CONSOL’s databases from the project.

• The Clean Air Status and Trends Network (CASTNet)

Two sites from the U.S. EPA’s CASTNet that are located in the 35-county greater Pittsburgh region

collected PM2.5 mass and chemical speciation data between March 1999 and May 2001.  These are the

PITT-PM 39



2.2 Inventory of Existing Air Monitoring Data

M.K. Goddard site in Mercer County, Pennsylvania, and the Quaker City site in Noble County, Ohio.

Both of these sites, as well as the CASTNet’s Laurel Hill site, also collected O3 and meteorological

data throughout the time period of interest.  CASTNet data were obtained from the Interagency

Monitoring of Protected Visual Environments (IMPROVE) online database

(http://vista.cira.colostate.edu/improve) and from the CASTNet online database

(http://epa.gov/castnet/).

• Interagency Monitoring of Protected Visual Environments (IMPROVE)

Four IMPROVE sites located in the 35-county greater Pittsburgh region collected PM2.5 mass

concentration, PM2.5 chemical composition, and PM10 mass concentration data during the time period

of interest.  These are the M.K. Goddard and Quaker City sites, which began sampling in the spring of

2001 when CASTNet PM2.5 sampling was discontinued, the Pittsburgh site, which is collocated with

the AQS site at Lawrenceville and began sampling in April 2004, and the Frostburg site, which is

located in Garrett County, Maryland, and likewise began sampling in April 2004.  IMPROVE data

were obtained from the IMPROVE on-line database (http://vista.cira.colostate.edu/improve).

• Federal Aviation Administration Automated Surface Observing System (ASOS) / Automated

Weather Observing System (AWOS)

Meteorological data from the time period of interest are available from ASOS/AWOS stations located

at airports throughout the 35-county greater Pittsburgh region.  These data can be obtained from the

National Climatic Data Center (NCDC) (http://www.ncdc.noaa.gov/oa/climate/climatedata.html) or

from the Pennsylvania MESONET (http://pasc.met.psu.edu/MESONET/archive/alldatainv.html).

• Roadway Weather Information System (RWIS)

Meteorological data were also collected by the Pennsylvania Department of Transportation’s

(PennDOT’s) RWIS.  Data from late 2001 to the present are available from the Pennsylvania

MESONET (http://pasc.met.psu.edu/MESONET/archive/alldatainv.html).

Data from each of these sources were obtained as indicated above, and inventories were performed for

each parameter of interest.  The inventories were generally conducted in accordance with the checklist that

is included in Appendix A to this report.  Because of the large quantity of PM2.5 total mass, PM10 total

mass, gaseous pollutant (i.e., SO2, NO2, CO, O3), and meteorological data that were collected in the 35-

county region between 1999 and 2005, it was not practical to perform a day-by-day inventory of these

data.  Rather, the data were reviewed to determine the time period, frequency, time resolution, and method

of collection for each parameter at each monitoring site.  Any prolonged periods of missing or invalid data

were also noted. 

PM2.5 chemical speciation data from the greater Pittsburgh region are much less abundant than PM2.5 and

PM10 total mass dta and gaseous pollutant data during the 1999-2005 time period because of the cost and

level of effort associated with determining PM2.5 speciation, and because collection of these data is not
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required to assess compliance with a NAAQS.  Hence, because the design and feasibility of the proposed

epidemiology study depend strongly upon the availability of these speciation data, a day-by-day inventory

was performed for each PM2.5 chemical constituent at each monitoring site in the 35-county greater

Pittsburgh region in order to ensure an accurate assessment of the quantity of existing data.  The inventory

results are stored in the “AvailableData” database that is included on the CD accompanying this report.

The database, which was developed to be consistent with the checklist provided in Appendix A, uses

codes of “1” (data available) and “0” (no data available) to indicate with a daily resolution whether PM2.5

mass data (daily and hourly), PM2.5 ion data (SO4
2-, NO3

-, Cl-, NH4
+, K+, Na+, continuous SO4

2-, continuous

NO3
-), PM2.5 carbon data (elemental carbon, organic carbon, continuous elemental and organic carbon),

PM2.5 elemental composition data (40 elements), PM2.5 water-soluble elemental composition data, and

PM10 data (daily and hourly) are available.  Fields and sub-tables are also included to house information

about the sampling and analytical methods used to produce the data.  A diagram of the database design is

provided as Appendix B.

Certain measurements were made with a finer-than-daily time resolution.  These include all continuous or

semi-continuous measurements, as well as certain filter-based measurements that involved collection of

multiple filters throughout the course of a day.  For these measurements, data were considered to be

available for a given day (i.e., a “1” was assigned) only if valid observations covering at least 19 hours

(i.e., 79%) of the day were available.  Similarly, measurements in which a single filter was exposed for

greater than 29 hours were considered to be invalid.  Otherwise, a measurement was only considered to be

invalid if it was qualified as such according to the quality assurance / quality control (QA/QC) procedures

followed by the group responsible for collecting and reporting the data, if no value was reported, or if the

reported value was physically unreasonable (in cases where the data had not yet undergone stringent

QA/QC).  Data that were “flagged” but not marked as invalid were considered to be valid for purposes of

this inventory.  QA/QC procedures followed by the various monitoring programs identified above are

discussed in Section 2.4.3 of this report.  Finally, for cases in which collocated measurements of a

parameter were made using different methods on a given day at a given site, only the preferred method is

cited in the AvailableData database.

Inventory results for all of the parameters of interest are summarized below.

2.2.1 PM2.5 Mass Concentration Data

Table 2 summarizes inventory results for PM2.5 mass concentration data collected by monitoring sites in

the 35-county greater Pittsburgh region between 2000 and 2005.  There were 47 monitoring sites that

measured ambient PM2.5 mass concentrations during some or all of this period. (A number of these sites

also collected PM2.5 data in 1999, but a site-by-site inventory was not performed for that year).  Sixteen of

these sites were located in Allegheny County, and 23 were located in the seven-county Pittsburgh

Metropolitan Statistical Area (MSA) comprising Allegheny, Armstrong, Beaver, Butler, Fayette,
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Washington, and Westmoreland counties in western Pennsylvania. Figure 2 presents a map showing the

locations of the PM2.5 monitoring sites. To provide some indication of the value of the sites for

characterizing the exposure of the region’s population, the site locations are layered over a plot of

population density.
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Table 2: Summary of PM2.5 total mass concentration data collected by monitoring sites in the 35-county greater Pittsburgh

region between 2000 and 2005.

Site Name / ID State County Latitude, Longitude Program

Sampling

Method

Approximate 

Sampling Period
a

Approximate Sampling

Schedule

FRRE1 MD Garrett 39.7058N 79.0122W IMPROVE IMPROVE Apr 2004 – 2005 1 in 3 days

Hopedale OH Harrison 40.32N 80.90W SCAMP FRM May 2000 – May 2002 Daily

390810016 OH Jefferson 40.3628N 80.6156W AQS FRM Jan 2000 – Oct 2003 1 in 3 days

390810017 OH Jefferson 40.3661N 80.6150W AQS
FRM

b

TEOM

Nov 2003 – 2005

Apr 2004 – 2005

1 in 3 days

Continuous

390811001 OH Jefferson 40.3219N 80.6064W AQS FRM Jan 2000 – 2005

Daily (until 1/31/04)

1 in 6 days (2/3/04 –

2005)

Franciscan U. of

Steubenville
OH Jefferson 40.38N 80.62W SCAMP

FRM
b

TEOM

May 2000 – May 2002

June 2000 – May 2002

Daily

Continuous

390990005 OH Mahoning 41.1111N 80.6453W AQS FRM Jan 2000 – 2005
Daily (through 2004)

1 in 6 days (2005)

390990014 OH Mahoning 41.0959N 80.6584W AQS

FRM
b

TEOM

Oct 2002 – 2005

Oct 2002 – 2005

Daily (through 2004)

1 in 3 days (2005)

Continuous

QAK272/572

QUCI1
OH Noble 39.9428N 81.3378W

CASTNet

IMPROVE

CASTNet

IMPROVE

Jan 2000 – Apr 2001

May 2001 – 2005

1 in 6 days

1 in 3 days

391550007 OH Trumbull 41.2142N 80.7875W AQS FRM Jan 2000 – 2005
Daily (through 2004)

1 in 3 days (2005)

420030008 PA Allegheny 40.4656N 79.9611W AQS
c FRM

b

TEOM

Jan 2000 – 2005

May 2000 – 2005

Daily

Continuous

420030021 PA Allegheny 40.4136N 79.9414W AQS FRM
b

Jan 2000 – 2005 1 in 3 days

420030064 PA Allegheny 40.3236N 79.8683W AQS
FRM

b

TEOM

Jan 2000 – 2005

Jan 2000 – 2005

Daily

Continuous

420030067 PA Allegheny 40.3819N 80.1856W AQS FRM Jan 2000 – 2005 1 in  3 days

420030093 PA Allegheny 40.6072N 80.0208W AQS FRM Jan 2000 – 2005 1 in 6 days

420030095 PA Allegheny 40.4869N 80.1881W AQS FRM Jan 2000 – 2005 1 in 6 days

420030097 PA Allegheny 40.5531N 80.2033W AQS FRM Jan 2000 – Dec 2000 1 in 6 days

420030116 PA Allegheny 40.4736N 80.0772W AQS FRM Jan 2000 – 2005 1 in 3 days

420030131 PA Allegheny 40.2894N 80.0050W AQS FRM Jan 2000 – Feb 2003 1 in 6 days

420030133 PA Allegheny 40.2601N 79.8865W AQS FRM Feb 2003 – 2005 1 in 6 days

420031008 PA Allegheny 40.6186N 79.7272W AQS FRM Jan 2000 – 2005 1 in 3 days

420031301 PA Allegheny 40.4025N 79.8603W AQS FRM Jan 2000 – 2005 1 in 3 days

420033007 PA Allegheny 40.2944N 79.8867W AQS FRM Jan 2001 – 2005 1 in 6 days

420039002 PA Allegheny 40.5469N 79.7839W AQS FRM Jan 2000 – 2005 1 in 6 days

Bruceton PA Allegheny 40.3065N 79.9794W NETL/OST
FRM

b

TEOM

Jan 2000 – Jun 2004

Jan 2000 – Sep 2004

Daily

Continuous
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Site Name / ID State County Latitude, Longitude Program

Sampling

Method

Approximate 

Sampling Period
a

Approximate Sampling

Schedule

Schenley Park PA Allegheny 40.4395N 79.9405W PAQS
FRM

b

TEOM

May 2001 – Jun 2002

Jul 2001 – Aug 2002

Daily

Continuous

420050001 PA Armstrong 40.8142N 79.5650W AQS TEOM Jan 2000 – 2005 Continuous

420070014 PA Beaver 40.7478N 80.3167W AQS
FRM

TEOM

Jan 2000 – 2005

Jul 2004 – 2005

1 in 3 days

Continuous

420210011 PA Cambria 40.3097N 78.9150W AQS
FRM

TEOM

Jan 2000 – 2005

Aug 2004 – 2005

1 in 3 days

Continuous

Holbrook PA Greene 39.8162N 80.2846W UORVP
FRM/SFS

TEOM

Jan 2000 – Jan 2002

Jan 2000 – Jul 2002

Intermittent

Continuous

420850100 PA Mercer 41.2150N 80.4850W AQS FRM Apr 2000 – 2005 Daily

MKG513

MKG01
PA Mercer 41.4269N 80.1453W

CASTNet

IMPROVE

CASTNet

IMPROVE

Jan 2000 – May 2001

Apr 2001 – 2005

1 in 6 days

1 in 3 days

421250005 PA Washington 40.1467N 79.9022W AQS FRM Jan 2000 – 2005 1 in 3 days

421250200 PA Washington 40.1706N 80.2614W AQS FRM Jan 2000 – 2005 1 in 3 days

421255001 PA Washington 40.4453N 80.4208W AQS FRM/FEM
b

Jan 2000 – 2005 Daily

421290008 PA Westmoreland 40.3047N 79.5057W AQS FRM/FEM
b

Jan 2000 – 2005 1 in 3 days

St. Vincent College PA Westmoreland 40.29N 79.40W SCAMP FRM May 2000 – May 2002 Daily

540090005 WV Brooke 40.3381N 80.5972W AQS FRM Jan 2000 – 2005 1 in 3 days

540290011 WV Hancock 40.3945N 80.6120W AQS FRM Jan 2000 – 2005 1 in 3 days

540291004 WV Hancock 40.4215N 80.5809W AQS FRM Jan 2000 – 2005 1 in 3 days

Tomlinson Run State

Park
WV Hancock 40.54N 80.58W SCAMP FRM May 2000 – May 2002 Daily

540490006 WV Marion 39.4808N 80.1353W AQS FRM Jan 2000 – 2005 1 in 3 days

540511002 WV Marshall 39.9160N 80.7341W AQS FRM
b

Jan 2000 – 2005 1 in 3 days

540610003 WV Monongalia 39.6494N 79.9211W AQS
d

FRM
b

Jan 2000 – 2005 1 in 3 days

540690008 WV Ohio 40.0638N 80.7205W AQS FRM Jan 2000 – Dec 2004 1 in 3 days

540690010 WV Ohio NA NA AQS FRM 2005 1 in 3 days

Wheeling Jesuit

University
WV Ohio 40.07N 80.69W SCAMP FRM May 2000 – May 2002 Daily

Notes: FRM = Federal Reference Method. FEM = Federal Equivalent Method. TEOM = tapered element oscillating

microbalance. SFS = sequential filter sampler. aSome sites had prolonged periods of missing data within the listed time frame.
bTwenty-four hour average PM2.5 mass concentrations are also available from speciation or other sampler data for days on which

speciation or other sampling was performed at this site.  These data fall within the date range and frequency listed for the FRM

sampler and are therefore not listed separately in the table.  cPM2.5 mass data for this site also available from the UORVP and

IMPROVE monitoring programs.  dPM2.5 mass data for this site also available from the UORVP monitoring program.
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As shown in Figure 2 the PM2.5 monitoring sites are spatially well distributed throughout the region.

Monitoring sites were located in or near most areas of high population density during at least part of the

time period of interest, and several monitoring sites were located in less densely populated areas to

provide an indication of ambient PM2.5 concentrations in more rural portions of the region.   Nine of the 47

sites measured PM2.5 mass concentrations on a 1-in-1 day frequency for at least a four-year period during

2000-2005.  These sites are denoted with green stars in Figure 2, because they are the sites that are

capable of providing the time series of daily PM2.5 mass concentration data that would be required for a

retrospective time series epidemiologic study.  The 38 remaining sites, which are indicated with blue dots,

measured PM2.5 on a less-than-daily frequency or during a shorter period of time than the “important”

sites; however, these sites may nevertheless be useful for developing a spatial model of PM2.5

concentrations in the region that can be used to improve exposure estimates.

Three of the nine “important” sites are located in Allegheny County: the Lawrenceville site (420030008),

which is situated in an urban area of the City of Pittsburgh, the Liberty Borough site (420030064), which

is situated in the Monongahela River Valley near a major coke production facility, and the Bruceton site,

which is situated in a suburban area of southern Allegheny County.  Two more are located in

comparatively remote areas in Florence, Washington County (421255001) to the west of Pittsburgh, and in

Kittanning, Armstrong County (420050001) to the northeast of Pittsburgh.  The remaining four are located

in or near Mingo Junction, Ohio (390811001), Youngstown, Ohio (390990005), Warren, Ohio

(391550007), and Sharon, Pennsylvania (420850100).

2.2.2 PM2.5 Chemical Speciation Data

As discussed above, a day-by-day inventory of PM2.5 chemical speciation data was performed for each

monitoring site in the 35-county greater Pittsburgh region that collected these data between 1999 and

2005. Table 3 provides an overview of these inventory results for the 15 sites in the region that monitored

for a complete suite of PM2.5 chemical components, including ions, carbon, and trace and crustal elements,

during some or all of the time period of interest.  For each monitoring site, the “number of days with

complete PM2.5 speciation” is the number of days for which fine particulate SO4
2-, NO3

-, EC, OC, and

elemental (for at least 15 elements) mass concentration data were all determined and valid during the same

24-hour period.  (Ammonium, which constitutes a substantial portion of the total mass of ambient PM2.5 in

the Pittsburgh region, is not included in the definition of “complete PM2.5 speciation,” because fine

particulate NH4
+ is almost entirely associated with SO4

2- and NO3
-, and its concentration can be estimated

from concentrations of these species).  Figure 3 shows the locations of the PM2.5 speciation monitoring

sites that are listed in Table 3  Figure 4 presents a time line showing the days on which PM2.5 speciation

sampling occurred at the various monitoring sites.

As shown in Table 3, the site with the greatest number of days of existing, complete PM2.5 speciation data

is the Lawrenceville site in the City of Pittsburgh.  This site is an important source of exposure
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information for the proposed epidemiology study because of its abundance of existing data and its central

location within the region’s most densely populated area.  Three monitoring campaigns collected PM2.5

speciation data at the Lawrenceville site between 1999 and 2005: AQS, UORVP, and IMPROVE.  AQS

monitoring, conducted by ACHD, produced 422 days with complete PM2.5 speciation as a result of

predominantly 1-in-3 day sampling between June 30, 2001, and April 10, 2005.  If the UORVP data are

merged with the AQS data, the total number of days with complete speciation data increases to 587

between February 17, 1999, and April 10, 2005), and if the IMPROVE data are merged with the AQS and

UORVP data, the total number of days increases to 603.  Also, for purposes of conducting a PM2.5 time-

series epidemiology study, it is ultimately necessary to assemble an exposure database containing data for

each day of the study (as opposed to data for every third or sixth day).  The UORVP monitoring activities

provided a 5-month stream of 1-in-1 day PM2.5 speciation data for the period between October 1, 2002,

and February 27, 2003, which will be useful for assembling such an exposure database for the Pittsburgh

region.

The M.K. Goddard site in Mercer County, Pennsylvania, and the Quaker City site in Noble County, Ohio,

have the second and third largest numbers of days with complete PM2.5 speciation of the 15 sites listed in

Table 3.  Each of these sites performed PM2.5 speciation measurements on a 1-in-6 day frequency between

March 1999 and May 2001 as part of the CASTNet program, and on a 1-in-3 day frequency between

spring 2001 and the present as part of the IMPROVE program.  However, because of their less-than-daily

sampling frequencies and their locations in remote areas more than 100 km from the City of Pittsburgh,

these sites are of less importance than the Lawrenceville site for representing the exposure of the region’s

population to chemical components of PM2.5.
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Figure 3: PM2.5 speciation monitoring sites in the 35-county greater Pittsburgh region, 1999-2005.
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Table 3: Overview of data inventory results for sites in the 35-county greater Pittsburgh region that collected PM2.5  speciation

data between 1999 and 2005.

Site

Site Network

Code(s) County, State

Latitude,

Longitude Program

Approximate

Period of PM2.5

Speciation

Sampling
a

Approximate

Frequency of

PM2.5

Speciation

Sampling

Number of

Days with

Complete

PM2.5

Speciation
b

Bruceton

(BRU)
NA Allegheny, PA

40.3065N

79.9794W
NETL/OST 10/28/99 – 09/30/01 Intermittent 171

Florence

(FLO)
421255001

Washington,

PA

40.4453N

80.4208W
AQS 06/30/01 – 04/10/05 1 in 6 daysc 254

Franciscan U.

(FRA)
NA Jefferson, OH

40.38N

80.62W
SCAMP 08/16/00 – 05/06/02 1 in 4 days 104

Frostburg

(FRO)
FRRE1 Garrett, MD

39.7058N

79.0122W
IMPROVE 04/18/04 – 12/29/04 1 in 3 days 83

Greensburg

(GRE)
421290008

Westmoreland,

PA

40.3047N

79.5057W
AQS 06/30/01 – 04/10/05 1 in 6 daysc 256

Hazelwood

(HAZ)
420030021 Allegheny, PA

40.4136N

79.9414W
AQS 06/30/01 – 09/30/03 1 in 6 daysc 145

Holbrook

(HOL)
NA Greene, PA

39.8162N

80.2846W
UORVP 02/17/99 – 08/8/01 Intermittent 97

Lawrenceville

(LAW)

420030008,

PITT1
Allegheny, PA

40.4656N

79.9611W

AQS, UORVP,

IMPROVE
02/17/99 – 04/10/05 Intermittentd 603

Liberty

(LIB)
420030064 Allegheny, PA

40.3236N

79.8683W
AQS 10/6/03 – 04/10/05 1 in 6 days 74

M. K.

Goddard

(MKG)

MKG01,

MKG513
Mercer, PA

41.4269N

80.1453W

IMPROVE,

CASTNet
03/01/99 – 12/29/04 Intermittente 561

Moundsville

(MOU)
540511002 Marshall, WV

39.9178N

80.7342W
AQS 06/02/04 – 04/10/05 1 in 6 days 53

Quaker City

(QUA)

QUCI1,

QAK272,

QAK572

Noble, OH
39.9428N

81.3378W

IMPROVE,

CASTNet
03/01/99 – 12/29/04 Intermittentf 559

Schenley Park NA Allegheny, PA 40.4395N PAQS 07/01/01 – 07/20/02 Daily 333
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Site

Site Network

Code(s) County, State

Latitude,

Longitude Program

Approximate

Period of PM2.5

Speciation

Sampling
a

Approximate

Frequency of

PM2.5

Speciation

Sampling

Number of

Days with

Complete

PM2.5

Speciation
b

(SCH) 79.9405W

Steubenville

(STE)
390810017 Jefferson, OH

40.3661N

80.6150W
AQS 08/01/04 – 4/10/05 1 in 6 days 33

Youngstown

(YOU)
390990014 Mahoning, OH

41.0958N

80.6584W
AQS 02/13/02 – 04/10/05 1 in 6 days 183

aAt the time of the inventory, data were available for the AQS sites through 4/10/05 and for the IMPROVE sites through 12/29/04.  b“Complete PM2.5 speciation” defined

as including SO4
2-, NO3-, elemental carbon, organic carbon, and elemental (for at least 15 elements) mass concentration data.  cPM2.5 speciation was determined at a

higher frequency during several monitoring intensives, but in some cases was not determined at all for prolonged periods following the intensives.  dAQS speciation

monitoring occurred on an approximately 1-in-3 day frequency from 6/30/01-4/10/05, although speciation was determined at a higher frequency during several

monitoring intensives, and in some cases was not determined at all for prolonged periods following the intensives.  UORVP speciation monitoring occurred between

2/17/99 and 2/27/03, and included daily speciation monitoring from 10/1/02-2/27/03.  IMPROVE speciation monitoring occurred on a 1-in-3 day frequency from 4/18/04

- 12/29/04.  eCASTNet speciation monitoring occurred on a 1-in-6 day frequency from 3/1/99 - 5/31/01; IMPROVE speciation monitoring occurred on a 1-in-3 day

frequency from 4/19/01 - 12/29/04.  fCASTNet speciation monitoring occurred on a 1-in-6 day frequency from 3/1/99 - 5/1/01; IMPROVE speciation monitoring

occurred on a 1-in-3 day frequency from 5/4/01 - 12/29/04.
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Figure 4: Time line showing the days for which a complete set of PM2.5 speciation data (as defined in the text) are available from

the sites in the 35-county greater Pittsburgh region that monitored for PM2.5 speciation between 1999 and 2005.  Sites in the top

portion of the plot are located in Allegheny County; sites in the middle portion are located in the Pittsburgh MSA, and sites in the

lower portion are located outside of the Pittsburgh MSA.
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Table 4: Detailed summary of PM2.5 speciation data availability by species and monitoring site for the 35-

county greater Pittsburgh region between 1999 and 2005. Inventory for 2005 does not include all data

collected in that year.  At the time of the inventory, data were available for the AQS sites through 4/10/05

and for the IMPROVE sites through 12/29/04.

Site

Number of Days With:

Sulfate Nitrate EC/OC Elements

Complete

Speciation

Bruceton 996 1062 1078 206 171

Florence 255 255 255 256 254

Franciscan University of Steubenville 151 151 142 127 104

Frostburg 83 83 83 83 83

Greensburg 259 259 259 260 256

Hazelwood 146 146 146 146 145

Holbrook 97 97 97 97 97

Hopedale 129 129 0 0 0

Lawrenceville 606 606 605 604 603

Liberty 75 75 75 74 74

M.K. Goddard 569 569 566 564 561

Moundsville 53 53 53 53 53

Quaker City 563 563 564 562 559

Schenley Park 399 374 398 375 333

Steubenville 33 33 33 34 33

St. Vincent College 155 155 0 0 0

Tomlinson Run State Park 161 161 0 0 0

Wheeling Jesuit University 96 96 0 0 0

Youngstown 187 187 185 184 183

The PAQS monitoring site in Pittsburgh’s Schenley Park collected a complete set of PM2.5 speciation data

on 333 (86%) of the days between July 1, 2001, and July 20, 2002.  Although this site only operated for

approximately one year, it is an important source of PM2.5 speciation information for the proposed

epidemiology study during that period because of its 1-in-1 day sampling frequency and its location in

central Allegheny County.  The Schenley site is located only about 3 km from the Lawrenceville site; the

feasibility of using data from these sites interchangeably is explored in Section 2.4 of this report.

The remaining 11 monitoring sites listed in Table 3 each collected a complete set of PM2.5 speciation data

on less than 300 days during the inventoried period.  Among these sites, the AQS sites in Florence and

Greensburg had the greatest number of days (254 and 256, respectively) with complete PM2.5 speciation.

Although PM2.5 speciation was only determined every sixth day for these sites, these data are nevertheless
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useful for assessing the spatial variability of PM2.5 in the immediate Pittsburgh vicinity.  As shown in

Figure 3 the PM2.5 speciation monitoring sites in Allegheny County cover only a narrow region extending

approximately due south from the City of Pittsburgh in the center of the county to Bruceton and Liberty in

the southern part of the county.  Speciation data collected at the Florence and Greensburg sites could be

utilized to model exposures in the western and eastern portions of the county, respectively.

Although the quantification of PM2.5 speciation data presented in Table 3 accurately reflects the amount of

speciation monitoring conducted at most of the sites in the 35-county greater Pittsburgh region, its

exclusion of days for which some but not all of the desired PM2.5 components were measured understates

the importance of several monitoring sites in the region.  Thus, Table 4 summarizes the PM2.5 speciation

data inventory results for each monitoring site by individual PM2.5 component (components that were

generally determined from a common sample, including carbonaceous species and elemental species, are

grouped together in the table).  Appendix C presents time lines, similar to the one presented in Figure 4,

for these individual components.

As shown in Table 4, PM2.5 speciation data, including fine particulate SO4
2- and NO3

- mass concentrations

(as well as mass concentrations of water-soluble elemental components of PM2.5, which are not indicated

in the table), were measured at several monitoring sites that did not sample for a complete suite of PM2.5

components, and hence are not included in Table 3 or in Figure 3.  These include the SCAMP sites at

Hopedale, Ohio (HOP); St. Vincent College in Latrobe, Pennsylvania (STV); Tomlinson Run State Park,

West Virginia (TOM); and Wheeling Jesuit University in Wheeling, West Virginia (WHE).  Moreover, for

a few sites, including the SCAMP site at Franciscan University of Steubenville and the PAQS site at

Schenley Park, the number of days having a complete set of PM2.5 speciation data is substantially less than

the number of days having data for individual PM2.5 components, reflecting the effects of scattered cases

of missing or invalid data for individual PM2.5 components on the inventory results for “complete

speciation.”

The results presented in Table 3 particularly understate the amount of PM2.5 speciation data collected at

the NETL/OST Bruceton monitoring site.  As indicated in Table 3, complete sets of PM2.5 speciation data

are available for only 171 days at the Bruceton site between October 28, 1999, and September 30, 2001.

However, this low count results from the fact that only a small portion of the PM2.5 samples that were

collected at the site have been submitted for elemental analysis.  (Per Section 2.3 of this report, these

samples, which are still being archived, may be analyzed as part of the proposed epidemiology study to

appreciably enhance amount of PM2.5 speciation data available from the Bruceton site.)  As shown in

Table 4, SO4
2-, NO3

-, and EC and OC mass concentrations were each determined at the Bruceton site on

approximately 1000 days during the period of interest.  Sulfate data were collected between October 18,

1999, and May 4, 2004; nitrate data were collected between October 18, 1999, and March 20, 2004, and

carbon data were collected between August 20, 1999, and June 1, 2003.  It is noteworthy that many of

these data were measured using semi-continuous monitors that may exhibit appreciable bias or
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imprecision relative to the filter-based techniques that were commonly employed by other monitoring sites

in the region.  The implications of using these semi-continuous speciation data are explored in Section 2.4

of this report.  Nevertheless, the Bruceton monitoring site, like the Lawrenceville and Schenley Park sites,

is an important source of PM2.5 speciation information because of its long period of daily monitoring and

its location in Allegheny County.  The utility of the Bruceton site may be even greater than indicated in

Table 4, because data collected at the site using a PC-BOSS sampler were not included in the data

inventory that is summarized here.  Based on a review of the logbook from the NETL/OST sampling site,

PC-BOSS samples were collected on about 550 days between November 1999 and February 2002.  It is

known that many of the samples that were collected between November 1999 and December 2000 have

been analyzed to determine concentrations of sulfate, nitrate, elemental carbon, organic carbon (both non-

volatile and semi-volatile), and in some cases elements (Modey and Eatough, 2004).  Hence, if obtained,

these data could supplement the already extensive database of ambient PM2.5 component concentrations

available from the Bruceton monitoring site.

Thus, none of the individual monitoring sites in the 35-county greater Pittsburgh region that measured

PM2.5 speciation between 1999 and 2005 are ideally suited for providing exposure estimates for a time

series epidemiologic study of the health effects of PM2.5 components.  The sites that determined a full suite

of PM2.5 components on a daily basis (e.g., the Schenley Park site) did not operate for the multiple-year

period likely required by the study, and the sites that operated for several years (e.g., the Lawrenceville

site and the Bruceton site) either determined PM2.5 composition on a less-than-daily frequency or did not

routinely determine all of the components of interest.  However, the inadequacies of individual sites do not

necessarily preclude a feasible study.  Sections 2.3, 2.4, and 2.5 of this report examine ways in which the

existing PM2.5 speciation data from these individual sites can be combined and supplemented with new

data obtained by analyzing archived filter-based PM2.5 samples in order to allow the construction of time

series of daily exposure estimates suitable for use in an epidemiology study.

2.2.3 Co-Pollutant Data

As discussed above, co-pollutant data of interest for a retrospective epidemiologic study of PM2.5 include

daily ambient concentrations of SO2, O3, CO, and NO2.  Table 5  lists the monitoring sites in the 35-

county greater Pittsburgh region that measured these gaseous species between 2000 and 2005, and

indicates the time periods during which measurements were made at each site.  (As with the PM2.5 mass

concentration data presented in Section 2.2.1, a number of these sites also collected gaseous pollutant data

in 1999, but a site-by-site inventory was not performed for that year).  All of the gaseous pollutant

measurements represented in Table 5 were made using continuous monitors, resulting in data with an

hourly or finer resolution that can be used to compute daily averages (or other metrics appropriate for

quantifying exposure, such as maximum 1-hour average concentration, maximum 8-hour average

concentration, etc.).  Figures 5 through 8 show the locations of the sites that measured each species.

Again, if a site collected data year-round for at least four years during the inventoried period, it is denoted
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with a star as an “important” site.

There were 49 sites that monitored SO2, 34 sites that monitored O3, 20 sites that monitored CO, and 16

sites that monitored NO2 concentrations in the 35-county region between 2000 and mid-2005.  The maps

presented in Figures 5 through 8 suggest that monitoring sites for gaseous pollutants were generally well-

positioned to characterize exposures for the region’s most populated areas, although coverage is generally

poor for rural parts of the region and for the northeastern portion of the Pittsburgh MSA.  Also, with the

exception of one monitor in Steubenville, Ohio, that operated between May 2000 and May 2002, no NO2

concentrations were measured in the region’s non-Pennsylvania counties during the time period of

interest.
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Figure 5: SO2 monitoring sites in the 35-county greater Pittsburgh region, 2000-2005.
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Figure 6: O3 monitoring sites in the 35-county greater Pittsburgh region, 2000-2005.
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Figure 7: CO monitoring sites in the 35-county greater Pittsburgh region, 2000-2005.
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Figure 8: NO2 monitoring sites in the 35-county greater Pittsburgh region, 2000-2005.
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Figure 9: PM10 monitoring sites in the 35-county greater Pittsburgh region, 2000-2005.
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Table 5: Summary of continuous gaseous pollutant data collected by monitoring sites in the 35-county greater Pittsburgh region

between 2000 and 2005.
a

Site Name / ID State County Latitude / Longitude Program SO2 O3 CO NO2

390133002 OH Belmont 39.9681N, 80.7475W AQS 1/00 - 5/05

390290016 OH Columbiana 40.6347N, 80.5464W AQS 1/00 - 4/00

390290022 OH Columbiana 40.6350N, 80.5467W AQS 1/01 - 5/05

390810016 OH Jefferson 40.3628N, 80.6156W AQS 1/00 - 11/03 4/00 - 10/03b 1/00 - 11/03

390810017 OH Jefferson 40.3661N, 80.6150W AQS 11/03 - 5/05 4/04 - 5/05b 11/03 - 1/04

390811001 OH Jefferson 40.3219N, 80.6064W AQS 1/00 - 1/04 1/00 - 5/05

Franciscan U. OH Jefferson 40.38N,80.62W SCAMP 5/00 - 5/02 5/00 - 5/02 5/00 - 5/02 5/00 - 5/02

390990013 OH Mahoning 41.0961N, 80.6586W AQS 1/00 - 5/05 4/00 - 5/05b

QAK172 OH Noble 39.9428N, 81.3373W CASTNet 1/00 - 12/05

391550008 OH Trumbull 41.2589N, 80.6661W AQS 4/00 - 10/01b

391550009 OH Trumbull 41.4539N, 80.5917W AQS 4/00 - 5/05b

391550011 OH Trumbull 41.2401N, 80.6631W AQS 4/02 - 5/05b

420030002 PA Allegheny 40.5006N, 80.0719W AQS 1/00 - 6/05

420030008 PA Allegheny 40.4656N, 79.9611W AQS/UORVP 1/00 - 7/02 1/00 - 6/05 1/00 - 6/05

420030010 PA Allegheny 40.4456N, 80.0164W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05 1/00 - 6/05

420030021 PA Allegheny 40.4136N, 79.9414W AQS 1/00 - 6/05

420030031 PA Allegheny 40.4433N, 79.9906W AQS 1/00 - 12/00 5/03 - 6/05 1/00 - 6/01

420030038 PA Allegheny 40.4389N, 79.9972W AQS 1/00 - 6/05

420030052 PA Allegheny 40.4414N, 80.0033W AQS 1/00 - 4/00

420030064 PA Allegheny 40.3236N, 79.8683W AQS 1/00 - 6/05

420030067 PA Allegheny 40.3819N, 80.1856W AQS 1/00 - 6/05 4/00 - 6/05b

420030088 PA Allegheny 40.4722N, 79.8200W AQS 4/00 - 7/01b

420030116 PA Allegheny 40.4736N, 80.0772W AQS 1/00 - 6/05

420031005 PA Allegheny 40.6172N, 79.7322W AQS 1/00 - 6/05c 7/01 - 6/05

420031301 PA Allegheny 40.4025N, 79.8603W AQS 1/00 - 12/00

420033003 PA Allegheny 40.3181N, 79.8811W AQS 1/00 - 6/05

420033004 PA Allegheny 40.3050N, 79.8889W AQS 1/00 - 12/00

Bruceton PA Allegheny 40.3065N, 79.9794W NETL/OST 3/00 - 6/04 3/00 - 6/04 3/00 - 6/04 3/00 - 6/04

Schenley Park PA Allegheny 40.4395N, 79.9405W PAQS 7/01 - 8/02 7/01 - 8/02 7/01 - 8/02 7/01 - 8/02

420050001 PA Armstrong 40.8142N, 79.5650W AQS 4/00 - 6/05b

420070002 PA Beaver 40.5625N, 80.5042W AQS 1/00 - 6/05 4/00 - 6/05b

420070005 PA Beaver 40.6847N, 80.3597W AQS 1/00 - 6/05 4/00 - 6/05b

420070014 PA Beaver 40.7478N, 80.3167W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05 1/00 - 6/05
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420210011 PA Cambria 40.3097N, 78.9150W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05 1/00 - 6/05

420590002 PA Greene 39.8162N, 80.2849W AQS/UORVP 4/00 - 6/05d 4/00 - 6/05d 4/00 - 6/05b 1/00 – 11/01

420630004 PA Indiana 40.5633N, 78.9200W AQS 11/04 - 6/05 4/05 - 6/06 11/04 - 6/05

420730015 PA Lawrence 40.9958N, 80.3467W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05 1/00 - 6/05

420850100 PA Mercer 41.2150N, 80.4850W AQS 1/00 - 6/05 4/00 - 6/05b

MKG113 PA Mercer 41.4271N, 80.1451W CASTNet 1/00 - 12/05

LRL117 PA Somerset 39.9878N, 79.2515W CASTNet 1/00 - 12/05

421250005 PA Washington 40.1467N, 79.9022W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05 1/00 - 6/05

421250200 PA Washington 40.1706N, 80.2614W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05

421255001 PA Washington 40.4453N, 80.4208W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05

421290006 PA Westmoreland 40.4281N, 79.6931W AQS 4/00 - 6/05b

421290008 PA Westmoreland 40.3047N, 79.5057W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05 1/00 - 6/05

540090005 WV Brooke 40.3381N, 80.5972W AQS 1/00 - 6/05

540090007 WV Brooke 40.3901N, 80.5857W AQS 1/00 - 6/05

540290005 WV Hancock 40.5291N, 80.5762W AQS 1/00 - 6/05

540290007 WV Hancock 40.4602N, 80.5768W AQS 1/00 - 6/05

540290008 WV Hancock 40.6157N, 80.5601W AQS 1/00 - 6/05

540290009 WV Hancock 40.4274N, 80.5925W AQS 1/00 - 6/05 1/00 - 6/05

540290011 WV Hancock 40.3945N, 80.6120W AQS 1/00 - 6/05 1/00 - 6/05

540290014 WV Hancock 40.4355N, 80.6006W AQS 1/00 - 12/03

540290015 WV Hancock 40.6183N, 80.5408W AQS 1/00 - 6/05

540290016 WV Hancock 40.4119N, 80.6017W AQS 1/00 - 7/04

540291004 WV Hancock 40.4215N, 80.5809W AQS 1/00 - 6/05 4/00 - 6/05b 1/00 - 6/05

540511002 WV Marshall 39.9160N, 80.7341W AQS 1/00 - 6/05

540610003 WV Monongalia 39.6494N, 79.9211W AQS 1/00 - 6/05 4/00 - 6/05b

540610004 WV Monongalia 39.6331N, 79.9572W AQS 1/00 - 12/01

540610005 WV Monongalia 39.6483N, 79.9578W AQS 1/00 - 6/05

540690007 WV Ohio 40.1204N, 80.6993W AQS 1/00 - 11/03 4/00 - 10/03b

540690008 WV Ohio 40.0638N, 80.7205W AQS 1/00 - 12/04

540690009 WV Ohio 40.0688N, 80.7211W AQS 4/04 - 10/04

540690010 WV Ohio N/A AQS 4/05 - 6/05

aDates shown indicate the approximate period of data collection (m/yy – m/yy); at the time of inventory, data had been reported

for AQS sites through 5/05 or 6/05.  bData were collected only during ozone season (April – October).  cNo data reported 11/00 –

3/01, 11/01 – 4/02.   dAQS data only reported during ozone season (April – October); additional non-ozone season data reported

by UORVP in 2000-2001.
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Nevertheless, there were 35 SO2 monitors, 5 O3 monitors, 13 CO monitors, and 10 NO2 monitors in the

35-county region that collected data year-round for at least four years.  (The low number of “important”

O3 monitoring sites results from the fact that many sites only measured ambient O3 concentrations during

ozone season, which runs from April through October).  Among these, 15 of the SO2 monitors, 2 of the O3

monitors, 6 of the CO monitors, and 8 of the NO2 monitors were sited in the 7-county Pittsburgh MSA,

where much of the region’s population is concentrated.  Hence, data from these numerous “important”

monitoring sites could be used (possibly in combination with spatial information derived from sites that

generated less data) to estimate ambient gaseous pollutant concentrations for purposes of an epidemiology

study.

PM10-2.5 mass concentration data are also desired for inclusion in the proposed epidemiology study.  In

most cases, PM10-2.5 concentrations were not measured directly, but must be estimated by differencing

measured concentrations of PM10 and PM2.5.  The inventory of PM2.5 mass concentration data collected in

the 35-county greater Pittsburgh region between 2000 and 2005 was summarized in Section 2.2.1.  Table

6 and Figure 9 indicate the locations of the monitoring sites that measured PM10 mass concentrations in

the region during that time period.  Ideally, spatially resolved PM10-2.5 mass concentrations would be

estimated from collocated PM10 and PM2.5 measurements made at monitoring sites throughout the region.

However, as shown in Table 7, which lists monitoring sites that simultaneously measured PM10 and PM2.5

during 2000-2005, only one site in the region performed daily, collocated PM10 and PM2.5 measurements

for a period of four years or more.  Moreover, this site, the AQS Liberty Borough monitoring station

(420030064), is probably not well suited for representing the exposures of the larger region’s population,

because it is strongly affected by emissions from a large nearby coke production facility.
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Table 6: Summary of PM10 total mass concentration data collected by monitoring sites in the 35-county greater Pittsburgh region

between 2000 and 2005.

Site Name / ID State County Latitude, Longitude Program Sampling Method Approximate Sampling Period Approximate Sampling Schedule

FRRE1 MD Garrett
39.7058N

79.0122W
IMPROVE IMPROVE Apr 2004 - 2005 1 in 3 days

390131003 OH Belmont
40.1064N

80.7097W
AQS FRM Hi-Vol Jan 2000 - Jan 2004 1 in 6 days

390290020 OH Columbiana
40.6397N

80.5239W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

390290022 OH Columbiana
40.6350N

80.5467W
AQS FRM Hi-Vol Jan 2001 - 2005 1 in 6 days

390810001 OH Jefferson
40.2614N

80.6336W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

390810016 OH Jefferson
40.3628N

80.6156W
AQS FRM Hi-Vol Jan 2000 - Oct 2003 1 in 6 days

390810017 OH Jefferson
40.3661N

80.6150W
AQS FRM Hi-Vol Nov 2003 - 2005 1 in 6 days

390811001 OH Jefferson
40.3219N

80.6064W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 3 days

Franciscan U. of

Steubenville
OH Jefferson

40.38N

80.62W
SCAMP FRM May 2000 - May 2002 Daily

390990005 OH Mahoning
41.1111N

80.6453W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

390990006 OH Mahoning
41.1167N

80.6697W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

391110001 OH Monroe
39.7706N

80.8686W
AQS FRM Hi-Vol Jan 2000 - Jan 2004 1 in 6 days

QUCI1 OH Noble
39.9428N

81.3378W
IMPROVE IMPROVE May 2001 - 2005 1 in 3 days

391550005 OH Trumbull
41.2308N

80.8019W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

391550006 OH Trumbull
41.2019N

80.8106W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

391550007 OH Trumbull
41.2142N

80.7875W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

420030002 PA Allegheny
40.5006N

80.0719W
AQS

FRM Hi-Vol

TEOM

Jan 2000 - 2005

Jan 2000 - 2005

1 in 6 days

Continuous

420030021 PA Allegheny
40.4136N

79.9414W
AQS TEOM Jan 2000 - 2005 Continuous

420030027 PA Allegheny
40.4383N

80.0689W
AQS TEOM Jan 2000 - Jul 2001 Continuous

420030031 PA Allegheny 40.4433N AQS TEOM Jan 2000 - 2005 Continuous
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79.9906W

420030064 PA Allegheny
40.3236N

79.8683W
AQS

FRM Hi-Vol

TEOM

Jan 2000 - 2005

Jan 2000 - 2005

Daily

Continuous

420030067 PA Allegheny
40.3819N

80.1856W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

420030092 PA Allegheny
40.4561N

80.0261W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

420030093 PA Allegheny
40.6072N

80.0208W
AQS FRM Hi-Vol Jan 2000 - Dec 2000 1 in 6 days

420030095 PA Allegheny
40.4869N

80.1881W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

420030097 PA Allegheny
40.5531N

80.2033W
AQS FRM Hi-Vol Jan 2000 - Dec 2000 1 in 6 days

420030116 PA Allegheny
40.4736N

80.0772W
AQS

FRM Hi-Vol

TEOM

Jan 2000 - Dec 2000

Jan 2000 - 2005

1 in 6 days

Continuous

420030133 PA Allegheny
40.2601N

79.8865W
AQS FRM Hi-Vol Apr 2003 - Jun 2004 1 in 6 days

420031301 PA Allegheny
40.4025N

79.8603W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

420032001 PA Allegheny
40.3967N

79.8636W
AQS

FRM Hi-Vol

TEOM

Jan 2000 - 2005

Jan 2000 - 2005

1 in 6 days

Continuous

420033004 PA Allegheny
40.3050N

79.8889W
AQS TEOM Jan 2000 - Jul 2001 Continuous

420033006 PA Allegheny
40.3261N

79.8806W
AQS

FRM Hi-Vol

TEOM

Jan 2000 - Dec 2000

Jan 2000 - 2005

1 in 6 days

Continuous

420033007 PA Allegheny
40.2944N

79.8867W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 6 days

420037004 PA Allegheny
40.3081N

79.8703W
AQS TEOM Jan 2000 - 2005 Continuous

420039002 PA Allegheny
40.5469N

79.7839W
AQS FRM Hi-Vol Jan 2000 - Dec 2000 1 in 6 days

Bruceton PA Allegheny
40.3065N

79.9794W
NETL/OST Dichotomous Aug 2002 - Sep 2004 Intermittent

Lawrenceville / 

PITT1
PA Allegheny

40.4656N

79.9611W

UORVP

UORVP

IMPROVE

TEOM

DRI SFS

IMPROVE

Jun 1999 - Jul 2002

Feb 1999 - Aug 2001

Apr 2004 - 2005

Continuous

Intermittent

1 in 3 days

Schenley Park PA Allegheny
40.4395N

79.9405W
PAQS Dichotomous Jun 2001 - Jul 2002 Daily

420070014 PA Beaver
40.7478N

80.3167W
AQS TEOM Aug 2000 - 2005 Continuous

420210011 PA Cambria 40.3097N AQS TEOM Jul 2000 - 2005 Continuous
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78.9150W

Holbrook PA Greene
39.8162N

80.2846W
UORVP DRI SFS Feb 1999 - Aug 2001 Intermittent

420730015 PA Lawrence
40.9958N

80.3467W
AQS TEOM Aug 2000 - 2005 Continuous

MKGO1 PA Mercer
41.4269N

80.1453W
IMPROVE IMPROVE Apr 2001 - 2005 1 in 3 days

421250005 PA Washington
40.1467N

79.9022W
AQS TEOM Aug 2000 - 2005 Continuous

421255001 PA Washington
40.4453N

80.4208W
AQS FRM Hi-Vol Aug 2000 - 2005 1 in 6 days

421290007 PA Westmoreland
40.1667N

79.8750W
AQS FRM Hi-Vol Aug 2000 - 2005 1 in 6 days

421290008 PA Westmoreland
40.3047N

79.5057W
AQS TEOM Aug 2000 - 2005 Continuous

540090005 WV Brooke
40.3381N

80.5972W
AQS FRM Hi-Vol Jan 2000 - 2005 1 in 3 days

540290009 WV Hancock
40.4274N

80.5925W
AQS TEOM Jan 2000 - 2005 Continuous

540290011 WV Hancock
40.3945N

80.6120W
AQS TEOM Jan 2000 - 2005 Continuous

540290014 WV Hancock
40.4355N

80.6006W
AQS TEOM Jan 2000 - Dec 2003 Continuous

540291004 WV Hancock
40.4215N

80.5809W
AQS

FRM Hi-Vol

TEOM

Jan 2000 - 2005

Jan 2000 - 2005

1 in 6 days

Continuous

540490006 WV Marion
39.4808N

80.1353W
AQS FRM Hi-Vol Jan 2000 - Dec 2000 1 in 6 days

540511002 WV Marshall
39.9160N

80.7341W
AQS FRM Hi-Vol Jan 2000 - Mar 2004 1 in 6 days

540610003 WV Monongalia
39.6494N

79.9211W
AQS FRM Hi-Vol Jan 2000 - Dec 2004 1 in 6 days

540690008 WV Ohio
40.0638N

80.7205W
AQS FRM Hi-Vol Jan 2000 - Dec 2004 1 in 6 days
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Table 7: Summary of monitoring sites in the 35-county greater Pittsburgh region from which PM10-2.5 data could be obtained by

differencing PM10 and PM2.5 mass concentrations measured between 2000 and 2005.

Site Name / ID State County Latitude, Longitude Program

Sampling Method 

(PM10 / PM2.5) Approximate Period Approximate Frequency

FRRE1 MD Garrett
39.7058N

79.0122W
IMPROVE IMPROVE / IMPROVE Apr 2004 - 2005 1 in 3 days

390810016 OH Jefferson
40.3628N

80.6156W
AQS FRM Hi-Vol / FRM Jan 2000 - Oct 2003 1 in 6 days

390810017 OH Jefferson
40.3661N

80.6150W
AQS FRM Hi-Vol / FRM Nov 2003 - 2005 1 in 6 days

390811001 OH Jefferson
40.3219N

80.6064W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005

1 in 3 days (until 2/3/04),

1 in 6 days (2/3/04 - 2005)

Franciscan U. of

Steubenville
OH Jefferson

40.38N

80.62W
SCAMP FRM / FRM May 2000 - May 2002 Daily

390990005 OH Mahoning
41.1111N

80.6453W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005 1 in 6 days

QUCI1 OH Noble
39.9428N

81.3378W
IMPROVE IMPROVE / IMPROVE May 2001 - 2005 1 in 3 days

391550007 OH Trumbull
41.2142N

80.7875W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005 1 in 6 days

420030021 PA Allegheny
40.4136N

79.9414W
AQS TEOM / FRM Jan 2000 - 2005 1 in 3 days

420030064 PA Allegheny
40.3236N

79.8683W
AQS

FRM Hi-Vol, TEOM /

FRM, TEOM
Jan 2000 - 2005 Daily, Continuous

420030067 PA Allegheny
40.3819N

80.1856W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005 1 in 6 days

420030093 PA Allegheny
40.6072N

80.0208W
AQS FRM Hi-Vol / FRM Jan 2000 - Dec 2000 1 in 6 days

420030095 PA Allegheny
40.4869N

80.1881W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005 1 in 6 days

420030097 PA Allegheny
40.5531N

80.2033W
AQS FRM Hi-Vol / FRM Jan 2000 - Dec 2000 1 in 6 days

420030116 PA Allegheny
40.4736N

80.0772W
AQS TEOM / FRM Jan 2000 - 2005 1 in 3 days

420030133 PA Allegheny
40.2601N

79.8865W
AQS FRM Hi-Vol / FRM Apr 2003 - Jun 2004 1 in 6 days

420031301 PA Allegheny
40.4025N

79.8603W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005 1 in 6 days

420033007 PA Allegheny
40.2944N

79.8867W
AQS FRM Hi-Vol / FRM Jan 2001 - 2005 1 in 6 days

420039002 PA Allegheny
40.5469N

79.7839W
AQS FRM Hi-Vol / FRM Jan 2000 - Dec 2000 1 in 6 days
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Site Name / ID State County Latitude, Longitude Program

Sampling Method 

(PM10 / PM2.5) Approximate Period Approximate Frequency

Bruceton PA Allegheny
40.3065N

79.9794W
NETL/OST

Dichotomous /

Dichotomous
Aug 2002 - Sep 2004 Intermittent

Lawrenceville,

PITT1
PA Allegheny

40.4656N

79.9611W

UORVP,

IMPROVE

TEOM, SFS, IMPROVE /

TEOM, SFS, IMPROVE
Jan 2000 - 2005

Intermittent 

(Continuous Jan 2000 – 

Jul 2002)

Schenley Park PA Allegheny
40.4395N

79.9405W
PAQS Dichotomous / Dichotomous Jun 2001 - Jul 2002 Daily

420070014 PA Beaver
40.7478N

80.3167W
AQS TEOM / FRM, TEOM Aug 2000 - 2005

1 in 3 days (until Jun 2004),

Continuous (Jul 2004 - 2005)

420210011 PA Cambria
40.3097N

78.9150W
AQS TEOM / FRM, TEOM Jul 2000 - 2005

1 in 3 days (until Jul 2004),

Continuous (Aug 2004 - 2005)

Holbrook PA Greene
39.8162N

80.2846W
UORVP

DRI SFS /

FRM, SFS, TEOM
Jan 2000 - Aug 2001 Intermittent

MKGO1 PA Mercer
41.4269N

80.1453W
IMPROVE IMPROVE / IMPROVE Apr 2001 - 2005 1 in 3 days

421250005 PA Washington
40.1467N

79.9022W
AQS TEOM / FRM Aug 2000 - 2005 1 in 3 days

421255001 PA Washington
40.4453N

80.4208W
AQS FRM Hi-Vol / FRM, FEM Aug 2000 - 2005 1 in 6 days

421290008 PA Westmoreland
40.3047N

79.5057W
AQS TEOM / FRM, FEM Aug 2000 - 2005 1 in 3 days

540090005 WV Brooke
40.3381N

80.5972W
AQS FRM Hi-Vol / FRM Jan 2000 - 2005 1 in 3 days

540290011 WV Hancock
40.3945N

80.6120W
AQS TEOM / FRM Jan 2000 - 2005 1 in 3 days

540291004 WV Hancock
40.4215N

80.5809W
AQS

FRM Hi-Vol, TEOM /

FRM
Jan 2000 - 2005 1 in 3 days

540490006 WV Marion
39.4808N

80.1353W
AQS FRM Hi-Vol / FRM Jan 2000 - Dec 2000 1 in 6 days

540511002 WV Marshall
39.9160N

80.7341W
AQS FRM Hi-Vol / FRM Jan 2000 - Mar 2004 1 in 6 days

540610003 WV Monongalia
39.6494N

79.9211W
AQS FRM Hi-Vol / FRM Jan 2000 - Dec 2004 1 in 6 days

540690008 WV Ohio
40.0638N

80.7205W
AQS FRM Hi-Vol / FRM Jan 2000 - Dec 2004 1 in 6 days



2.2 Inventory of Existing Air Monitoring Data

Hence, better exposure estimates may be derived by first individually modeling the spatially resolved

daily PM2.5 and PM10 concentrations measured throughout the region in order to produce regional

estimates for the daily concentrations of each of these species, and then differencing the results to arrive at

regional daily PM10-2.5 concentration estimates.  This approach allows the region’s available air monitoring

information to be more fully utilized, as it does not exclude data from sites that measured only PM10 or

PM2.5 but not both.  Estimates computed in this way could then be validated against estimates derived from

collocated PM10 and PM2.5 measurements using days for which data are available.  As discussed in Section

2.2.1 and shown in Table 6 there were nine sites in the 35-county region that measured PM2.5 mass

concentrations on a daily basis for at least four years between 2000 and 2005, and there were 16 sites in

the region that measured PM10 mass concentrations for at least four years during that period.  These sites

would be of primary importance for estimating PM10-2.5 concentrations according to the procedure above.

2.2.4 Meteorological Data

Numerous sites in the 35-county greater Pittsburgh region collected temperature data, relative humidity or

dew point data, and wind speed and direction data between 1999 and 2005.  Per the discussion below, all

of these data are available for use in the proposed epidemiology study.

The 13 ASOS/AWOS sites located at airports throughout the region are probably the best source of

meteorological data during 1999-2005, as hourly weather observations including temperature, dew point,

and wind speed and direction were routinely collected by all of these sites during the entire period.  These

observations, which are made according to standard protocols for use by the National Weather Service and

Federal Aviation Administration, are available from the NCDC or Pennsylvania MESONET, as discussed

earlier. Table 8 indicates the locations of the ASOS / AWOS sites in the region.

Table 8: ASOS / AWOS weather stations in the 35-county greater Pittsburgh region from which hourly

data are available during 1999-2005.

Call Sign Name State County Latitude Longitude

KYNG YOUNGSTOWN REGIONAL AIRPORT OH Trumbull 41.25 -80.667

KPIT PITTSBURGH INTERNATIONAL AP PA Allegheny 40.5 -80.233

KAGC PITTSBURGH ALLEGHENY CO AP PA Allegheny 40.35 -79.917

KBVI BEAVER FALLS ARPT PA Beaver 40.767 -80.4

KBTP BUTLER CO. (AWOS) PA Butler 40.783 -79.95

KJST JOHNSTOWN CAMBRIA COUNTY AP PA Cambria 40.317 -78.833

KIDI INDIANA/STEWART FLD PA Indiana 40.633 -79.1

KDUJ DUBOIS FAA AP PA Jefferson 41.183 -78.9

KFKL FRANKLIN PA Venango 41.383 -79.867

KAFJ WASHINGTON (AWOS) PA Washington 40.133 -80.283

KLBE ARNOLD PALMER RGNL PA Westmoreland 40.267 -79.4

KMGW MORGANTOWN HART FIELD WV Monongalia 39.65 -79.917
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Call Sign Name State County Latitude Longitude

KHLG WHEELING OHIO COUNTY AP WV Brooke 40.183 -80.65

Thirty-five RWIS sites in western Pennsylvania also monitored meteorological conditions, including

temperature, wind speed and direction, relative humidity, and dew point, between 1999 and 2005.  These

sites, which are operated by PennDOT, are identified in Table 9. As discussed above, RWIS data

collected between late 2001 and the present are available from the Pennsylvania MESONET.

In addition to the ASOS / AWOS and RWIS weather stations, many of the sites that measured PM2.5 or co-

pollutant concentrations in the 35-county region also continuously monitored surface meteorological

conditions.  The Allegheny County Health Department monitored temperature and wind speed at its

Avalon (420030002), Hazelwood (420030021), Liberty (420030064), and South Fayette (420030067)

AQS monitoring sites throughout the time period of interest.  There are, however, large periods of missing

data at Avalon during August 2000 – September 2000, November 2002 – December 2002, and January

2003 – May 2003; at Hazelwood during August 1999 – December 2002 and January 2003 – May 2003; at

Liberty during January – September 1999; and at South Fayette during 2003 – 2004 (for temperature).

ACHD also monitored temperature and wind speed at Glassport during 1999 – 2001, and at Clairton,

North Braddock, and a second site in Hazelwood during 1999 – 2000. 

Like ACHD, the Pennsylvania DEP measured temperature and wind speed at its ambient air monitoring

sites in western Pennsylvania during the time period of interest.  These sites include Pittsburgh in

Allegheny County; Kittanning in Armstrong County; Beaver Falls, Brighton Township, and Hookstown in

Beaver County; Johnstown in Cambria County; Holbrook in Greene County; New Castle in Lawrence

County; Farrell in Mercer County; Charleroi, Florence, and Washington in Washington County; and

Greensburg and Murrysville in Westmoreland County.  Data collected at these sites from June 27, 2001,

through the present are available from the Pennsylvania MESONET.

The NETL/OST Bruceton site, PAQS Schenley site, UORVP Lawrenceville site, and SCAMP Franciscan

University of Steubenville site each included surface weather stations that continuously monitored a suite

of meteorological conditions.  Temperature, relative humidity, and wind speed and direction data were

collected at the Bruceton site between April 2000 and June 2004, at the Schenley site between July 2001

and September 2002, at the Franciscan University site between May 2000 and May 2002 (wind direction

data are invalid during entire period), and at the Lawrenceville site between January 2000 and December

2002 (relative humidity monitoring began in August 2000).

Table 9: RWIS weather stations in western Pennsylvania for which hourly data are available from the

Pennsylvania MESONET.

Site County Lat. Lon. Start Date
a
 

I-79 EXIT 060 ALLEGHENY 40.447 -80.11 12/1/2001

SR 0060 @ BEAVER - ALLEGHENY CO LINE HOPEWELL ALLEGHENY 40.55 -80.276 12/1/2001
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Site County Lat. Lon. Start Date
a
 

I-376 EXIT 10A @ CHURCHILL EXIT ALLEGHENY 40.442 -79.827 12/1/2001

SR0028 @ TARENTUM ALLEGHENY 40.653 -79.725 12/1/2001

SR 0028 @ SOUTH OF DISTANT ARMSTRONG 40.933 -79.362 6/27/2001

SR 0060 @ SR 0051 CHIPPEWA BEAVER 40.741 -80.371 12/1/2001

I-79 EXIT 088 BUTLER 40.792 -80.125 12/1/2001

SR 0022 @ CRESSON MOUNTAIN CAMBRIA 40.461 -78.565 12/1/2001

SR 0022 @ CHICKORY MOUNTAIN CAMBRIA 40.437 -78.906 12/1/2001

I-80 EXIT 053 @ MP 55 CLARION 41.191 -79.514 12/1/2001

SR 0119 @ UNIONTOWN FAYETTE 39.949 -79.653 12/1/2001

SR 0043 @ SMITHFIELD FAYETTE 39.821 -79.774 12/1/2001

SR 0040 @ SUMMIT MT. FAYETTE 39.85 -79.659 12/1/2001

SR 0653 @ LAURAL HILL FAYETTE 39.956 -79.364 12/1/2001
b

I-79 EXIT 002 @ WELCOME CENTER GREEN 39.795 -80.076 12/1/2001

SR 0018 @ NETTLE HILL GREEN 39.798 -80.38 12/1/2001

SR 0022 @ EAST BLAIRSVILLE INDIANA 40.45 -79.157 12/1/2001

SR 0422 @ PENN RUN INDIANA 40.606 -79.047 12/1/2001

I-80 EXIT 097 @ ROADSIDE REST JEFFERSON 41.152 -78.91 12/1/2001

SR 0060 @ SR 0224 UNION TWP LAWRENCE 41.011 -80.398 12/1/2001

I-80 EXIT 015 @ MP 11 MERCER 41.194 -80.306 9/1/2000

I-80 EXIT 019 @ I-79 JUNCT. MERCER 41.197 -80.161 12/3/2001

I-79 EXIT 130 MERCER 41.481 -80.166 12/1/2001

SR 0031 @ LARUAL RIDGE SOMERSET 40.067 -79.266 12/1/2001
c

SR 0056 @ BABCOCK MT. SOMERSET 40.194 -78.685 7/22/2001

SR 0219 @ JEROME SOMERSET 40.196 -78.976 12/1/2001

SR 0219 @ MEYERSDALE BYPASS SOMERSET 39.816 -79.038 12/1/2001

SR 0008 @ SR 0308 VENANGO 41.267 -79.924 9/26/2001

I-80 EXIT 035 @ MP 37.5 VENANGO 41.196 -79.82 12/3/2001

SR 0027 @ PLEASANTVILLE VENANGO 41.602 -79.609 12/3/2001

SR0062 @ PRESIDENT VENANGO 41.449 -79.577 11/14/2001

SR0322 @ VENANGO-MERCER CO LINE VENANGO 41.481 -79.994 12/1/2001

I-70 EXIT 002 @ WELCOME CENTER WASHINGTON 40.116 -80.442 12/1/2001

SR 0022 @ STAR LAKE WASHINGTON 40.426 -80.429 12/1/2001

SR 0030 @ JACKTOWN HILL WESTMORELAND 40.329 -79.734 11/28/2001

aData available through the end of 2005 except where indicated; bData available through 8/24/02; cData

available through 11/12/04.

Finally, temperature, relative humidity, and wind speed and direction were also continuously monitored at

the CastNET’s Quaker City (QAK172), M.K. Goddard (MKG113), and Laurel Hill (LRL117) sites

throughout the 1999 – 2005 time period.  These data are available from the CASTNet website.

2.3 Inventory of Archived Filter-Based PM
2.5

 Samples

Many of the monitoring sites in the Pittsburgh region that determined ambient air concentrations of PM2.5

chemical components between 1999 and 2005 also collected additional filter-based PM2.5 samples that

were not analyzed for chemical composition but have been archived and would be available for analysis.

Determination of the chemical composition of these samples, where feasible, would substantially augment

PITT-PM 70



2.3 Inventory of Archived Filter-Based PM2.5 Samples

the speciated PM2.5 data record for the Pittsburgh region during the time period of interest for the proposed

epidemiology study.  Hence, in addition to the inventory of existing air monitoring data discussed in

Section 2.2, an inventory of archived PM2.5 filter-based samples available from the Pittsburgh region

between 1999 and 2005 was completed as part of the current feasibility assessment.

The feasibility of obtaining PM2.5 chemical composition data from archived PM2.5 samples depends on a

number of factors, including the method originally used to sample the particles, the type of filter on which

the samples were collected,  and the manner in which the samples were stored following collection.  Most

of the archived PM2.5 samples available from monitoring sites in the Pittsburgh region are 24-hour

integrated samples that were collected on Teflon filters according to the Federal Reference Method for

PM2.5.  As described by Chow and Watson (1998), archived Teflon-filter-based PM2.5 samples can be

analyzed to determine trace and crustal elements and inorganic ions via a two-step process.  Trace and

crustal elements are first determined by X-ray fluorescence spectroscopy (XRF) or proton induced X-ray

emission spectroscopy (PIXE), which are nondestructive methods capable of determining elements with

atomic numbers between 11 (sodium) and 92 (uranium).  Inorganic ions (e.g., SO4
2-, NO3

-, NH4
+, Na+, K+)

are then determined by ion chromatography (IC), a destructive technique that requires extraction of the

sample in deionized water (containing a small amount of ethanol as a wetting agent).  Hence, this two-step

process can determine most of the PM2.5 chemical components of interest that were identified in Section

2.2 above.

There are several important limitations, however.  Concentrations of semi-volatile PM2.5 components, such

as NO3
- and NH4

+, may be underestimated as a result of artifacts arising from sampling, storage, and

analytical procedures.  NO3
- and NH4

+ concentrations determined from Teflon-filter-based samples

collected using FRM monitors are often biased low relative to concentrations determined using speciation

samplers (e.g., employing nylon filters) because of losses of volatile NH4NO3 from the FRM samples

(Jansen et al., 2002; Connell et al., 2005a; Frank, 2006).  Loss of semi-volatile material is also likely if

filters are stored at room temperature rather than under refrigeration.  Finally, if archived FRM samples

are analyzed according to the two-step process described above, volatile compounds can be lost under the

vacuum conditions used for XRF or PIXE analysis (Chow and Watson, 1998), resulting in

underestimation of their concentrations when these are subsequently determined.  Hence, analysis of

archived FRM samples for semi-volatile species such as NO3
- and NH4

+ is likely to be feasible only if the

samples were stored under refrigeration and if some collocated speciation sampling data are available to

allow biases to be corrected.

Moreover, because Teflon is itself a carbonaceous material, elemental and organic carbon cannot be

determined from Teflon-filter-based samples using the thermal/optical techniques (e.g., Thermal Optical

Transmittance [TOT] and Thermal Optical Reflectance [TOR]) commonly applied to samples collected on

quartz-fiber filters.  Nondestructive light transmission measurements can be used to approximate

elemental carbon concentrations in samples collected on Teflon filters, but variations in the filter loading,

in the chemical and physical nature of the samples, and in the details of the method being used can
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introduce substantial error in the results (Chow and Watson, 1998).  In addition, transmission of the blank

filter is typically measured prior to sampling to enable background correction; this cannot be

accomplished with archived filters.  Hence, ambient concentrations of fine particulate elemental and

organic carbon in the Pittsburgh region likely cannot be derived from archived Teflon-filter-based

samples; other sources must be relied upon for these data.

Elemental and organic carbon can be determined from archived samples that were collected on quartz-

fiber filters, provided that these samples were stored under refrigeration to prevent losses of semi-volatile

organic material.  Inorganic ions can also be determined from quartz filters via IC.  If both inorganic ions

and carbon species are to be determined, a filter punch is first taken for analysis by TOT or TOR, and the

remaining area of the filter is extracted for analysis by IC.  Trace and crustal elements generally are not

determined from quartz-fiber filters, however, because these filters contain high and variable blank

concentrations of a number of elements (e.g., Al, Si, S, Cl, K, Ca, Fe, Ni, Cu, Zn, Ba, Pb).  Moreover,

XRF is subject to biases and decreased sensitivity when applied to quartz-filter-based samples because X-

rays are absorbed within the filter fibers and scattered by the relatively thick quartz filter media (Chow

and Watson, 1998).

Archived PM2.5 samples from sites that already have some preexisting PM2.5 chemical speciation data are

of most interest for the proposed retrospective epidemiology study, because the existing speciation data

can be used to verify the quality of results obtained from the archived filter analyses.  For example,

several AQS monitoring sites in the Pittsburgh region determined PM2.5 speciation from samples collected

using a PM2.5 speciation sampler on a 1-in-3 or 1-in-6 day frequency and also collected PM2.5 samples at a

greater frequency (i.e., 1-in-1 or 1-in-3 day) using a Federal Reference Method sampler.  Hence, the

validity of chemical component concentrations determined from these archived FRM samples, which

would be used to provide PM2.5 speciation information for days on which the speciation sampler did not

operate, could be confirmed by analyzing a subset of FRM samples that were collected on days when the

speciation sampler did operate and comparing the results.  Calibration curves could also be developed

from these comparisons, if necessary, to correct any biases between concentrations determined from the

original speciation samples and concentrations determined from the archived FRM samples.  Section 2.4.2

of this report presents such a comparison using pairs of collocated PM2.5 samples from the Bruceton

monitoring site, each including one sample that was analyzed for ions (SO4
2-, NO3

-, NH4
+) soon after

collection and one sample that was analyzed for ions after several years of refrigerated storage, and

demonstrates how calibration curves can be used to adjust for relative biases among these data prior to

utilizing them in epidemiological models.

The inventory of existing PM2.5 speciation data presented in Table 4 in Section 2.2.2 indicates that 71% of

the existing fine particulate sulfate, nitrate, and elemental data (quantified according to the number of site-

days with available data) and 77% of the existing fine particulate carbonaceous data available from the 35-

county greater Pittsburgh region between 1999 and 2005 were collected at monitoring sites located in

western Pennsylvania.  The 16 western Pennsylvania counties listed in Table 1 also account for 72% of
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the population of the 35-county region considered in Section 2.2.  Hence, because much of the region’s

population and ambient PM2.5 speciation data are concentrated in western Pennsylvania, and because of the

desirability of obtaining archived PM2.5 samples from sites with preexisting PM2.5 speciation data that are

likely to be representative of the exposures of the region’s population, the inventory of archived filter-

based PM2.5 samples was performed only for monitoring sites located in western Pennsylvania that

performed some PM2.5 speciation sampling between 1999 and 2005.

Per the data inventory results presented in Section 2.2, the monitoring sites in western Pennsylvania for

which archived filter-based PM2.5 samples could be used to supplement existing PM2.5 speciation data

include the ACHD sites at Lawrenceville, Liberty, and Hazelwood, the PA DEP sites at Florence and

Greensburg, the NETL/OST site at Bruceton, the UORVP sites at Lawrenceville and Holbrook, and the

SCAMP site at St. Vincent College.  Archived PM2.5 samples are available from the PAQS Schenley Park

site as well, although these samples would add little to the already extensive daily record of basic PM2.5

speciation data from that site (Allen Robinson, Carnegie Mellon University, personal communication on

1/31/06).  For the remaining sites in western Pennsylvania that have preexisting PM2.5 speciation data from

the time period of interest, which were operated by the CASTNet and IMPROVE networks, all valid PM2.5

samples have already been analyzed for chemical composition.

The monitoring groups that operated the candidate sites identified above were contacted to confirm the

availability of archived filter-based samples and to determine the feasibility of obtaining these samples if

required for use in a future epidemiology study.  A day-by-day inventory of archived filter-based samples

was assembled for each candidate site, although the meticulousness of the inventorying procedures varied

from site-to-site based on the preferences of the group in custody of the samples, the availability of

preexisting records regarding the contents of the inventory, and budgetary limitations imposed by the

scope of the current feasibility assessment.  Inventories for each candidate site were conducted according

to one of the following three procedures:

1. Detailed physical inventory including individual identification of each archived filter-based

sample.

2. Identification of archived filter-based samples based on a review of database or laboratory records

provided by the group in custody of the samples, supplemented by a physical inventory including a

total filter count and random spot checks to verify the accuracy of the database / laboratory

records.

3. Identification of archived filter-based samples based on a review of database or laboratory records

provided by the group in custody of the samples, supplemented by discussions with that group to

confirm sample archiving procedures.

The inventories of archived filter-based PM2.5 samples were generally conducted in accordance with the

checklist that is included in Appendix A to this report.  As with the results of the inventory of existing
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PM2.5 speciation data, the results of the inventory of archived PM2.5 samples were logged in a database that

uses codes of “1” (sample available) and “0” (no sample available) to indicate archived sample availability

for each monitoring site with a daily time resolution.  In light of the considerations discussed above

regarding the effects of sampling and archiving methodologies on the utility of the archived samples, the

database also includes fields and sub-tables housing information about the methods used to collect and

store each sample.  A diagram of the database design is provided as Appendix D.  The database, named

“AvailableFilters,” is included on the CD accompanying this report.

On certain days, UORVP sampling at the Lawrenceville site included collection of four 6-hour filter-based

PM2.5 samples rather than a single 24-hour sample.  For these days, a sample was considered to be

available (i.e., a “1” was assigned) only if all four filter-based samples were available and valid (as

required to satisfy the 19-hour data completeness criterion established in ≥ Section 2.2 above).  Archived

filter-based PM2.5 samples were considered to be invalid only if they were qualified as such according to

the QA/QC procedures followed by the group responsible for collecting the samples (e.g., for FRM

samples, if the reported PM2.5 mass measurements were marked as invalid, then the archived samples were

likewise considered to be invalid).  Samples that were “flagged” but not marked as invalid were

considered to be valid for purposes of this inventory.  QA/QC procedures followed by the various

monitoring programs from which archived filter-based PM2.5 samples are available are discussed in

Section 2.4.3 of this report.

Table 10 summarizes the results of the inventory of archived filter-based PM2.5 samples that are available

from sites in western Pennsylvania that monitored for PM2.5 speciation between 1999 and 2005.  Results

are stratified by site and filter type; the approximate schedule according to which the archived samples

were collected and the general method used to store the samples (refrigeration or no refrigeration) are also

indicated for each stratum.
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Table 10: Estimate of the number of days with archived filter-based PM2.5 samples for sites in southwestern Pennsylvania that

collected PM2.5 speciation data between 1999 and 2005.
a

Site County, State

Latitude,

Longitude Program Filter Type Refrigerated?
b

Approximate Period of

Archived PM2.5 Sample

Availability
c

Approximate

Frequency of

Archived PM2.5

Sample Availability

Number of

Days with ≥

1 Archived

PM2.5

Sample

Bruceton

(BRU)
Allegheny, PA

40.3065N

79.9794W
NETL/OST Teflon Yes 07/19/99 – 06/06/04 Daily 1168

Florence

(FLO)
Washington, PA

40.4453N

80.4208W
AQS Teflon No 01/01/01 – 03/31/05 Daily 1343

Greensburg

(GRE)

Westmoreland,

PA

40.3047N

79.5057W
AQS Teflon No 01/01/01 – 03/29/05 1 in 3 days 490

Hazelwood

(HAZ)
Allegheny, PA

40.4136N

79.9414W
AQS Teflon No 01/01/00 – 03/26/05 1 in 3 days 566

Holbrook

(HOL)
Greene, PA

39.8162N

80.2846W

UORVP

UORVP

Teflon

Quartz

Yes

Yes

02/19/99 – 01/22/02

02/19/99 – 01/22/02

Intermittent

Intermittent

240

238

Lawrenceville

(LAW)
Allegheny, PA

40.4656N

79.9611W

AQS, UORVP

UORVP

Teflon

Quartz

Some

Yes

02/19/99 – 03/31/05

02/19/99 – 01/22/02

Intermittent
d

Intermittent

1825

227

Liberty

(LIB)
Allegheny, PA

40.3236N

79.8683W
AQS Teflon No 01/04/00 – 03/31/05 Daily 1817

St. Vincent

College (STV)

Westmoreland,

PA

40.29N

79.40W
SCAMP Teflon Yes 05/13/00 – 05/13/02 Daily

e
490

aMethods for inventorying archived PM2.5 samples differed by site; see text for description.  bSee text for explanation.  cInventory data for the AQS sites

were only available through March 2005; additional filter-based PM2.5 samples have been collected at these sites and archived since that time.  dTeflon

filters from intermittent UORVP sampling are available from 2/19/99 – 1/22/02; Teflon filters from daily AQS sampling are available from 1/13/00 –

3/31/05.  eFilter from every fourth day has already been consumed for ionic and water-soluble elemental analysis.
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The Allegheny County Health Department is the largest source of archived filter-based PM2.5 samples

from the Pittsburgh region during the time period of interest.  Teflon-filter-based PM2.5 samples are

collected using FRM samplers on a daily basis at ACHD’s Lawrenceville and Liberty Borough monitoring

sites and on a 1-in-3 day basis at ACHD’s Hazelwood monitoring site.  These samples, which are being

stored at the ACHD Air Quality Program offices in Lawrenceville, were inventoried by reviewing AQS

data and other database records provided by ACHD (i.e., according to procedure #3 above).  In addition, a

site visit was conducted to review filter storage procedures.  The inventory indicated that there are

approximately 1,732 Teflon-filter-based PM2.5 samples available from the Lawrenceville site, 1,817

Teflon-filter-based samples available from the Liberty site, and 566 Teflon-filter-based samples available

from the Hazelwood site that were collected between January 2000 and March 2005 and could be

analyzed to provide some PM2.5 compositional data.  (The inventory only covered the period through

March 2005; however, additional PM2.5 samples collected since then would also be available).  Because all

of the archived PM2.5 samples available from ACHD were collected on Teflon filters, ambient elemental

and organic carbon concentrations likely cannot be determined from these samples.  However, the samples

are candidates for ionic and elemental analysis.  ACHD stores its filter-based samples in Petri slides that

are kept in a freezer for about two years after collection and then transferred to cardboard boxes for long-

term storage at ambient temperature.  For purposes of the inventory, it was assumed that by the time the

proposed retrospective epidemiology study would begin, all PM2.5 samples collected by ACHD through

March 2005 will have been transferred out of refrigerated storage.  Hence, these filters would be subject to

losses of semi-volatile material and probably could not be used to obtain reliable nitrate concentration

data.  The Lawrenceville, Liberty Borough, and Hazelwood monitoring sites each have a number of days

from which both existing PM2.5 ionic and elemental speciation data (obtained using a speciation sampler)

and an archived Teflon-filter-based PM2.5 sample are available.  There were 552 such days at the

Lawrenceville site, 71 such days at the Liberty site, and 82 such days at the Hazelwood site between

January 2000 and March 2005.  As discussed above, analysis of the chemical composition of the archived

PM2.5 samples from these days, although not required to fill in gaps in the existing record of PM2.5

speciation data, is nevertheless recommended as a means for verifying the accuracy of speciation data

determined from the archived PM2.5 samples (i.e., by pairwise comparison with the existing data) and for

developing calibrations to correct any biases resulting from long-term storage or from differences in

sampling and analytical techniques.

Per discussions with ACHD’s Air Quality Program personnel, the PM2.5 samples being archived at ACHD

could be obtained for use in a retrospective epidemiology study, provided that written permission was first

obtained from ACHD’s Director.  ACHD would not release samples until three months after final

weighing, and would retain the right to keep selected samples that yielded outlying PM2.5 mass results.

Data generated from the analysis of archived samples would have to be promptly reported to ACHD in a

well-organized format, and details of the methods to be used would have to be reviewed and approved by

ACHD prior to analysis.  ACHD would not object to the use of destructive methods for sample analysis as

long as the results produced by these methods would be of value.

PITT-PM 76



2.3 Inventory of Archived Filter-Based PM2.5 Samples

Additional PM2.5 samples from the Lawrenceville site were collected as part of the UORVP sampling

campaign.  All filter-based PM2.5 samples collected by UORVP, including those from the Holbrook site in

Greene County as well as those from the Lawrenceville site, are being stored under refrigeration at the

Desert Research Institute in Reno, Nevada, and would be available for analysis if required for use in a

retrospective epidemiology study (Robin Khosah, ATS Chester Engineers, personal communication on

6/19/06).  Archived samples from UORVP, which include samples collected on both quartz and Teflon

filters using a combination of FRM samplers and Sequential Filter Samplers, were inventoried using

records provided by Steven Kohl of Desert Research Institute (i.e., according to procedure #3 above).

Results indicate that, between February 1999 and January 2002, there are 230 days for which archived

Teflon-filter-based PM2.5 samples are available from UORVP sampling at the Lawrenceville site

(including 95 days with four 6-hour samples rather than one 24-hour sample and 76 days with duplicate

24-hour samples), 227 days for which archived quartz-filter-based PM2.5 samples are available from the

Lawrenceville site (including 92 days with four 6-hour samples rather than one 24-hour sample and 62

days with duplicate 24-hour samples), 240 days for which archived Teflon-filter-based PM2.5 samples are

available from the Holbrook site (including 70 days with duplicate samples), and 238 days for which

archived quartz-filter-based PM2.5 samples are available from the Holbrook site (including 41 days with

duplicate samples).  Although the UORVP PM2.5 samples were only collected intermittently (either on a 1-

in-6 day frequency or on a daily frequency during short sampling intensives), these samples are

nevertheless valuable.  In particular, the refrigerated quartz-filter-based samples allow ambient elemental

and organic carbon concentrations to be determined for about 230 days at an urban site (Lawrenceville)

and a rural site (Holbrook) in the Pittsburgh region.  Ambient nitrate concentrations can also be

determined from the refrigerated quartz or Teflon-filter-based samples.  Teflon-filter-based PM2.5 samples

collected by UORVP at Lawrenceville, when combined with samples collected there by ACHD, increase

the number of days with at least one Teflon-filter-based PM2.5 sample from that site to 1,825.  Again, the

validity of results determined from archived UORVP samples collected at Lawrenceville can be verified

by comparison with existing PM2.5 speciation data from that site.  Duplicate archived filter-based PM2.5

samples that are available on a number of days from each of the Lawrenceville and Holbrook sites provide

further means for quality controlling the results of archived filter analyses.

The NETL/OST Bruceton monitoring site is the largest source of refrigerated archived Teflon-filter-based

PM2.5 samples from Allegheny County during the time period of interest.  Most of the archived PM2.5

samples from the Bruceton site were collected using FRM monitors.  All samples from the site are being

stored in Petri slides under refrigeration at the NETL facility in Bruceton and would be available for

destructive or nondestructive analysis if required for use in a retrospective epidemiology study.  An

inventory of archived Teflon-filter-based PM2.5 samples collected at the Bruceton site was performed

using logbooks provided by Don Martello of NETL; inventory results were then confirmed by physically

counting the total number of Teflon filters in storage at NETL and by spot-checking random batches of

filters to confirm identification numbers (i.e., according to procedure #2 above).  The inventory based on

logbook records agreed with the total filter count to within 3%.  As shown in Table 10, there are about
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1,168 days for which at least one Teflon-filter-based PM2.5 sample is available from the Bruceton

monitoring site.  Per the data presented earlier in Table 4, a major strength of the Bruceton monitoring site

was its collection of semi-continuous EC, OC, SO4
2-, and NO3

- data for multiple years during the time

period of interest.  Hence, the archived PM2.5 samples from the Bruceton monitoring site, if analyzed to

provide elemental data and additional SO4
2- and NO3

- data to supplement the existing semi-continuous

PM2.5 compositional data, would enable the construction of a multiple-year stream of complete daily PM2.5

speciation measurements as required for use in the proposed epidemiology study.

Archived Teflon-filter-based PM2.5 samples from Washington and Westmoreland Counties are available

from the Pennsylvania Department of Environmental Protection and from the Steubenville Comprehensive

Air Monitoring Program.  Teflon-filter-based PM2.5 samples are collected using FRM samplers on a daily

basis at the PA DEP monitoring site in Florence, Washington County, and on a 1-in-3 day basis at the PA

DEP monitoring site in Greensburg, Westmoreland County.  Samples collected since 2001 are currently

being stored at the Pennsylvania State Archives in Harrisburg, PA; however, the oldest of these samples

are scheduled to be discarded in April 2007 (George Mentzer, PA DEP, personal communication on

9/19/06).  Only samples from the most recent year are kept under refrigeration.  Archived PM2.5 samples

available from the PA DEP were inventoried by reviewing AQS records (procedure #3 above).  The

inventory indicated that there are approximately 1,343 Teflon-filter-based PM2.5 samples available from

the Florence site and 490 Teflon-filter-based samples available from the Greensburg site during the

January 2001 – March 2005 period that could be analyzed to provide some PM2.5 compositional data.

(The inventory only covered the period through March 2005; however, additional PM2.5 samples collected

since then would also be available).  Because all of the samples from this period were collected on Teflon

filters and are now being stored at room temperature, ambient concentrations of elemental carbon, organic

carbon, and nitrate probably cannot be determined from them.  However, trace and crustal elements and

certain ionic species could likely be determined.  As with the ACHD monitoring sites, the PA DEP

Florence and Greensburg sites each have a number of days from which both an archived Teflon-filter-

based PM2.5 sample and existing PM2.5 ionic and elemental speciation data are available.  There were 210

such days at the Florence site and 195 such days at the Greensburg site between January 2001 and March

2005.  Again, analysis of the chemical composition of the archived PM2.5 samples from these days for

pairwise comparison with the existing speciation data is recommended as a means for verifying the

accuracy of speciation data obtained from the archived samples.

Teflon-filter-based PM2.5 samples collected between 2000 and 2002 at the SCAMP monitoring site on the

campus of St. Vincent College in Latrobe, Westmoreland County, Pennsylvania, are also available.  These

samples, which were obtained using a PM2.5 FRM sampler, are being stored in Petri dishes under

refrigeration at the CONSOL Energy Inc. Research and Development facilities in South Park, PA.  Filters

were inventoried according to procedure #1 above (i.e., physical inventory including individual

identification of each archived filter-based sample).  As shown in Table 10, there are 490 days between

May 13, 2000, and May 13, 2002, from which an archived Teflon-filter-based PM2.5 sample is available
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from the St. Vincent College site.  PM2.5 samples were collected on an approximately daily basis at the site

during this two-year period, although samples from every fourth day were consumed for ionic and water-

soluble elemental analyses as part of SCAMP and therefore are not available for any further analyses.  The

St. Vincent College site was equipped with only a single FRM monitor; hence, there are no cases in which

both existing PM2.5 speciation data and an archived PM2.5 sample from the same day are available for

pairwise comparison.  The accuracy of PM2.5 chemical composition results obtained by analyzing archived

PM2.5 samples from the St. Vincent College site would therefore have to be confirmed by other means

(e.g., by pairwise comparison with same-day speciation data from a nearby monitoring site such as the

Greensburg site).

Hence, greater than 8,400 archived filter-based PM2.5 samples collected by monitoring sites in western

Pennsylvania between 1999 and 2005 are available for compositional analysis.  (This number does not

include field blanks, duplicate samples, and samples collected by monitoring sites that did not have any

preexisting PM2.5 speciation data).  In many cases, these samples provide the only means for obtaining any

retrospective PM2.5 chemical composition data for a given monitoring site on a given day.  Figure 10

presents a time line showing the days from which archived filter-based PM2.5 samples are available for the

monitoring sites listed in Table 10.  For reference, the days with existing, complete PM2.5 speciation data

(as defined in Section 2.2.2) are also shown for each site.  As illustrated in Figure 10, the analysis of

archived filters could substantially augment the record of daily PM2.5 chemical composition information

available from monitoring sites in western Pennsylvania during the time period of interest for the proposed

retrospective epidemiology study.  This is especially true for the Bruceton, Florence, Lawrenceville, and

Liberty Borough sites, from which PM2.5 samples that were collected on an approximately daily basis

during a several-year period are available.  Section 2.5 of this report presents a strategy by which PM2.5

speciation data determined from these archived samples could be combined with the existing PM2.5

speciation data identified in Section 2.2 to produce time series of daily ambient PM2.5 chemical component

concentration data suitable for use in a retrospective epidemiology study of PM2.5 from coal-fired power

plants in the Pittsburgh region.  First, however, Section 2.4 discusses important methodological issues that

must be considered prior to using the existing PM2.5 speciation data or analyzing archived PM2.5 samples.
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Figure 10: Time line showing the days for which archived Teflon-filter-based PM2.5 samples (green) and quartz-filter-based

PM2.5 samples (red) are available from the sites in western Pennsylvania that monitored for PM2.5 speciation between 1999 and

2005.  For reference, the time line also indicates the days on which a complete set of PM2.5 speciation data has already been

determined for each site (blue).



2.4 Quality and Comparability of Available Air Monitoring Data

2.4 Quality and Comparability of Available Air Monitoring Data

Ideally, in order to generate a database of ambient pollutant measurements for use in an epidemiology

study of the health effects of PM2.5 from various sources (including coal-fired power plants), speciated

PM2.5 data (as well as co-pollutant and meteorological data) having a daily or finer time resolution would

be collected simultaneously for a period of several years at multiple monitoring sites uniformly distributed

on a regular grid throughout the study region of interest.  All of the sites would employ identical sampling

methods, analytical (laboratory) methods, data reduction procedures, and QA/QC protocols in order to

minimize inter-site biases and imprecisions that could otherwise arise from methodological discrepancies

(i.e., such that any differences among the sites would largely reflect true differences in ambient

concentrations, rather than measurement artifacts). 

PM2.5 and other air monitoring data available from the Pittsburgh region between 1999 and 2005 were not

collected according to this ideal scenario.  As shown by the inventory results presented in Section 2.2,
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Figure 11: Inter-site Spearman correlation coefficients for PM
2.5

 and select PM
2.5

 components in the

Pittsburgh region, based on data collected at the Lawrenceville, Schenley Park, Bruceton, Florence, and

Greensburg monitoring sites between 6/30/01 and 7/31/02.  Ten correlations are plotted for each

variable (with the exception of Cd and Si, for which 6 correlations are plotted), corresponding to the ten

possible site pairs.
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2.4 Quality and Comparability of Available Air Monitoring Data

data from this time period were collected at a variety of different monitoring sites located throughout the

region of interest for the proposed retrospective epidemiology study.  However, these sites did not feature

simultaneous, daily collection of PM2.5 speciation data over the multiple-year period required for the

retrospective study.  Rather, sampling activities at the sites were staggered, such that PM2.5 speciation data

are available from a number of sites during certain time periods, but only from a single site during others.

Moreover, during periods from which data are available only from a single site, the identity of this site is

not always the same.  Finally, PM2.5 mass and speciation data were collected using a number of different

sampling and analytical techniques, as summarized in Table 11.  Hence, the construction of daily time

series of PM2.5 speciation measurements for use in a retrospective epidemiology study requires that

measurements from geographically diverse monitoring sites that were obtained using a wide variety of

sampling and analytical methods be combined and used interchangeably to develop daily regional

exposure estimates. 

Figures 11 and 12 help to illustrate some of the challenges associated with combining data from multiple

monitoring sites for use in a PM2.5 epidemiology study.  Figure 11 presents boxplots showing inter-site

Spearman correlation coefficients computed using pairwise 24-hr average mass concentration data for a

subset of PM2.5 chemical components that were collected at the Lawrenceville, Schenley Park, Bruceton,

Florence, and Greensburg sites.  (Hence, with the exceptions of Cd, for which data were not available

from the Bruceton site, and Si, for which data were not available from the Schenley Park site, each box in

the plot represents the distribution of the 10 inter-site Spearman correlation coefficients computed for the

10 possible site pairs that can be constructed from the list of sites above).  Figure 12 shows, for the same

set of components, the ratios of the median concentrations measured at each of the Schenley Park,

Bruceton, Florence, and Greensburg sites to the median concentrations measured at the Lawrenceville site.

The results in both figures are based on data that were collected during the period from June 30, 2001,

through July 31, 2002, during which monitoring activities at the five sites overlapped.  Distances between

sites ranged from 3 km (between the Lawrenceville and Schenley Park sites) to 79 km (between the

Florence and Greensburg sites).  As shown in Figure 11 the strengths of correlations computed for pairs

of monitoring sites varied considerably by PM2.5 component.  Median inter-site Spearman correlation

coefficients for PM2.5 total mass, fine particulate SO4
2-, and fine particulate OC were greater than 0.8,

whereas median inter-site Spearman correlation coefficients for fine particulate As, Cd, Cr, Ni, Se, and V

were all less than 0.2.  Moreover, median concentrations of PM2.5 components measured at monitoring

sites throughout the region differed appreciably (e.g., by a factor of two or more) in a number of cases, as

shown in Figure 12.  The appreciable relative bias and lack of correlation observed between sites for a

number of PM2.5 components are likely attributable both to the geographically diverse locations of the

sites, which cause them to be impacted to different extents by various local emission sources of PM2.5, and

to measurement error, including imprecision that can contribute to the low correlations observed in Figure

11 or bias that can lead to the disparities in central tendency observed in Figure 12.
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Table 11: Sampling and analytical methods used by monitoring sites in the 35-county greater Pittsburgh region to determine

PM2.5 mass and speciation, 1999-2005.

Sampler Type
a

Filter Type Start Time – End Time
b

Analytical Method Monitoring Sites

PM2.5 Total Mass

PM2.5 Federal Reference Method Teflon 12:00 am – 12:00 am Gravimetry

FLO, GRE, HAZ, HOL,

LAW, LIB, MOU, SCH,

STE, YOU

PM2.5 Federal Reference Method Teflon 09:00 am – 09:00 am Gravimetry
FRA, HOP, STV, TOM,

WHE

PM2.5 Federal Reference Method Teflon 12:00 pm – 12:00 pmc Gravimetry BRU

PM2.5 Federal Equivalent Method - R&P 2025

Sampler with Very Sharp Cut Cyclone
Teflon 12:00 am – 12:00 am Gravimetry FLO, GRE

Met One SASS PM2.5 Speciation Sampler Teflon 12:00 am – 12:00 am Gravimetry
FLO, GRE, HAZ, LAW,

LIB, MOU, STE, YOU

IMPROVE Sampler Teflon 12:00 am – 12:00 am Gravimetry FRO, LAW, MKG, QUA

CASTNet Sampler Teflon 12:00 am – 12:00 am Gravimetry MKG, QUA

Desert Research Institute Sequential Filter

Sampler
Teflon 12:00 am – 12:00 am Gravimetry HOL, LAW

Andersen Dichotomous Sampler Teflon 12:00 am – 12:00 am Gravimetry SCH

TEOM – 50oC Operation (continuous)
Teflon-Coated

Glass Fiber
12:00 am – 12:00 am

Tapered Element Oscillating

Microbalance

BRU, FRA, HOL, LAW,

LIB, YOU

TEOM – 30oC Operation (continuous)
Teflon-Coated

Glass Fiber
12:00 am – 12:00 am

Tapered Element Oscillating

Microbalance
BRU, SCH

TEOM with Filter Dynamics Measurement

System (FDMS) (continuous)

Teflon-Coated

Glass Fiber
12:00 am – 12:00 am

Tapered Element Oscillating

Microbalance
STE

Ions

PM2.5 Federal Reference Method Teflon 09:00 am – 09:00 am Ion Chromatography
FRA, HOP, STV, TOM,

WHE

PM2.5 Federal Reference Method (or Andersen

RAAS2.5-400 PM2.5 Speciation Sampler)
Teflon 12:00 pm – 12:00 pmc Ion Chromatography BRU

Met One SASS PM2.5 Speciation Sampler with

MgO Denuder
Nylon 12:00 am – 12:00 am Ion Chromatography

FLO, GRE, HAZ, LAW,

LIB, MOU, STE, YOU

IMPROVE Sampler with Denuder Nylon 12:00 am – 12:00 am Ion Chromatography FRO, LAW, MKG, QUA

CASTNet Sampler with Sodium Carbonate

Denuder
Nylon 12:00 am – 12:00 am Ion Chromatography MKG, QUA
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a
Filter Type Start Time – End Time

b
Analytical Method Monitoring Sites

Desert Research Institute Sequential Filter

Sampler (or R&P Partisol PM2.5 Federal

Reference Method Sampler)

Quartz 12:00 am – 12:00 am

Ion Chromatography,

Automated Colorimetry,

Atomic Absorption

HOL, LAW

CMU PM2.5 Speciation Sampler with MgO and

Citric Acid Denuders

Teflon, Nylon,

Citric-Acid-

Impregnated

Cellulose Fiber

12:00 am – 12:00 am Ion Chromatography SCH

Andersen RAAS2.5-400 Speciation Sampler

with MgO Denuder
Nylon 09:00 am – 09:00 amc Ion Chromatography FRA

PC-BOSS Sampler
Teflon and

Quartz
12:00 pm – 12:00 pm Ion Chromatography BRU

R&P 8400N Automated Particulate Nitrate

Monitor (semi-continuous)

NiChrome Flash

Strip
12:00 am – 12:00 am

Flash Volatilization /

Chemiluminescence
BRU, SCH

R&P 8400S Automated Particulate Sulfate

Monitor (semi-continuous)

Platinum Flash

Strip
12:00 am – 12:00 am

Flash Volatilization /

Fluorescence
BRU, SCH

Carbon

Met One SASS PM2.5 Speciation Sampler Quartz 12:00 am – 12:00 am
Thermal Optical

Transmittance

FLO, GRE, HAZ, LAW,

LIB, MOU, STE, YOU

IMPROVE Sampler Quartz 12:00 am – 12:00 am Thermal Optical Reflectance FRO, LAW, MKG, QUA

CASTNet Sampler Quartz 12:00 am – 12:00 am Thermal-Optical Analysis MKG, QUA

Desert Research Institute Sequential Filter

Sampler (or R&P Partisol PM2.5 Federal

Reference Method Sampler)

Quartz 12:00 am – 12:00 am Thermal Optical Reflectance HOL, LAW

CMU TQQQ Sampler Quartz 12:00 am – 12:00 am
Thermal Optical

Transmittance
SCH

Andersen RAAS2.5-400 Speciation Sampler Quartz 09:00 am – 09:00 amc Thermal Optical

Transmittance
FRA

PC-BOSS

Quartz,

Charcoal-

Impregnated

Glass

12:00 pm – 12:00 pm
Temperature-Programmed

Volatilization
BRU

R&P 5400 Carbon Monitor (semi-continuous)
Parallel-Plate

Impactor
12:00 am – 12:00 am Thermal-CO2 Analysis BRU

Sunset In-Situ Thermal/Optical Carbon

Analyzer with Multi-Channel Parallel Plate

Diffusion Denuder (semi-continuous) Quartz 12:00 am – 12:00 am
In-Situ Thermal Optical

Transmittance
SCH
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a
Filter Type Start Time – End Time

b
Analytical Method Monitoring Sites

Elements

PM2.5 Federal Reference Method (or Andersen

RAAS2.5-400 PM2.5 Speciation Sampler)
Teflon 12:00 pm – 12:00 pmc Proton Induced X-Ray

Emission
BRU

Met One SASS PM2.5 Speciation Sampler Teflon 12:00 am – 12:00 am X-Ray Fluorescence
FLO, GRE, HAZ, LAW,

LIB, MOU, STE, YOU

IMPROVE Sampler Teflon 12:00 am – 12:00 am
X-Ray Fluorescence, Proton

Induced X-Ray Emission
FRO, LAW, MKG, QUA

CASTNet Sampler Teflon 12:00 am – 12:00 am X-Ray Fluorescence MKG, QUA

Desert Research Institute Sequential Filter

Sampler (or R&P Partisol PM2.5 Federal

Reference Method Sampler)

Teflon 12:00 am – 12:00 am X-Ray Fluorescence HOL, LAW

Thermo-Andersen PM2.5 Hi-Vol Sampler Cellulose 12:00 am – 12:00 am
Inductively Coupled Plasma

– Mass Spectrometry
SCH

Andersen RAAS2.5-400 PM2.5 Speciation

Sampler
Teflon 09:00 am – 09:00 amc

Dynamic Reaction Cell

Inductively Coupled Plasma

– Mass Spectrometry

FRA

aFederal Reference Method samplers include the Andersen RAAS2.5-300 and the R&P Partisol-Plus 2025 PM2.5 Sequential Air Sampler. bThe desired

period of collection for the proposed epidemiology study is 12:00 am – 12:00 am.  Hence, for semi-continuous sampling and filter-based sampling that

was conducted with a time resolution finer than 24 hours, the start time and end time were reported as 12:00 am if data could be aggregated in 24-hour

periods according to this schedule. cSamplers operated from 12:00 am to 12:00 am during EPA sampling intensives.
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Systematic bias is correctable and therefore does not pose a major problem for the construction of an

exposure database for use in a retrospective epidemiology study.  It is essential, however, that biased

measurements be properly calibrated (e.g., corrected to some reference level so that the relative bias

between them is removed) prior to use in the epidemiological models, especially for our proposed study in

which measurements made at different sites or using different measurement techniques may need to be

used interchangeably to represent exposures on different days, depending on data availability.  For

example, consider a hypothetical scenario in which ambient concentrations of species X were measured on

half of the study days using only method A and on the other half of the study days using only method B,

and in which method B is biased 50% low relative to method A.  (Methods A and B might be two different

sampling/analytical methods used at the same monitoring site, the same sampling/analytical method used

at two different monitoring sites, or two different sampling/analytical methods used at two different

monitoring sites).  If the data obtained using methods A and B are combined to form a single time series of

daily concentrations of species X without first accounting for the bias between the methods, then the bias

will cause a misrepresentation of the variability in ambient concentrations of species X.  (For example, if

ambient concentrations measured using method A would have been [1, 2, 1, 1.5] over a four-day period,

PITT-PM 86

Figure 12: Ratios of median concentrations of PM
2.5

 (FRM) and select PM
2.5

 components measured at the

Bruceton, Schenley Park, Florence, and Greensburg sites to median concentrations of these species measured at

the Lawrenceville site between 6/30/01 and 7/31/02.  (For each comparison, data from a given day were excluded

if only one of the two sites under consideration produced a valid measurement that day).
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but measurements made using method B were used to represent ambient concentrations on every second

day with no knowledge of the bias between methods A and B, then the time series of ambient

concentrations would incorrectly appear to be [1, 1, 1, 0.75]).   Hence, it is important that systematic

biases among measurement techniques and monitoring sites be identified and corrected (e.g., using a

calibration derived from collocated measurements, as described in more detail below) if the data produced

by these techniques or sites are to be used interchangeably to represent exposures. 

Unlike systematic bias, the instrument imprecision and spatial variability that contribute to the low

correlations observed in Figure 11 for certain PM2.5 components cannot be corrected, and are sources of

exposure error that must be acknowledged prior to epidemiological modeling.  Wade et al. (2006) reported

that, based on analyses of PM2.5 speciation data (i.e., SO4
2-, NO3

-, NH4
+, EC, OC) from Atlanta, Georgia,

using modified semivariograms, the population-weighted uncertainty in concentrations of primary

pollutants such as EC arising from instrument imprecision and spatial variability tended to account for

about 60-70% of the temporal variation in concentrations of these pollutants, whereas the population-

weighted uncertainty in concentrations of secondary pollutants due to instrument imprecision and spatial

variability was much less (e.g., 25% of the temporal variation in concentrations of SO4
2-).  The

correlations presented in Figure 11 for PM2.5 components in the Pittsburgh region, while not direct

measures of uncertainty, are consistent with the results of Wade et al.  The strongest inter-site correlations

were observed for SO4
2-, a predominantly regional, secondary pollutant for which measurement techniques

tend to be consistent and precise (e.g., 5% imprecision, U.S. EPA, 2001).  Inter-site correlations were

appreciably weaker for EC, a predominantly locally-emitted, primary pollutant for which measurement

techniques have substantially more imprecision (e.g., 5% to 30%, U.S. EPA, 2001).  Even lower inter-site

correlations were observed for many fine particulate trace element species, which again are locally-

emitted, primary pollutants that are subject to large analytical imprecisions (e.g., 20% to >100%, U.S.

EPA, 2001) resulting from very low ambient concentrations (i.e., near or below the detection limits of the

analytical methods), variable blank concentrations, and other methodological limitations.  The poor

correlations observed for certain trace element species in Figure 11 likely further result from the fact that

the five sites included in the figure used three different analytical techniques (XRF, PIXE, ICP-MS) for

elemental analysis.  

Thus, uncertainties arising from sampling and analytical imprecision (i.e., either the imprecision

associated with a given sampling or analytical method or the imprecision resulting from the use of

multiple methods interchangeably to determine concentrations of a given parameter) and from spatial

variability (especially for locally-emitted pollutants, for which the day-to-day variability in concentrations

measured at a given monitoring site may not represent the day-to-day variability in concentrations at other

locations in the region) contribute to random error (noise) in the exposure estimates used in PM2.5

epidemiology studies.  Such exposure measurement error can attenuate the effect estimates in population-

based time-series studies (Zeger et al., 2000; Wade et al., 2006), decreasing the ability of the

epidemiological model to detect an association between a health outcome and an explanatory variable

PITT-PM 87



2.4 Quality and Comparability of Available Air Monitoring Data

when one truly exists.  Because exposure measurement errors resulting from methodological imprecision

and spatial variability differ appreciably by PM2.5 component, as discussed above, it is important to

identify and quantify these errors prior to designing an epidemiological study that is focused on the health

effects of PM2.5 components.

For the proposed retrospective epidemiology study of PM2.5 from coal-fired power plants in the Pittsburgh

region, it is particularly important to consider the effects of bias and imprecision in exposure estimates,

because these estimates will be derived from a number of different monitoring sites that employed a

number of different sampling and analytical techniques.  Statistical methods for quantifying bias and

imprecision and for calibrating biased measurements are discussed in detail later in this report, as are

space-time geostatistical techniques for combining measurements from multiple monitoring sites for

purposes of developing time series of exposure estimates.  The remainder of this section focuses on

assessing the quality, comparability, and limitations of the various sampling and analytical techniques that

were used by monitoring sites in the Pittsburgh region to measure ambient mass concentrations of PM2.5

and its chemical components between 1999 and 2005 or that would be used to determine these

concentrations from archived PM2.5 samples.  Differences among the QA/QC protocols employed by the

various sites are also discussed, as disparities in data validation criteria can affect the comparability of

measurements from different monitoring sites. 

2.4.1 Comparison of Sampling and Analytical Techniques

Table 11 demonstrates that the PM2.5 speciation data available from the Pittsburgh region between 1999

and 2005 were generated using a vast array of sampling and analytical methods and combinations thereof.

The methods used to measure a given PM2.5 parameter often differed in a number of ways, including some

or all of the following:

� Sampler inlet design

� Type of denuder (if used)

� Type of filter (or other sample collection medium)

� Type of backup filter (if used)

� Sampler operating temperature 

� Sampling flow rate

� Duration of sample collection

� Sampling start and end times
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� Filter / sample handling and storage procedures

� Sample preparation procedures

� Analytical instrument / method

� Data reduction procedures (e.g., use of blank correction)

Each of these factors can affect the quality and comparability of PM2.5 speciation results.  For example,

variations in inlet design can affect particle collection efficiency, causing a relative bias between two

samplers.  Factors such as filter type, denuder use, backup filter use, and sampler operating temperature

influence whether reactive gases are collected with the sample, causing a positive sampling artifact, or

whether semi-volatile material is lost from the sample, causing a negative sampling artifact.  The sampling

flow rate and duration of sample collection (together with the ambient concentration of particles on a

particular day) determine the quantity of particles that are collected on the filter, which can affect the

ability to determine concentrations of fine particle components that are present in trace amounts (if too

little sample is collected, then the analytical methods may not have sufficient sensitivity to determine these

components).  The sampling schedule (i.e., start and end times) affects whether measured values are

directly comparable temporally with other air pollution measurements and with health outcomes data

(which typically are tabulated from midnight to midnight).  If filters and samples are not handled properly,

contamination can cause bias or imprecision in the measured values (depending on whether it is random or

systematic), and variations in temperature can affect the extent to which semi-volatile components are

retained on the filter.  Laboratory procedures, including sample preparation (e.g., extraction, digestion,

dilution) and the particular analytical instrument or method being used, also vary considerably in their

accuracy, precision, and sensitivity.  Finally, differences in data reduction procedures can affect the

comparability of reported values.  For example, if Group A subtracted average field blank concentrations

before reporting PM2.5 speciation measurements and Group B did not, then concentrations reported by

Group B would be biased high relative to those reported by Group A, all other things being equal.

This section focuses on quantifying differences in the accuracy, precision, and sensitivity of various

sampling and analytical techniques that were used to measure ambient concentrations of PM2.5 chemical

components in the Pittsburgh region between 1999 and 2005.  Because our goal is not to improve upon

these sampling and analytical methodologies but rather to ascertain the quality and comparability of

existing measurements, the individual effects of the various factors identified above are not explored in

detail.  Rather, a statistical approach based on pairwise comparisons of final reported values, which reflect

the combined effects of all of these factors, is employed.  Moreover, for purposes of this feasibility

assessment, we did not exhaust all of the comparisons that could be specified from the information

presented in Table 11, but rather focused on those sites and methods that would be of particular

importance for purposes of the retrospective epidemiology study.  Results are summarized in the

subsections below for measurements of PM2.5 total mass, PM2.5 ionic components, PM2.5 carbonaceous
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components, and PM2.5 elemental components.

2.4.1.1 PM2.5 Total Mass

Table 11 identifies 12 different methods that were employed by the 19 PM2.5 speciation monitoring sites

located in the 35-county greater Pittsburgh region to determine ambient PM2.5 total mass concentrations

between 1999 and 2005.  These methods included both integrated methods, which involve sampling to

collect fine particles on a filter over a given period of time (e.g., 24 hours) followed by gravimetric

analysis in the laboratory to determined the average mass of particles collected per volume of air sampled

during that period, and continuous methods, which determine PM2.5 concentrations in the field in real time.

The integrated methods used to measure PM2.5 mass in the Pittsburgh region differed primarily according

to the type of sampler used (i.e., Federal Reference Method sampler vs. Federal Equivalent Method

sampler vs. dichotomous sampler vs. various speciation samplers) and the sampling schedule (i.e., the

NETL/OST Bruceton site generally sampled from 12:00 p.m. to 12:00 p.m.; the five SCAMP monitoring

sites generally sampled from 9:00 a.m. to 9:00 a.m., and all of the other sites sampled from 12:00 a.m. to

12:00 a.m.).  All of these methods employed Teflon filters for sample collection.  All continuous PM2.5

mass measurements were made using tapered element oscillating microbalances (TEOMs); however, the

sampler configuration and operating temperature varied in some cases.

With the exceptions of the Frostburg, M.K. Goddard, and Quaker City sites, at which PM2.5 mass

concentrations were measured using only IMPROVE or CASTNet samplers, all of the PM2.5 speciation

monitoring sites in the greater Pittsburgh region included a PM2.5 Federal Reference Method sampler to

determine 24-hour average ambient PM2.5 mass concentrations.  All PM2.5 FRM samplers are designed

according to consistent specifications (e.g., regarding the size selective inlet, filter, filter cassette, filter

holder, flow rate requirements, temperature and pressure monitoring requirements, etc.) established by the

U.S. EPA (U.S. EPA, 1997), resulting in reasonable equivalence (i.e., within measurement imprecision)

among samplers.  Imprecisions estimated from collocated PM2.5 FRM samplers are typically on the order

of 0.5 to 1.0 µg/m3 (Chow and Watson, 1998).  It is important to recognize, however, that mass

concentrations of PM2.5 determined from FRM samplers may deviate from true ambient concentrations.

PM2.5 FRM samplers do not employ denuders to scrub reactive gases, backup filters to collect revolatilized

material, or blank correction methods to adjust for contamination during handling and storage.  Hence,

biases between PM2.5 mass concentrations determined by the FRM and actual ambient PM2.5 mass

concentrations may result, for example, from losses of semi-volatile species such as NO3
-, NH4

+, and OC

(Jansen et al., 2002; Frank, 2006).  Nevertheless, because the PM2.5 NAAQS is based on PM2.5

concentrations determined using FRM samplers, and because these samplers provide a methodologically

consistent means for comparing PM2.5 mass concentrations measured at monitoring sites throughout the

Pittsburgh region, FRM measurements will likely be used as the basis for estimating exposures to PM2.5

mass for the proposed retrospective epidemiology study.
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On certain days at certain sites, valid PM2.5 mass concentration data were not determined from FRM

sampling (e.g., because of a sampler malfunction or failed QA/QC criterion) but were determined using a

speciation, FEM, or dichotomous sampler.  Mass concentrations determined by these samplers are

generally comparable to those determined by PM2.5 FRM samplers, as illustrated in Figures 13 and 14.

These figures present the results of Bland-Altman analyses comparing 24-hour average PM2.5 mass

concentrations measured using collocated PM2.5 samplers at the Lawrenceville monitoring site. Figure 13

compares PM2.5 concentrations measured by UORVP using a Desert Research Institute Sequential Filter

Sampler (SFS) with PM2.5 concentrations measured by ACHD using a PM2.5 FRM sampler, and Figure 14

compares PM2.5 concentrations measured by ACHD using a Met One SASS PM2.5 speciation sampler with

PM2.5 concentrations measured by ACHD using a PM2.5 FRM sampler.

The method of Bland and Altman examines the agreement between two methods by plotting the paired

differences between measurements made by the two methods (i.e., x1 – x2) against the corresponding

paired average measurements (i.e., [x1 + x2]/2) (Bland and Altman, 1986).  A calibration line relating the

two methods is then derived by regressing the paired differences on the paired averages.  As discussed in a

later section of this report, the Bland-Altman technique, when applied to two methods with approximately
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Figure 13: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily PM2.5

concentrations measured at the Lawrenceville site using a Desert Reserach Institute Sequential Filter

Sampler (x1) and a PM2.5 Federal Reference Method sampler (x2) between 10/1/02 and 2/27/03.
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equal imprecisions, correctly estimates the calibration line describing the relative bias between the two

methods, whereas simple linear regression of one method on the other yields a distorted estimate of the

calibration line.  However, if the imprecisions of the two methods differ or if more than two methods are

being compared, then latent variable modeling (LVM) is needed to estimate relative bias.  For purposes of

this preliminary assessment of method comparability, equal imprecisions are assumed and the relatively

simple Bland-Altman technique is used in place of the more complex LVM technique.  Prior to calibrating

measurements for use in an actual epidemiology study, however, LVM would be applied in all cases to

verify the assumption of equal imprecisions.

The Bland-Altman results presented in Figures 13 and 14 indicate small relative biases between PM2.5

concentrations determined by the FRM sampler and those determined by the SFS and SASS samplers.  On

average, PM2.5 concentrations from the SFS sampler were about 1.6 µg/m3 less than those from the FRM

sampler, and PM2.5 concentrations from the SASS sampler were about 1.4 µg/m3 greater than those from

the FRM sampler.  In both cases, the relative bias between methods varied significantly as a function of
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Figure 14: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily PM
2.5

concentrations measured at the Lawrenceville site using a Met One SASS PM
2.5

 speciation sampler (x1)

and a PM
2.5

 Federal Reference Method sampler (x2) between 6/30/01 and 3/29/05.
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average concentration.  These biases are correctable using the calibration lines shown in Figures 13 (b)

and 14 (b).  Constant common imprecision estimates for the comparisons between the FRM sampler and

the SFS and SASS samplers were 1.1 µg/m3 (9.0%) and 1.4 µg/m3 (8.7%), respectively, just slightly

greater than the 0.5-1.0 µg/m3 range referenced above for collocated FRM samplers.  These results

indicate that, after calibration to account for relative bias, data from the FRM and speciation samplers

could be used interchangeably to represent ambient PM2.5 mass concentrations with little impact on overall

data quality.

Eight of the sites that monitored for PM2.5 speciation in the Pittsburgh region included TEOM monitors to

continuously measure ambient PM2.5 mass concentrations.  In the TEOM, PM2.5 is collected on a Teflon-

coated glass fiber filter that sits on the end of a tapered, oscillating glass tube.  As PM2.5 accumulates on

the filter over time, its mass is determined by measuring the change in the oscillation frequency of the

tube.  Until recently, it was common practice to operate TEOM monitors at 50oC to remove moisture from

the sampled air and prevent condensation on the filter.  However, operation at this temperature may also

cause the loss of some semi-volatile particulate matter (e.g., ammonium nitrate, semi-volatile organic

compounds, and particle-bound water), resulting in an underestimation of total PM2.5 mass relative to the
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Figure 15: Bias of the TEOM monitor relative to the FRM monitor at the Franciscan University of

Steubenville site, as a function of the FRM-determined PM
2.5

 concentration.  The blue line represents bias

in µg/m
3
; the red line represents bias in %.
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Federal Reference Method (Allen et al., 1997).  The magnitude of this artifact is dependent upon the

composition of the sampled PM2.5, and therefore varies with location and time.  

As shown in Table 11 six of the eight speciation sites with TEOMs operated these TEOMs at 50oC.

Connell et al. (2005b) presented a comparison of PM2.5 mass concentrations measured using the collocated

FRM and 50oC TEOM monitors at the SCAMP Franciscan University of Steubenville site.  For purposes

of the comparison, hourly TEOM data were averaged over 24-hr periods corresponding to the FRM

sampling schedule; 515 pairs of collocated measurements were included in the analysis.  Both methods

exhibited similar imprecisions, ranging from 0.0 to 4.2µg/m3 for the FRM sampler and from 1.7 to 4.0

µg/m3 for the TEOM monitor for FRM-determined ambient PM2.5 concentrations of 6.6 to 43.2 µg/m3.

However, as shown in Figure 15, PM2.5 mass concentrations determined by the TEOM were substantially

biased in the negative direction relative to those determined by the FRM, likely because of losses of semi-

volatile material at the 50oC operating temperature.

To reduce losses of semi-volatile material, TEOM monitors can be equipped with a Sample Equilibration

System (SES) or Filter Dynamics Measurement System (FDMS) and operated at 30oC; the TEOM monitor

at Schenley Park (and for a time, the TEOM monitor at Bruceton) was equipped with an SES and operated
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Figure 16: Scatterplots comparing 24-hour FRM PM
2.5

 concentrations measured from midnight-to-

midnight at the Lawrenceville site with 24-hour FRM PM
2.5

 concentrations (a) measured from noon-to-

noon at the Bruceton site with a -12-hour offset relative to the Lawrenceville measurements, (b) estimated

from midnight-to-midnight at the Bruceton site on the basis of noon-to-noon measurements made there,

and (c) measured from noon-to-noon at the Bruceton site with a +12-hour offset relative to the

Lawrenceville measurements.
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at 30oC, and the TEOM monitor at the EPA’s Steubenville site was equipped with an FDMS.

Nevertheless, PM2.5 concentrations determined using these TEOM monitors may still exhibit small biases

relative to those determined using FRM monitors.

Hence, before using TEOM data to represent PM2.5 concentrations for purposes of a retrospective

epidemiology study, any biases in these data must be removed (e.g., via LVM).  All of the PM2.5 speciation

monitoring sites in the Pittsburgh region that included TEOM monitors (and, with the exception of AQS

site No. 420050001, all of the PM2.5 mass monitoring sites that included TEOM monitors) also included

FRM monitors; hence, calibrations can be performed easily using pairwise data from these collocated

monitors.

As discussed above, 24-hr integrated PM2.5 samples from the NETL/OST Bruceton monitoring site were

generally collected from 12:00 p.m. to 12:00 p.m., and 24-hr integrated samples from the five SCAMP

monitoring sites were generally collected from 9:00 a.m. to 9:00 a.m.  These abnormal sampling schedules

affect the comparability of daily PM2.5 data from these sites with daily PM2.5 data from other monitoring

sites in the Pittsburgh region and with daily health outcomes data, which are collected from 12:00 a.m. to

12:00 a.m.  The disparity is of particular concern for the NETL/OST Bruceton site, which is one of the

largest sources of existing PM2.5 data and archived PM2.5 samples from the Pittsburgh region during the

time period of interest, but which operated on a sampling schedule that caused most of these data and

samples to be offset by a half-day from other available exposure and health data.

Table 12: Summary of paired differences between PM2.5 concentrations measured using an FRM monitor

at the Bruceton site and PM2.5 concentrations measured using an FRM monitor at the Lawrenceville site

between 1/01 and 12/03.  Results include a comparison of paired differences computed using PM2.5

concentrations measured from noon-to-noon at the Bruceton site with paired differences computed using

midnight-to-midnight concentrations estimated by averaging these noon-to-noon measurements.  (All data

from the Lawrenceville site were measured from midnight-to-midnight).

Time Period Represented by Bruceton Data

Noon-to-Noon

-12-hr offset

(Case 1)

Noon-to-Noon

+12-hr offset

(Case 2)

Midnight-to-Midnight

Estimate

(Case 3)

Number of Paired Differences, BRU – LAW 965 965 943

Mean Paired Difference, BRU – LAW -0.5 -0.4 -0.5

Standard Deviation of Paired Differences, BRU – LAW 5.6 5.5 3.6

Variance of Paired Difference, BRU – LAW 31.6 30.5 13.0

F-test Results (relative to Case 3)

   F 2.44 2.35 NA

   p-value <0.0001 <0.0001 NA

Daily PM2.5 concentrations between 12:00 a.m. and 12:00 a.m. at the NETL/OST and SCAMP monitoring

sites could be estimated by computing time-weighted averages from the two 24-hr concentrations that
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represent a portion of each day.  For the Bruceton site, the time-weighted average concentration on a given

day would be the simple arithmetic mean of the 24-hr concentration determined from 12:00 p.m. on the

previous day to 12:00 p.m. on the day of interest and the 24-hour concentration determined from 12:00

p.m. on the day of interest to 12:00 p.m. on the following day.   Midnight-to-midnight average PM2.5

concentrations estimated in this way using FRM data from the Bruceton site were compared with

midnight-to-midnight average PM2.5 concentrations measured using an FRM sampler at the Lawrenceville

site.  To assess the effect of averaging the Bruceton data, the noon-to-noon PM2.5 concentrations measured

at the Bruceton site were also compared with the midnight-to-midnight concentrations from the

Lawrenceville site. Comparisons were performed both using the Bruceton data that were lagged by 12

hours in the negative direction relative to the Lawrenceville data and using the Bruceton data that were

lagged by 12 hours in the positive direction relative to the Lawrenceville data. Figure 16 presents

scatterplots showing these three comparisons.  It is visually evident that use of the estimated midnight-to-

midnight data from the Bruceton site improved the comparability (i.e., decreased the scatter) between 24-

hour PM2.5 concentrations from this site and 24-hour PM2.5 concentrations from the Lawrenceville site.  To

confim this observation, paired differences between PM2.5 concentrations at Bruceton and PM2.5

concentrations at Lawrenceville were computed for each of the three cases shown in Figure 16, and F-

tests were applied to compare the variability in these paired differences among cases.  As shown in

Table 12, the paired differences between PM2.5 concentrations from the Bruceton and Lawrenceville sites

were significantly less variable when estimated midnight-to-midnight data from the Bruceton site were

used than when measured noon-to-noon data were used.  (The absolute values of the paired differences

were also significantly less when estimated midnight-to-midnight data from the Bruceton site were used).

Although not shown, similar results were obtained when PM2.5 data from the Bruceton site were compared

with those from the Schenley Park site.  These results suggest that 24-hour integrated data (including both

PM2.5 total mass data and compositional data derived from integrated PM2.5 samples) that were not

collected from midnight-to-midnight should be combined to derive midnight-to-midnight averages (e.g.,

using time-weighted means) prior to use in the epidemiology study.  It may be possible to further improve

these midnight-to-midnight estimates using TEOM data where available; this possibility should be

investigated when constructing the exposure database for use in the study.

2.4.1.2 PM2.5 Ions

Table 11 identifies eleven different methods that were employed by the 19 PM2.5 speciation monitoring

sites in the greater Pittsburgh region to determine ambient concentrations of inorganic ionic components

of PM2.5 (e.g., SO4
2-, NO3

-, NH4
+, etc.) between 1999 and 2005.  Ion concentrations were measured using

both integrated and semi-continuous methods.  At all of the AQS speciation sites, integrated PM2.5 samples

for ionic analysis were collected from 12:00 a.m. to 12:00 a.m. on nylon filters using Met One SASS

speciation samplers that were equipped with MgO denuders.  Concentrations of SO4
2-, NO3

-, NH4
+, K+, and

Na+ were determined from these samples by ion chromatography (IC).  Additional ion concentration data

at the Lawrenceville site are available from the UORVP and IMPROVE sampling networks.  UORVP
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collected 6- or 24-hour integrated PM2.5 samples for ionic analysis on quartz filters using Desert Research

Institute SFS samplers (or PM2.5 FRM samplers) that operated from midnight to midnight.  These samples

were then analyzed by IC to determine concentrations of SO4
2-, NO3

-, and Cl-, by automated colorimetry to

determine concentrations of NH4
+, and by atomic absorption to determine concentrations of Na+ and K+.

IMPROVE collected integrated PM2.5 samples for ionic analysis from 12:00 a.m. to 12:00 a.m. on nylon

filters using an IMPROVE sampler that was equipped with a denuder, and determined concentrations of

SO4
2-, NO3

-, and Cl- from these samples by IC.

Apart from the AQS sites, ionic data from the PAQS Schenley Park site and the NETL/OST Bruceton site

are of particular interest for the proposed epidemiology study, because these sites have an abundance of

daily PM2.5 speciation data and were located in Allegheny County, where much of the Pittsburgh region’s

population is located.  Twenty-four-hour average concentrations of SO4
2-, NO3

-, and NH4
+ at the Schenley

Park site were determined from integrated PM2.5 samples collected using a CMU PM2.5 speciation sampler

that operated from approximately 12:00 a.m. to 12:00 a.m. (at times, several separate samples were

collected during this period to improve the time resolution of the data).  The sampler was equipped with

MgO and citric-acid-coated denuders to scrub nitric acid and ammonia gases, respectively, from the

sampled air stream.  Sulfate was determined by IC from PM2.5 samples collected on Teflon filters; nitrate

was determined by IC from the Teflon-filter-based samples and from samples collected on nylon backup

filters (which were used to account for volatilized nitrate), and ammonium was determined by IC from the

Teflon-filter-based samples and from samples collected on citric-acid-impregnated cellulose fiber backup

filters (which were used to account for volatilized ammonium).  Twenty-four-hour average concentrations

of SO4
2-, NO3

-, NH4
+, K+, Na+, and several other inorganic ions at the Bruceton site were determined by IC

from Teflon-filter-based PM2.5 samples collected using a PM2.5 FRM sampler or an Andersen RAAS2.5-

400 PM2.5 speciation sampler that generally operated from 12:00 p.m. to 12:00 p.m. (except during several

EPA sampling intensives, when it operated from 12:00 a.m. to 12:00 a.m.).  Twenty-four-hour SO4
2- and

NO3
- concentrations at the Bruceton site were also determined by IC at times from integrated samples

collected on Teflon and quartz filters using a PC-BOSS sampler.  This sampler, which is designed to

collect particles with diameters ranging from about 0.1 – 2.3 �m (Modey and Eatough, 2004), is equipped

with a denuder to remove reactive gases (e.g., nitric acid) from the sample steam, and also includes a

backup Nylasorb filter for determining the amount of semi-volatile nitrate lost from the particles during

sampling. Finally, both the Schenley Park and Bruceton sites included semi-continuous measurements of

fine particulate SO4
2- and NO3

- using Rupprecht & Patashnick 8400S and 8400N monitors.  In these

instruments, PM2.5 is collected on a platinum (8400S) or NiChrome (8400N) flash strip, and flash

volatilization is applied every ten minutes to convert the S (assumed to be SO4
2-) or NO3

- contained in the

sample to NOx (8400N) or SO2 (8400S), respectively, which are then measured using gas analyzers.
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Figure 17: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily SO
4

2-

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler (x1) and a Met One SASS PM
2.5

 speciation sampler (x2) between 10/1/02 and 2/27/03.

2 4 6 8 10 12 14

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

(a) Bland-Altman Plot

(x1+x2)/2

x1
-x

2

dif f = 0.045 + -0.129 * ave ( p<0.001 )
dif f +/- 1.96 sd w here sd = 0.164 + 0.027 * ave ( p=0.144 )
mean dif f  = -0.414 ( p<0.001 )
mean dif f  +/- 1.96 sd w here sd = 0.409
Constant Common Precision = 0.289

 

2 4 6 8 10 12

5
10

15
20

(b) Calibration Plot

x1

x2

x2 = -0.048 + 1.138 x1
x1 = 0.042 + 0.879 x2
Diagonal Line



2.4 Quality and Comparability of Available Air Monitoring Data

PITT-PM 99

Figure 18: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily NO
3
-

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler (x1) and a Met One SASS PM
2.5

 speciation sampler (x2) between 10/1/02 and 2/27/03.
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Figure 17 presents a Bland-Altman plot comparing 24-hour average fine particulate SO4
2- concentrations

determined by IC from quartz-filter-based samples collected by the SFS sampler at the Lawrenceville site

with 24-hour average SO4
2- concentrations determined by IC from nylon-filter-based samples collected by

the SASS sampler at that site.  Figure 18 presents a similar plot for fine particulate NO3
-.  As shown in

these figures, the SFS sampler exhibited a statistically significant, nonconstant bias relative to the SASS

sampler for both SO4
2- and NO3

-.  On average, SO4
2- concentrations determined by the SFS sampler were

0.4 µg/m3 less than those determined by the SASS sampler, and NO3
- concentrations determined by the

SFS sampler were 0.9 µg/m3 less than those determined by the SASS sampler.  The larger relative bias for

NO3
- as compared to SO4

2- likely results from losses of semivolatile NO3
- from the quartz filters used by

the SFS sampler.  (The nylon filters used by the SASS sampler are employed to prevent these losses).

Irrespective of their causes, the biases between the two samplers are correctable via the calibration lines

presented in Figures 17 (b) and 18 (b).  Constant common imprecision estimates for the comparisons

between the SFS and SASS samplers were 0.3 µg/m3 (8.1%) for SO4
2- and 0.4 µg/m3 (13.9%) for NO3

-.

These estimates are similar (on a percentage basis) to those presented above for PM2.5 mass measurements.

Results indicate that, after calibration to account for relative bias, data from the SFS and SASS samplers

could be used interchangeably to represent ambient fine particulate ion concentrations. Figures 19 and 20

present Bland-Altman plots comparing concentrations of SO4
2- and NO3

-, respectively, measured at the

Bruceton monitoring site using a PC-BOSS sampler with concentrations of these species measured there

using a PM2.5 FRM or Andersen RAAS2.5-400 sampler.  Concentrations of SO4
2- measured using the PC-

BOSS sampler on average were about 1.0 µg/m3 less than those measured using the FRM or Andersen

RAAS2.5-400 sampler, whereas concentrations of NO3
- measured using the PC-BOSS sampler on average

µwere 0.1 g/m3 greater than those measured using the FRM or Andersen RAAS2.5-400 sampler.  These

statistically significant relative biases likely reflect a combination of differences between the samplers,

µincluding the smaller range of particle sizes collected by the PC-BOSS (i.e., 0.1-2.3 g/m3 µ vs. <2.5 

g/m3), the use of a particle concentrator and multi-channel diffusion denuder in the PC-BOSS to scrub

gases including SO2 and HNO3 that could otherwise contribute to positive sampling artifacts (the FRM and

Andersen RAAS2.5-400 samplers at Bruceton were not equipped with denuders), and the use of a

Nylasorb filter in the PC-BOSS to collect volatilized NO3
-.  Again, these biases can be corrected using the

calibration lines presented in Figures 19 (b) and 20 (b).  Common imprecision estimates of 23% for SO4
2-

and 37% for NO3
- computed from the comparison between the PC-BOSS and FRM or Andersen

RAAS2.5-400 samplers at the Bruceton site were greater than the common imprecision estimates reported

above for the comparison between the SFS and SASS samplers at the Lawrenceville site.
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Figure 19: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily SO
4

2-

concentrations measured at the Bruceton site using a PC-BOSS sampler (x1) and a PM2.5 FRM sampler

or Andersen RAAS2.5-400 speciation sampler (x2) between 11/2/99 and 11/8/00.

5 10 15 20

-1
0

-5
0

5
10

15
20

(a) Bland-Altman Plot

(x1+x2)/2

x1
-x

2

dif f  = -0.396 + -0.089 * ave ( p=0.036 )
dif f  +/- 1.96 sd w here sd = 0.79 + 0.113 * ave ( p=0.008 )
mean diff  = -0.967 ( p<0.001 )
mean diff  +/- 1.96 sd w here sd = 2.111
Constant Common Precision = 1.493

 

0 5 10 15 20

0
5

10
15

20
25

30

(b) Calibration Plot

x1

x2

x2 = 0.414 + 1.093 x1
x1 = -0.379 + 0.915 x2
Diagonal Line



2.4 Quality and Comparability of Available Air Monitoring Data

Figure 20: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily NO
3

-

concentrations measured at the Bruceton site using a PC-BOSS sampler (x1) and a PM
2.5

 FRM sampler

or Andersen RAAS2.5-400 speciation sampler (x2) between 11/2/99 and 11/8/00.
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Figure 21: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily SO
4

2-

concentrations measured at the Bruceton site using an R&P 8400S sampler (x1) and a PM2.5 FRM

sampler or Andersen RAAS2.5-400 speciation sampler (x2) between 7/3/01 and 10/10/02.
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Figure 22: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily SO
4

2-

concentrations measured at the Schenley Park site using an R&P 8400S sampler (x1) and a CMU PM
2.5

speciation sampler (x2) between 7/2/01 and 7/21/02.

Finally, Figures 21 and 22 compare semi-continuous fine particulate SO4
2- measurements made using

Rupprecht & Patashnick 8400S sulfate monitors at the Bruceton and Schenley Park sites with integrated

SO4
2- measurements made at these sites by IC analysis of Teflon-filter-based PM2.5 samples.  As shown in

the figures, the semi-continuous measurements in both cases exhibited a statistically significant,

nonconstant bias relative to the integrated measurements.  On average, SO4
2- concentrations measured by

the 8400S monitor at the Bruceton site were 2.8 µg/m3 less than those determined from PM2.5 samples

collected using the PM2.5 FRM or Andersen RAAS2.5-400 sampler at that site, and SO4
2- concentrations

measured by the 8400S monitor at the Schenley Park site were 0.7 µg/m3 less than those determined from

PM2.5 samples collected using the CMU speciation sampler at that site.  More importantly, however, the

common imprecisions of 64.0% and 37.0% computed from the comparisons of semi-continuous and

integrated measurements at the Bruceton and Schenley Park sites, respectively, were substantially greater

than the common imprecisions of 8.1% – 23% reported above for pairs of integrated SO4
2- measurement

methods.  (As discussed later in this report, some data from the Bruceton monitoring site have not

undergone extensive QA/QC; hence, invalid outliers may still be present in these data, possibly

contributing to the relatively large common imprecision computed for semi-continuous and integrated

SO4
2- measurements from this site).

Overall, the results presented in Figures 17 -22 suggest that fine particulate ion data from various PM2.5

FRM and PM2.5 speciation samplers can likely be used interchangeably to represent exposures in a PM2.5
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epidemiology study without substantially increasing the uncertainty in the data, provided that these data

are first calibrated to adjust for relative bias.  Greater uncertainty is introduced if ion data from the PC-

BOSS sampler, which collects particles between 0.1 and 2.3 µm in diameter, are used interchangeably

with ion data from the PM2.5 FRM and speciation samplers, and a substantial amount of noise is introduced

if integrated and semi-continuous ion measurements are used interchangeably.  Hence, ion concentrations

determined using the semi-continuous and PC-BOSS samplers should be used only when necessary to

provide estimates for days that would otherwise have no available data.  It is important to recognize that

the comparison of ion measurement methods presented here was not exhaustive and is intended to serve

only as an example.  Prior to specifying ion data for use in the epidemiology study, additional calibrations

will need to be performed (using LVM) to allow ion concentrations determined using different methods or

at different geographical locations to be corrected to a common basis.

2.4.1.3 PM2.5 Elemental and Organic Carbon

Table 11 identifies nine different methods that were employed by the 19 PM2.5 speciation monitoring sites

in the greater Pittsburgh region to determine ambient concentrations of fine particulate elemental and

organic carbon between 1999 and 2005.  As with concentrations of fine particulate ionic species,

concentrations of EC and OC were measured using both integrated and semi-continuous methods.  At all

of the AQS speciation sites, integrated PM2.5 samples for carbonaceous analysis were collected from 12:00

a.m. to 12:00 a.m. on quartz filters using Met One SASS speciation samplers.  Concentrations of EC and

OC were determined from these samples by thermal optical transmittance (TOT).  Additional EC and OC

concentration data at the Lawrenceville site are available from the UORVP and IMPROVE sampling

networks.  UORVP collected 6- or 24-hour integrated PM2.5 samples for carbonaceous analysis on quartz

filters using Desert Research Institute SFS samplers (or PM2.5 FRM samplers) that operated on a midnight-

to-midnight schedule, and IMPROVE collected 24-hour integrated PM2.5 samples for carbonaceous

analysis on quartz filters using IMPROVE samplers that similarly operated from midnight to midnight.

Unlike the quartz-filter-based PM2.5 samples from the AQS sites, which were analyzed for EC and OC by

TOT, the quartz-filter-based PM2.5 samples collected by UORVP and IMPROVE were analyzed for EC

and OC by thermal optical reflectance (TOR).  

TOT and TOR each determine OC and EC by measuring the amount of carbon that is evolved (via

volatilization or oxidation) from the sample as a function of temperature and the O2 content of the

atmosphere surrounding the sample.  The amount of light reflected by (TOR) or transmitted through

(TOT) the filter-based sample is also measured.  As temperature increases in the absence of oxygen, the

sample darkens as some OC is charred, causing reflectance / transmittance to decrease.  When oxygen is

added and the temperature is further increased, the sample lightens as the charred OC and EC are

combusted away, causing the reflectance / transmittance to increase such that it returns to and eventually

exceeds its original value.  The split between OC and EC is operationally defined; all carbon evolved

before the reflectance / transmittance returns to its original value is considered to be OC, and all carbon
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evolved after that point is considered to be EC.  In addition to using different techniques to optically

monitor changes in light absorption by the sample, TOT and TOR typically use different thermal profiles

characterized by different temperature ramping rates, temperature plateaus, and residence times at each

plateau.  As a result of these differences, whereas concentrations of total carbon (i.e. EC + OC)

determined by different thermal/optical methods are typically comparable, the distinction between how

much of this carbon is EC and how much of it is OC varies among the methods (Chow et al., 2004;

Schauer et al., 2003; Schmid et al., 2001).

Again, apart from the AQS sites, carbonaceous data from the PAQS Schenley Park site and the

NETL/OST Bruceton site are of particular interest for the proposed epidemiology study because of these

sites’ location in Allegheny county and their abundance of daily PM2.5 speciation data.  Twenty-four-hour

average concentrations of EC and OC at the Schenley Park site were determined by TOT from integrated

PM2.5 samples collected on quartz filters using a CMU TQQQ sampler that operated from approximately

12:00 a.m. to 12:00 a.m. (at times, several separate samples were collected during this period to improve

the time resolution of the data).  In addition to the primary quartz filter, the TQQQ sampler included a

quartz backup filter as well as a separate channel containing a Teflon filter with a quartz backup filter in

order to permit an assessment of sampling artifacts.  Only data from the primary quartz filter are examined

in the analyses presented later in this section, as the speciation samplers (e.g., the SASS and IMPROVE

samplers) used by a majority of the monitoring sites in the Pittsburgh region to collect PM2.5 samples for

carbonaceous analysis were not equipped with backup filters.  Most filter-based measurements of EC and

OC at the Bruceton site were obtained from samples collected using a PC-BOSS sampler.  This sampler

was equipped with a diffusion denuder to remove volatile organic compounds (VOCs) from the sample

stream and included both a primary quartz filter to collect carbonaceous particles and a charcoal

impregnated glass fiber backup filter to collect semivolatile organic material.  EC and OC were

determined from the filter-based samples by temperature-programmed volatilization (Eatough et al.,

1993).

The Schenley Park and Bruceton monitoring sites each included semi-continuous measurements of fine

particulate EC and OC as well.  EC and OC concentrations were monitored at the Schenley Park site using

a Sunset In-Situ Thermal/Optical Carbon Analyzer that was equipped with a multi-channel parallel plate

diffusion denuder to scrub gas-phase VOCs from the sample stream.  The instrument collected PM2.5

samples on quartz fiber filters, and determined EC and OC concentrations from these samples in the field

every 1-4 hours using a built-in thermal optical transmittance analyzer.  EC and OC concentrations were

monitored at the Bruceton site using a Rupprecht & Patashnick Series 5400 Ambient Carbon Particulate

Monitor.  As discussed in Section 2.2.2, these carbon measurements are critical to the feasibility of the

retrospective epidemiology study, because they provide the largest source of otherwise scarce daily EC

and OC data from the Pittsburgh region during the time period of interest for the study.  The Series 5400

carbon monitor consists of two separate sampling trains that are used in alternating fashion to collect 3-

hour PM2.5 samples on parallel plate impactors for analysis.  At the end of each 3-hour sampling period,

PITT-PM 106



2.4 Quality and Comparability of Available Air Monitoring Data

the chamber containing the PM2.5 sample is heated successively to temperature plateaus of 340oC and

750oC in an atmosphere of ambient air.  A non-dispersive infrared sensor is used to measure the

concentration of CO2 produced by combustion of carbon contained in the sample.  All OC in the sample is

assumed to combust during the 340oC temperature plateau, and all EC is assumed to combust during the

750oC temperature plateau.  Thus, as with the TOT and TOR techniques, the Series 5400 monitor uses an

operational definition to estimate the split between elemental and organic forms of carbon.  Unlike TOT

and TOR, the Series 5400 monitor does not include any correction for pyrolysis.  Rather, any pyrolyzed

OC that is formed is measured as part of the EC fraction.

Although not indicated in Table 11 the monitoring programs that operated in the Pittsburgh region

between 1999 and 2005 did not all follow consistent procedures for blank-correcting data prior to

reporting these data.  For example, all PM2.5 speciation data reported by the PAQS program (i.e., for the

Schenley Park monitoring site) were corrected to account for possible sample contamination during

collection, handling, storage, and analysis, whereas none of the PM2.5 speciation data reported by the AQS

sites were blank corrected (although blank concentrations were determined and are available for future

blank correction, if desired).  Particularly high blank concentrations are often observed for carbon

measurements; hence, discrepancies in blank correction procedures may affect the relative bias (if blanks

tend to be constant) or imprecision (if blanks tend to be variable) among these measurements.

Because of the limited availability of carbon data from the Pittsburgh region during the time period of

interest for the proposed epidemiology study, which results largely from the fact that these data generally

cannot be obtained retrospectively via analysis of archived PM2.5 samples, and because of the

methodological discrepancies discussed above regarding the determination of EC and OC, the current

feasibility assessment included a relatively thorough evaluation of the comparability of carbon data that

might be used in the epidemiology study.  Figure 23 presents a Bland-Altman plot comparing 24-hour

average fine particulate OC concentrations determined by TOR from quartz-filter-based samples collected

by the SFS sampler at the Lawrenceville site with 24-hour average OC concentrations determined by TOT

from quartz-filter-based samples collected by the SASS sampler at that site.  Figure 24 presents a similar

plot for fine particulate EC.  Concentrations of both OC and EC determined by TOR from the SFS

samples exhibited statistically significant, nonconstant biases relative to those determined by TOT from

the SASS samples.  These biases can be corrected via the calibration lines provided in Figures  23 (b) and

24 (b).  It is more noteworthy, however, that the constant common imprecision estimates for the

comparison of the SFS and SASS OC measurements and for the comparison of the SFS and SASS EC

measurements, which were each 28% (1.1 µg/m3 for OC and 0.26 µg/m3 for EC), were substantially

greater than the imprecision estimates of 8.1% and 14% computed for comparisons of SO4
2- and NO3

-

concentrations, respectively, determined using these samplers.  The greater imprecision for the carbon

measurements as compared to the ion measurements likely arises primarily because of inconsistencies

between the TOT and TOR analytical techniques used to analyze samples collected by the SASS and SFS

samplers, respectively.

PITT-PM 107



2.4 Quality and Comparability of Available Air Monitoring Data

PITT-PM 108

Figure 23: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily OC

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler with TOR analysis (x1) and a Met One SASS PM
2.5

 speciation sampler with TOT analysis (x2)

between 10/1/02 and 2/27/03.
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Figure 24: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily EC

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler with TOR analysis (x1) and a Met One SASS PM
2.5

 speciation sampler with TOT analysis (x2)

between 10/1/02 and 2/27/03.
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Figures 25 and 26 present the results of Bland-Altman analyses comparing concentrations of OC and EC,

respectively, determined by TOT from quartz-filter-based PM2.5 samples collected using the CMU TQQQ

sampler at the Schenley Park site with concentrations of these species determined by TOT from quartz-

filter-based PM2.5 samples collected using the SASS sampler at the Lawrenceville site.  Concentrations of

OC and EC at the Schenley Park site exhibited a statistically significant, negative bias relative to

concentrations of these species at the Lawrenceville site.  On average, OC concentrations at Schenley Park

were about 1.5 µg/m3 less than OC concentrations at Lawrenceville, and EC concentrations at Schenley

Park were about 0.2 µg/m3 less than EC concentrations at Lawrenceville.  These biases likely result in part

from the fact that data from the Schenley Park site were blank-corrected, whereas data from the

Lawrenceville site were not.  They may also reflect true differences in ambient concentrations between the

two sites, which were located about 3 km from each other.  Regardless of the cause of the relative bias, the

results presented in Figures 25 and 26 suggest that, after calibration, TOT data from the Lawrenceville

and Schenley Park sites could be used interchangeably to represent ambient OC for use in the proposed

epidemiology study.  The constant common imprecision estimated for the OC concentrations determined

by TOT at these two sites was 19% (0.8 µg/m3), which is less than the constant common imprecision of

28% (1.1 µg/m3) reported above for collocated determinations of OC by TOT and TOR at the

Lawrenceville site.  The constant common imprecision estimated for the EC concentrations determined by

TOT at the Lawrenceville and Schenley Park sites was 30% (0.21 µg/m3).  This greater percent

imprecision for EC than for OC is expected, because analytical uncertainty is typically greater for EC than

for OC (Pun et al., 2004), and because concentrations of EC, which has only primary (local) emission

sources, are expected to be more spatially variable than concentrations of OC, which has both primary

(local) and secondary (regional) sources.
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Figure 25: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily OC

concentrations measured at the Schenley Park site using a CMU TQQQ sampler with TOT analysis (x1)

and at the Lawrenceville site using a Met One SASS PM
2.5

 speciation sampler with TOT analysis (x2)

between 6/30/01 and 7/31/02.
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Figure 26: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily EC

concentrations measured at the Schenley Park site using a CMU TQQQ sampler with TOT analysis (x1)

and at the Lawrenceville site using a Met One SASS PM
2.5

 speciation sampler with TOT analysis (x2)

between 6/30/01 and 7/31/02.
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Unlike semi-continuous fine particulate sulfate measurements, which as discussed in Section 2.4.1.2 were

characterized by substantial noise relative to integrated filter-based measurements, semi-continuous

measurements of fine particulate OC and EC made at the Bruceton and Schenley Park sites were generally

comparable (after correction for relative bias) to integrated filter-based measurements of these

carbonaceous species.  Figures 27 and 28 present the results of Bland-Altman analyses comparing

concentrations of OC and EC, respectively, determined by the R&P Series 5400 ambient carbon

particulate monitor at the Bruceton site with corresponding concentrations of these species determined by

TOT from quartz-filter-based PM2.5 samples collected using the SASS sampler at the Lawrenceville site.

Figures 29 and 30 present similar comparisons between semi-continuous OC and EC measurements from

the Bruceton site and corresponding integrated OC and EC measurements at the Schenley Park site.

(Semi-continuous data were aggregated to compute daily averages for comparison with the integrated

measurements).  The semi-continuous OC and EC measurements at the Bruceton site exhibited sizable,

statistically significant, nonconstant biases relative to the integrated measurements at the Lawrenceville

and Schneley Park sites, likely because of differences both in measurement methods and in site locations.

On average, OC concentrations measured by the R&P Series 5400 monitor at the Bruceton site were

1.8 µg/m3 less than those measured by the TQQQ sampler at the Schenley Park site and 3.6 µg/m3 less

than those measured by the SASS sampler at the Lawrenceville site.  EC concentrations measured by the

R&P Series 5400 monitor at the Bruceton site were on average 0.27 µg/m3 less than those measured by the

TQQQ sampler at Schenley Park and 0.54 µg/m3 less than those measured by the SASS sampler at

Lawrenceville.  These relative biases, although large, are correctable using the calibration curves shown in

Figures 27(b), 28(b), 29(b) and 30(b).  Common imprecision estimates for comparisons between the

semi-continuous carbon measurements made at the Bruceton site and the integrated carbon measurements

made at the Lawrenceville and Schenley Park sites were similar to those reported above for comparisons

between integrated measurements at the latter two sites.  Imprecision estimates for the comparisons of

semi-continuous OC from the Bruceton site with integrated OC from the Lawrenceville and Schenley Park

sites were 1.2 µg/m3 and 0.9 µg/m3, respectively, consistent with the estimates of 1.1 µg/m3 and 0.8 µg/m3

shown in Figures 23 and 25 for comparisons among integrated OC measurements.  Likewise, imprecision

estimates for the comparisons of semi-continuous EC from the Bruceton site with integrated EC from the

Lawrenceville and Schenley Park sites were 0.23 µg/m3 and 0.18 µg/m3, respectively, consistent with the

estimates of 0.26 µg/m3 and 0.21 µg/m3 shown in Figures 24 and 26 for comparisons among integrated

EC measurements.  Hence, the comparisons presented in Figures 27-30 suggest that semi-continuous

measurements of EC and OC made at the Bruceton monitoring site, once corrected for relative bias, are

generally commensurate with integrated measurements of these species made at other monitoring sites in

the Pittsburgh region.  Therefore, these semi-continuous measurements, which are the largest source of

ambient carbon data available from the Pittsburgh region during the time period of interest for the

proposed epidemiology study, are an appropriate source of exposure data for the study.

Semi-continuous OC and EC measurements from the Schenley Park monitoring site are also suitable for

use in the epidemiology study.  Figues 31 and 32 present the results of Bland-Altman analyses comparing
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concentrations of OC and EC, respectively, determined at the Schenley Park site using the Sunset In-Situ

Thermal/Optical Carbon Analyzer with concentrations determined there using the collocated CMU TQQQ

sampler with TOT analysis.  For both OC and EC, there was a statistically significant but correctable

relative bias between the two methods. Otherwise, however, the methods agreed as well or better than the

methods compared above.  Agreement between the semi-continuous and integrated measurements at the

Schenley site was particularly strong for OC, for which the estimated common imprecision was only

0.4 µg/m3 (about 14%).  The common imprecision estimate for EC measurements was 0.23 µg/m3 (about

34%), consistent with the imprecision estimates reported above for EC.

Thus, the results presented here collectively suggest that OC measurements that were collected at different

monitoring sites or using different measurement techniques generally can be used interchangeably to

represent exposures in Allegheny County after correction for relative biases.  EC concentrations measured

at different sites or using different techniques are characterized by larger amounts of random error than

are OC concentrations, owing to the greater spatial variability and larger analytical uncertainty associated

with EC.  Hence, the possibility of exposure misclassification for PM2.5 components such as EC must be

considered when designing the proposed epidemiology study.
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Figure 27: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily OC

concentrations measured at the Bruceton site using an R&P Series 5400 Ambient Carbon Particulate

Monitor (x1) and at the Lawrenceville site using a Met One SASS PM
2.5

 speciation sampler with TOT

analysis (x2) between 7/1/01 and 10/26/02.
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Figure 28: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily EC

concentrations measured at the Bruceton site using an R&P Series 5400 Ambient Carbon Particulate

Monitor (x1) and at the Lawrenceville site using a Met One SASS PM
2.5

 speciation sampler with TOT

analysis (x2) between 7/1/01 and 10/26/02.
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Figure 29: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily OC

concentrations measured at the Bruceton site using an R&P Series 5400 Ambient Carbon Particulate

Monitor (x1) and at the Schenley Park site using a CMU TQQQ sampler with TOT analysis (x2) between

7/1/01 and 7/31/02.
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Figure 30: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily EC

concentrations measured at the Bruceton site using an R&P Series 5400 Ambient Carbon Particulate

Monitor (x1) and at the Schenley Park site using a CMU TQQQ sampler with TOT analysis (x2) between

7/1/01 and 7/31/02.
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Figure 31: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily OC

concentrations measured at the Schenley Park site using a Sunset In-Situ Thermal/Optical Carbon

Analyzer (x1) and a CMU TQQQ sampler with TOT analysis (x2) between 7/2/01 and 7/31/02.
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2.4.1.4 PM2.5 Trace and Crustal Elements

Table 11 identifies seven different methods employed by monitoring sites in the 35-county greater

Pittsburgh region to determine ambient concentrations of fine particulate trace and crustal elements

between 1999 and 2005.  All of the trace and crustal element measurements were made by laboratory

analysis of integrated, filter-based PM2.5 samples.  With the exception of the PAQS Schenley Park site, all

of the monitoring sites collected PM2.5 samples for elemental analysis on Teflon filters using a PM2.5 FRM

or speciation sampler with no denuder.  At Schenley Park, samples for elemental analysis were collected

on cellulose filters using a high-volume (Hi-Vol) PM2.5 sampler.  As with PM2.5 total mass, PM2.5 ions, and

PM2.5 EC and OC, 24-hour integrated PM2.5 samples for elemental analysis were generally collected from

12:00 p.m. to 12:00 p.m. at the Bruceton site, from 9:00 a.m. to 9:00 a.m. at the Franciscan University of

Steubenville site, and from 12:00 a.m. to 12:00 a.m. at all other sites.  Hence, per the discussion in Section

2.4.1.1, for the Bruceton and Franciscan University of Steubenville sites, midnight-to-midnight average

concentrations would need to be estimated from the available elemental data prior to using these data in

the epidemiology study.

There are several limitations associated with characterizing exposures to trace and crustal elemental

components of PM2.5 for purposes of an epidemiology study.  First, these elements, like elemental carbon,

are primary pollutants that are expected to have spatially variable concentrations resulting from the

influence of localized emission sources (or lack thereof).  Hence, the behavior of ambient concentrations

measured at a given monitoring site may not reflect the behavior of ambient concentrations measured in

other parts of the region.  Moreover, unlike the ionic and carbonaceous components of PM2.5 discussed

above, which are generally present in the ambient air in µg/m3 quantities, many elemental components of

PM2.5 are present only in ng/m3 quantities.  As a result, integrated PM2.5 samples contain only very small

amounts of these elements (especially if they were collected at low sampling flow rates or over short

sampling periods), and the ability to detect the elements depends strongly on the sensitivity of the

analytical method being used.

Several different analytical methods were used to determine elements from filter-based PM2.5 samples

collected in the Pittsburgh region between 1999 and 2005.  All elemental determinations at the AQS

monitoring sites, CASTNet monitoring sites, and UORVP monitoring sites were performed using X-ray

fluorescence spectroscopy (XRF).  Elemental determinations at the NETL/OST Bruceton monitoring site

were performed using proton induced X-ray emission spectroscopy (PIXE), and elemental determinations

at the IMPROVE monitoring sites were performed using both XRF and PIXE, depending on the element

being determined.  The PAQS and SCAMP programs each used inductively coupled plasma - mass

spectrometry (ICP-MS) to determine elements in PM2.5 samples.  PAQS used conventional low-resolution

ICP-MS, whereas SCAMP used dynamic reaction cell (DRC) ICP-MS.  Because of differences in the

capabilities of these analytical methods and in the objectives of the groups conducting the measurements,

the suite of elements that was routinely determined when analyzing PM2.5 samples varied from group to
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group.  As part of the inventory of PM2.5 speciation data described in Section 2.1 above, we developed a

list of 40 elemental components of PM2.5 that would be of interest for the proposed retrospective

epidemiology study because of their possible implications for human health and/or source apportionment

analysis.  Table 13 shows which of these elements were routinely determined by each of the seven

monitoring campaigns that performed PM2.5 speciation sampling in the Pittsburgh region between 1999

and 2005.  

Table 13: Summary of elements that were routinely determined by the various campaigns that monitored

PM
2.5

 speciation in the 35-county greater Pittsburgh region between 1999 and 2005.

Monitoring

Campaign AQS CASTNet IMPROVE NETL/OST PAQS SCAMP UORVP

Analytical

Method XRF XRF XRF, PIXE PIXE ICP-MS DRC ICP-MS XRF

Ag X X X X

Al X X X X X X

As X X X X X X X

Au X X

Ba X X X X X X

Be X

Br X X X X X

Ca X X X X X X X
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Figure 32: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily EC

concentrations measured at the Schenley Park site using a Sunset In-Situ Thermal/Optical Carbon

Analyzer (x1) and a CMU TQQQ sampler with TOT analysis (x2) between 7/2/01 and 7/31/02.
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Monitoring

Campaign AQS CASTNet IMPROVE NETL/OST PAQS SCAMP UORVP

Analytical

Method XRF XRF XRF, PIXE PIXE ICP-MS DRC ICP-MS XRF

Cd X X X X X

Ce X X

Cl X X X X X

Co X X X X X X

Cr X X X X X X

Cs X X

Cu X X X X X X X

Fe X X X X X X X

Ga X X X X X

Hg X X X

K X X X X X X X

La X X X

Li X

Mg X X X X X X

Mn X X X X X X X

Mo X X X X

Na X X X X

Ni X X X X X X X

P X X X X X

Pb X X X X X X X

Rb X X X X X X

S X X X X X

Sb X X X X

Se X X X X X X X

Si X X X X X

Sn X X X X

Sr X X X X X X

Ti X X X X X X X

V X X X X X X X

W X

Zn X X X X X X X

Zr X X X X X

As shown in the table, 12 of the elements (As, Ca, Cu, Fe, K, Mn, Ni, Pb, Se, Ti, V, and Zn) were

routinely determined by all seven campaigns; seven of the elements (Al, Ba, Co, Cr, Mg, Rb, and Sr) were

routinely determined by six of the seven campaigns, and seven of the elements (Br, Cd, Cl, Ga, P, S, and

Si) were routinely determined by five of the seven campaigns.

Most of the PM2.5 elemental data from the Pittsburgh region between 1999 and 2005 were determined by

XRF analysis of Teflon-filter-based samples.  In XRF, the filter-based PM2.5 sample is irradiated by high-

energy X-rays, which cause inner orbital electrons to be ejected from the atoms contained in the sample.
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Electrons from higher energy, outer orbitals then move to fill the vacancies left by these ejected electrons,

resulting in the release of X-ray photons with energies equal to the differences in energy between the outer

and inner orbitals.  The energies of the emitted photons are unique to each element, and the number of

photons emitted corresponds to the amount of the element present in the sample; hence, by counting the

number of photons emitted by the sample as a function of energy, concentrations of elements in the

sample can be quantified.  PIXE is similar to XRF, except that it uses protons rather than X-rays to

irradiate the sample.  XRF and PIXE are a nondestructive techniques; hence the PM2.5 sample is preserved

and can be analyzed by other methods once elemental analysis is completed.  Moreover, as discussed in

Section 2.2, these methods are capable of determining a large suite of elements, including those with

atomic numbers between 11 (sodium) and 92 (uranium).  However, XRF techniques that have

conventionally been used to analyze PM2.5 samples in many cases do not have sufficient sensitivity to

determine certain elements at the low concentrations in which they are found in these samples.

As an example of this, Table 14 compares mean ambient air concentrations of trace and crustal elements

determined by XRF from 24-hour integrated PM2.5 samples collected at the AQS Lawrenceville site with

mean method detection limits (MDLs) reported for the determination of these elements by XRF.  The

percentage of daily observations for which the ambient air concentration was less than the MDL and the

median signal-to-noise ratio (i.e., daily ambient air concentration divided by the corresponding

measurement uncertainty) are also indicated for each element.  AQS began reporting MDLs and

measurement uncertainties in July 2003; hence, the comparison is based on data collected between July

14, 2003, and December 27, 2005.  For 25 of the 38 elements, ambient air concentrations were less than

the MDL for a majority (i.e., >50%) of observations.  This suggests that XRF did not have sufficient

sensitivity to determine these elements; hence, the reported concentrations likely contain substantial noise.

The signal-to-noise ratios presented in Table 14 confirm this statement; all but two of these 25 elements

had median signal-to-noise ratios of  1.0.  Of the thirteen remaining elements, five (Ca, Fe, K, S, Zn)≤

were characterized by less than 10% of observations below the MDL; two (Br, Si) were characterized by

10-20% of observations below the MDL, and six (As, Cr, Cu, Mn, Pb, Se) were characterized by 20-50%

of observations below the MDL.  These 13 elements had median signal-to-noise ratios ranging from 2.3

(As) to 19.4 (S).  (For comparison, only 2.8% of the EC concentrations and none of the PM2.5, SO4
2-, NO3

-,

or OC concentrations measured at the Lawrenceville site between July 14, 2003, and December 27, 2005,

were less than the corresponding MDL.  Median signal-to-noise ratios for these species ranged from 2.6

for EC to 12.3 for S).  Hence, in spite of the large suite of elements routinely determined by XRF, only the

13 elements identified above (and possibly Ni and Ti, which had median signal-to-noise ratios of 2.2-2.5

and just over 50% of their observations below the MDL) were measured with sufficient sensitivity to

warrant their inclusion in an epidemiology study.
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Table 14: MDLs and signal-to-noise ratios for PM2.5 elements determined by XRF at the Lawrenceville

site between 7/14/03 and 12/27/05.

Element

Average Ambient

Concentration 

(µg/m
3
)

Average

MDL 

(µg/m
3
)

Average Ambient

Concentration ÷  Average

MDL

Percent of

Observations

<MDL

Median

Signal-to-

Noise

Ratio
a

Ag 0.0026 0.0103 0.3 92.3% 0.0

Al 0.0156 0.0196 0.8 66.8% 0.0

As 0.0029 0.0023 1.2 47.8% 2.3

Au 0.0013 0.0063 0.2 93.9% 0.0

Ba 0.0103 0.0350 0.3 79.8% 0.0

Br 0.0045 0.0019 2.4 17.4% 5.1

Ca 0.0432 0.0064 6.8 1.2% 7.9

Cd 0.0027 0.0115 0.2 93.1% 0.0

Ce 0.0083 0.0524 0.2 86.2% 0.0

Cl 0.0167 0.0095 1.8 59.9% 0.0

Co 0.0002 0.0016 0.1 97.6% 0.0

Cr 0.0047 0.0021 2.3 41.7% 3.4

Cs 0.0027 0.0256 0.1 96.4% 0.0

Cu 0.0052 0.0022 2.3 25.5% 5.0

Fe 0.1400 0.0023 60.8 0.4% 18.1

Ga 0.0005 0.0040 0.1 96.0% 0.0

Hg 0.0015 0.0047 0.3 85.8% 0.0

K 0.0792 0.0087 9.2 0.0% 8.7

La 0.0060 0.0406 0.1 87.9% 0.0

Mg 0.0052 0.0248 0.2 92.3% 0.0

Mn 0.0075 0.0022 3.4 23.5% 5.4

Mo 0.0012 0.0078 0.2 97.2% 0.0

Na 0.0388 0.0794 0.5 76.1% 0.0

Ni 0.0019 0.0017 1.1 55.5% 2.2

P 0.0022 0.0098 0.2 93.1% 0.0

Pb 0.0111 0.0050 2.2 25.1% 3.8

Rb 0.0003 0.0022 0.1 97.2% 0.0

S 1.7894 0.0117 152.6 0.0% 19.4

Sb 0.0059 0.0251 0.2 93.9% 0.0

Se 0.0056 0.0028 2.0 34.8% 3.6

Si 0.0714 0.0143 5.0 17.8% 6.7

Sn 0.0059 0.0198 0.3 90.7% 0.1

Sr 0.0011 0.0026 0.4 81.8% 0.7

Ti 0.0051 0.0044 1.2 53.8% 2.5

V 0.0015 0.0028 0.5 83.0% 1.0

W 0.0020 0.0116 0.2 95.1% 0.0

Zn 0.0303 0.0023 13.4 0.4% 13.8

Zr 0.0008 0.0039 0.2 91.1% 0.0
a
Signal-to-noise ratio was computed as the ratio of the 24-hr ambient air concentration observed at the Lawrenceville site to

the corresponding measurement uncertainty reported for that observation in AQS.
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Table 15: Comparison of average MDLs reported by PAQS for the determination of elements in PM2.5

samples by ICP-MS at the Schenley Park site with average MDLs reported by AQS for the determination

of elements in PM2.5 samples by XRF at the Lawrenceville site.

Parameter

Average MDL reported

by PAQS for ICP-MS

analyses at Schenley

Park, 

7/01 - 8/02

Average MDL reported

by AQS for XRF analyses

at Lawrenceville,

 7/03 - 12/05

Average ICP-MS

MDL ÷  Average XRF

MDL

Ag 0.00005 0.01028 0.005

As 0.00009 0.00234 0.036

Ba 0.00078 0.03500 0.022

Ca 0.08031 0.00639 12.572

Cd 0.00008 0.01151 0.007

Ce 0.00034 0.05236 0.007

Co 0.00010 0.00160 0.062

Cr 0.00052 0.00210 0.247

Cs 0.00013 0.02563 0.005

Cu 0.00227 0.00223 1.017

Fe 0.06160 0.00230 26.771

Ga 0.00016 0.00397 0.041

K 0.01973 0.00866 2.279

Mg 0.00710 0.02483 0.286

Mn 0.00035 0.00218 0.159

Mo 0.00010 0.00783 0.012

Ni 0.00030 0.00167 0.182

Pb 0.00028 0.00505 0.056

Rb 0.00009 0.00216 0.041

Sb 0.00006 0.02508 0.003

Se 0.00012 0.00278 0.044

Sr 0.00021 0.00255 0.080

Ti 0.00100 0.00436 0.229

V 0.00012 0.00282 0.042

Zn 0.00577 0.00227 2.547
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Figures 33, 34. 35. and 36 present the results of Bland-Altman analyses comparing collocated

measurements of Zn, Se, Ni, and V, respectively, determined via XRF from Teflon-filter-based PM2.5

samples collected by the UORVP and ACHD monitoring programs at the Lawrenceville site.  As

evidenced in the figures, the agreement between collocated measurements was best for Zn, which as

shown in Table 14 typically had concentrations at the Lawrenceville site that were about 10 times greater

than the XRF MDL, and poorest for V, which typically had concentrations that were only about half as

great as the XRF MDL.  Constant common imprecision estimates were 11% for Zn, 23% for Se, 51% for

Ni, and 120% for V.  These results are consistent with the conclusions drawn from Table 14 regarding the

insufficient sensitivity of XRF for determining certain elements, and they indicate that whereas

concentrations of some elements (e.g., Zn) determined by XRF from PM2.5 samples are likely appropriate

for representing exposures in a retrospective epidemiology study, concentrations of many other elements

(e.g., V) represent little more than random noise.  Hence, even if a relationship truly existed between

ambient concentrations of V and adverse health effects, this relationship likely would be masked by

measurement error in an epidemiology study, preventing its detection.  It is also important to recognize
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Figure 33: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily Zn

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler with XRF analysis (x1) and a Met One SASS PM
2.5

 speciation sampler with XRF analysis (x2)

between 10/1/02 and 2/27/03.
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2.4 Quality and Comparability of Available Air Monitoring Data

that the examples used here to illustrate the limited sensitivity of XRF for certain elements were based on

data from the Lawrenceville site, which was located in an urban area where ambient concentrations tend to

be high.  Sensitivity is an even greater problem for PM2.5 elemental data from suburban or rural areas that

are characterized by lower ambient concentrations.
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Figure 34: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily Se

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler with XRF analysis (x1) and a Met One SASS PM
2.5

 speciation sampler with XRF analysis (x2)

between 10/1/02 and 2/27/03.
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In order to attain better sensitivity than that afforded by XRF, the PAQS and SCAMP programs used ICP-

MS for determining the elemental composition of PM2.5 samples.  PM2.5 samples are digested in a strong

acid solution to prepare them for analysis by ICP-MS.  The digestate, which contains the elemental

components of the PM2.5 sample, is then nebulized and passed through an argon plasma, which converts

the analyte atoms into primarily singly charged ions.  These ions are focused by a lens system and fed to a

quadrupole mass spectrometer, which filters the ions according to their mass-to-charge ratios (m/z),

allowing only those with a specific m/z (corresponding to a particular element) to pass through.  A discrete

dynode detector is used to count the ions that pass through the quadrupole, allowing the concentration of

the element to be determined. Table 15 compares the average MDLs reported by PAQS for the

determination of elements in PM2.5 samples by ICP-MS with the average MDLs reported in Table 14 for

the determination of these elements in PM2.5 samples by XRF.  For many elements, the average MDLs for

ICP-MS are one to three orders of magnitude less than the average MDLs for XRF, indicating that ICP-

MS has substantially better sensitivity than XRF.  ICP-MS is subject to limitations, however.  For

example, isobaric and polyatomic interferences limit the ability of conventional low-resolution ICP-MS to

determine isotopes such as 28Si, 39K, 40Ca, and 56Fe.  The effect of these interferences is evident in the

relatively large ICP-MS MDLs reported in Table 15 for Ca, Fe, and K, as well as in the absence of Si

from the table.  Al and Na also were not able to be reliably determined as part of PAQS (Pekney and

Davidson, 2005).  The DRC ICP-MS employed by SCAMP is intended to reduce these interferences; use

of the DRC produced lower detection limits for Ca, Fe, and K than those reported by PAQS for

conventional low-resolution ICP-MS (Connell et al., 2005c).  However, the DRC ICP-MS still failed to

provide reliable measurements of Si and Na.  A second limitation of ICP-MS relative to XRF is that ICP-

MS is a destructive method, requiring digestion of the PM2.5 sample prior to analysis.  Hence, the sample

is not preserved for further analysis (e.g., to determine concentrations of inorganic ions by IC, another

destructive method) as it is with XRF.  This limits the applicability of ICP-MS for analyzing archived

PM2.5 samples as will be required for the proposed epidemiology study, because it will be necessary to

extract as much PM2.5 speciation information as possible from each of these samples.

Even if ICP-MS is not employed to analyze archived samples, however, existing elemental data

determined by ICP-MS at the Schenley Park site are a source of daily exposure information for use in the

study.  Collocated daily elemental data are not available from the Schenley Park site; hence, Figure 37

presents the results of a Bland-Altman analysis comparing Zn concentrations determined by ICP-MS at

this site with Zn concentrations determined by XRF at the Lawrenceville site.  Whereas collocated Zn

concentrations determined at the Lawrenceville site were relatively precise, as shown in Figure 33, the

comparison of concentrations determined at Schenley with concentrations determined at Lawrenceville

was characterized by a large amount of random error.  The constant common imprecision estimated for

this comparison was 85%.  This error likely includes measurement error resulting from differences in the

samplers and analytical techniques used to determine concentrations at the two sites, as well as error

resulting from the spatial variability of ambient Zn concentrations in the Pittsburgh region.
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Figure 35: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily Ni

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler with XRF analysis (x1) and a Met One SASS PM
2.5

 speciation sampler with XRF analysis (x2)

between 10/1/02 and 2/27/03.
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Figure 36: Bland-Altman plot (a) and corresponding calibration plot (b) for collocated daily V

concentrations measured at the Lawrenceville site using a Desert Research Institute Sequential Filter

Sampler with XRF analysis (x1) and a Met One SASS PM
2.5

 speciation sampler with XRF analysis (x2)

between 10/1/02 and 2/27/03.
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This spatial variability introduces substantial uncertainty in exposure estimates developed using elemental

data from only a single site or a limited number of sites.  Figure 38 presents Bland-Altman results

comparing daily Zn concentrations measured at the Lawrenceville site with daily Zn concentrations

measured at the Florence site, which was located about 39 km away.  At both sites, Zn was determined by

XRF from PM2.5 samples collected on Teflon filters using Met One SASS speciation samplers.  However,

as illustrated in Figure 38, in spite of the sites’ use of identical sampling and analytical methods, pairwise

daily Zn concentrations measured at the sites showed poor agreement.  The common imprecision

estimated from the comparison of these concentrations was 73%.  This result, when compared with the

common imprecision of only 11% estimated above for collocated determinations of Zn by XRF at the

Lawrenceville site, emphasizes the possibility for exposure misclassification resulting from spatially

variable concentrations of elements such as Zn in the Pittsburgh region.  Such exposure misclassification

could mask any associations between these elements and health effects in a time-series epidemiology

study.

2.4.2 Effect of Sample Archiving on PM2.5 Speciation Measurements

As discussed earlier in Section 2.3, the PM2.5 speciation data record for the Pittsburgh region during the

1999-2005 time period could be substantially augmented by determining the chemical composition of

archived PM2.5 samples that were collected in the region during that period.  In most cases, only a single

Teflon-filter-based sample is available from a given site on a given day; these samples likely would be

analyzed first by a nondestructive method such as XRF or PIXE to determine concentrations of trace and

crustal elements and then by IC to determine concentrations of inorganic ions.  However, in addition to the

sampling and analytical errors discussed above in Section 2.4.1, concentrations of elements and ions

determined from archived PM2.5 samples could be affected by errors resulting from contamination or from

losses of semi-volatile species during storage.  Such errors must be quantified prior to specifying

speciation data from archived PM2.5 samples for use in the epidemiology study.

The NETL/OST Bruceton monitoring site, which is located in Allegheny County, collected Teflon-filter-

based PM2.5 samples on an approximately daily basis between July 1999 and June 2004, and has stored

these samples under refrigeration since their collection, is an important source of archived PM2.5 samples

for use in the proposed study.  As part of the current feasibility assessment, we conducted a small study to

assess whether PM2.5 component concentrations determined by analyzing these archived filters, which

have been stored for two to seven years, accurately reflect concentrations that would have been

determined if the samples had been analyzed shortly after collection.  There were several days at the

Bruceton site on which collocated Teflon-filter-based PM2.5 samples were collected, one of which was

analyzed for inorganic ions, and the other of which was archived.  With permission from DOE, CONSOL

retrieved fifteen of these archived collocated samples, which were collected during 2000 and 2001, and

analyzed them for SO4
2-, NO3

-, and NH4
+ by ion chromatography.  Results were compared with those

obtained several years earlier.  These comparisons are summarized in the Bland-Altman plots and

corresponding calibration plots presented in Figures 39, 40, and 41  Results for SO4
2- and even for NO3

-
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and NH4
+, which are more volatile PM2.5 components, obtained in 2006 after several years of storage

agreed remarkably well with those obtained in 2000 and 2001.  The standard deviation of the differences

between the CONSOL and NETL measurements was 0.43 µg/m3 for SO4
2-, 0.18 µg/m3 for NO3

-, and 0.34

µg/m3 for NH4
+.  Assuming equal measurement error for both methods, this translates into measurement

imprecisions of about 0.30 µg/m3 (6.6%) for SO4
2-, 0.13 µg/m3 (17%) for NO3

-, and 0.24 µg/m3 (13%) for

NH4
+.  The bias (CONSOL-NETL) for SO4

2- was 0.38 µg/m3 and for NO3
- was -0.10 µg/m3, although the

bias for NO3
- was not statistically significant at a significance level, α, of 0.05.  NH4

+ exhibited an

appreciable non-constant bias, such that when NH4
+ concentrations were about 1 µg/m3 (average of

concentrations determined by CONSOL and NETL), the concentration measured by NETL in 2000 or

2001 was 0.72 µg/m3 greater than that determined by CONSOL in 2006.  For each additional 1 µg/m3

increase in NH4
+ concentration, the relative bias decreased by 0.36 µg/m3, reaching zero at about 3 µg/m3.

Above 3 µg/m3, NH4
+ concentrations determined by CONSOL in 2006 were greater than those determined

by NETL in 2000 or 2001.  Collectively, these results indicate that analysis of refrigerated archived PM2.5

samples to determine concentrations of SO4
2-, NO3

-, and NH4
+ is feasible, provided that the results are

corrected to account for relative biases.
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Figure 37: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily Zn

concentrations measured at the Schenley Park site using a PM2.5 Hi-Vol Sampler with ICP-MS analaysis

(x1) and at the Lawrenceville site using a Met One SASS PM
2.5

 speciation sampler with XRF analysis (x2)

between 6/30/01 and 7/31/02.
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Figure 38: Bland-Altman plot (a) and corresponding calibration plot (b) for pairwise daily Zn

concentrations measured at the Florence site (x1) and at the Lawrenceville site (x2) between 6/30/01 and

7/31/02 using Met One SASS PM
2.5

 speciation samplers with XRF analysis.
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Figure 39: Bland-Altman plot (a) and corresponding calibration plot (b) for daily average sulfate

concentrations determined from collocated PM
2.5

 samples collected at the Bruceton site.  For each

collocated pair, one concentration was determined by NETL in 2000 or 2001 (x2) and the other was

determined by CONSOL in 2006 after the sample had been archived under refrigeration for several years

(x1).
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Figure 40: Bland-Altman plot (a) and corresponding calibration plot (b) for daily average nitrate

concentrations determined from collocated PM
2.5

 samples collected at the Bruceton site.  For each

collocated pair, one concentration was determined by NETL in 2000 or 2001 (x2) and the other was

determined by CONSOL in 2006 after the sample had been archived under refrigeration for several years

(x1).
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The results of the analysis of archived PM2.5 samples from Bruceton only examined the feasibility of

obtaining reliable ion data from samples that have been stored under refrigeration.  However, as discussed

in Section 2.3, many of the archived samples available from the Pittsburgh region during the time period

of interest for the proposed epidemiology study have been stored at room temperature, and most of these

samples will need to be analyzed for trace and crustal elements as well as ions to provide the speciation

data required by the study.  Provided that archived PM2.5 samples are stored in sealed containers and kept

away from possible contamination sources, it is expected that trace and crustal element concentrations

determined from these archived samples will accurately reflect ambient concentrations at the time of

sample collection, because storage at room temperature is not expected to cause any substantial

volatilization of these species.  Element concentrations determined as part of the Steubenville

Comprehensive Air Monitoring Program are consistent with this expectation.  As part of SCAMP, Teflon-

filter-based PM2.5 samples for elemental analysis were collected in duplicate using separate channels of an

Andersen RAAS2.5-400 PM2.5 speciation sampler at the Franciscan University of Steubenville site.  These

samples, which were stored in sealed containers at room temperature prior to analysis, were digested and

analyzed in two separate batches, such that all samples from the second speciation sampler channel were

analyzed seven to eleven months after the samples from the first speciation sampler channel.  In spite of

the difference in storage periods (as well as the fact that the results were obtained from two separate

samples that were collected on different filters and digested and analyzed independently on different days,

all of which are sources of error), results from the second set of filters agreed remarkably well with results

from the first set.  To exemplify this, Figures 42 and 43 present Bland-Altman plots for collocated

measurements of Fe and collocated measurements of As, respectively, from the Franciscan University site.

For both elements, there was little or no bias between the collocated measurements.  The mean paired

difference between the two sets of results for Fe was not significantly different from zero, and the mean

paired difference between the two sets of results for As was just barely significant (p = 0.049) at α = 0.05.

Moreover, the results were characterized by relatively little random error.  Constant common imprecision

estimates were 19% (0.053 µg/m3) for Fe and 21% (0.0003 µg/m3) for As, and a substantial portion of this

imprecision likely resulted from variability in filter background concentrations, digestion efficiency,

instrument calibration, etc.  These results suggest that differences in sample storage time likely had little,

if any, effect on the elemental results obtained as part of SCAMP. 
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Figure 41: Bland-Altman plot (a) and corresponding calibration plot (b) for daily average ammonium

concentrations determined from collocated PM
2.5

 samples collected at the Bruceton site.  For each

collocated pair, one concentration was determined by NETL in 2000 or 2001 (x2) and the other was

determined by CONSOL in 2006 after the sample had been archived under refrigeration for several years

(x1).
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Figure 42: Bland-Altman plot (a) and corresponding calibration plot (b) for daily average Fe

concentrations determined by ICP-MS from collocated PM
2.5

 samples collected using separate channels

of a speciation sampler at the Franciscan University of Steubenville site.  All samples were stored at

room temperature prior to analysis; however samples from the second speciation sampler channel (x1)

were stored for seven to eleven months longer than samples from the first speciation sampler channel

(x2).
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Most of the archived PM2.5 samples that would be used to provide elemental data for an epidemiology

study have been stored for a longer period of time than the SCAMP samples were.  Furthermore, as

discussed earlier in Section 2.3, these samples are being kept in a variety of locations that are likely

characterized by a variety of conditions (e.g., temperature, humidity, possibility for contamination, etc.).

Thus, prior to beginning large-scale analysis of archived PM2.5 samples to provide chemical speciation

data for the proposed study, comparisons such as those presented above for inorganic ions at the Bruceton

site should be performed, to as great an extent as possible, for each species at each monitoring site from

which archived samples will be analyzed.  These comparisons are necessary to establish the validity of the

archived sample data and to allow any artifacts resulting from the use of these samples to be corrected.

It is also important to reiterate that, in spite of its superior sensitivity for the determination of many trace

elements, ICP-MS likely will not be used to analyze archived PM2.5 samples because it requires complete
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Figure 43: Bland-Altman plot (a) and corresponding calibration plot (b) for daily average As

concentrations determined by ICP-MS from collocated PM
2.5

 samples collected using separate channels

of a speciation sampler at the Franciscan University of Steubenville site.  All samples were stored at

room temperature prior to analysis; however samples from the second speciation sampler channel (x1)

were stored for seven to eleven months longer than samples from the first speciation sampler channel

(x2).
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digestion of these samples, rendering them unavailable for subsequent analysis by IC.  Rather, XRF is a

probable choice for elemental analysis, because it is nondestructive.  While XRF generally has poorer

sensitivity than ICP-MS, the sensitivity of XRF varies considerably as a function of the details of the

technique being used.  Kim et al. (2005) compared MDLs for five XRF spectrometers operated by three

different laboratories to perform PM2.5 elemental analyses; while the averages of these MDLs were

generally comparable to the average MDLs reported in Table 14 for existing data from the Lawrenceville

site, the lowest MDLs in many cases were almost an order of magnitude less than the MDLs reported in

Table 14.  For example, whereas average MDLs for determinations of As and Ba at the Lawrenceville site

were 0.0023 µg/m3 and 0.0350 µg/m3, respectively, the lowest MDLs reported by Kim et al. (2005) for

XRF determination of these elements were about 0.00052 µg/m3 and 0.0023 µg/m3, respectively

(assuming a sampling flow rate of 6.7 L/min, as used by the Met One SASS sampler at the Lawrenceville

site).  Hence, use of a more sensitive XRF technique, if affordable, could reduce the error associated with

elemental determinations and increase the number of quantifiable elements available for inclusion in the

epidemiological models.
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Figure 44: Bland-Altman plot (a) and corresponding calibration plot (b) comparing 24-hr average

concentrations of SO
4

2-
 estimated from XRF sulfur measurements (x1) with 24-hr average concentrations

of SO
4

2-
 determined by IC at the AQS Lawrenceville site between 6/30/01 and 12/27/05.
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In addition to being nondestructive, a strength of XRF is its ability to accurately and precisely determine

sulfur, which can be used to estimate concentrations of SO4
2- (under the assumption that all fine particulate

S is present as SO4
2-).  Hence, for archived PM2.5 samples that have not been refrigerated, if preliminary

comparisons of archived sample data with preexisting data indicate that determination of NH4
+ and NO3

-

from these samples is not feasible, then IC analysis may not be required.  Figure 44 presents a Bland-

Altman plot comparing SO4
2- concentrations determined by IC with SO4

2- concentrations estimated from

XRF sulfur measurements at the Lawrenceville monitoring site.  Although the bias between these

collocated measurements was statistically significant, it was very small (1.3%).  On average, SO4
2-

concentrations estimated from the XRF data were about 0.1 µg/m3 less than SO4
2- concentrations measured

by IC.  The two methods were also reasonably precise, having a constant common precision of about 0.5 µ
g/m3 (7.8%), which is similar to that reported in Section 2.4.1.2 for collocated measurements of SO4

2- by

IC at the Lawrenceville site.  Thus, these results indicate that SO4
2- concentrations estimated from XRF

sulfur measurements can be used interchangeably with SO4
2- concentrations determined by IC for purposes

of the proposed epidemiology study.  Therefore, if SO4
2- is the only inorganic ionic species that needs to

be determined from an archived PM2.5 sample, its concentration can be estimated from XRF data, saving

the cost of IC analysis.  In this scenario, following XRF analysis, the sample could be digested for analysis

by ICP-MS to determine concentrations of elements that are of interest for inclusion in the epidemiology

study but are not readily quantified by XRF (e.g., Al, Ba, Cd, Mg, V, etc.).  This would add substantially

to the cost of analysis, however.

2.4.3 Comparison of QA/QC Procedures

A review of the quality assurance and quality control procedures followed by the monitoring campaigns

that operated in the Pittsburgh region between 1999 and 2005 indicates that, for the most part, these

procedures were sufficient to ensure that the data available from these campaigns are of reasonably high

quality for use in a retrospective epidemiology study.  A detailed description and comparison of these

various QA/QC protocols is beyond the scope of this report, as some of the individual protocols are

themselves greater than 100 pages in length.  However, in general, sampling and analytical activities

performed by monitoring sites in the Pittsburgh region were conducted according to standard operating

procedures and QA/QC protocols that ensured consistent practices in the field and in the laboratory, and

included routine use of logbooks (to document observations, exceptions, maintenance activities, QA/QC

items, etc.), sampler audits (to check/calibrate flow, temperature, pressure, etc.), field and trip blanks (to

assess sample contamination during handling, transport, and storage), standard reference materials (to

confirm the accuracy of analytical techniques), collocated sampling and/or replicate analysis (to assess

precision), etc.  Moreover, with the exception of data from the NETL/OST Bruceton site, data reported by

the various monitoring campaigns have been reduced, screened, and qualified to indicate measurements

that are suspect or invalid because of instrument malfunction, abnormal sampling conditions, or

noncompliance with QA/QC criteria.  Hence, these data require little additional vetting prior to use in the

study.
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A noteworthy inconsistency among the QA/QC procedures followed by the monitoring campaigns that

operated in the Pittsburgh region between 1999 and 2005 is in the flagging procedures used to indicate the

validity of reported data.  This inconsistency can easily be eliminated, however, by converting all reported

flags to the set of standard flags developed by the North American Research Strategy for Tropospheric

Ozone (NARSTO).  These NARSTO standard flags, which are shown in Table 16 are general enough to

be widely applicable to datasets that were qualified according to more complex flagging procedures, yet

provide sufficient detail to indicate whether data should be included or excluded from the epidemiology

study.  Data labeled as V0, V1, V2, V3, V4, V5, V6, or V7 would be included in the study, and data

labeled as M1, M2, or H1 would be excluded from the study (although efforts would be made to assess

and validate any data labeled as H1 so that a “V” or “M” flag could be properly assigned to these data).

Data estimated via the calibration and geostatistical techniques described elsewhere in this report would be

assigned V2 or V3 flags as appropriate.  Because of problems related to the use of censored data in

statistical models, data labeled as V7 (i.e., censored data) would be evaluated to determine its likely

impact on the epidemiological models and to determine whether the uncensored values for observations

below the detection limit could be obtained.  Finally, statistically influential points flagged as V4, V5, or

V6 would be investigated (e.g., by comparison with collocated measurements, review of logbooks and

comments provided by data originator, etc.) prior to inclusion in the epidemiological models in order to

confirm or refute their validity.

Table 16: NARSTO standard data qualification flags.

Flag Description

V0 Valid value

V1 Valid value but comprised wholly or partially of below detection limit data

V2 Valid estimated value

V3 Valid interpolated value

V4 Valid value despite failing to meet some QC or statistical criteria

V5
Valid value but qualified because of possible contamination (e.g., pollution source, laboratory
contamination source)

V6
Valid value but qualified due to non-standard sampling conditions (e.g., instrument malfunction,
sample handling)

V7 Valid value but set equal to the detection limit (DL) because the measured value was below the DL

M1 Missing value because no value is available

M2 Missing value because invalidated by data originator

H1 Historical data that have not been assessed or validated

Data reported by the Pittsburgh Air Quality Study have already been qualified using NARSTO standard

flags.  Data reported by CASTNet have been qualified using a modified version of these flags.  The

CASTNet flags include the 11 NARSTO standard flags plus the following five flags:

� I0 – Invalid value, unknown reason
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� I1 – Invalid value, known reason

� I2 – Invalid value, -999

� NA – Not available from source data

� M3 – Missing value due to clogged filter

The CASTNet flags could easily be made consistent with the NARSTO standard flags by converting the

I0, I1, and M3 flags to M2 flags and by converting the I2 and NA flags to M1 flags.  Data collected by the

IMPROVE network are qualified using a unique set of IMPROVE validation flags that differ from the

NARSTO and CASTNet flags; however, these flags are translated to the same set of flags used by the

CASTNet program before the data are reported in the Visibility Information Exchange Web System

(VIEWS) database, as shown in Table 17.  Hence, these flags also could be made consistent with the

NARSTO standard flags simply by converting any I1 and M3 flags to M2 flags.

Data from AQS and from the UORVP program are qualified using flagging systems that are appreciably

more detailed than the NARSTO flagging system. Table 18 presents the data validation flags used by

AQS, and Table 19 summarizes the major data validation flags used by UORVP.  (In addition to the

major flags shown in Table 19, the UORVP system included sub-flags to provide additional details, such

that data could be qualified according to any combination of more than 120 different sampling and

analytical flags).  Although it will not be as straightforward as for the CASTNet and IMPROVE flags, the

AQS and UORVP flags can be converted to NARSTO standard flags rather easily.  In general, all AQS

data flagged with a null data qualifier would be assigned an M1 or M2 flag, depending on the specific

qualifier code, and all other data would be assigned a V0, V1, V4, V5, or V6 flag, depending on whether

these data were above or below the MDL and on the specific qualifiers (if any) used to describe the data.

The UORVP program flags any suspect data with an “S” or “s” flag and any invalid data with a “V” or

“v” flag.  (Upper-case flags are used to qualify field data, and lower-case flags are used to qualify

laboratory data).  Hence, in general, any UORVP data marked with a “V” or “v” flag would be assigned

an M1 or M2 flag; any data marked with an “S” or “s” flag would be qualified with a “V4”, “V5”, or “V6”

flag, and all other data would be qualified with one of the seven NARSTO “V” flags, again depending on

whether these data were above or below the MDL and on the specific qualifiers (if any) used to describe

the data.

Table 17: IMPROVE native data qualification flags and corresponding VIEWS flags.
a

IMPROVE

Native Flag Description

VIEWS

Flag

AA Organic artifact corrected. V5

AP Possible organic artifact. V5

BI Incorrect installation of sample cartridge during weekly change. M2
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IMPROVE

Native Flag Description

VIEWS

Flag

CG
Clogging filter - flow rate less than 18 L/min for more than 1 hour. This affects the cut

point of the particle but the concentrations are correct.
V2

CL Clogged filter - flow rate less than 15 L/min for more than 1 hour. M3

DE Derived or calculated value. V0

EP Equipment problem. M1

LF
Low/high flow rate. The average flow rate results in a cyclone cut point outside of the 2-

3 micro-m range. This corresponds to flow rates < 21.3 L/min or > 24.3 L/min. 
V5

MV Missing module level value. M1

NA
Not applicable. This is used for missing modules with non-protocol samplers with less

than four modules.
M1

NM Normal. V0

NR
Not reprocessed.  Carbon data between 2000 – 2004 which were not reprocessed to

account for negative OP that had originally been reported as zero.
V0

NS
Operator did not install the samples or installed them too late to acquire a valid time. All

filters involved.
M1

OL

Offline. In some cases, this is used when the sampler is inoperable due to hurricane or

fire. For year 2000, this is used for the period after the Version 1 sampler is removed

and before the Version 2 samples begins operation.

M1

PO Power outage. All filters involved. M1

QA QA problem suspected, value held back for further investigation. I1

QD Questionable data. V4

RF
High flow rate. The flow rate is greater than 27 L/min for more than 1 hour. This affects

the cut point of the particle but the concentrations are correct.
V5

SA
Used to indicate some sort of 'Sampling Anomaly', though the exact definition has yet to

be satisfactorily defined.
V6

SP An artifact filter was swapped with a sample filter. V0

SW Suspected filter swap. V0

UN The concentrations failed the data validation for unknown reasons. M2

XX The filter is damaged. M2

a
Source: http://vista.cira.colostate.edu/views/Web/Documents/Dataflags.aspx

Table 18: AQS data qualification flags.
a

Qualifier Code Qualifier Description

EX - Exceptional Event Qualifier

D SANDBLASTING

F STRUCTURAL FIRE

H CHEMICAL SPILLS & INDUST. ACCIDENTS

I UNUSUAL TRAFFIC CONGESTION

J CONSTRUCTION/DEMOLITION
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Qualifier Code Qualifier Description

K AGRICULTURAL TILLING

L HIGHWAY CONSTRUCTION

M REROUTING OF TRAFFIC

N SANDING/SALTING OF STREETS

O INFREQUENT LARGE GATHERINGS

P ROOFING OPERATIONS

Q PRESCRIBED BURNING

R CLEAN UP AFTER A MAJOR DISASTER

NAT - Natural Event Qualifier

A HIGH WINDS

B STRATOSPHERIC OZONE INTRUSION

C VOLCANIC ERUPTIONS

E FOREST FIRE

G HIGH POLLEN COUNT

S SEISMIC ACTIVITY

U SAHARA DUST

NULL - Null Data Qualifier

AA SAMPLE PRESSURE OUT OF LIMITS

AB TECHNICIAN UNAVAILABLE

AC CONSTRUCTION/REPAIRS IN AREA

AD SHELTER STORM DAMAGE

AE SHELTER TEMPERATURE OUTSIDE LIMITS

AF SCHEDULED BUT NOT COLLECTED

AG SAMPLE TIME OUT OF LIMITS

AH SAMPLE FLOW RATE OUT OF LIMITS

AI INSUFFICIENT DATA (CANNOT CALCULATE)

AJ FILTER DAMAGE

AK FILTER LEAK

AL VOIDED BY OPERATOR

AM MISCELLANEOUS VOID

AN MACHINE MALFUNCTION

AO BAD WEATHER

AP VANDALISM

AQ COLLECTION ERROR

AR LAB ERROR

AS POOR QUALITY ASSURANCE RESULTS

AT CALIBRATION

AU MONITORING WAIVED

AV POWER FAILURE (POWR)

AW WILDLIFE DAMAGE
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Qualifier Code Qualifier Description

AX PRECISION CHECK (PREC)

AY Q C CONTROL POINTS (ZERO/SPAN)

AZ Q C AUDIT (AUDT)

BA MAINTENANCE/ROUTINE REPAIRS

BB UNABLE TO REACH SITE

BC MULTI-POINT CALIBRATION

BD AUTO CALIBRATION

BE BUILDING/SITE REPAIR

BF PRECISION/ZERO/SPAN

BG MISSING OZONE DATA NOT LIKELY TO EXCEED

LEVEL OF STANDARD

BH INTERFERENCE/CO-ELUTION

BI LOST OR DAMAGED IN TRANSIT

BJ OPERATOR ERROR

BK SITE COMPUTER/DATA LOGGER DOWN

QA - Quality Assurance Qualifier

1 DEVIATION FROM A CFR/CRITICAL CRITERIA

REQUIREMENT

2 OPERATIONAL DEVIATION

3 FIELD ISSUE

4 LAB ISSUE

5 OUTLIER

6 QAPP ISSUE

7 BELOW LOWEST CALIBRATION LEVEL

9 NEGATIVE VALUE DETECTED – ZERO

REPORTED

V VALIDATED VALUE

W FLOW RATE AVERAGE OUT OF SPEC.

X FILTER TEMPERATURE DIFFERENCE OUT OF

SPEC.

Y ELAPSED SAMPLE TIME OUT OF SPEC.
aSource: http://www.epa.gov/ttn/airs/airsaqs/manuals/qualifiers.htm

Data reported by the Steubenville Comprehensive Air Monitoring Program are qualified according to a

relatively simple data flagging procedure that classifies all data as valid (“V”), flagged (“F”), or invalid

(“I”).  For flagged and invalid data, comments are also provided to explain why the “F” or “I” qualifier

was applied.  Hence, NARSTO standard flags could be applied to the SCAMP data based on the SCAMP

data validation flags and associated comments.  All data labeled “V” would be assigned NARSTO flags of

V0, V1, or V7, depending on whether the data were above or below the MDL and on whether data that

were below the MDL were censored.  (Ionic and carbonaceous data from SCAMP were censored;
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elemental data were not).  Data labeled “F” would be assigned NARSTO flags of V4, V5, or V6, and data

labeled “I” would be assigned NARSTO flags of M1 or M2, based on the comments accompanying the

flag.

Table 19: UORVP data qualification flags.

Qualifier Code Qualifier Description

Ambient and Source Field Sampling Data Validation Flags

A Sampler adjustment or maintenance.

B Field blank.

D Sample dropped.

F Filter damaged or ripped.

G Filter deposit damaged.

H Filter holder assembly problem.

I Inhomogeneous sample deposit.

L Sample loading error.

M Sampler malfunction.

N Foreign substance on sample.

O Sampler operation error.

P Power failure during sampling.

Q Flow rate error.

R Replacement filter used.

S Sample validity is suspect.

T Sampling time error.

U Unusual local particulate sources during sample period.

V Invalid sample.

W Wet sample.

X No sample was taken this period, sample run was skipped.

Chemical Analysis Data Validation Flags

b Blank.

c Analysis result reprocessed or recalculated.

d Sample dropped.

f Filter damaged or ripped.

g Filter deposit damaged.

h Filter holder assembly problem.

i Inhomogeneous sample deposit.

m Analysis results affected by matrix effect.

n Foreign substance on sample.

q Standard.

r Replicate analysis.

s Suspect analysis result.

v Invalid analysis result.

w Wet sample.

Only some of the data collected by NETL/OST at the Bruceton monitoring site have been reduced and
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screened for quality.  Certain data from the Bruceton site are available only in the raw format in which

they were recorded by the data logger in the field or by the analytical laboratory, and others have been

reduced to ambient air concentration units and undergone preliminary screening for quality, but have not

been qualified using a standard set of data validation flags.  Hence, prior to using data from the Bruceton

monitoring site in an epidemiology study, these data must be reduced, vetted, and qualified according to a

consistent procedure.  Unlike data from the other monitoring sites in the Pittsburgh region, in which

NARSTO standard flags can be assigned relatively simply on the basis of preexisting data validation flags,

these NARSTO flags will need to be assigned to the Bruceton data manually based upon a review of

sampling logbooks; sampling temperature, pressure, and flow rate data; instrument error codes; laboratory

records, etc.  As part of the current feasibility assessment, records from the Bruceton site were gathered

and reviewed, and it was determined that all of the information needed to validate these data is available.

While this process will be time-consuming, it is necessary to ensure that the quality of the dataset

constructed for the Bruceton site is consistent with the quality of the other data being used in the

epidemiology study.

2.5 Plan for the Construction of an Air Monitoring Database for the

Retrospective Epidemiology Study

Having provided an inventory of existing air monitoring data and archived PM2.5 samples that were

collected in the greater Pittsburgh region between 1999 and 2005 and would be available for use in a

retrospective epidemiology study of PM2.5, as well as an evaluation of the quality and comparability of

these data and samples, we now present a plan for utilizing the existing data and samples to assemble a

database of exposure information suitable for the proposed retrospective study.  Development of this plan

essentially amounted to solving a constrained optimization problem; the plan had to minimize cost while

achieving a quantity and quality of air monitoring data sufficient to enable the performance of a

retrospective epidemiology study of PM2.5 and its components in the Pittsburgh region.

Based upon the air monitoring data inventory results presented in Section 2.2 and the health data

inventory results presented later in this report, PM2.5 speciation data impose the largest constraint on the

design of the proposed retrospective epidemiology study.  Because of their limited availability, these data

largely dictate the time period and geographic region that will form the basis for the study.  Table 20

summarizes the availability of existing PM2.5 speciation data by calendar year for each of three geographic

regions: the 35-county greater Pittsburgh region that was defined earlier in Table 1, the seven-county

Pittsburgh Metropolitan Statistical Area (MSA) (which includes Allegheny, Armstrong, Beaver, Butler,

Fayette, Washington, and Westmoreland Counties in southwestern Pennsylvania), and the 28 counties

from the 35-county region that are not part of the Pittsburgh MSA.  As shown in Table 20, the record of

PM2.5 speciation data available from the 28 counties outside of the Pittsburgh MSA is sparse relative to the

record available from the seven counties in the Pittsburgh MSA.  There are 1372, 1392, and 1537 days

between 1999 and 2005 on which sulfate, nitrate, and EC/OC data, respectively, are available from at least
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one monitoring site in the Pittsburgh MSA, compared with only 766, 766, and 743 days on which these

data are available from at least one site outside of the Pittsburgh MSA.  Whereas data are available from at

least one site in the Pittsburgh MSA on greater than 80% of the days in 2000 and 2001 for EC/OC, on

greater than 80% of the days in 2002 for all PM2.5 species, and on greater than 80% of the days in 2003 for

sulfate and nitrate, in no case are data for any PM2.5 species available from the sites located outside of the

Pittsburgh MSA on more than 50% of the days in a given calendar year.  Moreover, as shown earlier in

Table 10 with the exception of the Holbrook site in Greene County, all of the archived PM2.5 samples

available from western Pennsylvania were collected at monitoring sites located in the Pittsburgh MSA.

Hence, the available PM2.5 speciation data suggest that a retrospective epidemiology study focusing on the

chemical components of PM2.5 should be limited to the Pittsburgh MSA or a smaller region, as there are

not sufficient data to allow the development of reliable daily exposure estimates for the rest of the 35-

county region.  (Selection of a smaller region with a greater density of geographically diverse monitoring

sites is expected to reduce the possibility for effect attenuation resulting from exposure misclassification in

the time series epidemiology study).

Therefore, the analyses presented in the remainder of this section focus only on data that were collected in

the Pittsburgh MSA.  (It should be noted, however, that any data available from outside of the Pittsburgh

MSA would be appropriate for use in geostatistical modeling to inform the computation of spatially

averaged exposure estimates, as discussed later in this report).  The monitoring sites in the Pittsburgh

MSA that collected PM2.5 speciation data between 1999 and 2005 were the Bruceton, Hazelwood,

Lawrenceville, Liberty Borough, and Schenley Park sites in Allegheny County, the Florence site in

Washington County, and the Greensburg and St. Vincent College sites in Westmoreland County.  The

population of the MSA, based on the 2000 census, was 2,431,087, which represented more than half of the

population of the larger 35-county region.  

Table 20: Summary of PM2.5 speciation data availability between 1999 and 2005 by species, year, and

geographic region.
a

Number of Days With:

Sulfate Nitrate EC/OC Elements

Complete

Speciation

Any Site in 35-County Region 1459 1478 1579 1160 1128

1999 92 92 164 79 79

2000 199 194 336 153 145

2001 292 290 362 287 280

2002 360 358 361 325 308

2003 300 340 201 162 162

2004 184 172 123 123 123

2005 32 32 32 31 31
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Number of Days With:

Sulfate Nitrate EC/OC Elements

Complete

Speciation

Any Site in Pittsburgh MSA 1372 1392 1537 997 964

1999 50 49 139 34 34

2000 174 169 327 93 87

2001 275 273 361 241 232

2002 360 358 361 323 305

2003 297 339 196 154 154

2004 184 172 121 121 121

2005 32 32 32 31 31

Any Site Outside of Pittsburgh MSA 766 766 743 735 722

1999 69 69 69 69 69

2000 115 115 101 98 95

2001 178 178 171 168 162

2002 144 144 142 141 137

2003 121 121 121 120 120

2004 122 122 122 122 122

2005 17 17 17 17 17
aInventory for 2005 does not include all data collected in that year.  At the time of the inventory, data were available for

the AQS sites through 4/10/05 and for the IMPROVE sites through 12/29/04.

There are not enough preexisting PM2.5 speciation data available from the Pittsburgh MSA between 1999

and 2005 to provide sufficient statistical power for a retrospective epidemiology study of PM2.5 chemical

components.  The power calculations presented later in this report indicate that a minimum of three years

(1,095 days) of daily data are needed for a feasible study.  More than three years of data are

recommended, as the additional data increase the power of the study and hence its ability to detect smaller

effects.  The data specified for the study should also contain relatively few missing values, as these detract

from the power of the study.  Hence, our goal when designing an exposure database for the proposed

retrospective epidemiology study was to identify a four-year (1,460-day) or longer period during which

24-hour average data for each PM2.5 species of interest (i.e., SO4
2-, NO3

-, EC and OC, and trace and crustal

elements) are available for at least 85% of the days (i.e., such that there are less than 15% missing values

for each species).
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Figure 45: Effect of start date and study length on PM2.5 speciation data completeness (i.e., the

percentage of days on which sulfate, nitrate, carbon, and elements were each measured at one or more

sites in the Pittsburgh MSA, regardless of whether all of the species were measured at the same site) for

the case in which only preexisting data, and not data obtained from the analysis of archived PM2.5

samples, are used.
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It is not possible to satisfy this criterion using only preexisting data from the Pittsburgh MSA.  In order to

select an optimal study period, we analyzed data completeness (i.e., the percentage of days during the

study period for which a complete set of PM2.5 speciation data could be obtained by using any combination

of existing sulfate, nitrate, carbon, and elemental data from monitoring sites in the Pittsburgh MSA) as a

function of study start date and study length.  When performing this analysis, we assumed that data from

the various monitoring sites (and measurement techniques) in the Pittsburgh MSA could be used

interchangeably to represent the exposures of the region’s population, such that even if no single

monitoring site in the Pittsburgh MSA had a complete set of PM2.5 speciation data on a given day, that day

would still be considered to have a complete set of speciation data if data from multiple monitoring sites

could be combined to provide at least one measurement from somewhere in the region for each PM2.5

species of interest.  Based on the discussion in Section 2.4, the assumption that measurements from

different monitoring sites are interchangeable is much more reasonable for PM2.5 components such as

SO4
2- and OC than it is for trace and crustal element species.  Nevertheless, this assumption indicates the

maximum data completeness that can possibly be achieved for a given study length.  Hence if the criterion

for data completeness cannot be satisfied under this assumption, then it will not be satisfied under any

other, more restrictive assumption.  We also assumed that midnight-to-midnight concentrations would

have to be estimated by averaging filter-based data collected at the Bruceton and St. Vincent College sites,

as discussed in Section 2.4, such that data were only considered to be available from these sites on a given

day if data from the prior day were also available.

Results of the analysis are presented in Figure 45.  These results indicate that, if only preexisting PM2.5

speciation data from the Pittsburgh MSA are used, the optimal start date (i.e., the start date that maximizes

the number of days on which a complete set of PM2.5 speciation data are available) for a 4-year study is

April 12, 2001.  However, as shown in Table 21, none of the PM2.5 chemical components satisfy the 85%

data completeness criterion for this optimal 4-year study.  Rather, data completeness for a 4-year study

beginning on April 12, 2001, ranges from 57% for fine particulate trace and crustal elements to 74% for

fine particulate sulfate.  Even the best possible 3-year exposure database that could be constructed using

existing PM2.5 speciation data from the Pittsburgh MSA would have only 66% data completeness for trace

and crustal elements and 74% data completeness for EC and OC.  (The inventory results used to perform

this analysis did not include data from the PC-BOSS sampler at the Bruceton monitoring site.  These data,

if available, could improve data completeness for sulfate, nitrate, and EC/OC, but would have little impact

on data completeness for trace and crustal elements, which are the species that most require additional

data).  Hence, these results indicate that a retrospective epidemiology study of PM2.5 chemical components

in the Pittsburgh region would only be feasible if archived PM2.5 samples could be analyzed to augment

the existing PM2.5 chemical speciation data record.
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Table 21: Data completeness statistics, by PM2.5 species, for the optimal study periods determined from

Figure 45.  Statistics are based on inventories of existing data that are available from sites in the

Pittsburgh MSA.

Sulfate Nitrate EC /OC

Trace/Crustal

Elements

Complete

Speciation

6/10/01-6/8/04

(3 yr)

Days with Data 971 1000 812 727 720

Study Days 1095 1095 1095 1095 1095

% Complete 89% 91% 74% 66% 66%

6/10/01-12/8/04

(3.5 yr)

Days with Data 1033 1062 874 789 782

Study Days 1278 1278 1278 1278 1278

% Complete 81% 83% 68% 62% 61%

4/12/01-4/10/05

(4 yr)

Days with Data 1083 1112 971 838 831

Study Days 1460 1460 1460 1460 1460

% Complete 74% 76% 67% 57% 57%

10/11/00-4/10/05

(4.5 yr)

Days with Data 1106 1131 1147 860 849

Study Days 1643 1643 1643 1643 1643

% Complete 67% 69% 70% 52% 52%

4/12/00-4/10/05

(5 yr)

Days with Data 1161 1183 1308 887 872

Study Days 1825 1825 1825 1825 1825

% Complete 64% 65% 72% 49% 48%

To determine whether analysis of archived PM2.5 samples from the Pittsburgh MSA could provide enough

additional chemical speciation data to make the retrospective epidemiology study feasible, we repeated the

above analysis, but this time allowed for the inclusion of PM2.5 speciation data that could be obtained by

analyzing the archived PM2.5 samples identified in Section 2.3.  In addition to the assumptions set forth in

the preceding paragraph, the following assumptions were made regarding the analysis of archived PM2.5

samples, based on the considerations discussed in previous sections:

• Nitrate data can only be obtained from PM2.5 samples that have been stored under refrigeration since

collection.

• By the time the retrospective epidemiology study begins, all PM2.5 samples being archived by the

ACHD and the PA DEP will have been removed from refrigerated storage and transferred to storage at

room temperature.

• Inorganic ions can be determined from samples collected on quartz or Teflon filters.

• Carbonaceous species can be determined from samples collected on quartz, but not Teflon, filters.

• Trace and crustal element species can be determined from samples collected on Teflon, but not quartz,

filters.
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Figure 46: Effect of start date and study length on PM2.5 speciation data completeness (i.e., the

percentage of days on which sulfate, nitrate, carbon, and elements were each measured at one or more

sites in the Pittsburgh MSA, regardless of whether all of the species were measured at the same site) for

the case in which both preexisting data and data that can be obtained from the analysis of archived PM2.5

samples are used.
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Results of the analysis are presented in Figure 46 and in Table 22.  These results indicate that, if both

preexisting PM2.5 speciation data and PM2.5 speciation data that can be obtained by analyzing archived

PM2.5 samples are used, then it is possible to construct a four-year database having at least 85% data

completeness for each PM2.5 species of interest.  Again, this result is based on the assumption that data

from the various monitoring sites (and measurement techniques) in the Pittsburgh MSA can be used

interchangeably to represent the exposures of the region’s population, such that if a given species was

measured at any one or more of the Pittsburgh MSA’s monitoring sites (or can be determined from an

archived sample collected by any of these sites) on a particular day, then that species is considered to have

been adequately characterized on that day for purposes of the data completeness calculation.  Based on the

sensitivity analysis presented in Figure 46, the optimal start date for a four-year retrospective study is

August 3, 1999.  As shown in Table 22, if all available archived PM2.5 samples that were collected by

monitoring sites in the Pittsburgh MSA between August 3, 1999, and August 1, 2003, were analyzed for

chemical speciation according to the assumptions outlined above, then each of sulfate, nitrate, EC/OC, and

trace and crustal element species would have greater than 90% data completeness during the four-year

study period.  August 3, 1999, is also the optimal starting date for a 4.5-year retrospective study; such a

study would have greater than 85% data completeness for all PM2.5 chemical components of interest, per

the results presented in Table 22.  Even when allowing for the use of data obtained from archived PM2.5

samples, however, there are insufficient EC and OC data available from the Pittsburgh MSA to enable a

five-year retrospective epidemiology study with 85% data completeness for these species.  Nevertheless,

the results presented in Figure 46 and in Table 22 confirm that, by combining existing PM2.5 speciation

data with data that can obtained by chemically analyzing archived PM2.5 samples, it is possible to construct

a database of sufficient length for a retrospective epidemiology study of PM2.5 chemical components in the

Pittsburgh region.

Table 22: Data completeness statistics, by PM2.5 species, for the optimal study periods determined from

Figure 46.  Statistics are based on inventories of existing PM2.5 data and archived PM2.5 samples that are

available from sites in the Pittsburgh MSA.

Sulfate Nitrate EC /OC

Trace/Crustal

Elements

Complete

Speciation

2/26/00-2/24/03

(3 yr)

Days with Data 1095 1077 1059 1095 1042

Study Days 1095 1095 1095 1095 1095

% Complete 100% 98% 97% 100% 95%

11/7/99-5/7/03

(3.5 yr)

Days with Data 1266 1247 1211 1264 1191

Study Days 1278 1278 1278 1278 1278

% Complete 99% 98% 95% 99% 93%

8/3/99-8/1/03

(4 yr)

Days with Data 1430 1410 1344 1413 1293

Study Days 1460 1460 1460 1460 1460

% Complete 98% 97% 92% 97% 89%
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Sulfate Nitrate EC /OC

Trace/Crustal

Elements

Complete

Speciation

8/3/99-1/31/04

(4.5 yr)

Days with Data 1613 1593 1401 1596 1350

Study Days 1643 1643 1643 1643 1643

% Complete 98% 97% 85% 97% 82%

8/4/99-8/1/04

(5 yr)

Days with Data 1796 1733 1460 1779 1409

Study Days 1825 1825 1825 1825 1825

% Complete 98% 95% 80% 97% 77%

For economic reasons, it may not be practical to analyze all of the archived PM2.5 samples that are

available from PM2.5 speciation monitoring sites in the Pittsburgh region.  The inventory results presented

in Sections 2.2 and 2.3 suggest that, at a minimum, existing data and archived samples from the Bruceton,

Lawrenceville, and Schenley Park monitoring sites should be used to develop exposure estimates for the

retrospective epidemiology study.  All three of these sites are located in Allegheny County, where more

than half of the population of the Pittsburgh MSA resides, and all three featured daily collection of PM2.5

speciation data or of archived PM2.5 samples for at least a one-year period between 1999 and 2005.  (The

Liberty Borough monitoring site also meets these criteria, but it is sited to monitor the impact of emissions

from a coke production facility on the local air quality in a particular portion of the Pittsburgh MSA, and

therefore is less useful for estimating the exposures of the larger region’s population).  As discussed

earlier, the Bruceton site is the largest source of fine particulate EC and OC data from the Pittsburgh MSA

during the time period of interest for the proposed epidemiology study, and it is also the largest source of

archived daily PM2.5 samples that are being stored under refrigeration.  The Lawrenceville site, which

included PM2.5 speciation monitoring by three separate groups between 1999 and 2005, features more days

with a complete suite of PM2.5 chemical component data than do any of the other sites in the Pittsburgh

MSA, as well as the largest number of archived daily PM2.5 samples of the sites in the Pittsburgh MSA.

Finally, the Schenley Park site features the longest contiguous period during which the complete suite of

PM2.5 chemical component data was measured routinely on a daily basis at any site in the Pittsburgh MSA.

To determine whether the Bruceton, Lawrenceville, and Schenley Park sites alone could provide sufficient

PM2.5 speciation information for the proposed retrospective epidemiology study, the analysis presented

above in Figure 46 and Table 22 was repeated using only data and archived PM2.5 sample inventory

results from these three sites.  The analysis concluded that the optimal start dates for 3-, 3.5-, 4-, 4.5-, and

5-year studies would be the same as those identified in Table 22 for studies using data and archived

samples from all of the PM2.5 speciation monitoring sites in the Pittsburgh MSA.  Table 23 presents data

completeness statistics as a function of study length, based on these optimal start dates, for the case in

which only data and archived samples from the Bruceton, Lawrenceville, and Schenley Park sites are used

to develop the exposure database.  Results indicate that even if only these three monitoring sites are used

as the basis for developing exposure estimates, it would be possible to construct a 4-year exposure

database with greater than 90% data completeness or a 4.5-year exposure database with greater than 85%

data completeness for all PM2.5 chemical components of interest.
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Hence, when evaluating the cost of analyzing archived filter-based PM2.5 samples to supplement the

existing record of PM2.5 speciation data for purposes of a retrospective epidemiology study, we first

considered a base case in which only archived samples from the Bruceton and Lawrenceville sites would

be analyzed (there are few or no samples from the Schenley Park site requiring analysis), and then

examined the incremental cost of analyzing archived samples from each of the other PM2.5 speciation

monitoring sites in the Pittsburgh MSA.  Cost estimates were performed for each of the optimal 3-, 3.5-,

4-, 4.5-, and 5-year study periods identified in Table 22.  First, to approximate the maximum cost of

archived sample analysis for each scenario, we assumed that, for a given study period and group of

included monitoring sites, all PM2.5 samples available from those sites during that period would be

analyzed to determine as much chemical speciation information as possible, regardless of whether such

analysis would produce replicate results for a particular site.  As such, we assumed that all archived

Teflon-filter-based PM2.5 samples would be analyzed for trace and crustal elements by XRF and for

inorganic ions (i.e., SO4
2-, NO3

-, NH4
+) by IC, and that all archived quartz-filter-based PM2.5 samples

would be analyzed for elemental and organic carbon by TOT and for inorganic ions by IC, irrespective of

whether or not these samples were being stored under refrigeration.  In addition, we increased the number

of samples by 10% prior to costing to account for the cost of analyzing blank samples, which were not

included in the data inventory but must be analyzed for QA/QC purposes.  Based on the study team’s

experience with the cost of analyzing filter-based PM2.5 samples for chemical speciation and on prices

cited by several commercial laboratories (i.e., RTI International, Research Triangle Park, NC and Sunset

Laboratories, Tigard, OR) that specialize in PM2.5 sample analysis, we assumed prices of $30/sample for

IC, $50/sample for TOT, and $70/sample for XRF.

Table 23: Data completeness statistics, by PM2.5 species, as a function of study length for the case in

which only data and archived PM2.5 samples from the Bruceton, Lawrenceville, and Schenley Park sites

are used to develop the exposure database.  For each study length, statistics were computed for the

optimal period of data availability determined according to the procedure illustrated in Figure 46.

Sulfate Nitrate EC /OC

Trace/Crustal

Elements

Complete

Speciation

2/26/00-2/24/03

(3 yr)

Days with Data 1087 1036 1059 1067 987

Study Days 1095 1095 1095 1095 1095

% Complete 99% 95% 97% 97% 90%

11/7/99-5/7/03

(3.5 yr)

Days with Data 1258 1206 1209 1229 1127

Study Days 1278 1278 1278 1278 1278

% Complete 98% 94% 95% 96% 88%

8/3/99-8/1/03

(4 yr)

Days with Data 1422 1369 1339 1378 1226

Study Days 1460 1460 1460 1460 1460

% Complete 97% 94% 92% 94% 84%

8/3/99-1/31/04

(4.5 yr)

Days with Data 1605 1552 1392 1561 1279

Study Days 1643 1643 1643 1643 1643

% Complete 98% 94% 85% 95% 78%
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Sulfate Nitrate EC /OC

Trace/Crustal

Elements

Complete

Speciation

8/4/99-8/1/04

(5 yr)

Days with Data 1787 1692 1449 1743 1336

Study Days 1825 1825 1825 1825 1825

% Complete 98% 93% 79% 96% 73%
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Figure 47: Estimated maximum cost for laboratory analysis of archived PM2.5 samples, as a function of

the length of the study and the group of monitoring sites from which samples are being analyzed. 
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Estimated filter analysis costs for this maximum-cost scenario are shown in Figure 47 as a function of the

length of the study and the group of monitoring sites from which archived samples are being analyzed.  It

is important to recognize that these costs only reflect the cost of laboratory analysis, and do not include the

costs associated with collecting and organizing the archived PM2.5 samples or the costs associated with

reducing the laboratory results and integrating them into the exposure database for use in the retrospective

epidemiology study.  The incremental cost associated with analyzing samples from any given site can be

calculated by differencing the appropriate lines in the plot.  As shown in Figure 47, the estimated

maximum sample analysis cost for a 4-year study under the base case scenario, in which only archived

PM2.5 samples from the Bruceton and Lawrenceville sites are analyzed to provide supplemental PM2.5

speciation data, is approximately $315,000, and the estimated maximum sample analysis cost for a 4.5-

year study under this scenario is approximately $355,000.  Inclusion of archived PM2.5 sample analysis

from additional sites substantially increases the cost.  The estimated maximum sample analysis cost for a

4.5-year study in which archived PM2.5 samples from all of the speciation monitoring sites in the

Pittsburgh MSA are analyzed to provide supplemental PM2.5 speciation data is about $755,000, or

$400,000 greater than the cost of a 4.5-year study under the base case scenario.

Actual costs will likely be less than those shown in Figure 47.  The estimates presented for the maximum-

cost scenario assumed that all archived PM2.5 samples will be analyzed for inorganic ions by IC.

However, as discussed in Sections 2.3 and 2.4.2, reliable NO3
- and NH4

+ concentrations may not be able

to be obtained from samples that have been stored at room temperature rather than under refrigeration.  If

it is determined that NO3
- and NH4

+ data cannot be obtained from these samples, then concentrations of

SO4
2-, the only other major inorganic ion of interest, can be reliably estimated from XRF sulfur

determinations, saving the cost of IC analysis.  Moreover, the estimates shown in Figure 47 assumed that

all available filters from the sites under consideration would be analyzed for chemical speciation,

regardless of whether such analysis produced duplicate results for a given site.  While some duplicate

results are desired so that existing speciation data can be used to verify the quality of results obtained from

archived filter analyses, these results must only be obtained to the extent necessary to produce a

statistically valid sample size for the comparison.  Hence, for sites from which both existing PM2.5

speciation data and an archived PM2.5 sample are available on a large number of days, only a subset of the

duplicate archived samples must be analyzed.  Finally, if it is assumed that for the Bruceton and St.

Vincent College sites, which did not sample from midnight to midnight, data from two consecutive days

must be averaged to produce a valid 24-hour midnight-to-midnight concentration estimate, then it follows

that an archived sample from either of these sites would only need to be analyzed if a sample or valid data

point from an adjacent 24-hour period is also available.  Based on these considerations, we developed a

minimum-cost estimate for the laboratory analysis of archived PM2.5 samples using the following

assumptions:

1. For each monitoring site, up to 100 archived samples that were collected during the study period on

days already having preexisting PM2.5 speciation data will be analyzed to produce duplicate results for
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use in establishing the validity of the results obtained from the archived samples (by comparison with

the existing, collocated speciation data).  These duplicate samples will be analyzed to determine as

much chemical speciation information as possible, such that all archived Teflon-filter-based PM2.5

samples will be analyzed for trace and crustal elements by XRF and for inorganic ions by IC, and all

archived quartz-filter-based PM2.5 samples will be analyzed for elemental and organic carbon by TOT

and for inorganic ions by IC, regardless of whether or not these samples were being stored under

refrigeration.  (Analysis of non-refrigerated samples for inorganic ions by IC is necessary to determine

whether reliable nitrate and ammonium data can be obtained from these samples).  Any additional

archived samples that would produce duplicate results in excess of 100 will not be analyzed.

2. With the exception of the duplicate samples identified above, archived samples will only be analyzed

for ions by IC if they have been stored under refrigeration since collection.  This assumption

presupposes that the comparison of duplicate results from archived samples and preexisting data will

indicate that reliable NO3
- and NH4

+ cannot be reliably obtained from non-refrigerated samples, and

that SO4
2- concentrations can in all cases be estimated accurately from XRF sulfur determinations.

3. Regarding the Lawrenceville site, for days on which archived Teflon-filter-based PM2.5 samples are

available from both the ACHD and UORVP monitoring programs (and no preexisting elemental data

are available), only the ACHD sample will be analyzed by XRF.

4. Regarding the Bruceton and St. Vincent College Sites, archived samples will only be analyzed if their

results can be combined with existing data or archived sample results from an adjacent 24-hour period

to produce a valid midnight-to-midnight concentration estimate.

5. As with the maximum-cost estimate presented in Figure 47, we increased the number of samples by

10% prior to costing to account for the cost of analyzing blank samples for QA/QC purposes, and

assumed prices of $30/sample for IC, $50/sample for TOT, and $70/sample for XRF.

Estimated filter analysis costs for this minimum-cost scenario are shown in Figure 48 as a function of the

length of the study and the group of monitoring sites from which archived samples are being analyzed.

Again, these costs only reflect the cost of laboratory analysis, and do not include the costs associated with

collecting and organizing the archived PM2.5 samples or the costs associated with reducing the laboratory

results and integrating them into the exposure database for use in the retrospective epidemiology study.

The cost estimates presented in Figure 48 on the basis of the assumptions outlined above are substantially

less than those presented in Figure 47.  The estimated sample analysis cost for a 4-year study including

archived samples from only the Bruceton and Lawrenceville sites is $225,000 under the minimum-cost

scenario shown in Figure 48, or $90,000 less than the estimated cost of such a study under the maximum-

cost scenario shown in Figure 47.  For a 4-year study in which archived samples from all of the speciation

monitoring sites in the Pittsburgh MSA are utilized, the estimated sample analysis cost of about $490,000

under the minimum-cost scenario is about $175,000 less than the estimated maximum cost shown in
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Figure 47.  The estimates presented in Figures 46 and 47 are intended to represent a realistic range of

laboratory costs for various study designs.  For a given study length and combination of included

monitoring sites, we expect that the actual cost of archived sample analysis will be closer to the minimum

presented in Figure 48 than to the maximum presented in Figure 47, although the exact cost will depend

especially on whether IC analyses of non-refrigerated samples are required (i.e., whether it is determined

that reliable nitrate and ammonium estimates can be obtained from these samples), on the actual number

of blank and duplicate samples analyzed, and on the actual per-sample prices for performing the analyses.

As stated earlier in this subsection, the largest limitation regarding the design of the proposed

retrospective epidemiology study of PM2.5 in the Pittsburgh region is the limited availability of exposure

data, particularly for PM2.5 chemical components.  Selection of a final design for the retrospective

epidemiology study requires a careful consideration of the availability, quality, and completeness of these
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Figure 48: Estimated minimum cost for laboratory analysis of archived PM2.5 samples, as a function of

the length of the study and the group of monitoring sites from which samples are being analyzed. 
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data, the costs associated with obtaining them, and the constraints imposed by statistical power and the

spatial distribution of pollutants throughout the study region.  Based on the analyses presented throughout

this report, we conclude that there are a sufficient quantity and quality of existing data and archived PM2.5

samples available to permit a retrospective epidemiology study of PM2.5 from coal-fired power plants in

the Pittsburgh region, and propose as a reasonable design a four-year (1,460-day) study focusing on the

Pittsburgh MSA between August 3, 1999, and August 1, 2003.  The study would utilize existing PM2.5

speciation data collected by all of the speciation monitoring sites located in the Pittsburgh MSA, as well as

additional PM2.5 speciation data that would be obtained by analyzing archived PM2.5 samples from the

Bruceton, Lawrenceville, Liberty Borough, Florence, and St. Vincent College sites.  (As discussed earlier,

existing PM2.5 speciation data collected by monitoring sites outside of the Pittsburgh MSA could also be

included in geostatistical models to inform the exposure estimates developed for the MSA).  Estimates of

PM2.5 total mass concentrations, co-pollutant concentrations, and meteorological conditions in the

Pittsburgh MSA would be obtained by geostatistically averaging data from the numerous sites identified in

Section 2.2 that collected these data in the greater Pittsburgh region.

Table 24 summarizes the availability of PM2.5 speciation data for the proposed 4-year study.  As with the

statistics presented in Table 22, the numbers shown in Table 24 were tabulated on the premise that nitrate

concentrations will only be able to be determined from archived PM2.5 samples that have been stored

under refrigeration since collection.  Under this assumption, the laboratory cost for archived sample

analysis (excluding the costs of sample retrieval and data reduction) is estimated to be about $430,000 for

our proposed design, per the results presented in Figure 48.

Table 24: Summary of data availability, by PM2.5 species, for a 4-year retrospective epidemiology study

focusing on the Pittsburgh MSA between August 3, 1999, and August 1, 2003, and including chemical

speciation analysis of archived PM2.5 samples that were collected at the Bruceton, Lawrenceville, Liberty

Borough, Florence, and St. Vincent College sites during that period.

Sulfate Nitrate EC/OC

Trace/Crustal

Elements

# of Days with Data from 1 Site 112 445 725 135

# of Days with Data from 2 Sites 111 557 416 190

# of Days with Data from 3 Sites 254 222 46 293

# of Days with Data from 4 Sites 412 36 46 412

# of Days with Data from 5 Sites 276 61 57 207

# of Days with Data from 6 Sites 171 53 54 122

# of Days with Data from 7 Sites 48 36 0 40

# of Days with Data from 8 Sites 46 0 0 14

Total # of Days with Data from Any Site(s) 1430 1410 1344 1413

# of Study Days 1460 1460 1460 1460

Data Completenessa 97.9% 96.6% 92.1% 96.8%
aData Completeness = Total # of Days with Data from Any Site(s) divided by the # of Study Days
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The start date of August 3, 1999, was selected on the basis of the sensitivity analysis presented in Figure

46, which identified this as the optimal start date for a 4- to 4.5-year retrospective study of PM2.5 chemical

components in the Pittsburgh MSA.  The 4-year study length is expected to afford sufficient statistical

power for the retrospective epidemiology study, based on the analyses presented later in this report.

Although a 4.5-year study, if feasible, would provide even greater power, the only fine particulate

elemental and organic carbon data that are available from the Pittsburgh MSA between August 1, 2003

(the end date for a 4-year study beginning on August 3, 1999) and January 1, 2004 (the end date for a 4.5-

year study beginning on August 3, 1999) were collected every third day, and hence are characterized by

numerous, regularly occurring missing values that could be statistically problematic.  This, coupled with

the added cost of a 4.5-year study, resulted in the selection of a 4-year study.

The proposed study design calls for analysis of archived PM2.5 samples from each of the five monitoring

sites located in the Pittsburgh MSA that collected PM2.5 speciation data or archived PM2.5 filters on a daily

basis for at least one year during the four-year study period.  These sites are well situated to represent the

diversity of ambient air pollution in the Pittsburgh MSA, as they include sites located in urban

(Lawrenceville), suburban (Bruceton), and industrialized (Liberty Borough) areas of Allegheny County, as

well as sites located in more remote areas to the west (Florence) and east (St. Vincent College) of

Allegheny County.  The data presented in Table 23 demonstrate that it would be possible to assemble a

four-year exposure database for the Pittsburgh MSA with greater than 90% data completeness for all PM2.5

species of interest if only archived PM2.5 samples from the Bruceton and Lawrenceville monitoring sites

were analyzed.  However, such a strategy, while less costly than the one being proposed, would result in a

large number of days on which data for one or more PM2.5 species were only available from a single site in

the Pittsburgh MSA.  As discussed in Section 2.4, for PM2.5 trace and crustal elements in particular,

concentrations measured at any given site in the Pittsburgh MSA are not necessarily representative of

concentrations throughout the rest of the region.  Hence, the recommendation to analyze archived PM2.5

filters from the Florence, Liberty Borough, and St. Vincent College sites is intended to increase the

number of days for which trace and crustal element data are available from multiple sites so that exposures

to these species can be more reliably estimated.  As shown in Table 25, under the proposed design, PM2.5

elemental data would be available from at least two sites in the Pittsburgh MSA on about 88% of the study

days, and from at least three sites in the Pittsburgh MSA on about 75% of the study days.  If only archived

samples from the Bruceton and Lawrenceville sites were analyzed, just 67% of the study days would

include elemental data from multiple sites, and just 23% would include data from at least three sites.

Analysis of archived filters from the Hazelwood and Greensburg sites would slightly increase the number

of days with elemental data from multiple monitoring sites; however, this increase is not substantial

enough to justify the additional $57,000 or more in laboratory costs associated with performing these

analyses.

The analyses presented in Section 2.4.1.2 indicate that semi-continuous measurements of sulfate and

nitrate that were made at the Bruceton and Schenley Park monitoring sites are likely to introduce
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substantial noise when used interchangeably with integrated measurements of these species, and therefore

should only be used when necessary to provide estimates for days that otherwise would have no available

data.  The statistics presented in Table 24 include these semi-continuous data; however, there are only two

days during the proposed four-year study period on which a semi-continuous measurement is the only

source of nitrate data for the Pittsburgh MSA, and there are no days for which a semi-continuous

measurement is the only source of sulfate data.  Hence, the study could easily be conducted without using

any semi-continuous PM2.5 ion data.  Semi-continuous measurements are the only source of fine

particulate EC and OC data on 539 (or about 37%) of the study days; however, as shown in Section

2.4.1.3, these semi-continuous carbon measurements were generally comparable (after correction for

relative bias) to measurements made by applying thermal optical transmittance to integrated, quartz-filter-

based PM2.5 samples.  Therefore, they are considered appropriate for use in the study.

Table 25: PM2.5 trace and crustal element data availability as a function of the sites from which archived

PM2.5 samples are analyzed for chemical speciation. All percentages are based on a four-year

retrospective epidemiology study focusing on the Pittsburgh MSA between August 3, 1999, and August 1,

2003, and assume that any existing PM2.5 elemental data from the Pittsburgh MSA are included in the

study.

Monitoring Sites Included

in Archived Filter Analysis

Percent of Days with

Elemental Data from at

Least 1 Site in the

Pittsburgh MSA

Percent of Days with

Elemental Data from at

Least 2 Sites in the

Pittsburgh MSA

Percent of Days with

Elemental Data from at

Least 3 Sites in the

Pittsburgh MSA

BRU, LAW 94% 67% 23%

BRU, LAW, FLO 95% 73% 52%

BRU, LAW, FLO, LIB 97% 86% 71%

BRU, LAW, FLO, LIB, STV 97% 88% 75%

BRU, LAW, FLO, LIB, STV,

GRE, HAZ

97% 88% 76%

Because of remaining uncertainties regarding the quality of elemental results that can be obtained by XRF

analysis of archived PM2.5 samples and the feasibility of obtaining ammonium and nitrate data from

archived samples that have not been kept refrigerated, we recommend that work on assembling the

exposure database for the proposed retrospective epidemiology study be carried out in two phases,

separated by a decision point.  Tasks to be performed under the first phase include:

1. Obtaining and organizing all existing PM2.5 speciation data that were collected by monitoring sites

in the 35-county greater Pittsburgh region during the study period.  This task has largely been

completed as part of the current feasibility assessment.

2. Requesting, obtaining, and organizing all archived PM2.5 samples (including blanks and duplicates)

that were collected at the Bruceton, Lawrenceville, Florence, Liberty Borough, and St. Vincent
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College sites between August 3, 1999, and August 1, 2003.  Sampler operating data and QA/QC

data regarding these samples must also be gathered.  For the Florence site in particular, this task

must be completed expeditiously, as some samples are scheduled to be discarded in April 2007.

3. For each site, chemically analyzing up to 100 archived PM2.5 samples that were collected on days

from which collocated PM2.5 speciation data are already available.  Teflon-filter-based samples

will be analyzed for trace and crustal elements by XRF and for inorganic ions by IC, and quartz-

filter-based samples will be analyzed for EC and OC by TOT and for inorganic ions by IC.

4. Applying latent variable modeling and Bland-Altman analyses to develop calibrations relating the

archived sample results to the existing speciation data.

Based on the quality of these calibrations, a decision will be made regarding plans for analysis of the

remaining archived PM2.5 samples.  This decision point provides a means for avoiding unnecessary project

costs by ensuring that only analyses that will contribute valuable data to the study are performed. Tasks to

be performed under the second phase would then include:

1. Chemically analyzing the remaining archived PM2.5 samples according to the plan decided on

above.

2. Reducing and assuring the quality of all data produced by the chemical analysis of archived PM2.5

samples.

3. Obtaining and organizing all existing co-pollutant and meteorological data that were collected by

monitoring sites in the 35-county Pittsburgh region during the study period.

4. Applying a consistent set of QA/QC standards to the data collected by the various monitoring sites

(e.g., per the discussion in Section 2.4.3).

5. Mathematically adjusting data (e.g., using the calibrations developed at the end of Phase 1) to

account for relative biases resulting from discrepancies in measurement techniques, blank

correction practices, archiving procedures, etc.

6. Aggregating data to compute 24-hour, midnight-to-midnight average values for each parameter at

each monitoring site (e.g., for data that were measured with a finer-than-daily time resolution or

for daily data that were not measured from midnight-to-midnight).

7. Assembling the reduced, validated, daily data from all sites into a final comprehensive database for

use in geostatistical and epidemiological modeling.
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3 Health Outcomes Data Assessment

3.1 Introduction

A critical component of any retrospective epidemiological study of PM2.5 and health outcomes is the

identification of readily available and accessible mortality and morbidity databases for the region of

interest. Given the trends in improved treatments for disease, mortality alone is unlikely to be a sensitive

enough indicator to capture all potential effects of daily changes in air pollution on health. Ideally, in

addition to mortality data, daily or even hourly medical information would be available to capture all

health-related outcomes in the population potentially related to variations in PM2.5 concentrations and/or

its components. For the time period of interest, this information would include but not be limited to deaths,

hospital admissions, emergency room visits, physicians’ office visits, prescriptions, and medication use,

symptomatology, and others, preferably all in electronic format.  Although the level of detail required for

perhaps the “ideal” comprehensive retrospective assessment with multiple, novel outcomes of interest

(e.g. limited access to prescriptions, and medication use, symptomatology) might not be available in

retrospective datasets, a number of health outcomes, including mortality, hospitalizations and emergency

department visits (ED), in the Pittsburgh region are captured by several data collection entities. Some of

these entities are unique to this geographic area and will enhance our ability to conduct a retrospective

epidemiological assessment of health effects related to PM2.5 and its component species.

From previous work and preliminary evaluation, several databases are known to be available from 1999

through 2006 and later that might be used to reconstruct retrospectively the health outcomes profiles of

residents in the Pittsburgh region for studies of short term effects of fine particulates and its speciated

components. For mortality, potential resources include, but are not limited to the National Center for

Health Statistics (NCHS), the Pennsylvania Department of Health Bureau of Health Statistics, Allegheny

County Health Department (ACHD), West Virginia Hospital Authority, and the Ohio Department of

Health. For morbidity, hospital admissions might be the most well-defined and accessible estimate of the

health effects potentially related to PM2.5 and its components. These data are systematically collected for

the region and are available retrospectively in administrative datasets via the Pennsylvania Health Care

Cost Containment Council (PHC4), the West Virginia Hospital Authority and the Ohio Department of

Health. Information on daily emergency room visits are available electronically from: the University of

Pittsburgh Medical Center (UPMC) Medical Archival System (MARS), a proprietary software system of

UPMC; the Real-time Outbreak Disease Surveillance (RODS) Laboratory, a University of Pittsburgh real-

time computer-based public health surveillance system; and individual local and regional hospital

databases. 

To investigate long-term morbidity and mortality effects, the study team investigated the feasibility of

entering into an agreement with local Health Plans and Health Maintenance Organizations (HMOs) for

restricted access to de-identified and/or identified health care data of subscribers. Also, data from local
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population-based cohorts assembled in past years for national and regional research studies such as the

Cardiovascular Health Study (CHS), Women’s Health Initiative (WHI), Study of Women Across the

Nation (SWAN), MR. FIT and others were explored as another potential resource for evaluating the health

effects of long-term exposure to fine particulates.  Medicare billing information, Verispan and IMS Health

pharmaceutical use databases, and the UPMC Health Plan Pharmaceutical Database were also assessed as

potential resources for a retrospective analysis, particularly in more susceptible age groups (i.e. Medicare-

65 years and older; pharmaceutical databases-children).

3.2 Study Area of Interest for Health Outcomes Assessment

The study area of ultimate interest is defined by the population at risk for significant exposure to PM 2.5

from regional coal fired power plants, potentially in southwestern PA, eastern Ohio and the northern West

Virginia panhandle. Allegheny County, Pennsylvania is home to the city of Pittsburgh proper, is the most

population dense of all counties in southwestern Pennsylvania and houses the majority of the region’s

hospitals and industrial entities. Given, however, that the true population at risk for the retrospective

assessment was to be determined during this project, we investigated the availability of health outcomes

data for an expanded region of interest in this feasibility analysis. For example, the Pittsburgh

Metropolitan Statistical Area (MSA) (circa 2000) is also a rather intuitive study area of interest and

consists of 7 counties in southwestern Pennsylvania (outlined in  in yellow); however, due to the regional

nature of PM2.5 and the wide distribution of power plants in southwestern Pennsylvania, the “combined

core-based statistical area” might also represent the population at risk and includes, in addition to the
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Pittsburgh MSA counties, Lawrence and Indiana Counties. Greene County is the southwestern most

county in the region and likely to be included within the core statistical area in 2006-2007 (see also Figure

49). The various state and local health agencies have individualized definitions of “southwestern

Pennsylvania.” For example, while the PHC4 recognizes 8 counties in the Southwestern PA region

(Region 1) (Figure 50), the PADOH considers a total of 11 counties as comprising the Southwest PA

district, including Allegheny, Armstrong, Beaver, Butler, Cambria, Fayette, Greene, Indiana, Somerset,

Washington and Westmoreland (Figure 51). Health data are often compiled by these agencies

accordingly. In addition, certain more northern counties in western Pennsylvania, including Lawrence,
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(http://www.phc4.org/dept/dc/state.htm).

Figure 51: Regional Districts of the Pennsylvania Department of Health
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Mercer, Venango, Clarion and Jefferson (Northwest District; Figure 50), might also be significantly

affected by regional pollutants from power plants in the Ohio River Valley. Therefore, for the purpose of

this feasibility analysis, possible sources of health outcomes data were explored in this expanded

“Pittsburgh metropolitan region”, including the 10 counties in the Pittsburgh combined core base

statistical area, 6 counties in Pennsylvania bordering the core base statistical area (Cambria, Somerset,

Jefferson, Clarion, Mercer, Venango) as well as adjacent counties in Ohio and West Virginia. 

3.3 Inventory of Existing Health Outcomes Data

A comprehensive inventory and assessment of available mortality and morbidity datasets for the

Pittsburgh metropolitan region was completed. As noted in the previous progress reports, a checklist was

developed to evaluate variables of interest in existing health outcomes datasets available and accessible for

the Pittsburgh region between 1999 and 2006 (Appendix E).  A summary of the available data sets with

identified strengths and weaknesses, particularly for time series analysis with speciated components, is

presented below. The evaluation of the various health outcomes in cohort studies in relation to long term

effects of air pollution is addressed in a separate section in this final report. A metadata database detailing

available mortality and morbidity for the study area of interest was constructed and its data layout is

included as an appendix (Appendix F).

Given the relative paucity of speciated PM2.5 data, specifically from 1999-2001, for areas other than

Allegheny and possibly Washington and Westmoreland Counties in Pennsylvania, we suggest that a

retrospective study dating back to 1999 would have a more narrow regional focus than a prospective

(longitudinal) study that could capitalize on a growing network of speciation monitors. Although we have

explored multiple health outcomes data in an expanded region, the existence of both adequately monitored

PM2.5 and speciation data and the availability and quality of health outcomes data ultimately determined

the focus of our proposed retrospective analysis as outlined in the Proposed Study section. The general

conclusion is that retrospective mortality and hospitalization data are readily available for the expanded

region of interest from 1999 to the present. Emergency department (ED) data in electronic format is likely

available from local hospitals for Allegheny County residents dating back to 1999 and for Washington and

Westmoreland county residents from 2001 to the present. For the outlying counties, electronic ED data is

available only more recently (2004 to present) if at all from smaller community hospitals. The capture of

health information from unscheduled physician office visits, pharmaceutical databases, and other less

traditional datasets will most likely not be possible for a retrospective assessment but could potentially be

compiled for a prospective study 
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3.4 Inventory and Assessment of Mortality Databases

3.4.1 National Center for Health Statistics (NCHS) Division of Vital Statistics

Mortality data in the United States are relatively well characterized for the 1999-2006 time period of

interest for a retrospective study. The United States (US) Vital Statistics System has been operational in

some form since the 1950s. The National Center for Health Statistics (NCHS) Division of Vital Statistics

(DVS) assumed the responsibility for vital statistics program operations in the 1960s and has continued to

serve as the primary compilation and contact agency to the present. 

Mortality data are provided through contracts between NCHS and vital registration systems operated in

the jurisdictions legally responsible for the registration of vital events. In the US, legal authority resides

individually within the 50 states, 2 cities (Washington DC and New York City) and 5 territories (Puerto

Rico, the Virgin Islands, Guam, American Samoa, and the Commonwealth of the Northern Mariana

Islands.)  NCHS compiles national mortality statistics from death certificates provided by these individual

registrars. If mortality data from multiple states are required for a retrospective assessment, NCHS might

be the repository of choice for all data acquisition. 

To achieve the uniformity required for combining data from all states, cities and territories to provide

national statistics, certain standards for certificates and reports are recommended by the NCHS as guides

for use by individual registration offices. The most current standardized death certificate was revised in

2003. Standardization of mortality data across registrars is critical, particularly if any follow-back

epidemiological study of the area of interest might eventually include parts of Ohio and/or West Virginia

in addition to Pennsylvania. 

Through the National Vital Statistics System, data on vital events are now published in electronic form.

Data from public-use versions of these files are provided on CD-ROM. Confidentiality of medical data is a

key aspect in the release of health outcomes data files, specifically since the passage of the Health

Insurance Portability and Accountability Act of 1996 (HIPAA). In order to prevent disclosure of

individuals and institutions, beginning with the 1989 data year for Births and Deaths Public-Use files,

NCHS has excluded a) geographic identities of counties, cities, and metropolitan areas with less than

100,000 population and b) exact day of birth and death. Fetal Deaths and Linked Birth/Infant Death

Public-Use files exclude identities of counties, cities, and metropolitan areas less than 250,000 population,

as well as exact dates. Public-Use files can be requested by using the standard procedures for requesting

vital statistics Public-Use files found at NCHS Publications and Information Products. Also NCHS Public-

Use Data File Program and NCHS’s Data Release Policy web links provide for more information on

NCHS policy, including data use restrictions. As noted above, date of death, ZIP code or other potential

individual-level identifiers are not included in public use files and require approval for protected access to

these additional elements.
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Customized (i.e., non-public-use) data files are defined as any files not included in the definition of

Public-Use files as stated above. These would include files that identify all counties or smaller cities, or

files that provide exact dates of birth or death, or combinations of these. To gain protected access to a

customized vital statistics data file, researchers must send a letter, email, or fax with a complete

description of the proposed use of the data, including why the data being requested are needed, the exact

data items being requested, how the data will be utilized, who will be utilizing the data, and the time frame

in which it will be needed, to the Director of Vital Statistics for review. If a request is denied, the

requestor will be so notified by official letter. 

If a request is approved, it may be determined, for reasons of confidentiality, that it is not appropriate for

NCHS to physically release a customized data file directly to the requestor. Such requests will be referred

to the NCHS Research Data Center (RDC), which allows for controlled access to the data files without

their release. The RDC has specific procedures that must be followed and data requestors are charged for

the services (http://www.cdc.gov/nchs/r&d/rdc.htm). Fees for remote on-line access are typically between

$250 and $1000 per month depending on the number of records outlined in the request. Following

approval of the request by the Director, Data User Agreements must be completed and signed by data

requestors before customized data files are released or otherwise made available through the RDC. The

Data User Agreement defines the specific requirements and restrictions on the use and disposal of the data

by the requestor.  DVS staff member will follow-up with data requestors, insuring that data user

agreements are completed correctly and properly executed, creating the data files, and monitoring their

disposition.

The United States implemented the latest (10th) revision of the International Classification of Diseases ,

Tenth Revision (ICD-10) starting with mortality data for 1999. However, deaths from 1999-2002 were

coded in certain datasets according to the International Classification of Diseases, Ninth Revision (ICD-9),

most probably due to the lag in ICD-10 usage by individual certifiers and/or registrars.  Because of this

issue, comparability of these datasets with later years and other data sources would need to be assessed.

ICD9/ICD10 comparability ratio tables have been constructed by the Bureau of Health Information,

Department of Healthcare Financing to assist in these analyses (Appendix G).

3.4.2 Pennsylvania Department of Health Bureau of Health Statistics and

Research (other state health departments e.g. West Virginia, Ohio)

The Pennsylvania Department of Health may release confidential data to organizations or individuals only

for specific medical research purposes. Academic researchers and other qualified entities can access

Pennsylvania mortality data directly through the Pennsylvania Department of Health Bureau of Health

Statistics and Research. Complete datasets are currently available from 1999-2005. Preliminary mortality

data is available for 2006. Protected access datasets from the Bureau of Health Statistics and Research

include street address and ZIP code of residence (Zip+ 4), as well as demographic variables such as age,
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race, education, marital status and occupation.

Institutional review board (IRB) approval of a project is mandatory prior to the requesting of data if a

study or project requires the receipt of personal identifiers from Pennsylvania records. The process of

obtaining confidential data is initiated with the submission of a completed “Application for Access to

Protected Data”. Guidelines and procedures for these “follow-back” activities using Pennsylvania records

are covered in detail in the Pennsylvania “User’s Guide for Access to Protected Data”. The application

must be reviewed and approved by the Department prior to release of the information. Applications can be

obtained by writing to the Director, Division of Health Statistics and Research. The application and user’s

guide are available from the PADOH Bureau of Health Statistics and Research (contact: Raymond Powell,

PADOH). Similar procedures are in place in West Virginian and Ohio.

3.4.3 Allegheny County (PA) Health Department (other local health

departments)

The Allegheny County Health Department, as a large, local health department, also maintains a

comprehensive mortality dataset derived from the Pennsylvania Department of Health registrar’s database.

Other county health departments in the Southwestern PA region are less sophisticated in the maintenance

of such databases. 

The electronic database at the Allegheny County level has recorded deaths from the early 1990s. Variables

available include age, gender, street address, ZIP code (5-digit), cause of death, date of death, and others.

Geo-coding to street address and 5-digit (or potentially 9-digit) ZIP code for deaths that occur in the

County is conducted as needed for specific projects. Death certificates are available at both the county and

state levels; the county health department routinely conducts a verification analysis of the electronic

database by comparison with actual death certificates. The error rate is approximately 2%. Allegheny

County officials have de facto access to these documents. These data with identifiers can be accessed

onsite at the ACHD by requesting entities. However, any database constructed for use off-site must have

all individual level identifiers removed. If investigators partner with Allegheny County officials in the

conduct of the retrospective epidemiological assessment, access to mortality data is enhanced.

3.4.4 Strengths and Weaknesses of Mortality as a Health Endpoint for

Retrospective Air Quality Studies

Registration of deaths is mandatory in the United States. Therefore, case ascertainment of mortality as an

endpoint is relatively straightforward and inclusive compared with other health outcomes (e.g.

hospitalizations, ED visits, pharmaceutical usage, etc.) potentially associated with air pollution.

Standardized mortality data are more readily available retrospectively for an expanded area of interest,

such as the Pittsburgh core base statistical area or larger area spanning two or more states. Investigators
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can also select a “control disease” unrelated to air pollution (e.g. deaths from motor vehicle accidents, etc.)

for model testing. Medical certification of the underlying cause of death constitutes a medico-legal opinion

but is by no means absolute. Various errors and oversights may occur during certification due to lack of

understanding as to how to complete the death certificate, including listing of causes in an incorrect order,

listing more than one disease or condition on the same line, omitting the interval between onset and death,

etc. 

As noted previously, however, given the highly developed state of medical treatment for cardiopulmonary

and other disease in the US today, mortality is most likely a relatively insensitive indicator of health

effects related to the impact of short-term rise and fall of air pollutants, even in the most susceptible

populations. These data are more likely of use in investigating, through existing large cohorts, the longer-

term effects of pollutants assembled via HMOs and/ other healthcare providers and large-scale prospective

or historical prospective epidemiological projects in the region.

Adequate power to detect a significant association (if one exists) is critical in the design of

epidemiological studies. Mortality is a relatively rare outcome compared to hospitalizations and ED visits.

Approximately 15,000 total (all-cause) deaths per year were reported in Allegheny County (PA)

(population ~ 1.26 million) from 1999-2004 for a total of 90,664 deaths for the 6-year period (~ 41

deaths/day) (Table 26). In the seven-county Pittsburgh MSA (population ~2.4 million); a total of 171,034

deaths were observed (~ 78 deaths/day); in the 10-county combined core base statistical area (population ~

2.6 million), a total of 186,180 deaths were reported during the 1999-2004 time period (~ 85 deaths/day).

Approximately 40% of deaths in the region were attributable to respiratory (influenza, pneumonia,

emphysema) or cardiovascular causes. In comparison, total hospitalizations for the same time period in

Allegheny County alone were approximately 1.2 million. Approximately 160 daily hospital admissions

might be attributable to cardio-respiratory causes in Allegheny County hospitals. Daily ED visits are a full

two to three fold higher.  

Finally, it is unlikely that all pollution-related deaths are exclusively due to exposure to air pollutants

shortly before death. Time-series models will likely underestimate overall mortality risk by failing to

capture mortality associated with the influence of increased PM2.5 or its components on the development

over time of chronic diseases leading initially to frailty and subsequently death (Kunzli et al., 2001).

Retrospective cohort as opposed to time series studies can capture this aspect of mortality but suffer from

potential exposure misclassification and other biases. Retrospective cohorts are also often difficult to

reconstruct in a comprehensive assessment. 
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Table 26: Total (All-cause) Deaths in Southwestern PA MSA and Combined Core Statistical Area by

County of Residence 1999-2004 (all causes; ICD-10/ICD-9: A00-Z99/000-799, E800-E999).

County Ave. Pop

1999-2004

Resident

Deaths

2004

Resident

Deaths

2003

Resident

Deaths

2002

Resident

Deaths

2001

Resident

Deaths

2000

Resident

Deaths

1999

Resident

Deaths

Total

Pittsburgh MSA

Allegheny 1,260,000 14,507 15,104 15,100 15,478 15,072 15,403 90,664

Armstrong 72,000 835 842 912 864 866 878 5,197

Beaver 179,500 2,075 2,105 2,209 2,147 2,049 2,200 12,785

Butler 176.000 1,867 1,757 1,816 1,714 1,633 1,685 10,472

Fayette 146,000 1,746 1,813 1,809 1,861 1,813 1,869 10,911

Washington 203,000 2,483 2,354 2,449 2,568 2,445 2,443 14,742

Westmoreland 368,000 4,350 4,402 4,529 4,321 4,260 4,401 26,263

Sub Total 2,404,500 27,863 28,377 28,824 28,953 28,138 28,879 171,034

+Combined Core

Greene 40,000 424 482 473 444 447 477 2,747

Indiana 89,000 851 894 913 903 892 922 5,375

Lawrence 94,000 1,173 1,171 1,224 1,167 1,150 1,139 7,024

Grand Total 2,627,500 30,311 30,924 31,434 31,467 30,627 31,417 186,180

3.5 Inventory and Assessment of Morbidity Datasets

3.5.1 Hospital Admissions

Pennsylvania Health Care Cost Containment Council Hospital Discharge Data Sets (1999-2004) 

On June 6, 2005, the PITT-PM health outcomes subgroup interviewed officials from the Pennsylvania

Health Care Cost Containment Council (PHC4) Special Requests Unit concerning statewide hospital

admission/discharge data collected by the agency. The PHC4 (http://www.phc4.org/) is an independent

state agency formed under Pennsylvania statute (Act 89, as amended by Act 14) in order to address rapidly

growing health care costs. Act 89, as amended by Act 14, specifically assigns the Council three primary

responsibilities:

� Collect, analyze and make available to the public data about the cost and quality of health care in

Pennsylvania,

� Study, upon request, the issue of access to care for those Pennsylvanians who are uninsured,

� Review and make recommendations about proposed or existing mandated health insurance benefits

upon request of the legislative or executive branches of the Commonwealth.
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The Council collects over 3.8 million inpatient hospital discharge and ambulatory/outpatient procedure

records each year on individuals of all ages from hospitals and freestanding ambulatory surgery centers in

Pennsylvania. These data, which includes hospital charge and treatment information as well as other

financial data, are collected on a quarterly basis and then manually verified currently by PHC4 staff.

PHC4 edits the data and provides error reports to each data source. The health care facility will make error

corrections and provide PHC4 with corrected information. The data are processed using a series of

validation rules before being finalized and made available for further analysis and public release.

Compliance across health care institutions in Pennsylvania approaches 100% (99% in recently released

2006 reports). The Council also collects data from managed care plans on a voluntary basis. The Council

shares these data with the public through free public reports. These reports are widely distributed, and can

be found on the Council’s Web site, http://www.phc4.org.

The Council also produces standardized and customized reports and data sets through its Special Requests

division for a wide variety of users including hospitals, policy-makers, researchers, physicians, insurers,

and other group purchasers. The standardized data sets do not have individual identifiers (e.g. name, social

secutirty numbers, street address, etc.) and do not contain date of admission or date of discharge in the

individual records. Only year and quarter of admission are presented (see Appendix H for typical PHC4

dataset layout). Zip Codes are available only in the 5-digit rather than 9-digit format, limiting ability to

geocode health effects to a specific location within a certain ZIP code. These standard datasets can be

obtained on a regional basis for ~$625 but are not particularly useful for time series studies of air quality

and health since date of admission is not provided.

Researchers can request customized data sets to include dates of admission and discharge for linkage of

health effects to air pollutant levels on a specific day. ZIP code is provided; however, individual street

addresses for more precise geocoding are not currently acquired during the PHC4 data collection process.

These customized data sets are requested through the Special Requests Unit. The application is available

online at the PHC4 website. A $75.00 non-refundable processing fee is required at the time of submission

of the application. The programmer/ analyst time is billed at $75.00/hour and usual programming costs

range from $350.00 to $450.00 for a custom dataset. Additionally, the PHC4 charges $0.0025 per record

for each individual record included. For example, the total cost for a custom data set with 6 years of

hospital admission data for Allegheny County (1.26 million total admissions for the period) would be

approximately $3,500. Requests for custom datasets with identifiers (e.g. date of admission and /or

discharge) require approval of both the Unit supervisor (s) and the Council Executive Committee. The

Executive Committee meets every two months; therefore turn-around time for requests for customized

data with identifiers can be 3-4 months. Application for protected access to a custom data set by non-

commercial entities is made through the Special Requests Unit and is available at

http://www.phc4.org/services/datarequests/docs/specialreq_otherdatarequest.pdf.
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3.5.2 Ohio Department of Health and West Virginia Healthcare Authority

Hospital Discharge Datasets

Contact was made with the Ohio Department of Health (ODH) and the West Virginia Healthcare

Authority (WVHA) related to the availability of comprehensive hospital admission data for these states

from 1999-2004. Both agencies maintain comprehensive hospital admission databases for the time period

of interest comparable to that archived by the PHC4. For an appropriate research application with

documentation of Institutional Review Board Approval, these data are accessible to study investigators. 

Hospital discharge data collection in Ohio was initiated in 1986 by the Office of Health Policy and

Planning, within the Ohio Department of Health. In 1987, legislation was passed establishing a hospital

data collection system and making submission of hospital discharge data mandatory for all Ohio licensed

hospitals. Data include aggregate hospital-level discharge data for all hospitals, acute and specialty that are

licensed in the state of Ohio. ODH typically requires academic or industry investigators to partner with an

Ohio hospital for data access to individual level data. Ohio University has obtained hospitalization data

previously for its work on air quality modeling in the Upper Ohio River Valley. 

The West Virginia Healthcare Authority (WVHCA) has collected patient level data for all licensed WVA

hospitals since 1985. Specific data variables collected include: hospital, patient age, gender, type of

admission, source of admission, length of stay, discharge status, ZIP code and county of residence, marital

status, procedures performed, DRG code, charges, physician, physician specialty, payer category and up to

five diagnosis codes. The database does not include patient social security numbers as unique patient

identifiers; however, date of birth, gender, and ZIP code are used to match patient files. No data tapes are

publicly available, though aggregate information is available to managed care companies, insurers, and

consultants. Special runs also may be requested by researchers, similarly to PHC4.  All data cells with

fewer than ten cases are suppressed and requests for protected elements are generally limited to specific

variables.

3.5.3 Additional Data Acquisition/Abstraction through Individual Hospitals

Although the PHC4 data are relatively complete, some data elements that would enhance a retrospective

study of PM2.5 and health are not actively collected by the agency. For example, street address is not

provided; geocoding of the home residence of subjects admitted to local hospitals would be limited to 5-

digit ZIP code as the sole address identifier. Individual level data, such as education, occupation, smoking

status, etc. that might be important for control of confounding in long-term studies are not included in the

PHC4 dataset. Certain data elements, including street address, could be acquired from retrospective

electronic or hard copy medical records from individual hospitals, but the process would be long, tedious

and costly. In addition, IRB approvals from separate hospitals or hospital systems would be required.

HIPAA regulations would most probably necessitate the participation of a third party to act as the honest

broker for individually identifiable patient data. Although this method of data gathering is physically
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possible, the study team does not recommend this approach to paper-copy data collection/abstraction for a

retrospective study due to cost and time,

3.5.4 Estimation of “Hospitalization Density” for the Pittsburgh Region using

PHC4 Data

The PHC4 datasets remain the most comprehensive and readily available source of hospital admissions in

Pennsylvania. As such, we employed this dataset to investigate more completely the number of hospital

admissions in a 16-county western Pennsylvania region by patient’s county of residence and hospital of

admission from 1999-2004 to estimate the “hospital admission density” (e.g., potential sample size with

admissions as the health outcome of interest) for the region. These data were assembled from county

profiles of inpatient utilization provided online at http://www.phc4.org/countyprofiles/ county-wide by

PHC4. 

Figure 52 shows the population density (count/sq. mile) in the counties in the Pittsburgh combined core

base statistical area and surrounding counties in Pennsylvania, Ohio and West Virginia. Also shown are

the locations of area hospitals and the respective hospital admissions (counts) for the 1999-2004 period of

interest in relation to the PM2.5 mass and speciation monitoring sites. It is not surprising that the majority
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speciation sites (right) are shown in green.



3.5 Inventory and Assessment of Morbidity Datasets

of hospitals as well as PM2.5 monitoring sites are located within the most heavily populated regional urban

area (Pittsburgh and its major traffic arteries). In addition, the hospitals with the highest number of

admissions are located in the central, urban area of the Pittsburgh MSA. The rural areas (depicted with

yellow to light brown shading) are often served by one or two community hospitals. Most hospitals, even

those in more rural counties, are located within more heavily populated areas.

In Table 27, the PHC4 designated Region 1 is roughly representative of the Pittsburgh MSA including

Greene County. Region 2 includes counties to the north of the Pittsburgh MSA and Region 3 represents

counties to the east. From 1999-2004, a total of 3.06 million hospital admissions were recorded. A total of

78% of the hospital admissions (N = 2.38 million) occurred among residents in Region 1 of the PHC4

reporting areas (Allegheny, Armstrong, Beaver, Butler, Fayette, Green, Washington and Westmoreland

counties). In Allegheny County alone, approximately 1.26 million admissions among county residents

were observed (41% of the 16-county total). 

Table 27: Total hospital admissions in 16 Western Pennsylvania counties 1999-2004.

County Name: Total Hospital

Admissions 2004

Total Hospital

Admissions 1999

Total Hospital

Admissions 1999-

2004

Estimated Yearly

Average by County 

Region 1

Allegheny 208,346 208,331 1,259,637 209,940

Armstrong 10,771 9,726 61,057 10,176

Beaver 27,547 27,305 162,866 27,144

Butler 26,775 22,882 148,145 24,691

Fayette 25,247 26,397 156,018 26,003

Greene 4,923 4,770 29,208 4,868

Washington 35,214 32,770 203,288 33,881

Westmoreland 61,465 59,987 362,373 60,396

Region 2

Clarion 6,092 5,669 36,345 6,058

Jefferson 7,112 7,250 43,854 7,309

Lawrence 19,359 17,787 111,976 18,663

Mercer 20,186 20,107 121,870 20,312

Venango 9,191 9,031 54,926 9,154
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County Name: Total Hospital

Admissions 2004

Total Hospital

Admissions 1999

Total Hospital

Admissions 1999-

2004

Estimated Yearly

Average by County 

Region 3

Cambria 26,700 25,805 159,330 26,555

Indiana 13,106 11,862 74,518 12,420

Somerset 11,709 11,755 71,184 11,864

Total Admissions 513,743 501,434 3,056,595 507,589

Ninety-four (94) hospitals were identified in the previously described 16-county area of western

Pennsylvania (Table 28). A total of 27 institutions reported at least 50,000 admissions over the 6-year

period and accounted for 75% of the total admissions (N = 2.26 million). Typically, air pollution studies

focus on exacerbation of circulatory or respiratory disorders as the outcome of interest. Circulatory or

respiratory admissions (ICD 9 codes 390-519) represented approximately 30% of all admissions. In the 8

county PHC4 Region 1, approximately 709,000 circulatory or respiratory admissions were reported from

1999-2004. In Allegheny County alone, a total of 357,000 circulatory or respiratory-related admissions

were observed. These observations suggest that the density of hospital admissions in the Pittsburgh region

from 1999-2004 will support an epidemiological study with circulatory and/or respiratory disease as the

outcome of interest.

Table 28: Hospital admissions by hospital and patient county of residence in the 16

counties of the Western Pennsylvania region (1999-2004).
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TOTAL

ADMIS-

SIONS 

ALIQUIPPA COMMUNITY

HOSPITAL 890 17445 102 134 18571

ALLE KISKI MEDICAL

CENTER 21363 9513 28156 74 164 59270

ALLEGHENY GENERAL

HOSPITAL 91203 3344 7019 9553 3905 684 8011 7738 1769 1281 3999 3669 728 1103 3910 1946 149862

ALTOONA HOSPITAL 210 9523 52 171 11864 253 102 22175

ARMSTRONG COUNTY

MEMORIAL HOSPITAL 303 27327 3966 1760 1849 197 862 36264

BON SECOURS HOLY

FAMILY REGIONAL

HEALTH CENTER 3457 79 3536

BROOKVILLE HOSPITAL 63 289 3118 9549 54 54 13127
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TOTAL

ADMIS-

SIONS 

BROWNSVILLE GENERAL

HOSPITAL INC 9484 702 2326 84 12596

BUTLER MEMORIAL

HOSPITAL 1257 2390 528 60809 75 322 1401 67 1097 655 381 99 69081

CANONSBURG GENERAL

HOSPITAL 1845 128 187 20550 22710

CHILDREN'S HOME OF

PITTSBURGH 457 58 66 581

CHILDREN'S HOSPITAL

OF PITTSBURGH 32736 1420 2565 3633 2260 425 3848 5972 478 556 1464 1286 520 1265 1084 763 60275

CHILDREN'S INSTITUTE

OF PITTSBURGH 438 52 60 112 662

CITIZEN'S HOSPITAL 1492 763 103 6331 8689

CLARION HOSPITAL 64 873 120 17582 1845 1225 86 21795

CLARION PSYCHIATRIC

CENTER 59 355 530 113 1335 380 105 177 936 478 4468

CLEARFIELD HOSPITAL 67 67

CONEMAUGH MEMORIAL

MEDICAL CENTER 151 108 2233 64 77501 2469 18347 100873

CORRY MEMORIAL

HOSPITAL 66 66

DUBOIS REGIONAL

CENTER 53 641 14237 52 366 15349

ELLWOOD CITY

HOSPITAL 59 2794 1960 12365 17178

ELK REGIONAL

HOSPITAL 167 167

FORBES REGIONAL

HOSPITAL 58721 578 139 270 343 200 25245 74 617 56 86243

FRICK HOSPITAL 95 13030 153 19767 73 33118

GEISENGER MEDICAL

DANVILLE 190 103 293

GREENE COUNTY

MEMORIAL HOSPITAL 334 11781 348 12463

HAMOT MEDICAL

CENTER 140 53 246 120 558 848 1965

HEALTH SOUTH REHAB

HOSPITAL ALTOONA 1192 59 1251

HEALTH SOUTH REHAB

HOSPITAL ERIE 105 78 183

HEALTH SOUTH REHAB

HOSPITAL HAMARVILLE 6577 1072 210 1559 182 271 2345 108 73 228 127 56 51 223 13082

HEALTH SOUTH REHAB

HOSPITAL PITTSBURGH 5264 169 59 1950 111 7553

HEALTH SOUTH REHAB

HOSPITAL SEWICKLEY 998 1922 83 157 153 3313

HIGHLANDS HOSPITAL 14451 80 88 832 74 15525

PITT-PM 182



3.5 Inventory and Assessment of Morbidity Datasets

NAME

A
ll

eg
h

en
y
 

A
rm

st
ro

n
g

B
ea

v
er

 

B
u

tl
er

F
a
y
et

te

G
re

en

W
a
sh

in
g
to

n
 

W
es

tm
o
re

la
n

d

C
la

ri
o
n

J
ef

fe
rs

o
n

L
a
w

re
n

ce

M
er

ce
r

V
en

a
n

g
o

C
a
m

b
ri

a

In
d

ia
n

a

S
o
m

er
se

t

TOTAL

ADMIS-

SIONS 

INDIANA REGIONAL

MEDICAL CENTER 2080 733 90 343 1598 39413 44257

JAMESON MEMORIAL

HOSPITAL 69 476 954 55867 718 58084

JEFFERSON REGIONAL

MEDICAL CENTER 78907 53 79 5077 177 7725 2979 94997

KINDRED HOSPITAL OF

HERITAGE VALLEY 206 206

KINDRED HOSPITAL OF

PITTSBURGH 882 208 161 1251

LAKEWOOD

PSYCHIATRIC HOSPITAL 72 73 145

LATROBE AREA

HOSPITAL 270 187 969 89 56385 116 10345 213 68574

LIFECARE HOSPITALS OF

PITTSBURGH 5091 63 174 88 55 661 56 6188

MAGEE WOMENS HOSP

OF THE UPMC HEALTH

SYS 86205 865 1995 6639 2222 274 5094 8058 213 189 777 662 258 448 430 257 114586

MEADOWS PSYCHIATRIC

CENTER 350 87 437

MEADVILLE MEDICAL

CENTER 195 92 1144 1153 2584

MEDICAL CENTER

BEAVER PA 2109 83191 698 186 4413 64 90661

MERCY HOSPITAL OF

PITTSBURGH 94521 425 1540 2256 4756 543 5977 3974 171 181 1328 320 115 277 637 223 117244

MERCY JEANNETTE

HOSPITAL 1210 795 122 33610 246 35983

MERCY PROVIDENCE

(NORTH SHORE) 17024 155 67 354 113 17713

MEYERSDALE

COMMUNITY HOSPITAL 2777 2777

MILTON HERSHEY

MEDICAL CENTER 62 111 173

MINER'S HOSPITAL OF

NORTHERN CAMBRIA 6606 1000 7606

MONONGAHELA VALLEY

HOSPITAL 1548 15607 668 38580 10899 67302

MONSOUR MEDICAL

CENTER 736 53 789 64 226 9051 108 178 104 11309

MOUNT NITTANY

MEDICAL CENTER 112 112

NASON HOSPITAL 231 231

NORTHWEST MEDICAL

CENTER UPMC 62 281 811 3154 115 52 779 35441 40695

OHIO VALLEY GENERAL

HOSPITAL 24401 615 144 76 1218 96 26550
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TOTAL

ADMIS-

SIONS 

PUNXSUTAWNEY AREA

HOSPITAL 150 170 9135 2524 11979

SELECT SPECIALTY

HOSPITAL GREENSBURG 154 872 1026

SELECT SPECIALTY

HOSPITAL JOHNSTOWN 1324 62 490 1876

SELECT SPECIALTY

HOSPITAL PITTSBURGH 1652 71 59 66 58 1906

SEMPER CARE HOSPITAL

UPMC 53 53

SEWICKLEY VALLEY

HOSPITAL 31046 26750 1138 52 852 146 363 124 60471

SHARON REGIONAL

HEALTH SYSTEM 90 178 341 2936 49717 110 53372

SOMERSET COMMUNITY

HOSPITAL 92 264 236 163 26226 26981

SOUTHWOOD

PSYCHIATRIC HOSPITAL 1934 690 159 609 366 1420 184 63 5425

ST CLAIR MEMORIAL

HOSPITAL 76340 185 167 288 218 12004 238 89440

ST FRANCIS HOSPITAL OF

NEW CASTLE 92 152 14691 145 15080

ST FRANCIS MEDICAL

CENTER 43323 478 1137 2228 580 107 882 3056 345 236 1123 81 111 134 69 53890

ST. FRANCIS CENTRAL

HOSPITAL 4064 149 331 135 244 96 341 70 5430

ST. FRANCIS HOSPITAL

CRANBERRY 616 259 1545 2420

ST. VINCENT HEALTH

CENTER 92 93 302 109 1122 3091 4809

SUBURBAN GENERAL

HOSPITAL 22787 228 359 56 23430

TITUSVILLE AREA

HOSPITAL 75 4219 4294

TYRONE HOSPITAL 83 83

UNIONTOWN HOSPITAL 102 57498 1777 645 373 244 60639

UNITED COMMUNITY

HOSPITAL 62 109 5306 164 976 11433 757 18807

UPMC BEDFORD 84 84

UPMC BRADDOCK 36643 66 313 58 192 181 937 108 38498

UPMC HORIZON 153 59 556 117 63 2477 41286 624 45335

UPMC LEE REGIONAL 51 3340 41092 1829 6619 52931

UPMC MCKEESPORT

HOSPITAL 53178 123 261 2693 56255

UPMC PASSAVANT 42999 79 1435 15384 57 134 275 420 130 60913

UPMC PASSAVANT

CRANBERRY 166 138 861 1165
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TOTAL

ADMIS-

SIONS 

UPMC PRESBYTERIAN 115985 3019 5223 5928 8453 1039 8295 18433 1512 1976 3730 5582 2852 3696 3413 1796 190932

UPMC REHABILITATION

HOSPITAL 8385 51 174 154 290 325 617 54 59 114 130 78 70 90 10591

UPMC SHADYSIDE 68906 982 821 1369 1965 300 2132 6811 249 911 572 483 258 601 705 313 87378

UPMC SOUTH SIDE 31856 108 105 102 279 258 32708

UPMC ST MARGARET 52093 1085 303 1876 279 451 6665 116 142 259 104 82 156 92 63703

WARREN GENERAL

HOSPITAL 53 53

WASHINGTON HOSPITAL 1674 99 58 1900 9012 75260 292 88295

WESTERN

PENNSYLVANIA

HOSPITAL 93647 2054 1639 4354 2033 227 1992 9039 284 676 781 366 138 606 491 461 118788

WESTMORELAND

REGIONAL HOSPITAL 1031 76 5085 237 75446 59 801 161 82896

WINDBER HOSPITAL 52 3554 8612 12218

Facilities with < 50 admissions 1590 702 791 689 569 512 588 1015 559 755 875 751 659 1061 908 779 12803

Total Admissions by County

1999-2004 (Column Total) 1228451 60782 161892 147166 155460 29143 202470 360769 36268 43854 111703 121650 54750 159155 74368 71092 3018973

Note #1: Speciality Hospitals with less than 50 admission per year and small rehab hospitals are not presented separately

Note #2: Circulatory plus respiratory admissions (ICD9 390-519) accounted for approximately 30% of all admissions

Note #3: A total of 78% of the hospital admissions (N= 2,346,133) in the 16 counties from 1999-2004 occurred in PHC4 Region I (8 counties) 

Note #4: A total of 27 facilities reported admissions of at least 50,000 over the the 6 year period from 1999-2004 accounting for 2,256,955 total admissions (75%)

Note #5: A total of 65%% of the hospital admissions (N = 1.95 million) in the 16 county area occur in 4 counties (Allegheny, Beaver, Washington, Westmoreland)

3.5.5 Utilization of the PHC4 Hospitalization Data in Retrospective Studies

PITT-PM investigators consider the PHC4 data source a key low-cost, relatively comprehensive resource

for investigating retrospectively the association between air quality and health. As a health outcome,

hospital admissions are more sensitive to daily changes in air pollution than mortality. Typically, air

pollution studies focus on exacerbation of circulatory or respiratory disorders as the outcome of interest.

As such, in November 2005 we obtained as test data the Pennsylvania Health Care Cost Containment

hospital admission files for l999 through 2004 for individuals residing in Allegheny County with a

primary hospital discharge diagnosis of all circulatory (ICD-9 codes 390-459) or respiratory (ICD-9 codes

460-519) conditions. In addition, hospital admission data were obtained for two potential “control”

conditions less likely to be related to daily air quality, namely hospitalizations for fractures (ICD-9 800-

829) and hospitalization with E-codes denoting motor vehicle accidents (E810-819). A series of

descriptive analyses were conducted and tables were generated to consider both the quantity of

cardiopulmonary admission and control disease data available by age and gender as well as the

distribution by time (month, year, day of week) and specific diagnosis. These analyses are described in the

following tables.
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3.6 Analysis of the PHC4 Allegheny County Cardiopulmonary Hospital

Admissions Dataset (1999-2004)

A total of 346,424 admissions among Allegheny County residents for the period 1999 through 2004 with a

primary discharge diagnosis of circulatory or respiratory disease were observed.  Circulatory or

respiratory admissions represented approximately 28% of all hospital admissions. 

3.6.1 Circulatory and Respiratory Hospital Admissions by Year and Month

Tables 29 and 30 show the distribution of hospital admissions for discharge diagnoses of respiratory

system disease (ICD 460 to 519) and for circulatory system disease (ICD 390-459) by year and month.

From l999 to 2004, a total of 113,553 hospital admissions for respiratory system disease occurred among

Allegheny County residents of all ages (Table 29).  It can be readily observed that a higher proportion of

respiratory system admissions occur during December, January, February and March of each year,

reflecting a well-documented seasonal trend. During the l999 to 2004 time period, there were a total of

232,871 admissions for circulatory system disease (Table 30).  A seasonal pattern was not observed for

circulatory system diseases.  For both respiratory and circulatory diseases, a decreased number of

admissions was observed for December 2004, most probably related to under-reporting of the last period

for which data were requested.
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Table 29: Hospital admissions for respiratory system diseases by year and month of admission to Allegheny County residents, 1999-

2004. First admissions and readmissions with primary discharge diagnosis ICD9 460-519.

 1999-2004 1999 2000 2001 2002 2003 2004

 No. % No. % No. % No. % No. % No. % No. %

January 12505 11.0 2268 11.1 2619 13.7 2031 10.7 2008 10.9 1581 8.3 1998 11.3

February 11835 10.4 2757 13.5 1694 8.9 1987 10.5 2158 11.8 1604 8.4 1635 9.2

March 11516 10.1 2401 11.8 1698 8.9 1892 10.0 1974 10.8 1820 9.6 1731 9.8

April 9447 8.3 1610 7.9 1554 8.1 1652 8.7 1610 8.8 1519 8.0 1502 8.5

May 8539 7.5 1407 6.9 1446 7.6 1568 8.3 1313 7.2 1492 7.9 1313 7.4

June 8042 7.1 1242 6.1 1399 7.3 1421 7.5 1198 6.5 1472 7.8 1310 7.4

July 7156 6.3 1068 5.2 1235 6.5 1234 6.5 1153 6.3 1192 6.3 1274 7.2

August 7191 6.3 1118 5.5 1228 6.4 1202 6.3 1209 6.6 1204 6.3 1230 7.0

September 8281 7.3 1379 6.8 1565 8.2 1316 6.9 1284 7.0 1402 7.4 1335 7.5

October 9072 8.0 1492 7.3 1521 8.0 1571 8.3 1450 7.9 1508 7.9 1530 8.7

November 8983 7.9 1441 7.1 1504 7.9 1547 8.1 1476 8.0 1533 8.1 1482 8.4

December 10986 9.7 2215 10.9 1664 8.7 1573 8.3 1522 8.3 2665 14.0 1347 7.6

All months 113553 100.0 20398 100.0 19127 100.0 18994 100.0 18355 100.0 18992 100.0 17687 100.0
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Table 30: Hospital admissions for circulatory system diseases by year and month of admission. First admissions and

readmissions with primary discharge diagnosis ICD9 390-459. Data Source:  Pennsylvania Health Care Cost Containment

Council.

1999-2004 1999 2000 2001 2002 2003 2004

No. % No. % No. % No. % No. % No. % No. %

January 20574 8.8 3452 8.7 3483 8.7 3795 9.4 3390 8.7 3318 8.9 3136 8.6

February 18936 8.1 3262 8.2 3370 8.4 3217 8.0 3111 8.0 2872 7.7 3104 8.5

March 20952 9.0 3753 9.4 3499 8.7 3651 9.1 3404 8.8 3241 8.7 3404 9.4

April 19836 8.5 3477 8.7 3319 8.2 3328 8.3 3470 8.9 3156 8.4 3086 8.5

May 19861 8.5 3303 8.3 3535 8.8 3467 8.6 3319 8.5 3284 8.8 2953 8.1

June 18969 8.1 3348 8.4 3209 8.0 3265 8.1 3154 8.1 3024 8.1 2969 8.2

July 19033 8.2 3226 8.1 3240 8.0 3184 7.9 3264 8.4 3115 8.3 3004 8.3

August 19057 8.2 3086 7.8 3316 8.2 3377 8.4 3208 8.2 2971 7.9 3099 8.5

September 18500 7.9 3066 7.7 3092 7.7 3135 7.8 3038 7.8 3105 8.3 3064 8.4

October 19897 8.5 3330 8.4 3478 8.6 3346 8.3 3316 8.5 3294 8.8 3133 8.6

November 18896 8.1 3187 8.0 3416 8.5 3294 8.2 3115 8.0 2948 7.9 2936 8.1

December 18360 7.9 3263 8.2 3298 8.2 3175 7.9 3099 8.0 3077 8.2 2448 6.7

All months 232871 100.0 39753 100.0 40255 100.0 40234 100.0 38888 100.0 37405 100.0 36336 100.0
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3.6.2 Average Daily Totals of Circulatory and Respiratory Hospital

Admissions for Allegheny County

In Tables 31 and 32, the daily totals are given by specific disease classification for circulatory and

respiratory hospital admissions for Allegheny County from 1999-2004. Average daily admissions for all

circulatory or respiratory diseases respectively were 53.8 (range 23-87) and 51.8 (range 20-167) per day.

On average, the highest daily admissions for circulatory diseases were attributed to “other heart disease”

(21.7/day), ischemic heart disease (13.3/day), and cerebrovascular disease (10.0/dy); for respiratory

causes, the highest daily admissions were for pneumonia (17.6/day), chronic bronchitis (11.1/day), “other

respiratory diseases” (7.5/day) and asthma (6.5/day).

Table 31: Daily hospital admissions for circulatory diseases (ICD 390-459) Allegheny County, 1999-

2004*: descriptive statistics.

ICD Mean Std. Deviation Minimum Maximum

Hypertensive Disease 401-405 2.4 1.6 0 10

Ischemic Heart Disease 410-414 13.3 3.9 3 29

Other Heart Disease 420-429 21.7 5.7 3 43

Cerebrovascular Disease 430-438 10.0 3.3 1 24

Atherosclerosis 440 0.4 0.6 0 4

Aortic Aneurysm 441 0.3 0.6 0 4

Other Cardiovascular various 5.7 2.7 0 17

Total 390-459 53.8 9.7 23 87

*Data Source: Pennsylvania Health Care Containment Council

Table 32: Daily hospital admissions for respiratory diseases (ICD 460-519) Allegheny County, 1999-

2004: descriptive statistics. Data Source: Pennsylvania Health Care Containment Council.

ICD Mean Std. Deviation Minimum Maximum

Acute Bronchitis 466 2.0 2.4 0 20

Other Acute Respiratory 460-465 0.8 1.0 0 6

Other Upper Respiratory 470-478 0.9 1.0 0 6

Pneumonia 480-486 17.6 6.9 4 65

Influenza 487 0.2 0.8 0 10

Chronic Bronchitis 490-491 11.1 4.6 1 41

Emphysema 492 0.3 0.5 0 3

Asthma 493 6.5 3.4 0 23

Other COPD 494-496 0.6 0.8 0 6

Lung Disease-external agents 500-508 4.4 2.2 0 14

Other Respiratory 510-519 7.4 3.2 0 22

Total 460-519 51.8 16.5 20 167
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3.6.3 Average Annual Circulatory and Respiratory Admissions/Admission

Rates

Tables 33 and 34 show the average annual number of hospital admissions and admission rates for

respiratory and circulatory system diseases by age and gender.  Admission rates were calculated based on

the age group-specific population numbers for Allegheny County from the 2000 census.

Table 33: Hospital admissions for respiratory system diseases for Allegheny County residents. 1999-2004

average annual number of admissions and admission rate.* First admissions and readmissions with

primary discharge diagnosis ICD9 460-519.

Total Male Female

Age Avg. Ann. # Rate* Avg. Ann. # Rate Avg. Ann. # Rate

<5 1170 164.5 717 197.1 453 130.5

5-24 1020 31.9 575 35.3 445 28.4

25-44 1431 39.4 574 32.3 857 46.1

45-64 3578 119.5 1529 108.1 2049 129.8

65-84 8927 445.7 3921 481.2 5006 421.4

85+ 2800 995.0 984 1275.9 1817 888.9

Total 18926 147.7 8298 136.7 10627 157.5

*per 10,000 population 2000 census

Admission rates for respiratory diseases were 164.5/10,000 for children under 5 years, decrease through

age 64 years, and increase to 445.7/10,000 in the 65-84 age group, and 995.0/10,000 in the 85+ group

(Table 33).  Admission rates for respiratory disease appear to be greater among males until age 25 when

the rate among women increases.  Starting at age 65 the male rate again is greater than the female rate.

The influence of cigarette smoking in the various cohorts and occupational status may influence these sex

ratios.  Admission rates for circulatory system diseases (Table 34) are very low for children and young

adults under age 24 (~5/10,000) and increase dramatically with age, the highest rates in the elderly with

1126.1/10,000 in the 65-84 year age group and 2128.7/10,000 in the 85+ group.  Men have consistently

higher admission rates for circulatory system diseases than females in all age categories.

Table 34: Hospital admissions for circulatory diseases for Allegheny County residents. Average annual

number of admissions and admission rate*. First admissions and readmissions with primary discharge

diagnosis ICD9 390-459. Data Source:  Pennsylvania Health Care Cost Containment Council.

Total Male Female

Age Avg. Ann. # Rate* Avg. Ann. # Rate Avg. Ann # Rate

<5 35 4.9 21 5.6 14 4.1

5-24 149 4.7 79 4.8 71 4.5

25-44 1605 44.2 953 53.7 651 35.0

45-64 8480 283.3 5095 360.4 3385 214.3
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Total Male Female

Age Avg. Ann. # Rate* Avg. Ann. # Rate Avg. Ann # Rate

65-84 22552 1126.1 10716 1315.0 11836 996.4

85+ 5991 2128.7 1843 2391.2 4148 2029.6

Total 38811 302.8 18706 308.2 20105 298.0

*per 10,000 population 2000 census

3.6.4 Respiratory Disease Subgroups by Age

Table 35 presents the distribution of hospital admissions for respiratory diseases by subcategory and age

group for Allegheny County residents for the period l999 through 2004.  Disease rubrics consisting of

pneumonia (480-486), chronic bronchitis (490-491) and asthma (493) had the greatest number of

admissions. The 65-84 year age group represented 48% of pneumonia hospitalizations and 64% of

admissions for chronic bronchitis. Children under the age of five years accounted for 13% of all asthma

related hospitalizations. Table 36 shows the average annual age specific admission/re-admission rates (per

10,000 population based on the 2000 census for Allegheny County) by category of respiratory disease

(primary discharge diagnosis).  For children under the age of five, asthma and acute bronchitis had the

highest rates of hospital admission followed by pneumonia.  For the age group 5 to 24, asthma remained

the leading disease condition for admission.  Likewise, during the adult years of 25 through 64, asthma,

pneumonia and chronic bronchitis had the highest rates of primary disease admission for this time period.

In the 85 and over age category, pneumonia had the highest rate of respiratory disease hospital admission

(462.6 per 10,000 population.)

Table 35: Hospital admissions for respiratory system diseases by disease category and age for Allegheny

County residents, 1999-2004. Total number of admissions - 6 years. (Note: First admissions and

readmissions with primary discharge diagnosis ICD9 460-519.)

Age Group

Disease Subgroup <5 5-24 25-44 45-64 65-84 85+ Total

Acute bronchitis/bronchiolitis (466) 1959 62 306 481 1005 479 4292

Other acute respiratory (460-465) 604 362 301 233 249 57 1806

Other upper respiratory (470-478) 361 657 391 281 240 31 1961

Pneumonia (480-486) 1764 1419 2501 6364 18730 7812 38590

Influenza 487 54 40 62 87 175 73 491

Bronchitis, non acute (490-491) 10 39 540 5511 15607 2547 24254

Emphysema (492) 0 8 28 178 377 46 637

Asthma (493) 1903 2835 2779 3454 2764 562 14297

Other COPD (494-496) 0 4 23 218 830 155 1230

Lung disease/other respiratory 362 693 1652 4663 13586 5039 25995

All respiratory 7017 6119 8583 21470 53563 16801 113553
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Table 36: Hospital admissions for respiratory system diseases by disease category and age to Allegheny

County residents, 1999-2004. Average annual admission rate (per 10,000 population). First admissions

and readmissions with primary discharge diagnosis ICD9 460-519.

Age Group

Disease Subgroup <5 5-24 25-44 45-64 65-84 85+

Acute bronchitis/bronchiolitis (466) 45.9 0.3 1.4 2.7 8.4 28.4

Other acute respiratory (460-465) 14.2 1.9 1.4 1.3 2.1 3.4

Other upper respiratory (470-478) 8.5 3.4 1.8 1.6 2.0 1.8

Pneumonia (480-486) 41.4 7.4 11.5 35.4 155.9 462.6

Influenza 487 1.3 0.2 0.3 0.5 1.5 4.3

Bronchitis, non-acute (490-491) 0.2 0.2 2.5 30.7 129.9 150.8

Emphysema (492) 0.0 0.0 0.1 1.0 3.1 2.7

Asthma (493) 44.6 14.8 12.8 19.2 23.0 33.3

Other COPD (494-496) 0.0 0.0 0.1 1.2 6.9 9.2

Lung disease/other respiratory 8.5 3.6 7.6 26.0 113.1 298.4

All respiratory 164.5 31.9 39.4 119.5 445.7 995.0

Data Source:  Pennsylvania Health Care Cost Containment Council

3.6.5 Circulatory Disease Subgroups by Age

Table 37 presents first admissions and readmissions with primary discharge diagnosis for diseases of the

circulatory system (ICD9 390 - 459) among Allegheny County residents by age.  A total of 232,871

admissions/readmissions occurred during this six year period.  The most common discharge diagnoses

were 1) other heart disease (35%), principally heart failure and cardiac dysrhythmias; 2) ischemic heart

disease (29%), nearly all of which were acute myocardial infarction; and 3) cerebrovascular disease

(17%).  Nearly all (95.4%) of these admissions occurred among those over the age of 45 with 73.5%

among those aged 65 and over. Table 38 presents the average annual first admissions and readmission

rates for circulatory conditions by age for the period of l999 through 2004 for Allegheny County.  Not

unexpectedly, although the numbers of admissions are greatest in the 65-84 age group, the rates (with a

denominator attached) of circulatory disease admission are greatest in the 85 and older age group.

Table 37: Hospital admissions for circulatory system diseases by disease category and age to Allegheny

County residents, 1999-2004. Total number of admissions - 6 years. First admissions and readmissions

with primary discharge diagnosis ICD9 390-459.

Age Group

Disease Subgroup <5 5-24 25-44 45-64 65-84 85+ Total

Hypertensive disease (401-405) 13 73 1043 2346 4299 1282 9056

Ischemic heart disease (410-414) 0 24 2335 20163 38656 6818 67996

Other heart disease (420-429) 84 326 2858 13374 48622 15976 81240

Cerebrovascular disease (430-438) 15 102 1093 7241 24151 6951 39553

Atherosclerosis (440) 1 3 73 1168 3432 642 5319
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Age Group

Disease Subgroup <5 5-24 25-44 45-64 65-84 85+ Total

Aortic aneurysm (441) 0 5 31 467 2256 279 3038

All other circulatory 96 363 2195 6120 13897 3998 26669

All Circulatory 209 896 9628 50879 135313 35946 232871

Table 38: Hospital admissions for circulatory system diseases by disease category and age to Allegheny

county residents, 1999-2004. Average annual admission rate per 10,000 population. First admissions and

readmissions with primary discharge diagnosis ICD9 390 - 459.

Age Group

Disease Subgroup <5 5-24 25-44 45-64 65-84 85+ Total

Hypertensive disease (401-405) 0.3 0.4 4.8 13.1 35.8 75.9 11.8

Ischemic heart disease (410-414) 0.0 0.1 10.7 112.3 321.7 403.8 88.4

Other heart disease (420-429) 2.0 1.7 13.1 74.5 404.6 946.1 105.6

Cerebrovascular disease (430-438) 0.4 0.5 5.0 40.3 201.0 411.6 51.4

Atherosclerosis (440) 0.0 0.0 0.3 6.5 28.6 38.0 6.9

Aortic aneurysm (441) 0.0 0.0 0.1 2.6 18.8 16.5 4.0

All other circulatory 2.3 1.9 10.1 34.1 115.7 236.8 34.7

All Circulatory 4.9 4.7 44.2 283.3 1126.1 2128.8 302.8

Data Source:  Pennsylvania Health Care Cost Containment Council

3.6.6 Day of the Week Effects and Source of Admission

We further examined day of the week effects in hospital admissions in relation to admission source (e.g,,

emergent vs. non-emergent) for Allegheny County residents with a primary discharge diagnosis of either

circulatory disease (ICD-9 390-459) or respiratory disease (ICD-9 460-519) for the time period July 2001-

June 2002, a period for which the most complete data for air pollutants is available.  During this period

there were 39,359 hospital admissions for cardiovascular disease and 18,704 for respiratory disease

(Table 39). 

Table 39: Day-to-day variation in hospital admissions for circulatory system and respiratory disease

among Allegheny County residents for July 2001-June 2002.

Circulatory Respiratory

All Admissions Admissions from ER All Admissions Admissions from ER

Sunday 3686  ( 9.4%) 2743  (13.2%) 2279  (12.2%) 1792 (13.9%)

Monday 6724  (17.1%) 3176  (15.3%) 3044  (16.3%) 2033 (15.8%)

Tuesday 6701  (17.0%) 3144  (15.1%) 2863  (15.3%) 1863 (14.4%)

Wednesday 6382  (16.2%) 3042  (14.6%) 2735  (14.6%) 1805 (14.0%)

Thursday 6037  (15.3%) 2909  (14.0%) 2850  (15.2%) 1903 (14.8%)

Friday 6002  (15.2%) 3035  (14.6%) 2728  (14.6%) 1802 (14.0%)
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Circulatory Respiratory

All Admissions Admissions from ER All Admissions Admissions from ER

Saturday 3827  (  9.7%) 2768  (13.3%) 2205  (11.8%) 1696 (13.2%)

  TOTAL 39359 (100.0%) 20817 (100.0%) 18704 (100.0%) 12894 (100.0%)

A day of the week effect was apparent, with a higher number of admissions on weekdays, especially for

circulatory diseases, suggesting that at least some of these admissions might be procedure driven and not

necessarily mediated by the events of the day. Since a number of these admissions could be previously

scheduled, we chose to limit this further analyses to those admitted from the Emergency Department.

Shown in Figure 53 is a graph of circulatory and respiratory hospital admissions admitted from the ED by

day for the year July 1, 2001-June 30, 2002.   During this period, the mean daily number of admissions

from the ED for cardiovascular diseases was 57 with a minimum of 35 and a maximum of 84.   For

respiratory diseases, the mean number of daily admissions was 35 with a minimum of 13 and a maximum

of 70.  A clear seasonal pattern with a higher number of admissions from January through March was

evident for respiratory disease and suggested but much less prominent for circulatory disease. These

exploratory analyses demonstrate that daily variability in hospital admissions for both circulatory and

respiratory diseases is evident in the Pittsburgh region.
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Figure 53: Hospital admissions from the emergency department for circulatory and respiratory disease

among Allegheny County residents (July 2001-June 2002). Data source: Pennsylvania Cost Care

Containment Council.
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3.6.7 Correlation of Daily Hospital Admissions for Circulatory and

Respiratory from the Emergency Department across Allegheny County

Hospitals

To determine if the “ups-and-downs” of daily admissions from the ED for respiratory and circulatory

diseases might track across all county hospitals, we conducted a correlation analysis using the Pearson

correlation coefficient to assess the strength of the association. 

In Table 40 the correlation of daily respiratory hospital admissions across 11 of the largest area hospitals

is presented. The correlation coefficients ranged from -0.035 for UPMC Presby/Shadyside and Children’s

Hospital to 0.280 for UPMC Presby/Shadyside and Jefferson Hospitals. Most of the coefficients were in

the 0.100-0.130 range and were statistically significant, suggesting some tracking of daily respiratory

admissions from EDs across area hospitals and a possible common source exposure (e.g. meteorological

influences, particulates, other).

Table 40: Correlation matrix of daily hospital admissions from the ED for respiratory diseases (1999-

2004).

Hospital
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Forbes .135** .128** .087** .098** .101** .135** .129** .109** .131** .119**

Children’s 1 .041 .070** .106** .092** .151** -.035 .195** .084** .192**

Jefferson 1 .162** .120** .151** .118** .280** .084** .146** .222**

St. Margaret 1 .134** .095** .126** .173** .099** .102** .151**

UPMC

Braddock

1 .065** .161** .145** .120** .081** .154**

UPMC

Passavant

1 .132** .206** .083** .140** .107**

UPMC

McKeesport

1 .078** .146** .072** .173**

UPMC

Presby/Shady

1 .027 .223** .114**

AGH 1 .079** .124**

St. Clair 1 .115**

** Correlation is significant at the 0.01 level

Conversely, as seen in Table 41, daily circulatory admissions from the ED are much less correlated than

respiratory admissions, with coefficients typically in the range of .03-.100 with fewer statistically
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significant associations. Although UPMC Presby/Shadyside circulatory admissions were significantly

correlated with Jefferson Hospital (.281), St. Clair Hospital (0.139) and St. Margaret (0.111) admissions,

most other coefficients were < 0.100. These results suggest that daily circulatory admissions for the ED

across the area are less likely mediated by regional events than perhaps respiratory admissions.

Table 41: Correlation matrix of daily hospital admissions from the ED for circulatory diseases (hospitals

with > 5000 circulatory emergency department admissions) (1999-2004).

Hospital Jefferson St.

Margaret

UPMC

Passavant

UPMC

McKeesport

UPMC

Presby/

Shady

AGH St. Clair Mercy

Forbes .041 .075** ,035 .032 .063** .054* .062** .041

Jefferson 1 .053* .031 -.038 .281** -.025 .061** .102**

St. Margaret 1 .054* .010 .111** .055** .020 .090**

UPMC Passavant 1 .009 .073** .033 .104** .039

UPMC

McKeesport

1 -.023 .019 .003 .016

UPMC

Presby/Shady

1 .051* .139** .089**

AGH 1 .034 .041

St. Clair 1 .010

** Correlation is significant at the .01 level  * correlation is significant at the .05 level

3.7 Descriptive Analysis of Control Disease Hospitalizations (Fractures) for

Allegheny County from 1999-2004

As noted previously, we also requested sample hospitalization data for two “control” disorders considered

to be unrelated to air pollution, specifically fractures and motor vehicle injuries, for exploratory

descriptive analyses. A summary of the analyses for fractures follows. A total of 34,447 fracture

hospitalizations were reported in Allegheny County from 1999-2004 with an average of 15.7 per day for

the time period of interest. Unlike respiratory admissions and in some respect circulatory admissions,

fractures admissions from all sources (ED and non-ED) were relatively constant by year, month and day

of the week (Table 42). 

PITT-PM 196



3.7 Descriptive Analysis of Control Disease Hospitalizations (Fractures) for Allegheny County from

1999-2004

Table 42: Hospital admissions for fractures (ICD-9 800-829) Allegheny County, January 1999–December

2004*: distribution by year of admission, month of admission, day of week, age, and gender.

Number Percentage Number Percentage

Year of Admission Day of Week

1999 5886 17.1 Sunday 4464 13

2000 5786 16.8 Monday 5105 14.8

2001 5837 16.9 Tuesday 5044 14.6

2002 5715 16.6 Wednesday 4970 14.4

2003 5639 16.4 Thursday 5046 14.6

2004 5584 16.2 Friday 5140 14.9

Month of Admission Saturday 4678 13.6

January 3096 9 Age

February 2723 7.9 <5 321 0.9

March 2655 7.7 5-24 3003 8.7

April 2858 8.3 25-44 3959 11.5

May 2962 8.6 45-64 5131 14.9

June 2815 8.2 65-84 13945 40.5

July 2910 8.4 85 8088 23.5

August 2899 8.4 Gender

September 2842 8.3 Male 12478 36.2

October 2944 8.5 Female 21969 63.8

November 2743 8

December 3000 8.7

*Data Source: Pennsylvania Health Care Containment Council

3.7.1 Correlation of Daily Hospital Admissions for Fractures from the

Emergency Department across Allegheny County Hospitals

In Table 43, the Pearson correlation coefficients are shown for 10 major hospitals in the Pittsburgh area

for daily fracture admissions through the ED. The correlation coefficients ranged from .000 to .066. The

highest correlation coefficient for fracture ED admissions (0.066) was for UPMC McKeesport and Mercy

Hospital. The magnitude of these coefficients suggests that the number of daily fractures admissions

through the ED is uncorrelated at Pittsburgh area hospitals. Fracture admissions show promise as potential

control admissions for the retrospective study. Admissions for injuries and as well as gall bladder

surgeries and appendectomies might also be explored as control admissions for modeling.
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Table 43: Correlation matrix of daily hospital admissions from the ED for fractures (1999-2004).

Hospital Children’s Jefferson St.

Margaret

UPMC

Passavant

UPMC

McKeesport

UPMC

Presby/

Shady

AGH St.

Clair

Mercy

Forbes -.017 -.031 .012 ..012 .062** .000 .020 -.021 .062**

Children’s 1 .009 -.007 -.014 .027 .011 0.016 -.014 .026

Jefferson 1 .011 .004 .030 .020 .011 .014 .010

St. Margaret 1 -.003 .019 .038 .035 .011 .000

UPMC

Passavant

1 .038 .023 -.003 .024 .023

UPMC

McKeesport

1 .063** .023 .038 .066**

UPMC

Presby/Shady

1 .027 .025 .020

AGH 1 .001 .001

St. Clair 1 .053*

** Correlation is significant at the 0.01 level  * Correlation is significant at the 0.05 level

3.7.2 Summary of Exploratory Analysis of Hospitalizations in Allegheny

County, Pennsylvania and the Pittsburgh MSA

1) The “hospitalization density” for circulatory and respiratory disease in Allegheny County and

the surrounding region for the 1999-2004 time-period of interest will support a retrospective

epidemiological study of the relationship between PM2.5 and hospital admissions.

2) As reported in the literature, seasonal and day of the week patterns are evident for respiratory

disease admissions and less apparent for circulatory disease admissions in Allegheny County,

Pennsylvania.

3) Highest average annual number of admissions for both respiratory and circulatory diseases

occurs in the 65-85 age group. Children less than 5 years of age account for 13% of asthma-

related admissions.

4) Daily respiratory admissions from EDs across Allegheny County hospitals appear to be

correlated, suggesting a possible common source exposure (e.g. meteorological influences,

particulates, etc).

5) Daily circulatory admissions for the ED across Allegheny County hospitals demonstrate little

correlation and are less likely to be influenced by regional factors than respiratory admissions;

however, some correlation for specific hospital systems is evident.

PITT-PM 198



3.7 Descriptive Analysis of Control Disease Hospitalizations (Fractures) for Allegheny County from

1999-2004

6) Fractures admissions demonstrated consistency in daily averages with little associations with

year, month, or day of the week.

7) Fracture admissions are uncorrelated across most hospitals in the Pittsburgh area, are unlikely

to be influenced by regional effect and represent a possible control hospitalization for the

retrospective study. 

3.7.3 Strengths and Weaknesses of Hospitalizations as a Health Endpoint for

Retrospective Air Quality Studies

PHC4 data can be very useful in ecological, case-crossover and other studies for the evaluation of health

effects related to air pollutants in the Pittsburgh region. For utilization and cost containment reasons,

hospitals are required to submit reports of hospital admissions to the agency. Compliance in reporting,

although not 100%, is usually 98% or higher in the state of Pennsylvania. In addition, hospitalization data,

like mortality data, are more readily available retrospectively for an expanded area of interest, such as the

Pittsburgh core base statistical area or larger area.

Inclusion of certain demographic information in the PHC4 dataset, including age, gender, race and 5-digit

ZIP code of residence, allows for assessment of some potential confounders (long term studies) and crude

geocoding for spatial resolution of outcomes. However, the PHC4 agency does not currently require

reporting by hospital of ZIP+ 4 (9-digit ZIP code) for the home residence of admitted patients. ICD-9/10

coding of both primary and secondary diagnoses (a total of 8) can help to identify subpopulations with

underlying cardiopulmonary co-morbidities. Also an assigned system ID allows linkage of initial and

subsequent admissions on a specific subject for possible assessment of susceptible subpopulations. Ability

to select with relative ease a “control disease” unrelated to air pollution (e.g motor vehicle accidents,

certain fractures, etc) for the time period of interest is an advantage of this dataset. Use of PHC4 data

requires contact and agreement with one agency versus multiple health care systems or hospitals for data

access.

Limitations of these data include lack of availability of 9-digit ZIP code, lack of specific street address,

and limited individual level data (e.g. no information on smoking, occupation, etc) for cohort studies.

3.8 Inventory and Assessment of Emergency Department Data

3.8.1 Emergency Room Visit Data

Given the trends in improved treatments for disease, we are not convinced that mortality or even hospital

admissions are alone sensitive enough indicators to capture the all potential effects of daily changes in air
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pollution on health. To that end, emergency department (ED) visits, physician office visits and medication

usage arguably have the most upside potential to capture health effects related to short-term variations in

pollutants. In the 1999-2004 time-period to the present, the most well characterized one of these less

defined health outcomes (ED visits, physician office visits and medication usage) is ED visits.

At the inception of this feasibility assessment, little was known about the availability of electronic ED visit

data from hospitals in the total Pittsburgh region from 1999-2004. It is estimated that nationwide only 30%

of all hospitals store ED visit information in electronic format. In general, hospitals associated with large

health systems are currently storing, and have archived for a number of years, ED data in an electronic

format. However, many of the smaller, independent hospitals have been “online” only recently (2002-

present). Obviously, manual data abstraction of ED visit information from paper records is a tedious and

costly task and would be prohibitive if funding for a retrospective project is limited. Therefore it was

necessary to characterize the electronic data collection and archival capabilities of regional hospitals for

ED data from 1999-2004.

3.8.2 Pittsburgh Region Emergency Department Visit Data Archival Survey

In conjunction with the Allegheny County Health Department, the PITT-PM health outcomes project team

developed a paper-based survey (Appendix I) in order to query regional hospitals concerning their past,

current and future ED data collection methods and plans. In addition, variables collected and archived

were assessed. A total of forty-five (45) questionnaires were sent in a sampling survey to area hospitals in

eleven (11) counties in southwestern PA. Of the 45 hospitals, a total of 41 (91%) responded to the survey;

37 of the 41 hospitals (90%) had active ED departments and provided complete survey information. 

Descriptive analyses were completed on the survey responses. As shown in Table 44 below, a total of 26

(70.3%) of the 37 hospitals reported electronic archival of emergency room visit data for at least some

portion of the 1999-2004 time period.  However, only 15 of the 37 hospitals (40.5%) reported electronic

archival of their data for the entire time period of interest (1999-2004). As expected, hospitals affiliated

with the larger health care systems, such as the University of Pittsburgh Medical Center, West Penn-

Allegheny Health System and the Pittsburgh Mercy Health System were more likely to report electronic

archival than the smaller county or city-based independent hospitals. ED records, particularly for smaller

facilities, are less likely than hospital admission records to have ICD-9 codes recorded for primary and

multiple secondary diagnoses. Therefore the ability to electronically search the ED notes for chief

complaints or keywords associated with a specific condition might be important. In addition, depending on

the final study area and health outcome of interest, manual data entry of retrospective ED records for

certain crucial hospitals might be desirable for adequate coverage of the study area.
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Table 44: Archival of emergency room visit data 1999-2004.

Data Type Number Percentage

Hard copy only 11 30

Electronic data 26 70

First

full

year

of 

electronic

data 

1999 15 41

2000 1 3

2001 4 11

2002 1 3

2003 2 5

2004 1 3

2005 1 3

Missing 1 3

In Table 45, we have outlined the availability of electronic records from 1999-2004 for emergency

department visits and number of visits by hospital for the Pittsburgh MSA. Based on data from the

Pennsylvania Dept of Health, Bureau of Health Statistics and Research Annual Hospital Questionnaire

(2003-2004), a total of 6,557,784 ED visits to hospitals within the Pittsburgh MSA are estimated for the

1999-2004 time period. Allegheny, Armstrong and Butler Counties have the most complete electronic ED

data coverage since 1999. Washington and Westmoreland Counties also have considerable available

electronic ED data for the period of interest. Conversely, Fayette has limited electronic data until 2003.

Hospitals in counties in the expanded Pittsburgh region, such as Greene, Indiana, and Lawrence, also have

limited ED data until the latter years of the study period but are not reflected in the table below.

It is also notable that of the 662,292 ED visits to Allegheny County hospitals in 2003-2004, approximately

46% of those visits are to hospitals associated with the University of Pittsburgh Medical Center (UPMC).

Data from UPMC-associated hospitals are well characterized, available in electronic format and readily

accessible to University investigators with the appropriate data agreement. Representativeness of the

UPMC ED visit data related to all of Allegheny County and Pittsburgh MSA visits as a whole would be

further explored in the retrospective assessment. 

PITT-PM 201



3.8 Inventory and Assessment of Emergency Department Data

Table 45: Availability of electronic records for emergency room visits and number of visits by hospital for

Pittsburgh MSA hospitals, 1999-2004.

Availability of Electronic Data for

Emergency Room Visits*

Number

of  ER

Visits**

Estimated

ER Visits

1999 2000 2001 2002 2003 2004 7/03-7/04

6 yr 1999-

2004

–  none; p - partial(6-11 mo);  X - full year

Allegheny County

  Alle Kiski Medical Center – – – – – – 30,603 183,618

  Allegheny General Hospital X X X X X X 44,856 269,136

  Childrens Hospital of Pittsburgh (UPMC) – – – X X X 56,183 337,098

  Forbes Regional Hospital X X X X X X 39,323 235,938

  Jefferson Regional Medical Center – – – – – – 48,784 292,704

  Magee-Womens Hospital of UPMC – – – – – – 9,621 57,726

  Mercy Hospital of Pittsburgh – – – – – X 40,178 241,068

  Mercy Providence Hospital merged with Mercy Hospital 1/2004 4,526 27,156

  Ohio Valley General Hospital – – – – – – 21,534 129,204

  Sewickley Valley Hospital – – X X X X 37,169 223,014

  St. Clair Memorial Hospital X X X X X X 48,578 291,468

  Suburban General Hospital – – – – – – 13,986 83,916

  UPMC Braddock X X X X X X 24,292 145,752

  UPMC McKeesport X X X X X X 30,259 181,554

  UPMC Passavant X X X X X X 31,916 191,496

  UPMC Presbyterian/Shadyside X X X X X X 97,395 584,370

  UPMC South Side – p X X X X 20,148 120,888

  UPMC St. Margaret – – X X X X 32,911 197,466

  Western Pennsylvania Hospital X X X X X X 30,030 180,180

  VA Healthcare (Federal) X X X X X X

Allegheny County subtotal 662,292 3,973,752

Armstrong County

  Armstrong County Memorial Hosp. X X X X X X 25,877 155,262

Armstrong County subtotal 25,877 155,262

Beaver County

  Aliquippa Community Hospital – – – – X X 12,227 73,362

  Medical Center Beaver – – X X X X 46,882 281,292

Beaver County subtotal 59,109 354,654

Butler County

  Butler Memorial Hospital X X X X X X 37,163 222,978

  UPMC Passavant Cranberry not obtained 16,054 96,324

Butler County subtotal 53,217 319,302

Fayette County

  Brownsville General Hospital – – – – – – 14,917 89,502

  Highlands Hospital – – – – – p 14,475 86,850
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Availability of Electronic Data for

Emergency Room Visits*

Number

of  ER

Visits**

Estimated

ER Visits

1999 2000 2001 2002 2003 2004 7/03-7/04

6 yr 1999-

2004

–  none; p - partial(6-11 mo);  X - full year

  Uniontown Hospital – – – p X X 49,432 296,592

Fayette County subtotal 78,824 472,944

Washington County

  Canonsburg General Hospital – – – – – – 18,958 113,748

  Monongahela Valley Hospital X X X X X X 32,553 195,318

  Washington Hospital X X X X X X 39,820 238,920

Washington County subtotal 91,331 547,986

Westmoreland County

  Frick Hospital – – – p X X 22,420 134,520

  Latrobe Area Hospital – X X X X X 36,631 219,786

  Mercy Jeannette Hospital X X X X X X 20,298 121,788

  Monsour Medical Center – – – – – – 3,419 20,514

  Westmoreland Regional Hospital X X X X X X 39,546 237,276

Westmoreland County subtotal 122,314 733,884

Pittsburgh MSA subtotal 1,092,964 6,557,784

*  Source: Survey by Allegheny County Health Department and University of Pittsburgh GSPH

** Source: Pennsylvania Dept of Health, Bureau of Health Statistics and Research - The Annual Hospital Questionnaire

3.9 Evaluation of Additional Secondary Sources for ED Visit Data Retrieval

The availability of other supplemental electronic data sources for ED visits might improve health outcome

coverage for the 1999-2004 time period. In addition to the 10+ county hospital survey of the availability of

electronic emergency room information carried out through the auspices of the ACHD, other secondary

sources of emergency room information were explored, including ED data collections systems that are

unique to the Pittsburgh region as noted below.

3.9.1 UPMC Medical Archival Retrieval System (MARS) database

The University of Pittsburgh Medical Center currently consists of  more than 10 hospitals in the region

and as such has developed a valuable integrated system of secondary data retrieval.  A meeting was held

on September 12, 2005 with Ms Melissa Saul, MPH, Director of the Clinical Research Informatics

Service, University of Pittsburgh School of the Health Sciences and project staff to discuss the MARS

system (Medical Archival Retrieval System) and its utility in providing de-identified electronic

information on emergency department visits for the DOE/NETL PITT PM2.5 project.

MARS was developed at the University of Pittsburgh in 1986 to improve health care by integrating the
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computer systems that supported medical care at the departmental level. The concept was to create a

complete electronic medical record that would increase the efficiency of patient care and provide the basis

for rational decisions about resource allocation.  The initial focus of the program was on inpatient hospital

care but is now extended to all patients seen at the University of Pittsburgh Medical Center (UPMC)

nineteen hospitals, physician offices, and outpatient clinics. The current MARS repository houses 97

million clinical reports and 307 million financial transactions. Complete listings of the clinical, financial

and auxiliary databases that are integrated with MARS are presented in Appendix J (Melissa Saul,

Director, Clinical Research Informatics Services, personal communication). 

MARS is implemented in a UNIX-based, distributed parallel-processing environment which is organized

around three fundamental concepts.  These concepts are (1) MARS accepts all machine-readable data

without requiring structure at the point of data entry. Data is transformed into a simple canonical internal

format after capture. This eliminates the need for controlled vocabularies and structured entry programs;

(2) MARS is indexed on every word and every number in the database with parallel use of a proximity

operator. This makes it possible to recognize individual terms, as well as multi-word terms in structured or

unstructured data. It also provides the basis for imposing structure on data after collection, through the use

of statistics.

In addition to availability of medical notes, the medical record discharge abstract with ICD-9 codes

(International Classification of Disease, 9th revision) are provided as a result of each visit as well as

demographic information including birth date, gender, race, ZIP code, and county of residence of patient

thus making the MARS database extremely attractive for environmental health tracking and disease

surveillance.  The medical discharge abstract is available for all emergency room visits in all but two of

the UPMC hospitals with plans to include these remaining hospitals within the next year. 

To supplement the medical record discharge abstract, there are over one million transcribed ED notes

available for study since the system’s inception for emergency room notes capture in l995. These notes

provide specific details of the ED visit including chief complaint, past medical history, physical

examination findings and discharge diagnosis. ED notes are available for all but four of the UPMC

hospitals. There are plans by MARS officials to include transcribed ED notes from these remaining

hospitals.

With regard to the PITT-PM project, the availability of electronic records through MARS for the specific

time period January, 1999 through December 2004 was discussed. A request was made by the study team

to the Director of Medical Informatics Systems (MS) to provide information on the distribution of

available electronic records by year of visit/ county/ZIP code of residence of the patient and hospital site

within the UPMC system for the time 1999-2004 time period of interest.  A total of 540 Zip Codes are

located within 50 miles of Pittsburgh, Pennsylvania, including 487 in Pennsylvania, 17 in West Virginia

and 36 in Ohio. Ms. Saul provided a test data set with information from seven of the hospitals within the

UPMC Health System as an overview of the catchment area for these UPMC-related healthcare entities. A
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total of 1,387,025 emergency department visits were recorded at hospitals in the MARS system for the

1999-2004. Shown in Table 46 are the local area ZIP Codes that contributed at least 5000 ED visits (~ 850

per year) to these seven hospitals for the 1999-2004 period (Total = 1, 086, 834). Highlighted in yellow is

the primary hospital (s) that residents from a given ZIP code use for ED services. These data suggest that

the majority of patients seen in the larger UPMC hospital emergency rooms are residents of Allegheny

County and those residents tend to present to the ED in the hospital closest to their homes. Most Zip

Codes in Allegheny County are represented in the MARS database. Residents from outlying counties tend

to use the ED services at their county/community hospital. These ED visit data will need to be retrieved in

electronic format from these individual community hospitals.  

Table 46: ZIP codes contributing >= 5000 ED visits to seven UPMC MARS hospitals (1999-2004).

ZIP Code BRH BVH HHG HHS MCH PUH SHY SMH SSH Total

15205 Pittsburgh 201 14 54 3 78 2564 699 281 1122 5016

15084 Tarentum 61 4 7 1 17 619 207 4653 26 5595

15144 Springdale 35 2 7 0 9 254 125 5127 38 5597

15135 McKeesport 155 0 5 0 5229 384 93 28 22 5916

16154 Transfer 3 0 4570 1400 1 103 3 3 5 6088

15037 Elizabeth 149 0 16 2 5388 789 126 54 91 6615

15025 Clairton 502 9 29 1 4626 1602 251 72 330 7422

16159 West Middlesex 4 1 178 7291 0 165 3 0 2 7644

15226 Pittsburgh 209 6 24 1 60 2518 686 250 4179 7933

16150 Sharpsville 1 2 1078 6686 3 154 3 7 8 7942

15045 Glassport 282 0 9 0 7239 410 74 20 72 8106

15239 Pittsburgh 464 6 18 5 170 1718 1501 4327 79 8288

15101 Allison Park 75 13 28 6 18 1266 597 6325 79 8407

15112 East Pittsburgh 6614 1 16 0 479 832 438 121 64 8565

15232 Pittsburgh 109 4 7 3 53 2979 5256 299 132 8842

15236 Pittsburgh 494 11 27 6 631 3778 899 257 3138 9241

15116 Glenshaw 80 3 12 0 21 935 496 7816 73 9436

16137 Mercer 2 2 4230 4970 2 303 13 21 4 9547

15212 Pittsburgh 592 39 58 9 158 4047 1414 1804 1450 9571

15145 Turtle Creek 6489 2 12 3 658 1182 987 274 70 9677

15216 Pittsburgh 320 16 36 8 103 3719 995 288 4199 9684

15224 Pittsburgh 292 4 19 3 80 2782 5040 1323 291 9834

15139 Oakmont 91 1 1 0 24 658 700 8365 25 9865

15146 Monroeville 1989 8 15 6 859 3485 2440 1113 209 10124

15642 Irwin 1149 4 52 2 5585 2157 925 342 115 10331

16134 Jamestown 10 3 10001 169 4 138 8 3 5 10341

15133 McKeesport 196 0 6 0 9882 506 113 43 60 10806

15024 Cheswick 48 0 8 0 12 598 259 10215 30 11170

15209 Pittsburgh 187 8 28 1 38 1107 811 9460 227 11867

15223 Pittsburgh 109 4 14 3 19 831 438 10420 81 11919

15131 McKeesport 470 0 16 1 10836 771 311 106 33 12544

15211 Pittsburgh 212 14 15 5 38 2398 651 245 9279 12857

16121 Farrell 1 6 180 14349 0 224 8 5 2 14775

15201 Pittsburgh 357 8 16 7 77 3296 4799 7136 351 16047

15208 Pittsburgh 792 1 3 3 429 6301 8083 897 287 16796

16148 Hermitage 3 0 893 15738 1 417 18 11 4 17085

15137 North Versailles 6031 5 14 0 8905 1254 794 188 88 17279
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ZIP Code BRH BVH HHG HHS MCH PUH SHY SMH SSH Total

15207 Pittsburgh 1838 4 34 2 536 9144 3641 303 1908 17410

15068 New Kensington 181 4 30 5 91 2171 924 14149 96 17651

15238 Pittsburgh 67 1 16 3 21 1206 821 15501 62 17698

15227 Pittsburgh 465 17 64 4 273 4045 1018 282 11812 17980

15219 Pittsburgh 568 19 5 4 269 12751 4185 469 942 19212

15203 Pittsburgh 199 8 7 2 87 2586 601 202 17743 21435

16146 Sharon 7 5 787 20489 3 340 18 18 18 21685

15122 West Mifflin 9007 6 52 0 7645 3023 1056 204 781 21774

15215 Pittsburgh 132 3 9 2 18 1300 741 19633 114 21952

15218 Pittsburgh 12361 10 15 0 363 4473 4606 550 296 22674

15001 Aliquippa 67 20734 34 21 28 1491 159 64 79 22677

15213 Pittsburgh 327 13 8 8 129 16390 5673 437 585 23570

15110 Duquesne 4980 3 4 3 16303 1776 630 62 255 24016

15217 Pittsburgh 553 4 9 3 175 11309 10753 720 491 24017

15147 Verona 761 7 30 0 145 2683 3776 17992 160 25554

15120 Homestead 17434 13 61 4 2134 5530 2553 289 913 28931

15235 Pittsburgh 2153 12 31 3 520 7604 8983 10395 402 30103

15104 Braddock 35766 13 14 4 804 2615 1307 179 190 40892

15206 Pittsburgh 1103 12 24 11 419 12767 19889 6423 896 41544

15221 Pittsburgh 11305 24 19 3 708 12876 16428 1820 580 43763

16125 Greenville 8 6 51237 2095 3 607 34 20 14 54024

15210 Pittsburgh 877 23 50 3 331 8440 1827 468 47065 59084

15132 McKeesport 2904 14 27 5 92185 3910 841 177 353 100416

Total 1086834

Abbreviations: BRH= UPMC Braddock; BVH = UPMC Beaver Valley; HHG= UPMC Horizon Greenville; HHS = UPMC Horizon Shenango; MCH=

UPMC McKeesport; PUH= UPMC Presbyterian; SHY= UPMC Shadyside; SMH= UPMC St. Margaret’s; SSH =UPMC South Side

3.9.2 Availability of MARS Data

Data is continuously fed into MARS over a network from several hundred clinical and financial domains.

It is estimated that almost 500,000 new clinical reports and 450,000 financial transactions are received

each week. Approximately 15,000 - 20,000 reports are retrieved daily for the support of clinical activity,

and there are approximately 5100 logins each day. MARS offers three types of user interface: (1) an

intelligent terminal interface, which formulates Boolean queries automatically for users; (2) a World Wide

Web browser interface; and (3) a batch command and editing interface, which supports customized

retrieval strategies for activities such as medical rounds or commonly used queries.

3.9.3 Integration of MARS Data

All records obtained on a single patient at any given time are linked via a unique patient identifier.

Patients who cross institutional (hospital) domains are linked through a Master Patient Index maintained in

an OracleTM database.  In addition, a minimum of three demographic items are stored with each record.

This strengthens linkages and facilitates searching for common patient characteristics within clinical and

financial records.  
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3.9.4 Research Applications using MARS Technology

CRIS (Clinical Research Informatics Service) is a jointly sponsored service of the Office of Clinical

Research and the Center for Biomedical Informatics (Ms. Melissa Saul, Director). CRIS is available for

use by faculty in the Schools of the Health Sciences, University of Pittsburgh and for UPMC special

projects requiring de-identified datasets. CRIS is a certified honest broker with the University of

Pittsburgh IRB and has a business associate agreement with UPMC. The polices and procedures of CRIS

are posted on the Office of Clinical Research website (http://www.clinicalresearch.pitt.edu)

CRIS uses the De-ID application developed by the Center for Biomedical Informatics at the University of

Pittsburgh and licensed by the University to De-ID Data Corp, Philadelphia, PA. The De-ID application is

used by the National Cancer Institute and other academic medical centers for various research

applications.  De-ID has as its main usage, the ability to consider medical information housed with a

person’s record with safeguards to that individual’s identity. The PITT-PM project will be limited to

obtaining diagnostic code and limited demographic information on individual emergency visits. However,

the ability to cross identify cardio-pulmonary outcomes, by ICD codes, date of birth, gender, race and

place of residence without names and addresses through the honest broker system will be an invaluable

tool in the conduct of this project.

De-ID automatically creates a linkage file when a dataset is processed. The linkage file is stored in an

encrypted format and only available for viewing with the password given at the time of processing. The

study identifier is a two-part code; part one is the number of the report for that patient; and part two is a

unique 12 alphanumeric code for that patient. This is done so that the study id remains consistent across

data sets but different admissions and/or multiple reports can be easily identified.

The Center for Biomedical Informatics (CBMI) performs formal evaluations of the De-ID software. Five

physicians are doing a current evaluation at UPMC Presbyterian. Also, the Center for Pathology

Informatics performed an independent evaluation of the De-ID software last year (Gupta et al., 2004) 

3.9.5 Real-Time Outbreak and Disease Surveillance (RODS) Data

On June 17, 2005 the PITT-PM health outcomes sub group met with Dr. Michael Wagner, Director the of

the RODS Laboratory at the University of Pittsburgh Center for Biomedical Informatics. The Real-time

Outbreak and Disease Surveillance (RODS) Laboratory is a collaboration between Dr. Wagner and

colleagues at the University of Pittsburgh Center for Bioinformatics and the Auton Lab at the Carnegie

Mellon University School of Computer Science.  The laboratory was founded in 1999 to investigate

methods for real-time detection and assessment of disease outbreaks. The objectives of the project include

algorithm development, assessment of novel types of surveillance data, natural language processing and

analyses of syndrome detectability. The laboratory is home to four large projects that work with health

departments to create surveillance systems: RODS software development, the Public Health Data Center,
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the National Retail Data Monitor (NRDM) and the BioWatch Support Program.

The primary focus of this work is the use of real time streaming of ED visit information related to eight

syndromic clusters including: respiratory, nausea, rash, neurologic, constitutional, gastrointestinal and

other disorders that might be environmentally driven (e.g. infectious agents). Currently 110 of 190

hospitals throughout the Pennsylvania feed information into the RODS server through Health Level 7

(HL7) formatted messaging. RODS includes over 80% of ED visits in Allegheny County. For the 1999-

2004 time- period, several area hospitals collected ED data in hard copy format and did not maintain on-

site electronic ED databases. Since RODS has been acquiring ER information for the period 2000-2004

for the majority of these hospitals, it may be possible to retrieve information on these ED visits from the

RODS Public Health Data Center for application in research studies.

RODS software can process and display the data in the form of graphs and maps via a secure web

interface. The data can also be run against other surveillance software or algorithms other than what is

included in the RODS software. RODS is capable of receiving and analyzing several types of data such as

emergency department registrations, chest x-rays, orders for cultures, culture results, etc. These records

are captured as HL-7 messages that are transmitted directly to RODS from a hospital or health system’s

HL-7 message router in real time. Using the application does not require any client software as the

processed data is viewed through a web browser.  Hospitals send the data via an HL-7 interface that is

created to automatically send existing messages via a VPN connection, SSL or SFTP directly from the

hospital or health system’s message router to the Data Center in real time. Historical data provided by a

hospital is used to build an accurate baseline for alerting. Automatic detection algorithms run on the data

and search for anomalies that may indicate an outbreak; alerts are issued automatically to health

department officials.

Currently, the data elements collected include age (without date of birth), gender, home ZIP code and free-

text chief compliant (e.g. shortness of breath, chest pain, etc). These data have been collected and

warehoused since 2000. RODS software aggregates the data into daily counts by syndrome (natural

language processing of the chief complaint) and residential ZIP code for analysis. In this feasibility

assessment, the PITT-PM investigators are evaluating the possibility of utilizing these retrospectively

collected archived data. At the time of initial presentation in the ER, a patient has not yet been assigned an

ICD9/10 code nor has the physician of record diagnostically verified the chief complaint. However, this

syndromic clustering reported at initial presentation might nonetheless have utility as a sensitive endpoint

and real time indicator of any association between point source air pollution exceedances and respiratory

(or cardiovascular) health outcomes. An elevated average or maximum PM2.5 concentration (or certain

speciated components) within a certain area or ZIP code could be correlated with spikes in the “respiratory

syndrome” pattern over time. This type of pattern analysis might identify a more direct link between a

“pollutant upset” in a certain area than hospital admissions over a one to two day period. These syndromes

can be validated by later comparison with hospital admission data or ER discharge data at a 24- or 48-hour

lag.
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The DOE/NETL cooperative agreement involves collaboration of GSPH with the ACHD, which is

currently intimately involved in the RODS program of syndromic data evaluation and analysis. Our plans

are to continue to explore, in conjunction with ACHD, the use of these emergency room data collected in

real-time in a retrospective epidemiological study. 

3.9.6 Physicians’ Office Visits

As noted previously, capturing physician office visits retrospectively for respiratory and/ or cardiovascular

disease exacerbations is a difficult task for a city, county or regional research study. Unfortunately, no

central agency or organization in Pennsylvania is responsible for the collection of data on such visits.

However, retrospective physician office data can potentially be accessed through several of the patient

care provider networks in the area. As discussed in the previous progress reports, the Medical Archival

Retrieval System (MARS) at UPMC aggregates office visit data for physicians affiliated with the UPMC

health care system. In addition, several health maintenance organizations (HMOs), preferred provider

organizations (PPOs) and point of service (POS) plans in the area collect office visit data on their

subscribers. Most plans have been operational in the Pittsburgh region since the early 1980s. The largest

regional HMOs and/or health plans are described briefly in Table 47.

Regional HMOs offer perhaps the best opportunity for capturing retrospectively office visit information

for the 1999-2004 period. The four largest southwestern Pennsylvania HMOs covering the Pittsburgh

SMA include UPMC Health Plan (~134,000 HMO enrollees), Keystone Health Plan West (~110,000

HMO enrollees), Aetna (~27,000 HMO enrollees) and Health America (PA total ~200,000; Pittsburgh

SMA total not available). Also Gateway Health Plan, established in1992 as a managed care alternative to

the Department of Public Welfare's Medical Assistance Program in Pennsylvania, serves a number of

medical assistance recipients throughout Pennsylvania, particularly in Allegheny County. Five Pittsburgh

POS plans cover an additional ~300,000 local enrollees; ten PPOs (including Highmark, UPMC, Aetna

and Health Assurance) have approximately 900,000 subscribers. Certain information might be available

through claims data, although not as readily as in the better characterized participation within an HMO.

In the past, most of these organizations have indicated a willingness to assist public health agencies,

including the Allegheny County Health Department and the University of Pittsburgh Graduate School of

Public Health, in disease surveillance and research efforts. However, since the passage of HIPAA, many

health care organizations are reluctant to share individual enrollee data with outside research institutions.

Several of the health plans above, including Keystone Health Plan West and Health America, voiced these

concerns during recent conference calls. De-identified aggregated data (e.g., number of physician office

visits on a given day) might be accessed more readily. Although aggregated daily counts of office visits

might be accessible, individual level data such as age, city, ZIP code, etc. is likely restricted. The UPMC

Health Plan, as an example, does have procedures and provisions for data sharing of a HIPAA-compliant

limited data set with academic and other research institutions. This type of data set will contain certain
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individual level information including date of birth, date of visit (admission), and geographic data to the

level of county, city and ZIP code. Limited data sets can be used and disclosed only for research, public

health or health care operations. However, UPMC officials noted that, more recently, data sharing in

which data files are moved off-site for analysis has been minimal. Requests for data sharing are

entertained on a study-by-study basis and are handled based on the organizational trust built between the

data steward and the external investigator. Data usage agreements must be executed with each individual

agency prior to the partnering of these organizations with any non-covered entity. Third-party “honest

broker systems” are a requirement for access to individual level data that can potentially be traced back to

individual patients. Access to these types of data sets might involve a fee payment ($100 to $3000) to the

health plan for database assembly costs.

Table 47: Pittsburgh MSA (regional) health plans and HMOs.

Name

Date

Licensed

(Pittsburgh)

~ Total

Local

Enrollees
a

Participating

Local

Hospitals

Geographic

Coverage
b

HMO PPO POS

Highmark Blue

Cross/Blue Shield

(Keystone Health Plan

West)

1986 400,000 34 Pittsburgh MSA  + 21 √ √ √

University of Pittsburgh

(UPMC Health Plan) 1998 225,000 38 Pittsburgh MSA + 19 √ √ √

Aetna 1986 80,000 25 Pittsburgh MSA + 42 √ √ √

Health America of PA

(Health Assurance) 1975 200,000C 38 Pittsburgh MSA + 54 √ √ √

Intergroup Services ~1986 520,000 38 Pittsburgh MSA √

American Health Care

Group 1980S 130,000 25 Pittsburgh MSA √

Cigna Healthcare

1980S 90,000 37 Pittsburgh MSA √ √

a Includes HMO, PPO and POS plans.  b Pgh SMA + NUM = Pittsburgh Statistical Metropolitan Area (includes Allegheny,

Armstrong, Beaver, Butler, Fayette Washington, and Westmoreland counties + additional number of counties covered in PA. 
c Total in PA

A significant issue in the use of office visits or symptomatology at office visits as an outcome is the

retrospective differentiation of office visits scheduled for regular exams vs. unscheduled visits associated

with exacerbation of circulatory or respiratory disease potentially attributable to air pollutants. For the

majority of the HMOs, this information is not recorded or available as a part of the medical record. As an

additional caveat to use of retrospective health plan data, HMOs have noted declining enrollment in the
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last 5 years. This recent enrollment volatility might preclude an accurate assessment of the relationship

between air quality and unscheduled office visits thought HMOs from 1999-2004, specifically if a health

or poor health bias is associated with the shift from HMOs to other types of health plans. Partnering with

these plans for a prospective (longitudinal) study in which data collection can be tailored to the needs of

the study, might be more practical and meaningful but considerably more expensive in terms of staff time

and commitment.

3.9.7 Pharmaceutical Usage Databases (Prescription Medications)

Prescription requests and medication use are potentially more sensitive indicators for exacerbation of

certain circulatory and respiratory diseases related to ambient and/or indoor PM2.5. Typically, studies

assessing medication use in relation to changes in ambient air pollutants involve costly prospective panel

studies of high-risk adults or children. However, certain pharmaceutical usage databases might be

available for retrospective data analysis. For instance, Verispan (formerly Scott-Levin Pharmaceutical

Company, Yardley. PA) and IMS Health (Fairfield, CT) collect comprehensive data on prescription drug

usage in multiple metropolitan centers across the US. These databases have traditionally been used as

market research tools for the pharmaceutical industry, but have broad applications to health research. Both

Verispan and IMS Health officials indicated a keen interest in partnering with academic and industry

groups to collect data in a manner that will facilitate health outcomes research. Currently, however, the

type of data collected and the timeliness (or lack thereof) of reporting are issues that make these data

unsuitable for a retrospective analysis.

3.9.8 Verispan Datasets

Verispan has secured rights to data for nearly half of all U.S. prescriptions and nearly one-quarter of all

U.S. electronic medical transactions annually. Verispan captures more than 25% of all prescriptions from

98% of all 3-digit zip codes and 45% of all prescriptions from approximately 80% of all zip codes

(Source: http://www.verispan.com/). Verispan can provide insight into prescription and medical activity at

the national, regional and individual prescriber level. Verispan’s Source Prescription Audit (SPA) and

Physician Drug and Diagnosis Audit (PDDA) represent novel potential sources of health data for

retrospective analyses. A limitation of the use of these Verispan datasets in health outcomes research is the

temporal and spatial resolution of the data. Coverage in defined geographic areas is limited; data are

currently sent only monthly from participating providers. Finer resolution is possible but will most likely

require partnering with Verispan to construct an appropriate data pass-through scheme for prospective

studies.

3.9.9 IMS Health Datasets

Similarly, IMS Health (http://www.imshealth.com/) receives pharmaceutical usage data from
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more than 29,000 data suppliers covering 225,000 data sites worldwide. Data sources include drug

manufacturers, wholesalers, retailers, pharmacies, mail order, long-term care facilities and hospitals. IMS

also captures consumer purchase information from pharmacies equipped with Electronic-Point-of-Sale

(EPOS) systems (PharmaTrend).

IMS does collect ZIP code level data but does not typically sell these data to non-PharmaTrend clients. A

specific agreement would need to be negotiated to obtain the data. Normal one time, one market ZIP code

level reports can cost between $75,000 -$100,000. ZIP code level reports capture sales of products into the

channels of trade; they do not track dispensed Rx's. ZIP code sales data are captured monthly at its most

granular level. Daily prescirptions are potentially available through Early Insight, an IMS Health web-

based application that tracks daily prescription volume and market share. IMS has MSA level data that

tracks prescriptions at much more reasonable costs. Data are available from 1999-present. Unfortunately,

Pittsburgh MSA level data is currently captured only monthly. 

3.9.10 National Retail Data Monitor (Over-the-Counter Sales)

The National Retail Data Monitor (NRDM) is a public health surveillance tool that collects and analyzes

daily sales data for over-the-counter (OTC) health-care products. NRDM grew out of the Pennsylvania

Retail Data Monitor, a system developed by the Commonwealth of Pennsylvania and the Real-time

Outbreak and Disease Surveillance (RODS) Laboratory (http://www.health.pitt.edu/rods) at the University

of Pittsburgh. The Pennsylvania system began receiving data from retailers in December 2002 and was

expanded in scope to a nationwide initiative soon after its introduction. The current coverage of retail data

nationwide is approximately 20%, but much higher in many large urban areas, particularly in

Pennsylvania.

NRDM collects sales data for selected OTC health-care products in near real time from >15,000 retail

stores and makes the information available to public health officials. NRDM is one of the first examples of

a national data utility for public health surveillance that collects, redistributes, and analyzes daily sales-

volume data of selected health-care products, thereby reducing the effort for both data providers and

health departments.

After decades of investment into developing Universal Product Codes (UPCs), optical check-out scanners,

and analytic data warehouses, the retail industry has in effect constructed 95% of a surveillance-system

pyramid onto which a capstone of data integration and analytic capability can be added to produce

NRDM. NRDM's objectives are to 1) enlist participation of retailers to achieve 70% coverage of OTC

sales nationally; 2) influence the industry toward real-time data collection; 3) obtain supplemental

information needed for spatial analysis, adjustment for promotional effects, and maintenance of UPC

analytic categories (e.g., liquid cough medications); 4) promote and develop this type of surveillance

practice; 5) achieve fault and load tolerance; and, 6) develop detection algorithms for the data

(http://rods.health.pitt.edu/NRDM.htm).
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Although not specifically collected for air pollution research, data previously assembled on OTC drugs

purchased for respiratory illnesses from 2003-2004 might be useful in evaluating for little additional cost

the overall health effects of variations in PM2.5 concentrations and components in a retrospective study.

We will continue to explore the availability and usefulness of these data for retrospective and prospective

studies in air quality research.  

3.9.11 Implantable Cardioverter Defibrillators

Individuals at risk for sudden cardiac death with implanted cardioverter defibrillators (ICDs) represent a

unique group of subjects particularly sensitive to changes in the levels of fine particulates. No population-

based registry for ICDs was identified in the Pittsburgh metropolitan region that covers the 1999-2004

time period. Since January 2005, however, the Centers for Medicare and Medicaid Services have

mandated a registry for all Medicare patients undergoing implantation of ICDs

(http://www.cms.hhs.gov/CoverageGenInfo/07_ICDregistry.asp - TopOfPage) for primary prevention of

sudden cardiac arrest. The registry also includes a longitudinal component to capture follow-up data on

ICD patients. Prospective studies will potentially be able to tap into this relatively new database for

research studies.

From 1998-2003, the University of Pittsburgh Medical Center and the VA Pittsburgh Healthcare System

were principal sites in the multi-site Defibrillators in Non-Ischemic Cardiomyopathy Treatment

Evaluation (DEFINITE) Trial and Registry that followed 458 subjects with non-ischemic dilated

cardiomyopathy. A total of 229 subjects in the trial underwent prophylactic defibrillator implantation in

one of the two study treatment arms. This select group might also represent a potential panel for a

longitudinal analysis.

3.10 Strengths and Weaknesses of ED Visits, Physicians Office Visits and

Pharmaceutical Data as a Health Endpoint for Retrospective Studies

Health outcomes such as ED visits, physicians’ office visits, prescriptions and medication use are most

probably more sensitive to short-term fluctuations in PM2.5 than either mortality or hospital admissions.

These data are, however, much less readily available retrospectively in a central repository and/or in

electronic format. ED visits are the better characterized of these datasets, but are not available in a

standardized format from a central collection agency in Pennsylvania for all hospitals. ED visit

information would be acquired in electronic format from major hospital systems and/or individual

hospitals through separate protected access agreements. Data from the MARS and RODS systems can help

to supplement the ED visit information. From an outcomes perspectives, ED data could be explored as

health outcome of interest in a more limited geographic area, in specific counties such as Allegheny,

Armstrong, Butler, Washington and Westmoreland. These data might help to fill gaps in health outcomes

information related to PM2.5 in the Pittsburgh region.
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Health Endpoint for Retrospective Studies

It is more costly and impractical to acquire and assemble a comprehensive retrospective dataset for 1999-

2004 for physicians’ office visits and/or pharmaceutical data. Nonetheless, for future prospective studies

on PM2.5 and health, the richness of these datasets and the potential for partnering with the data owners,

particularly the pharmaceutical market research industry, is intriguing. 

3.11 Long-term Effects of PM2.5 on Health Outcomes in the Pittsburgh

Region (Retrospective Cohort Studies)

Time series studies are designed to estimate the short term effect of PM2.5 on mortality and morbidity as

health endpoints of interest. For example, in a time series analysis, death is considered to be a “once only

event” with no dimension in time (Kunzli et al., 2001). Therefore, time series studies assume that the event

is influenced by factors that act shortly before the event (death), such as acute weather changes, day-to-

day variation in air pollution, etc. Illness and death are, however, likely influenced by multiple exposures

over time, potentially years or even decades earlier. These long term effects of PM2.5 on health outcomes

are more appropriately captured in cohort (either prospective or retrospective) studies rather than time

series analyses. 

For the assessment of the long term effects of PM2.5 on residents of the Pittsburgh region, the incidence of

disease (e.g. respiratory, cardiovascular) and/or death would be assessed in a defined population over a

specified period of time. Prospective cohort studies require the observation of persons from a point in time

into the future. These studies require a large sample size and a long period of follow-up and are, therefore,

both expensive and time-consuming and inappropriate for a study capturing effects from 1999-2004.

Retrospective cohort studies use study populations that were defined in the past by exposure and can be

located and evaluated today for health outcomes of interest. Retrospective cohort designs are generally

more cost effective and less labor intensive, although identification and assembly of a retrospective cohort

can be difficult. 

The American Cancer Society’s Cancer Prevention Study II (CPS-II) is an ongoing prospective mortality

study of over 1.2 million adults recruited in 1982 by ACS volunteers. A recent ancillary study included

about 500,000 of the CPS-II participants who resided in over 100 metropolitan areas for which data on air

pollutants were available. This cohort study included participants from the Pittsburgh metropolitan area.

Overall mortality rates, as well as mortality rates for cardiopulmonary diseases, lung cancer, and other

causes were determined from 1982 to 1998, longer follow-up than for any previous study. The results of

the study suggested that long term exposure to combustion-related PM2.5 was a risk factor for

cardiopulmonary and lung cancer mortality. No analyses were performed on a regional basis. These data

(and subjects) are potentially available for further evaluation (retrospectively and prospectively) of the

long term effects of speciated components of PM2.5.
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The University of Pittsburgh Graduate School of Public Health has also recruited several local cohorts,

both independently and as a site for various national multicenter studies, such as the Cardiovascular

Health Study (CHS), the Study of Osteoporotic Fractures (SOF), Women’s Health Initiative (WHI),

Health, Aging and Body Composition (Health ABC) Study and others.  Participants from several of these

mostly middle-aged and elderly local cohorts would potentially be available for a study of the long term

effects of PM2.5 in the Pittsburgh region. For example, the Health ABC Study enrolled locally

approximately 1500 subjects and the SOF and WHI studies approximately 2000-2500 individuals each.

The individual level data collected for these studies is a potentially rich resource for retrospective cohort

analyses.

In addition, the Pittsburgh regional HMOs, initiated in the 1980s and 1990s, remain a potential secondary

source for retrospective (and prospective cohorts). As noted previously, however, these healthcare entities

are less receptive to partnering with outside institutions for research since the passage of the HIPAA

regulations related to patient confidentiality and privacy. The University of Pittsburgh Graduate School of

Public Health does have an excellent relationship with these health plans and the expectation is that these

groups will be willing to share information with acceptable “honest broker” agreements in place. 

The emerging fields of genomics and proteomics make the assessment of biomarkers for exposure to air

pollutants in cohorts an attractive area for future air pollution research. PAH-DNA adducts and protein

adducts such as benzopyrene-hemoglobin and 4-ABP-hemoglobin have been evaluated in human

populations exposed to differing levels of air pollutants primarily in Europe (Vineis and Husgafvel-

Pursiainen, 2005). As these fields mature, it will potentially be possible to assess various biomarkers for

exposure to PM2.5 from specific sources. Such a cohort study is currently, however, outside the scope of

the PITT-PM study group’s retrospective study proposal.

3.12 Key Health Outcome Issues to Consider in the Design of a

Retrospective Study of Speciated PM2.5 and Health Effects

There are several key issues are of importance in the design of a retrospective study to assess the health

effects of PM2.5 and its components. These points are outlined in this section and are addressed in the

proposed retrospective study design. These include but are not limited to:

� Sensitivity of the health outcome of interest to short (or long term) effects of PM2.5 or its components

(exploration of hospitalizations, ED visits, physicians office visits as outcomes for PM2.5 retrospective

research efforts)

� Selection of specific respiratory (asthma, chronic bronchitis, pneumonia) and circulatory (all ischemic

heart disease, myocardial infarction) admission disease categories for analysis; considerations for

stratification of admission by disease subcategories for time series analyses if power analysis permits
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� Specific evaluation of vulnerable populations such as the elderly and the very young 

� Use of a single health outcome of interest (mortality, hospitalizations, emergency room admissions or

other, separately) or validation of some composite health outcome variable to assess short term effects

� Possibility of “dilution of effects” by inclusion of health outcomes that are not related to PM2.5 or

populations that are not exposed to PM2.5 

� Consideration of separate analyses for respiratory and circulatory disease, given the difference in lags

suggested in literature for PM2.5 effects

� Power issues related to conducting separate analyses for specific sub-disease category health

outcomes (e.g., asthma, ischemic heart disease, etc)

� Sub-region analyses: given the regional nature of many pollutants, is it possible to effectively evaluate

a smaller geographical entity – e.g. ZIP code level data – in the time series analysis? Number of daily

admissions of ED visits required to ensure enough statistical power to detect a significant small area

effect if it exists; influence of variability in daily counts vs. number of total available days of interest

on overall statistical power of the study

� Evaluation of mortality and morbidity in existing cohorts to determine the long-term impact of

exposure to PM2.5 and its component species

3.13 Development of Comprehensive Health Outcomes Datasets for a

Retrospective Epidemiological Study

Although the health outcomes datasets that are available retrospectively for the Pittsburgh region have

been identified, these datasets have not been physically acquired by the study team as a part of this

feasibility assessment since acquisition would require significant time and cost that were beyond the scope

of this project. We have determined, however, that both mortality and hospitalization standardized data are

available from 1999-2004 (and to the present 2006) for the region. We have also demonstrated that ED

data are available from 40% of the area hospitals from 1999-2004 and that the hospitals with the most

complete data are associated with the large healthcare systems (UPMC Health System, West-Penn

Allegheny Health System, Mercy Health System) that are more likely to partner with university and

industry-based research groups. We have obtained and used test data for Allegheny County hospitalization

descriptive analyses and for the preliminary assessment of statistical models. The complete health

outcomes datasets will be obtained as a task in the proposed retrospective epidemiology study plan and a

comprehensive health outcomes database constructed for statistical analyses.
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3.14 Technical and Cost Analysis for the Health Outcomes

3.14.1 Technical Analysis

From this feasibility assessment, it has been determined that retrospective health datasets for mortality and

hospitalizations from 1999-2004 or later can be constructed for the Pittsburgh region. An ED visit dataset

can also be constructed but will likely be more limited in geographic coverage. All data to be used for the

retrospective epidemiological assessment of the health effects of PM2.5 particulates will be obtained

exclusively from existing secondary data sources, primarily at the onset of the project period. PM 2.5 data

will be obtained from various federal, state and local air quality monitoring networks, including the U.S.

EPA Air Quality Monitoring System, U.S. Department of Energy National Energy Technology Laboratory

and the Pittsburgh Supersite. Mortality data will be obtained from the Pennsylvania Department of Health

Bureau of Health Statistics and Research and verified using National Center for Health Statistics (NCHS)

Division of Vital Statistics. Recent quality analysis comparing these electronic datasets to death

certificates suggests that the error rate is 2% or less. Hospitalization data is collected by the Pennsylvania

Health Care Cost Containment Council (PHC4). The data are processed using a series of validation rules

before being finalized and made available for further analysis and public release. PHC4 edits the data and

provides error reports to each data source. The health care facility will make error corrections and provide

PHC4 with corrected information. Compliance across health care institutions in Pennsylvania approaches

100% (99% in recently released 2006 reports). Emergency department (ED) data will be acquired from

individual hospitals/hospital systems through directed agreements. If necessary, the investigators will

utilize an “honest broker” system to acquire identified ED data from hospitals for use in the study.

Verification of the accuracy and integrity of the ED and other data will be conducted by the data research

associate and will include ID verification, data range, and type verification, and duplicate entry checks.

Additional data editing and report generation will be performed quarterly to assure data integrity and

completeness. Meteorological parameters will be obtained from the National Oceanic and Atmospheric

Administration (NOAA). These data are governed by strict quality guidelines as described online

(http://www.cio.noaa.gov/itmanagement/IQ_Guidelines_110606.htm).

3.14.2 Cost Analysis

For the health outcomes aspect of the PITT-PM project, the greatest staff time commitment is associated

with the acquisition and quality validation of the various health datasets, including mortality,

hospitalizations and ED visits. Since the mortality and hospitalization data are collected and validated at

centralized agencies by regulation or statute, this task is less time consuming. For emergency department

data, however, the PITT-PM health outcomes group will collect and assemble data from various health

care entities and will be responsible for the cleaning and quality assurance of the data and the validity of

the final dataset. Descriptive statistical analyses of all individual and aggregated data will be performed.
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4.1 Time Series Power Analysis

4.1.1 Introduction

A power analysis was conducted to help to determine the length of a time series needed to adequately

determine the relationship between exposure factors and health effects. A data set was assembled covering

the period from 10/9/98 to 12/31/00 for Pittsburgh using NMMAPS

(http://www.ihapss.jhsph.edu/software/NMMAPS/NMMAPS.htm) and ACAPS data sets. The admissions

data for people over 65 years of age was used from the ACAPS data set while PM2.5 concentrations and

other co-pollutants were taken from the NMMAPS data set. Summary statistics are shown in Tables 48

and 49. The R language and environment for statistical computing (R Development Core Team, 2006)

was used for almost all computations. (R is freely available for download at http://www.r-project.org/.)

Table 48: Descriptive statistics for NMMAPS/ACAPS time series data.

Elderly

Hospital

Admisisons

PM2.5 SO2 NO2 NOx NO Ozone Temper-

ature

Relative

Humidity

Mean 113.861 16.220 0.011 0.023 0.043 0.019 0.025 50.870 48.500

Standard  Deviation 28.077 10.240 0.006 0.007 0.030 0.025 0.014 17.186 15.921

Table 49: Correlation matrix of exposure and health variables from the NMMAPS/ACAPS dataset. The

two highest correlations are highlighted in yellow.

Admiss.old tp cs sn pm25 so2 no2 nox no ozone mntp mnrh

Admiss.old 1.00 -0.25 0.15 0.26 -0.06 0.00 -0.05 0.01 0.03 -0.09 -0.16 -0.04

temp -0.25 1.00 0.14 -0.41 0.00 0.06 -0.10 -0.05 -0.03 -0.09 -0.03 0.32

cs 0.15 0.14 1.00 0.00 -0.16 0.37 0.21 0.40 0.40 -0.80 -0.81 0.14

sn 0.26 -0.41 0.00 1.00 -0.10 -0.06 0.03 0.00 -0.01 -0.03 -0.33 -0.25

pm25 -0.06 0.00 -0.16 -0.10 1.00 -0.03 0.07 0.00 -0.02 0.13 0.36 -0.04

so2 0.00 0.06 0.37 -0.06 -0.03 1.00 0.49 0.53 0.50 -0.27 -0.26 0.01

no2 -0.05 -0.10 0.21 0.03 0.07 0.49 1.00 0.81 0.68 -0.16 -0.17 0.00

nox 0.01 -0.05 0.40 0.00 0.00 0.53 0.81 1.00 0.98 -0.39 -0.32 0.03

no 0.03 -0.03 0.43 -0.01 -0.02 0.50 0.68 0.98 1.00 -0.44 -0.34 0.04



4.1 Time Series Power Analysis

Admiss.old tp cs sn pm25 so2 no2 nox no ozone mntp mnrh

ozone -0.09 -0.09 -0.80 -0.03 0.13 -0.27 -0.16 -0.39 -0.44 1.00 0.66 -0.11

mntp -0.16 -0.03 -0.81 -0.33 0.36 -0.26 -0.17 -0.32 -0.34 0.66 1.00 -0.07

mnrh -0.04 0.32 0.14 -0.25 -0.04 0.01 0.00 0.03 0.04 -0.11 -0.07 1.00

Note: tp (time point) is an index for the day starting at 10,508 and ending at 11,322. cs and sn are cosine and sine functions of the time to

handle seasonality. mntp is the mean daily temperature and mnrh is the mean relative humidity.

It should be noted that this first simple regression analysis completely ignores autocorrelation in the

dependent and independent variables. Figure 54 shows the autocorrelation function (ACF) and partial

autocorrelation function (PACF) for the residuals for the model of admissions as a function of PM2.5,

weather, and co-pollutants. Although the day-of-week, trend, and yearly seasonality effects have been

removed, there is still a substantial and statistically significant correlation for several lags remaining.

Listing 1 shows the estimated coefficients for the model. The standardized coefficient estimates are shown

in Listing 2. 

To determine the variance inflation factor (the increase in standard errors due to the intercorrelation

among the independent variables), PM2.5 was regressed on the remaining independent variables and the

results are shown in Listing 3 The  R2 was 0.2265 and the variance inflation factor was estimated to be

1.29 .
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4.1 Time Series Power Analysis

Analysis of the residuals from the fitted linear regression (Listing 4) shows an approximate autoregressive

process of order 3 (φ1=0.30, φ2=0.22, φ3=0.20) with σ=14, approximately. (The ACF of the residuals to the

fitted AR model showed no statistically significant autocorrelation confirming the adequacy of the model.)

Listing 1: Model for 65 and over hospital admissions (admiss.old).

> summary(fit.admiss <-
lm(admiss.old~dow+tp+cos(2*pi*tp/365)+sin(2*pi*tp/365)+pm25mean+so2+no2+no+ozone+mntp+mnrh,
+   data=complete.copy[!is.na(complete.copy$pm25mean),]))

Call:
lm(formula = admiss.old ~ dow + tp + cos(2 * pi * tp/365) + sin(2 *
    pi * tp/365) + pm25mean + so2 + no2 + no + ozone + mntp +
    mnrh, data = complete.copy[!is.na(complete.copy$pm25mean),
    ])

Residuals:
     Min       1Q   Median       3Q      Max
-90.8484  -8.6963   0.7477   9.6822  61.7141

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)          253.533196  44.472980   5.701 1.89e-08 ***
dowSun                -2.868334   2.732245  -1.050 0.294236
dowMon                49.741030   2.643650  18.815  < 2e-16 ***
dowTue                45.139919   2.668532  16.916  < 2e-16 ***
dowWed                40.609712   2.649529  15.327  < 2e-16 ***
dowThu                37.551810   2.607584  14.401  < 2e-16 ***
dowFri                33.057982   2.754037  12.003  < 2e-16 ***
tp                    -0.017222   0.003961  -4.348 1.62e-05 ***
cos(2 * pi * tp/365)  14.528318   2.497498   5.817 9.82e-09 ***
sin(2 * pi * tp/365)  10.747829   1.300285   8.266 9.21e-16 ***
pm25mean              -0.060734   0.076630  -0.793 0.428350
so2                  -97.525069 164.904218  -0.591 0.554476
no2                   76.023885 142.156409   0.535 0.592996
no                     7.497306  48.425366   0.155 0.877015
ozone                 33.437176  86.359749   0.387 0.698759
mntp                   0.332376   0.091141   3.647 0.000289 ***
mnrh                   0.022920   0.046236   0.496 0.620277
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.99 on 590 degrees of freedom
Multiple R-Squared: 0.6251,     Adjusted R-squared: 0.6149
F-statistic: 61.47 on 16 and 590 DF,  p-value: < 2.2e-16

Listing 2: Model for 65 and over hospital admissions (admiss.old) - standardized coefficients.

> summary(fit.admiss <-
lm(admiss.old~dow+scale(tp)+scale(cos(2*pi*tp/365))+scale(sin(2*pi*tp/365))+scale(pm25mean)+
scale(so2)+scale(no2)+scale(no)+scale(ozone)+scale(mntp)+scale(mnrh),
+   data=complete.copy[!is.na(complete.copy$pm25mean),]))
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Call:
lm(formula = admiss.old ~ dow + scale(tp) + scale(cos(2 * pi *
    tp/365)) + scale(sin(2 * pi * tp/365)) + scale(pm25mean) +
    scale(so2) + scale(no2) + scale(no) + scale(ozone) + scale(mntp) +
    scale(mnrh), data = complete.copy[!is.na(complete.copy$pm25mean),
    ])

Residuals:
     Min       1Q   Median       3Q      Max
-90.8484  -8.6963   0.7477   9.6822  61.7141

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
(Intercept)                  84.1106     1.9374  43.414  < 2e-16 ***
dowSun                       -2.8683     2.7322  -1.050 0.294236
dowMon                       49.7410     2.6437  18.815  < 2e-16 ***
dowTue                       45.1399     2.6685  16.916  < 2e-16 ***
dowWed                       40.6097     2.6495  15.327  < 2e-16 ***
dowThu                       37.5518     2.6076  14.401  < 2e-16 ***
dowFri                       33.0580     2.7540  12.003  < 2e-16 ***
scale(tp)                    -3.5279     0.8114  -4.348 1.62e-05 ***
scale(cos(2 * pi * tp/365))  10.0913     1.7348   5.817 9.82e-09 ***
scale(sin(2 * pi * tp/365))   7.7418     0.9366   8.266 9.21e-16 ***
scale(pm25mean)              -0.6219     0.7846  -0.793 0.428350
scale(so2)                   -0.5116     0.8650  -0.591 0.554476
scale(no2)                    0.5533     1.0347   0.535 0.592996
scale(no)                     0.1686     1.0893   0.155 0.877015
scale(ozone)                  0.4691     1.2116   0.387 0.698759
scale(mntp)                   5.8054     1.5919   3.647 0.000289 ***
scale(mnrh)                   0.3709     0.7481   0.496 0.620277
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 16.99 on 590 degrees of freedom
Multiple R-Squared: 0.6251,     Adjusted R-squared: 0.6149
F-statistic: 61.47 on 16 and 590 DF,  p-value: < 2.2e-16

Listing 3: PM2.5 as a function of the other covariates.

> summary(fit.pm25 <-
lm(pm25mean~dow+tp+cos(2*pi*tp/365)+sin(2*pi*tp/365)+so2+no2+no+ozone+mntp+mnrh,data=complet
e.copy[!is.na(complete.copy$pm25mean),]))

Call:
lm(formula = pm25mean ~ dow + tp + cos(2 * pi * tp/365) + sin(2 *
    pi * tp/365) + so2 + no2 + no + ozone + mntp + mnrh, data =
complete.copy[!is.na(complete.copy$pm25mean),
    ])

Residuals:
    Min      1Q  Median      3Q     Max
-17.645  -5.804  -1.418   4.290  47.671

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)          -7.482e+01  2.367e+01  -3.161 0.001655 **
dowSun               -2.059e+00  1.464e+00  -1.406 0.160161
dowMon               -1.289e+00  1.418e+00  -0.909 0.363826

PITT-PM 221



4.1 Time Series Power Analysis

dowTue               -2.804e+00  1.428e+00  -1.964 0.049974 *
dowWed               -9.798e-01  1.422e+00  -0.689 0.490966
dowThu               -1.192e+00  1.399e+00  -0.852 0.394612
dowFri                4.626e-01  1.478e+00   0.313 0.754459
tp                    4.409e-03  2.119e-03   2.081 0.037862 *
cos(2 * pi * tp/365)  7.919e+00  1.300e+00   6.089 2.04e-09 ***
sin(2 * pi * tp/365)  2.615e+00  6.896e-01   3.792 0.000165 ***
so2                  -1.466e+02  8.831e+01  -1.660 0.097386 .
no2                   1.912e+02  7.590e+01   2.519 0.012019 *
no                   -6.076e+00  2.599e+01  -0.234 0.815262
ozone                 5.154e+00  4.636e+01   0.111 0.911510
mntp                  4.974e-01  4.444e-02  11.193  < 2e-16 ***
mnrh                 -2.002e-02  2.481e-02  -0.807 0.420013
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.119 on 591 degrees of freedom
Multiple R-Squared: 0.2265,     Adjusted R-squared: 0.2069
F-statistic: 11.54 on 15 and 591 DF,  p-value: < 2.2e-16

Variance inflation factor = 1/(1-R-Squared) = 1/(1-0.2265) = 1.292825

Listing 4: Analysis of the residuals from the fitted linear regression model.

> sd(fit.admiss$resid)
[1] 16.76217
> arima(fit.admiss$resid,order=c(3,0,0))

Call:
arima(x = fit.admiss$resid, order = c(3, 0, 0))

Coefficients:
         ar1    ar2     ar3  intercept
      0.2976  0.225  0.2011    -0.6937
s.e.  0.0399  0.041  0.0412     2.0427

sigma^2 estimated as 195.1:  log likelihood = -2462.17,  aic = 4934.34
> sqrt(195.1)
[1] 13.96782

4.1.2 Theoretical Power Analysis Based on Regression 

The theoretical power computations were performed using an on-line Java applet developed by Lenth and

available at http://www.stat.uiowa.edu/~rlenth/Power/. The significance level α was chosen to be 0.05. A

variance inflation factor of 1.3 was used assuming 16 independent variables along with 10 µg cm-3 for  the

PM2.5 standard deviation and 17 µg cm-3 for the residual standard deviation. The power for a one-tailed test

was computed for three time series lengths: 1,095 days (3 years), 1,460 days (4 years), and 1,825 days (5

years) for a PM2.5 coefficient that ranges from 0.05 to 0.3 in steps of 0.005. Listing 5 shows a typical set

of values used in the power analysis. Listing 6 shows the output from the power analysis for a three-yearrs

series of daily values. Table 50 shows the coefficient β and power values for each of the three time series

lengths.  Figure 55 shows how the power increases with the increase in the beta coefficient for each of the
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three time series lengths. This figure shows that for n = 1,095, 80% power occurs for β = 0.15; for n =

1,460, 80% power occurs for β = 0.13; and for n = 1,825, 80% power occurs for β = 0.115. The R code for

these estimates is shown in Listings 7, 8, and .9

Listing 5: Example input for power analysis.

# Assumptions:

# Dependent variable = admissions
# alpha = 0.05
# upper-tailed test
# beta for pm2.5 = 0.06
# no. of independent variables = p = 16
# R^2 between pm2.5 and 16 other covariates =  0.22 65
# Variance inflation factor = 1/(1-R^2) = 1.29
# Length of admissions series = n = 4*365 = 1460
# sd of pm 2.5 = 10
# error sd = 16.93

> mean(pm25mean,na.rm=TRUE)
[1] 0.1130049
> mean(pm2.5,na.rm=TRUE)
[1] 16.22452
> sd(pm2.5,na.rm=TRUE)
[1] 10.24053
> sd(pm25mean,na.rm=TRUE)
[1] 10.23935

On-line Power Analysis Software:

http://www.stat.uiowa.edu/~rlenth/Power/

Listing 6: Power as a function of beta for 1,095 days (3 years).

# Power vs. Detectable beta[j]
#   Two-tailed: false
#   Solve for: Sample size
#   No. of predictors = 16
#   SD of x[j] = 10
#   VIF[j] = 1.3
#   Alpha = .05
#   Error SD = 17
#   Sample size = 1095
beta power
.05 .21424
.055 .23995
.06 .26724
.065 .29603
.07 .32615
.075 .35746
.08 .38976
.085 .42284
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.09 .45647

.095 .49042

.1 .52443

.105 .55827

.11 .59169

.115 .62446

.12 .65635

.125 .68716

.13 .71672

.135 .74487

.14 .77148

.145 .79646

.15 .81973

.155 .84126

.16 .86103

.165 .87905

.17 .89537

.175 .91002

.18 .92309

.185 .93467

.19 .94485

.195 .95373

.2 .96142

.205 .96804

.21 .97369

.215 .97848

.22 .98251

.225 .98588

.23 .98867

.235 .99097

.24 .99285

.245 .99438

.25 .99561

.255 .99659

.26 .99737

.265 .99799

.27 .99847

.275 .99884

.28 .99913

.285 .99935

.29 .99952

.295 .99965

.3 .99974
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Table 50: Power as a function of true � coefficient and time series length based on multiple regression

model.

� N=1,095 N=1,460 N=1,825 � N=1,095 N=1,460 N=1,825

0.050 0.21 0.25 0.29 0.155 0.84 0.92 0.96

0.055 0.24 0.29 0.33 0.160 0.86 0.93 0.97

0.060 0.27 0.32 0.37 0.165 0.88 0.95 0.98

0.065 0.30 0.36 0.42 0.170 0.90 0.96 0.98

0.070 0.33 0.40 0.46 0.175 0.91 0.96 0.99

0.075 0.36 0.43 0.50 0.180 0.92 0.97 0.99

0.080 0.39 0.47 0.55 0.185 0.93 0.98 0.99

0.085 0.42 0.51 0.59 0.190 0.94 0.98 0.99

0.090 0.46 0.55 0.63 0.195 0.95 0.99 1.00

0.095 0.49 0.59 0.67 0.200 0.96 0.99 1.00

0.100 0.52 0.63 0.71 0.205 0.97 0.99 1.00

0.105 0.56 0.66 0.75 0.210 0.97 0.99 1.00

0.110 0.59 0.70 0.78 0.215 0.98 1.00 1.00

0.115 0.62 0.73 0.81 0.220 0.98 1.00 1.00

0.120 0.66 0.76 0.84 0.225 0.99 1.00 1.00

0.125 0.69 0.79 0.87 0.230 0.99 1.00 1.00

0.130 0.72 0.82 0.89 0.235 0.99 1.00 1.00

0.135 0.74 0.84 0.91 0.240 0.99 1.00 1.00

0.140 0.77 0.87 0.93 0.245 0.99 1.00 1.00

0.145 0.80 0.89 0.94 0.250 1.00 1.00 1.00

0.150 0.82 0.91 0.95 0.255 1.00 1.00 1.00
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4.1.3 Empirical Power Analysis Using Simulation

As an alternative to the approximate theoretical power computation discussed above, a simulation analysis

was also performed. The simulation approach can easily include an autocorrelated error component which

was ignored in the theoretical analysis. The simulation analysis requires modeling hospital admissions as a

function of the independent variables and the residual error component. The modeling was based on the

same data assembled from NMMAPS and ACAPS as discussed above. The intercorrelation of the

independent variables and the error autocorrelation was modeled on the relationships observed in the

assembled data set. The ACF and PACF graphs show that the error process can be represented as an

autoregressive process of order 3 (AR(3)). An ARIMA model of order (p=3, d=0, q=0) with included

independent variables was fitted to the error series and the estimated autoregressive coefficients for lags 1,

2, and 3 were approximately 0.3, 0.2, 0.2, respectively. The residual error standard deviation for this

model was about 14. For each hypothesized value of beta (the coefficient for PM2.5) from 0 to 0.15 in steps

of 0.01, one thousand (1,000) statistically independent draws were made from the correlated error

distribution resulting in a total of 48,000 estimated ARIMA models. The standard error of the estimated

power ��  is:

�
��
=��×�1���

1,000
.

For π = 0.05, the standard error is about 0.0069. For π = 0.5, the standard error is about 0.0158 and for π=

0.8, the standard error is about 0.0126. Power as a function of β is tabulated in Table 51 and graphed in

Figure 56. As a check on the simulation, β = 0 was included. For β = 0, the power must equal the

significance level, in this case 0.05. The simulation produced reasonably good estimates for β = 0. The

average standard error for estimating β is shown in Table 52. Doubling the number of observations from

1,095 to 2,190 decreases the standard error by about 29%.The simulated power curves show the same

general pattern as those based on theoretical considerations but show higher power. For N = 1,095 (three

years), the power reaches 0.8 before β = 0.11 (compared to 0.15 for the theoretical analysis). For N =

1,460 (four years), the power reaches 0.8 just beyond β = 0.09 (compared to 0.13). Finally, for N = 1,825

(five years), the power reaches 0.8 before β = 0.08 (compared to 0.115). The increased power is due to the

reduced residual error achieved by accounting for the information in the autocorrelated errors. This

supports the idea that properly handling the autocorrelation in the residual errors, e.g., by using GLARMA

modeling, can make a significant contribution to detecting smaller effects of explanatory factors.
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Table 51. Empirical power estimates for AR(3) error. Each estimate is based on 1,000 simulations.

�

Time Series Length (N)

1,095 1,460 1,825

0.00 0.03 0.05 0.05

0.01 0.09 0.10 0.08

0.02 0.10 0.14 0.15

0.03 0.18 0.23 0.25

0.04 0.22 0.28 0.35

0.05 0.32 0.40 0.47

0.06 0.41 0.49 0.61

0.07 0.50 0.57 0.72

0.08 0.60 0.70 0.81

0.09 0.69 0.78 0.89

0.10 0.74 0.86 0.93

0.11 0.83 0.92 0.96

0.12 0.89 0.95 0.98

0.13 0.92 0.97 0.99

0.14 0.94 0.98 1.00

0.15 0.97 0.99 1.00
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Table 52. Approximate standard errors for β. Each estimate is based on 1,000 simulations.

Years N Standard

Error for β

% Drop Cumulative

% Drop

2 730 0.0498 NA NA

3 1,095 0.0425 14.6 14.6

4 1,460 0.0356 16.3 28.5

5 1,825 0.0325 8.7 34.7

6 2,190 0.0301 7.4 39.5

Listing 7: R function to sample from a multivariate normal distribution. Based on code from:

http://maven.smith.edu/~nhorton/R/.

# Simulated power for autocorrelated time series

rmultnorm <- function(n, mu, vmat, tol = 1e-07)  
 # a function to generate random multivariate Gaussians 
 {
    p <- ncol(vmat)  
    if (length(mu)!=p)

stop("mu vector is the wrong length")  
    if (max(abs(vmat - t(vmat))) > tol) 

stop("vmat not symmetric") 
    vs <- svd(vmat)  
    vsqrt <- t(vs$v %*% (t(vs$u) * sqrt(vs$d))) 
    ans <- matrix(rnorm(n * p), nrow = n) %*% vsqrt
    ans <- sweep(ans, 2, mu, "+")
    dimnames(ans) <- list(NULL, dimnames(vmat)[[2]])  
    return(ans)

Listing 8: R code for plotting theoretical power estimates.

pwr <- read.table("/projects/PITT-PM/power/Data/power_beta.txt",
  sep="",header=TRUE)

postscript("/projects/PITT-PM/power/PS/power_beta2.eps",height=6.5,width=6.5,
  onefile=FALSE,horizontal=FALSE,paper="special")
plot(beta,n1095,type="l",lty=1,ylab="Power")
lines(beta,n1460,lty=2)
lines(beta,n1825,lty=3)
abline(h=0.8,col="red")
legend(0.15,0.5,c("No. of days = 1095 (3 yrs)",
  "No. of days = 1460 (4 yrs)","No. of days = 1825 (5 yrs)"),
  lty=c(1,2,3))
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dev.off()
system("evince /projects/PITT-PM/power/PS/power_beta2.eps &")

data.frame(beta,"n=1095"=n1095,"n=1460"=n1460,"n=1825"=n1825)

Listing 9: R code to simulate time series model and compute power. Based on code from:

http://maven.smith.edu/~nhorton/R/.

# Simulate and compute power

#attach(complete.copy)     
vmat <- var(data.frame(pm25=pm25trend+pm25mean,so2, no2,no,ozone,mntp,mnrh)
  ,use="complete")

#N <- 1095
#N <- 1460
#N <- 1825

tpt <- seq(10508,10508+N-1,1)
cse <- cos(2*pi*tpt/365)
sne <- sin(2*pi*tpt/365)
dowt <- factor(as.character(weekdays(dates(tpt))),c ("Sat","Sun","Mon","Tue","Wed","Thu","Fri"))

xmat <- rmultnorm(N, c(mean(pm25trend+pm25mean,na.r m=TRUE),mean(so2),mean(no2),mean(no),mean(ozone),
  mean(mntp),mean(mnrh)), vmat)
x1 <- xmat[,1]
x2 <- xmat[,2]
x3 <- xmat[,3]
x4 <- xmat[,4]
x5 <- xmat[,5]
x6 <- xmat[,6]
x7 <- xmat[,7]

numsim <- 1000
pow <- rep(NA,6)
beta <- 0.06

for(j in 1:6)
{

beta <- beta + 0.01

power <- rep(0,numsim)

cat("\n\nN =",N,"\nbeta =",beta,"\n")

for (i in 1:numsim) {
    cat("\r",i)
    cor.error <- arima.sim(model=list(order=c(3,0,0 ),ar=c(0.3,0.2,0.1)),n=N,sd=17)
    y <- 253.5+beta*x1-0.017222*tpt+14.528318*cse+1 0.747829*sne-2.868334*ifelse(dowt=="Sun",1,0)+
      49.741030*ifelse(dowt=="Mon",1,0)+45.139919*i felse(dowt=="Tue",1,0)+40.609712*ifelse(dowt=="Wed" ,1,0
) +
      37.551810*ifelse(dowt=="Thu",1,0)+33.057982*i felse(dowt=="Fri",1,0) - 
      97.525069*x2 + 76.023885*x3 + 7.497306*x4 + 3 3.437176*x5 + 0.332376*x6 + 0.022920*x7
      
    y <- y+cor.error

# Estimate ARIMA model
    res <- arima(y,order=c(1,0,0),xreg=data.frame(x 1,tpt,cse,sne,
      sun=ifelse(dowt=="Sun",1,0),mon=ifelse(dowt== "Mon",1,0),
      tue=ifelse(dowt=="Tue",1,0),wed=ifelse(dowt== "Wed",1,0),
      thu=ifelse(dowt=="Thu",1,0),fri=ifelse(dowt== "Fri",1,0),x2,x3,x4,x5,x6,x7))

    se.x <- sqrt(res$var.coef[3,3])
    obs.t.x <- res$coef[3]/se.x
    pval <- 1-pnorm((obs.t.x))
    power[i] <- pval<=0.05
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}
pow[j] <- sum(power)/numsim

cat("\n\nempirical power for beta of ",beta,
    " is ",round(pow[j],3),".\n",sep="")
}

# Print power

# n = 1825
# ar=c(0.3,0.2,0.1)
data.frame(beta=seq(0.05,0.1,0.01),pow)

4.2 Calibration of Measurements Made by Different Methods

4.2.1 Introduction

It will be necessary to combine measurements made at multiple monitoring sites distributed in space and

time in order to estimate daily values. This will be handled in an optimal manner using geostatistical

techniques discussed below. When the same parameter is measured by different types of monitors using

different analytical techniques it will be necessary calibrate the values before combining. The calibration

needs to adjust the measurements for relative bias (i.e., systematic differences). The bias parameters are

indirectly related to the imprecision (i.e., the amount of random measurement error) of each method.

Although the appropriate techniques for determining imprecision and bias of measurement methods are

well-developed and easily available, they do not appear to be used routinely in air pollution research. This

situation is not unique to air pollution research but also occurs in other "hard" sciences. Many of the

techniques were developed for psychology, sociology, and economics where severe measurement

problems are the rule. In reality, the measurement problems in the "hard" sciences are not that different

although the conceptual problems and problems of identification are somewhat less severe. The most

general formulation of the measurement error problem involves using latent variable (structural equation)

modeling. In cases where there are only two measurements for each item in a set of items (like air

parcels), the methods often attributed to Bland and Altman can be useful so long as the two methods have

similar imprecision.

4.2.2 Measurement Error Model

Measurement error can often be represented by a linear model that relates the n true (theoretical) values to

the observed n�m measurements from m methods:

x
ij
=	

i

�

i
�

j

�

ij

where xij denotes the measurement from the i
th
 method and the j

th
 item, µj is the true value for the j

th
 item, �

αi and β� i are parameters that describe the (assumed linear) systematic error for the i
th 

method and εij is a
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random error for the i
th
 method and j

th
 item and is assumed to be Normally distributed with mean zero and

standard deviation σi. The parameter σ� i characterizes the imprecision of method i. In addition, the true

values µj have mean 
�  and standard deviation σ. In order to be able to estimate the parameters (denoted

by the Greek letters), the number of methods (devices)  m must be 2 or greater. The various parameters

can be estimated using the method of moments and the method of maximum likelihood. The method of

maximum likelihood typically provides better estimators. It should be emphasized that regressing xij on xi'j

using ordinary linear regression provides biased estimators for the parameters. This bias can be very

severe when xi'j has measurement error with σi' > 0. In particular, using linear regression will provide a

calibration line that distorts the true systematic error (Ripley and Thompson, 1987).

4.2.3 Ideal Method for Determining Measurement Imprecision

The most efficient way to estimate the imprecision (the standard deviation of the random error

component ) would be to repeatedly measure the same item using the method of interest. Depending on

what the item is and what the method is, this may be easy or it may be virtually impossible under routine

conditions and/or very difficult even in laboratory settings. For air pollution research the item would be a

(relatively small) parcel of air. (What is "small" would depend on the research.) In this special case:

In general, the total variance of the observed measurement x is: 

because α and β. Because µ is now a constant, ��
2
=0  so that the imprecision �� is simply equal to �

x

which can be estimated by the sample standard deviation of the observed measurements sx. Unfortunately,

for air pollution research it would be very difficult or impossible to measure the same air parcel in the

field over and over so that it will be necessary to measure a number of different air parcels taken at

various points in time using two or more methods. Regardless of how many methods are used, fewer

computational problems will be encountered if the �
i
 are very similar so that ��  is small compared to the

imprecision �
�

i

 for each method i.

4.2.4 Determining Bias for Two Methods of Approximately Equal Imprecision

If there are only two methods and the methods are of approximately the same imprecision, then an easy

way to determine the relative bias and the common imprecision is to regress the differences of the paired

measurements to their averages. This method, while not invented by Bland and Altman, has been

championed by Bland and Altman as the proper way to determine how well two methods agree. (Bland

and Altman and a number of other statisticians have warned repeatedly that using ordinary regression to
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regress one method on the other leads to a distorted view of the relative bias and should in practice never

be used. This will be discussed in detail in a following section.) An advantage of the Bland-Altman

approach is that it can be implemented using regression analysis programs. The disadvantage is that it

cannot be used if the method imprecisions substantially differ and/or there are more than two methods. (In

addition, as discussed in more detail below, the assumption of equal imprecision standard deviations is a

relatively strong assumptions which can affect the estimates of the bias parameters.) Before using the

Bland-Altman approach, the more general approach of latent variable modeling should be used to

determine separate imprecision standard deviations and to check the affect of assuming equality on the

bias parameter estimates.

4.2.5 Latent Variable Model for Measurement Error

Latent variable modeling provides a more general method for estimating the parameters in the

measurement error model shown above. In this approach it is assumed that the measurements x are

observed or manifest variables and are driven by the true values � referred to as a latent (hidden) variable.

The relationships are illustrated in.Figure 57.
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Figure 57: The (unobserved) latent variable α explains the observed measurements x1 and x2 via slope

coefficients (β). The intercepts ( 	 and 
� ) are represented by the latent variable denoted by the constant

1. The variability in the true values (free from measurement error) is characterized by � while� �
1 and

�
2 characterize the method imprecisions.
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4.2.6 Why Naive Regression Distorts Evaluation of Bias

The use of regression analysis for calibration when both methods have measurement error is known to

distort the characterization of the actual bias and should be avoided. Three simulations are used to

illustrate the problem. In the first simulation, there is a constant bias between the two methods. In the

second simulation, there is no bias. Finally, in the third simulation, one of the methods has no

measurement error.

4.2.6.1 Constant Bias Simulation Example

In this case: α2=-2,α� 1=2, β1=β2=1, σ1=σ2=1.  X1 and X2 were simulated 100 times as multivariate Normal

with means 10 and 12, respectively, and variances of 1 with a correlation of 0.77.  The bias was thus

constant and equal to 12-10 = 2. The true common imprecision would be the square root of (1-0.77) or

about 0.48. In this case, the true relationship is:

X2 = 2 + X1,

or equivalently:

X1 = -2 + X2

An estimated calibration line based on observed data should give a result similar to the above relationship

and not systematically differ. From the simulated data, the observed sample had means of 10.11 and 12.09

and standard deviations 1.08 and 1.11, respectively. The observed correlation was 0.80. Measurement

error causes the magnitude of the correlation to be less than one. The separately estimated imprecisions for

X1 and X2 were 0.46 and 0.53 and estimated common imprecision is 0.49. The estimated bias (X2 - X1) is

12.09 - 10.11 = 1.98.

Based on the Bland-Altman analysis shown in Figure 58, the estimated calibration line is:

X2 = 1.65125 + 1.03273 X1, 

or, equivalently

X1 = -1.59892 + 0.96831 X2.
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For example, if X1 = 10, then X2 = 11.97855. If X2 = 10, then X1 = 8.08418.

The relationship between the differences and the averages is:

X1 - X2 = -1.62466 - 0.0322 [(X1+X2)/2]

The slope of 0.0322, however, is not statistically significantly different from zero (p=0.6366).

If we adopt the simpler model (constant bias, implies slope = 1) based on the observed mean difference

(12.09 – 10.11 = 1.98) , then

X2 = 1.98218 + X1,
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Figure 58: Simulated data for equal imprecision and constant bias case (α2- α1=2, β1=β2=1, σ1=σ2=1).
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or, equivalently

X1 = -1.98218 + X2.

Over the range of the observed data (8 to 14), the simplified approximate calibration line:

X2 = 1.98218 + X1

and the original calibration line:

X2 = 1.65125 + 1.03273 X1

are very similar. For  X1 = 8, the first equation yields X2 = 9.98 while the second equation yields X2 =

9.91.

The calibration plot Figure 58 includes the two different regression lines that relate X1 to X2: X1 as a

function of X2 and X2 as a function of X1. Unlike the single calibration line (with two equivalent

representations), there are two different regression lines whenever the absolute value of the correlation is

less than one (the random measurement error will force the magnitude of the true correlation to be less

than 1). Because the bias is constant with level, the true calibration line is parallel to the diagonal line.

This is not true of the regression lines which are definitely not parallel to the diagonal line. Using the

regression lines, we would incorrectly conclude that the bias was non-constant. Worse still, the nature of

the bias would depend on which regression line was used. Thus, using regression naively for calibration

data completely distorts the nature of the bias whenever there is measurement error.

When the correlation is near one, the two regression lines will still differ but will be very similar to each

other and the correct calibration line. In general, unless the correlation is perfect and/or there is no

measurement error (neither of which are realistic cases), direct regression should not be used for

calibration.

Whenever the bias is constant (as it was in this example), the calibration line slope should be 1.0. Yet

whenever the correlation is imperfect, the true regression slope must always be less than 1.0. The reason

for this is that regression minimizes the sum of the squared errors so as to obtain the best prediction when

the measurements are contaminated by measurement error. This, however, is not appropriate for

calibration.

The regression of X2 on X1 yields:

predicted X2 = 3.80141 + 0.82006 X1.

For X1 = 12, X2 is estimated to be 13.64213. The difference is 1.64213 which is substantially too small.
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For X1 = 8, X2 is estimated to be 10.36189 and the difference is 2.36189 and is substantially too large.

Thus, the bias appears to be non-constant which is a gross distortion of the nature of the actual bias in this

case. Furthermore, if you use the other regression equation, the distortion is reversed. Thus, the use of

naive regression here leads to complete nonsense.

4.2.6.2 No Bias Simulation Example

In this case: 	
1
=	

2
=0 , �

1
=�

2
=1 , and �

1
=�

2
=1.  When the methods have the same amount of

imprecision and there is no relative bias, we expect the points to fall along the diagonal line X2 = X1. In

this case:

X
1
=�
�

1

X
2
=�
�

2

The two measurement methods are interchangeable. Figure 60 illustrates the latent variable model.

Listing 12 shows the simulation results for a case where there is no bias. The true values ranged from 11,

12, ... , 20 and were identical for X1 and X2. The true standard deviation for X1 and X2 was about

2.886751. The imprecision SD's were both equal to one. The expected variances for  X1 and X2 would be

2.8867512 + 12 = 9.333333. The expected means for X1 and X2 would be 15.5. The observed sample means

were very similar and close to 15.5. The observed variances for X1 and X2 were about 8.295321 and

9.636726, respectively, and not too far from the expected 9.333333. The observed covariance was about

7.562288. The Grubbs type estimator for the imprecision variances would be 8.295321-7.562288 =

0.733033  for X1 and 9.636726 – 7.562288 = 2.074438 for X2. The resulting estimated imprecision sd's

would then be about 0.856 and 1.440, respectively. The imprecision estimates illustrate the difficulty in

precisely determining the imprecision. The agreement with the true imprecision sd's is not great even for a

relatively large sample size.

The naive regression analysis is shown in Listing 10 and the theoretical reason why the intercept estimate

and slope estimate are wrong is illustrated in Figure 59. Note that estimated � '=0.91163 . It is much

lower than the true value of 1. (It is not quite statistically significantly different than 1, but with a larger

sample size it would be.) The estimated intercept is 1.29011 but should be near zero. The sample

correlation between X
1
 and X

2
 was about 0.85. The lower the correlation, the lower �* will be.

Simultaneous estimates of all the parameters using maximum likelihood estimation for the latent variable

model are shown in Listing 13. The model with constraints � �
1
�

2
=1 , �

1
�0  and �

2
�0  is shown in

Figure 60. The Mx program output provides confidence intervals on all the parameters. The estimated

relationships between the measured values and the true values are:

X1 = -0.1918 + 1.0149�
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X2 = 0.1884 + 0.9853�

The intercepts are near zero (the 95% confidence intervals include zero) and the slopes are near one (the

95% confidence intervals include one). The calibration line relating X1 to X2 is:

X
1
=	

1
�	

2
�

1
/�

2

�

1
/�

2
X

2

or equivalently

X
2
=	

2
�	

1
�

2
/�

1

�

2
/�

1
X

1 .

For this data:

X1 = -0.3859 + 1.0300 X2

X2 = 0.3746 + 0.9708 X1.

The calibration line intercepts are much nearer zero and the slopes are nearer one than for the naive

regression lines.

The estimated imprecision sd's are 0.7113 for X1 and 1.5149 for X2. The lower bound for the 95%

confidence interval for both imprecision sd's is zero. The upper bound for X1 is about 1.778 and for X2 is

about 1.917.  These intervals are fairly wide but they do include the true imprecision sd values (1.0) and

they largely overlap. Note that the estimate of the true sd for the measurements is 2.7500 which is close to

the true sd of 2.8868.
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Figure 59: Regression model for predicting X2 from X'1 but ignoring the measurement error �
1
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 shows the Bland-Altman plots and the resulting calibration line. As with the calibration line derived from

the latent variable model, the Bland-Altman calibration line is much closer to the diagonal line than the

regression lines. The advantages of the latent variable model compared to using the Bland-Altman method

are 1) it does not need to assume equal imprecision sd's, 2) it can handle more than two methods, and 3)

negative variance estimates can be avoided by using constrained optimization.
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Figure 60: Latent variable model for two measurements with random error (diagram omits the means

structure for simplicity).
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Figure 61: Scatter plot, Bland-Altman plot, and calibration for no relative bias example α=0, β=1 for

both X1 and X2 and equal imprecision).
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Listing 10: Annotated R code for simulation of no bias (α1=α2=0, β1=β2=1) and equal imprecision

(σ1=σ2) case with sample size n = 100.

True SD = 2.886751

True imprecision for both methods = 1.0

True means for both methods = 15.5

True values = 11, 12, ... , 20 replicated 10 times

x <- 11:20
x1 <- x + rnorm(100)
hist(x1)
x2 <- x + rnorm(100)
df.no.bias <- data.frame(x1,x2)

> head(df.no.bias)
        x1       x2
1 12.15470 11.45415
2 12.95705 12.27728
3 12.74219 14.27082
4 12.02028 11.96076
5 15.83335 15.51070
6 14.28467 16.87499

# Variance-Covariance Matrix
> var(df.no.bias)  
         x1       x2
x1 8.295321 7.562288 <- covariance
x2 7.562288 9.636726
# Note: sqrt(7.562288) = estimate of � (true sd = 2.89)
> sqrt(7.562288)
[1] 2.749961  # Very close to 2.89

# Imprecision sd for method 1 (using Grubbs method) : 
> sqrt(8.295321-7.562288) 
[1] 0.8561735  # A little smaller than true value o f 1

# Imprecision sd for method 2 (using Grubbs method) :
> sqrt(9.636726-7.562288) 
[1] 1.440291  # A little larger than true value of 1

> mean(df.no.bias)
      x1       x2
15.46293 15.38663 <-- Means almost exactly equal (l ittle or no bias)
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Listing 11: Regression of X2 on X1  for no bias example.

> summary(lm(x2~x1,data=df.no.bias))

Call:
lm(formula = x2 ~ x1, data = df.no.bias)

Residuals:
    Min      1Q  Median      3Q     Max
-4.1895 -0.9350 -0.1195  0.8849  4.4947

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)  1.29011    0.91345   1.412    0.161
x1        �* 0.91163    0.05808  15.695   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1

Residual standard error: 1.665 on 98 degrees of fre edom
Multiple R-Squared: 0.7154,     Adjusted R-squared:  0.7125
F-statistic: 246.3 on 1 and 98 DF,  p-value: < 2.2e -16

Listing 12: Latent variable model using the Mx program. The code constrains the imprecision sd's to

being non-negative and the product of the β's equal to 1. The output is annotated.

  
  ** Mx startup successful **
  
   **MX-Linux version 1.64a**
 
 
 The following MX script lines were read for group    1
 
 #NGROUPS 3
  Note: #NGroup set number of groups to 3
  
 MEASUREMENT ERROR EXAMPLE - NO BIAS EXAMPLE - X1, X2
 ! TO RUN: > MXT < EXAMPLE_NO_BIAS.MX > EXAMPLE_NO_ BIAS_OUTPUT.TXT
 DATA NOBSERVATIONS=100 NINPUT_VARIABLES=2
 CMATRIX FULL
 8.295321 7.562288
 7.562288 9.636726
 MEANS
 15.46293 15.38663
 BEGIN MATRICES;
 A FULL 2 2
 D DIAG 2 2
 X FULL 2 2
 K FULL 1 1
 V FULL 2 1
 L FULL 2 1
 END MATRICES;
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 SPECIFICATION A
 1 2 3 4
 SPECIFICATION D
 6 7
 SPECIFICATION X
 0 0 0 11
 MATRIX K 15.42478  ! THIS IS ARBITRARY BUT NECESSA RY!
 SPECIFICATION V
 1 3
 SPECIFICATION L
 2 4
 START .5 ALL
 MEANS_MODEL V + L*K ;
 COVARIANCE_MODEL A*X*A' + D ;
 INTERVAL A 1 1 1
 INTERVAL A 1 2 1
 INTERVAL A 1 1 2
 INTERVAL A 1 2 2
 INTERVAL D 1 1 1
 INTERVAL D 1 2 2
 INTERVAL X 1 2 2
 OPTIONS RSIDUALS
 END
 
 
 The following MX script lines were read for group    2
 
 CONSTRAIN PRODUCT OF BETAS TO EQUAL 1
 CONSTRAINT NINPUT_VARS=2
 BEGIN MATRICES;
 A FULL 2 2 = A1
 Z STAN 1 1
 B FULL 4 1
 O ZERO 2 1
 D DIAG 2 2 = D1
 END MATRICES;
 MATRIX B 1 2 2 2
 CONSTRAINT \PROD(\PART(A,B)) = Z ; ! PRODUCT OF BE TAS = 1
 END
 
 
 The following MX script lines were read for group    3
 
 CONSTRAIN IMPRECISION VARIANCES > 0
 CONSTRAINT NINPUT_VARS=2
 BEGIN MATRICES;
 A FULL 2 2 = A1
 Z STAN 1 1
 B FULL 4 1
 O ZERO 2 1
 D DIAG 2 2 = D1
 END MATRICES;
 MATRIX B 1 2 2 2
 CONSTRAINT \D2V(D)' > O ;          ! IMPRECISION V ARIANCES > 0
 END
  
  PARAMETER SPECIFICATIONS
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  GROUP NUMBER: 1
  
Measurement Error Example - No Bias Example - x1, x 2
  
  MATRIX A
 This is a FULL matrix of order    2 by    2
    1 2
 1  1 2
 2  3 4
  
  MATRIX D
 This is a DIAGONAL matrix of order    2 by    2
    1 2
 1  6
 2  0 7
  
  MATRIX K
 This is a FULL matrix of order    1 by    1
  It has no free parameters specified
  
  MATRIX L
 This is a FULL matrix of order    2 by    1
    1
 1  2
 2  4
  
  MATRIX V
 This is a FULL matrix of order    2 by    1
    1
 1  1
 2  3
  
  MATRIX X
 This is a FULL matrix of order    2 by    2
     1  2
 1   0  0
 2   0 11
  
  GROUP NUMBER: 2
  
Constrain product of betas to equal 1
  
  MATRIX A
 This is a FULL matrix of order    2 by    2
    1 2
 1  1 2
 2  3 4
  
  MATRIX B
 This is a FULL matrix of order    4 by    1
  It has no free parameters specified
  
  MATRIX D
 This is a DIAGONAL matrix of order    2 by    2
    1 2
 1  6
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 2  0 7
  
  MATRIX O
 This is a NULL matrix of order    2 by    1
  
  MATRIX Z
 This is a STANDARDISED matrix of order    1 by    1
  It has no free parameters specified
  
  GROUP NUMBER: 3
  
Constrain imprecision variances > 0
  
  MATRIX A
 This is a FULL matrix of order    2 by    2
    1 2
 1  1 2
 2  3 4
  
  MATRIX B
 This is a FULL matrix of order    4 by    1
  It has no free parameters specified
  
  MATRIX D
 This is a DIAGONAL matrix of order    2 by    2
    1 2
 1  6
 2  0 7
  
  MATRIX O
 This is a NULL matrix of order    2 by    1
  
  MATRIX Z
 This is a STANDARDISED matrix of order    1 by    1
  It has no free parameters specified
  
  Mx starting optimization; number of parameters =  7
  
  
  MX PARAMETER ESTIMATES
  
  GROUP NUMBER: 1
  
Measurement Error Example - No Bias Example - x1, x 2
  
  MATRIX A
 This is a FULL matrix of order    2 by    2
             1          2
 1     -0.1918     1.0149
 2      0.1884     0.9853
  
  MATRIX D
 This is a DIAGONAL matrix of order    2 by    2
             1          2
 1      0.5059
 2      0.0000     2.2950
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  MATRIX K
 This is a FULL matrix of order    1 by    1
             1
 1     15.4248
  
  MATRIX L
 This is a FULL matrix of order    2 by    1
             1
 1      1.0149
 2      0.9853
  
  MATRIX V
 This is a FULL matrix of order    2 by    1
          1
 1  -0.1918
 2   0.1884
  
  MATRIX X
 This is a FULL matrix of order    2 by    2
             1          2
 1      0.0000     0.0000
 2      0.0000     7.5623
  
  Vector of OBSERVED means
                1          2
 Mean     15.4629    15.3866
  
  Vector of EXPECTED means
                1          2
 Mean     15.4629    15.3866
  
  OBSERVED COVARIANCE MATRIX
             1          2
 1      8.2953
 2      7.5623     9.6367
  
  
  EXPECTED COVARIANCE MATRIX
             1          2
 1      8.2953
 2      7.5623     9.6367
  
  RESIDUAL MATRIX
               1            2
 1   -4.1456E-06
 2   -2.3494E-07   2.9528E-06
  
 Function value of this group:    7.2463E-11
  Where the fit function is Maximum Likelihood                 
  
  GROUP NUMBER: 2
  
Constrain product of betas to equal 1
  
  MATRIX A
 This is a FULL matrix of order    2 by    2
             1          2
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 1     -0.1918     1.0149
 2      0.1884     0.9853
  
  MATRIX B
 This is a FULL matrix of order    4 by    1
             1
 1      1.0000
 2      2.0000
 3      2.0000
 4      2.0000
  
  MATRIX D
 This is a DIAGONAL matrix of order    2 by    2
             1          2
 1      0.5059
 2      0.0000     2.2950
  
  MATRIX O
 This is a NULL matrix of order    2 by    1
  
  MATRIX Z
 This is a STANDARDISED matrix of order    1 by    1
          1
 1   1.0000
  
  GROUP NUMBER: 3
  
Constrain imprecision variances > 0
  
  MATRIX A
 This is a FULL matrix of order    2 by    2
             1          2
 1     -0.1918     1.0149
 2      0.1884     0.9853
  
  MATRIX B
 This is a FULL matrix of order    4 by    1
             1
 1      1.0000
 2      2.0000
 3      2.0000
 4      2.0000
  
  MATRIX D
 This is a DIAGONAL matrix of order    2 by    2
             1          2
 1      0.5059
 2      0.0000     2.2950
  
  MATRIX O
 This is a NULL matrix of order    2 by    1
  
  MATRIX Z
 This is a STANDARDISED matrix of order    1 by    1
          1
 1   1.0000
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 Your model has    7 estimated parameters and      8 Observed statistics
 Observed statistics include   3 constraints.
  
 Chi-squared fit of model >>>>>>>     0.000
 Degrees of freedom >>>>>>>>>>>>>         1
 Probability >>>>>>>>>>>>>>>>>>>>     1.000
 Akaike's Information Criterion >    -2.000
 RMSEA >>>>>>>>>>>>>>>>>>>>>>>>>>     0.000
  
  
 7  Confidence intervals requested in group  1
  
  Matrix Element Int.      Estimate         Lower         Upper  Lfail Ufail
  
  
  A   1   1   1  95.0    α1  -0.1918       -1.9344        2.8231 0 1   0 1
  
  A   1   2   1  95.0    α2   0.1884       -3.3647        1.7631 0 1   0 1
  
  A   1   1   2  95.0    β1   1.0149        0.8284        1.1200 0 0   0 0
  
  A   1   2   2  95.0    β2   0.9853        0.8929        1.2072 0 0   0 0
  
  D   1   1   1  95.0    σ1

2  0.5059        0.0000        3.1620 1 1   0 1
  
  D   1   2   2  95.0    σ2

2  2.2950        0.0000        3.6734 1 0   0 1
  
  X   1   2   2  95.0    σ2   7.5623        5.6215       10.3682 0 1   0 1
  
 This problem used  0.0% of my workspace
  
 Task                     Time elapsed (DD:HH:MM:SS )
 Reading script & data      0: 0: 0: 0.01
 Execution                  0: 0: 0: 0.62
 TOTAL                      0: 0: 0: 0.63
  
 Total number of warnings issued: 0
 __________________________________________________ ____________________________
  Expand =  0
  
 __________________________________________________ ____________________________

Based on the SEM results:

Estimated imprecision SD for method 1: sqrt( 0.5059) = 0.7112665

Estimated imprecision SD for method 2: sqrt( 2.2950) = 1.514926

Estimated true SD of measurements: sqrt( 7.5623) = 2.749964

Based on the estimates of � and �, the calibration line using SEM is:

Slope:  0.9853/1.0149 = 0.9708346
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Intercept:  0.1884 - (-0.1918)*0.9853/1.0149 = 0.37 46061

Calibration equation:

x2 = 0.3746061 + 0.9708346*x1

This is similar to the Bland-Altman result and even  closer to the true calibration
line:

x2 = 0 + 1*x1

The "calibration line" estimated by the linear regr ession is much farther away from
the true calibration line.

Note: Although the confidence intervals for the imp recisions substantially overlap
(leaving open the possibility that the imprecisions  are equal or at least similar),
they are very wide even with a sample of size n = 1 00.
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Figure 62: Scatter plot, Bland-Altman plot, and calibration for no measurement error in the independent

variable X1 (σ1=0) (and no bias: α=0 and β=1 for both methods).
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4.2.6.3 No-Measurement-Error Simulation Example

Figure 62 illustrates the case where one variable (X1) has no measurement error. The vertical banding of

the points in the scatter plots is due to the lack of measurement error. The dashed line indicating the

diagonal (slope equals one) is difficult to see but the slopes of both regression lines are greater than one.

The red line (regression 1 with estimated slope equal to 1.009) is the regression of X2 on X1 and would be

the correct estimated calibration line because X1 has no measurement error.  The estimated slope is very

close to one. The Bland-Altman line for X2 as a function of X1 (slope equals 1.078) is too steep.

Represented as X1 as a function of X2, the slope (equal to 0.928) is too shallow.

The "no measurement error" case is rare to nonexistent. Theoretically, if X1 had no measurement error,

then the correct calibration line would be equal to the simple linear regression line and the Bland-Altman

analysis would be incorrect and misleading. The Bland-Altman analysis assumes that the two methods

have (at least roughly) the same imprecision. You can see the downward tilt in the upper right graph of

Figure 62. Under the assumption of equal imprecision SD's, the Bland-Altman plot shows a bias. Given

that the imprecision SD's are very different (�1=0, �2=1), the Bland-Altman analysis should not be used.

Whenever the imprecisions are greatly different, the Bland-Altman analysis should not be used. These

problems can be avoided by using an appropriate latent variable model. To summarize:

� For two or more methods measuring the same theoretical quantity to be in agreement, there must

be little or no bias (systematic error) and the amount of imprecision (random error) should be

small. When there is a substantial bias, the methods need to be calibrated. Bias is often not

constant but may depend on the level of the quantity being measured. Imprecision is measured as a

variance or standard deviation (SD) and also may change with level (typically increasing with

level).

� For real world data, simple regression analysis (one method regressed on another method) should

never be used for calibration. The resulting regression coefficients and correlation coefficients

are completely useless and worse misleading when used in calibration. Not withstanding this,

you will still see many recent examples of incorrect calibration in the literature.

� If the method imprecisions are at least roughly equal and you are comparing only two methods,

then a Bland-Altman analysis could be used. The correct calibration line can be derived from the

Bland-Altman analysis. Caveat: You may need to use the latent variable model first to estimate the

method imprecisions before you have evidence that they are similar. Also, the assumption of

exactly equal imprecision SDs is a fairly strong assumption and could distort estimation of the bias

parameters.

� If the method imprecisions differ, or if there are more than two methods, then a latent variable
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model (a.k.a. structural equation model) should be used to determine the calibration line. The

analysis will also determine the method imprecisions. 

� When designing a study to measure method imprecision, the experimental units should vary as

little as possible.

� Method imprecision can be computed from the variance-covariance matrix or by using a latent

variable model. A satisfactory analysis may be impossible if the experimental units vary a great

deal. When experimental units vary over a large range (compared to the size of the imprecision),

negative variance estimates are likely along with extremely wide confidence intervals for the

imprecision. If there are only two paired measurements and the number of paired measurements is

small, the negative imprecision variance could be set to zero (and not changing the other

imprecision variance) or you could use a method of constrained estimation (which will move the

negative imprecision variance to zero or above and increase the other imprecision variance

accordingly). Neither is wholly satisfactory in most cases. If there are enough paired samples, the

data set could be broken into smaller subsets based on the averages for each pair (NOT on the

value of just one method which would lead to a substantial bias). If the subsets are homogeneous

enough, the covariances in each variance-covariance matrix will be smaller than both variances

avoiding a negative imprecision variance. The separate imprecision variance estimates can then be

plotted as a function of the average level. If the imprecision variance is roughly constant across

levels, the separate variance-covariance matrices could be averaged (even if a few lead to a

negative variance) and the overall imprecision variances computed.

4.3 Space-Time Geostatistical Analysis

4.3.1 Introduction

Measurements from multiple monitoring sites distributed in space and time will need to be combined

using a weighted average in order to estimate the daily exposure. The daily estimation error for day i and

region j is the difference between the estimated average for day i and region j �A
ij and the true average

value for the day and region A
ij :

e
ij
= �A

ij
�A

ij

The estimation error is characterized probabilistically by determining the mean, standard deviaiton, and

shape of the distribution. Finding the optimal weights for �A
ij (weights that minimize the estimation error
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e
ij ) requires characterizing and modeling the space-time correlation structure for the exposure

measurements. This approach is illustrated using PM2.5 mass concentrations. Table 54 lists available

monitoring sites for PM2.5 mass from 1/1/2001 to 12/31/2003. Latitude and longitude have been converted

into easting and northing coordinates to facilitate computation of distances between monitors. Figure 65

shows the spatial arrangement of the monitoring sites. Figure 64 shows the concentrations over time for

each monitoring site. If the measurement values were entirely random, then a simple unweighed average

(i.e., an average where the weights all equal 1) would be optimal. Typically, the correlation between

measurements increases as the distance decreases but at different rates depending on the parameter being

measured and also often shows seasonal patterns over time.

4.3.2 Characterizing Space-Time Dependence Using the Sample Variogram

Figures 66-72 show the spatial variance (the inverse of correlation) as characterized by the space-time

variogram for PM2.5 mass concentration. Figure 65 shows a contour plot of the space-time variogram. For

this function:

Darker shading indicates lower variance (higher correlation). The variogram along the horizontal line

through the origin shows the variability through time (all points are at the same location but differ by

date). The variogram along the vertical line through the origin shows the variability through space (all

points are at the same time but differ in location). Figure 66 shows cross sections of the space-time

variogram and facilitates interpretation. The pure-time variogram shows a clear seasonal pattern - starting

at about 75 µg2/m6 near the origin and then the variance reaches a maximum of about 100 µg2/m6 at 180

days of separation and drops back to 75 µg2/m6 at about 365 days. The pure-space variogram shows that

the variance increases quickly for differences then tends to level off. The pure-space variogram at a

separation distance near zero is about 60 µg2/m6 and by about 50 days reaches about 80 µg2/m6. At a

space-time angle of 112.5� (in terms of the units used - a separation in terms of both space and time), the

seasonality is actually more pronounced. Figures 67 and 68 show three-dimensional renderings of the

space time variogram. To reduce the effect of extreme values (due to the skewed PM2.5 mass concentration

distribution) in the variogram, the variogram was also computed for log PM2.5 mass concentration.

Figures 69-72 shows similar relationships as Figures66-68, respectively, but the relationships are

noticeably smoother.

The space-time geostatistical analysis for PM2.5 mass concentration clearly shows definite patterns in the
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correlation structure which would need to be taken account of to produce optimal weighted daily averages.

A similar analysis would need to be performed for each exposure variable.

Table 53: Coordinates for PM2.5 monitoring sites from 1/1/2001 to 12/31/2003.

Site Latitude Longitude Easting Northing Map ID

EPA390810016 40.36278 -80.61556 532641.7 4468094 a

EPA390810017 40.36610 -80.61500 532687.2 4468464 b

EPA390811001 40.32194 -80.60639 533440.2 4463565 c

EPA390990005 41.11111 -80.64528 529782.5 4551152 d

EPA390990014 41.09587 -80.65843 528685.3 4549456 e

EPA391550007 41.21417 -80.78750 517813.6 4562554 f

EPA420030008 40.46556 -79.96111 588074.8 4479950 g

EPA420030021 40.41361 -79.94139 589816.0 4474204 h

EPA420030064 40.32361 -79.86833 596142.2 4464290 i

EPA420030067 40.38194 -80.18556 569132.2 4470469 j

EPA420030093 40.60722 -80.02083 582837.0 4495617 k

EPA420030095 40.48694 -80.18806 568812.8 4482122 l

EPA420030116 40.47361 -80.07722 578221.7 4480735 m

EPA420030131 40.28944 -80.00500 584573.9 4460358 n

EPA420030133 40.26013 -79.88650 594687.5 4457224 o

EPA420031008 40.61861 -79.72722 607658.6 4497199 p

EPA420031301 40.40250 -79.86028 596713.8 4473056 q

EPA420033007 40.29444 -79.88667 594625.3 4461033 r

EPA420039002 40.54694 -79.78389 602975.1 4489176 s

EPA420070014 40.74778 -80.31667 557688.1 4510983 t

EPA420210011 40.30972 -78.91500 677174.7 4464220 u

EPA420850100 41.21500 -80.48500 543171.3 4562752 v

EPA421250005 40.14667 -79.90222 593506.2 4444614 w

EPA421250200 40.17056 -80.26139 562890.8 4446949 x

EPA421255001 40.44528 -80.42083 549115.0 4477342 y

EPA421290008 40.30469 -79.50567 626989.4 4462648 z

EPA540090005 40.33806 -80.59722 534210.9 4465357 A

EPA540290011 40.39450 -80.61203 532925.3 4471617 B

EPA540291004 40.42154 -80.58090 535553.5 4474630 C

EPA540490006 39.48083 -80.13528 574368.9 4370494 D

EPA540511002 39.91597 -80.73406 522728.6 4418465 E

EPA540610003 39.64944 -79.92111 592563.9 4389406 F

EPA540690008 40.06383 -80.72050 523835.5 4434879 G
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Site Latitude Longitude Easting Northing Map ID

PAQS-Schenley 40.43950 -79.94050 589856.9 4477078 H

DOE-Bruceton 40.31806 -79.98000 586662.3 4463559 I

SCAMP-Steub 40.36694 -80.64667 529998.4 4468546 J

SCAMP-North 40.53139 -80.58028 535548.1 4486824 K

SCAMP-South 40.07500 -80.69694 525840.5 4436126 L

SCAMP-East 40.31222 -79.38278 637417.8 4463667 M

SCAMP-West 40.32333 -80.89889 508590.0 4463650 N
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Figure 63: Spatial arrangement of PM2.5 monitoring sites.
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Figure 64: Log PM2.5 concentrations from 1/1/01 to 12/31/03 for each monitoring site.
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Figure 65: Contour and image map of the space-time semi-variogram for PM2.5. Black points denote the

locations at which the semi-variance was computed. Lighter shades denote higher variances
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Figure 66: Cross-section plots of space-time semi-variogram for PM2.5 mass concentration. The units for

variance are µg2/m6.
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Figure 67: Perspective plot of space-time semi-variogram for PM2.5.
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Figure 68: Perspective plot of PM2.5 space-time variogram (one quadrant only) emphasizing the pure

time and pure  distance axes.
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Figure 69: Contour and image map of the space-time semi-variogram for log PM2.5. Black points denote

the locations at which the semi-variance was computed. Lighter shades denote higher variances
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Figure 70: Cross-section plots of space-time semi-variogram for log PM2.5. The units for variance are

log µg
2
/m

6
.
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Figure 71: Perspective plot of space-time semi-variogram for log PM2.5.
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Figure 72: Perspective plot of the log PM2.5 space-time variogram (one quadrant only) emphasizing the

pure time and pure distance axes.
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4.3.3 Variogram Modeling

In order to use the space-time dependence to produce optimally weighted exposure estimates, it is

necessary to fit an appropriate variogram model to the sample variograms. The model is needed to ensure

that any variances computed are non-negative. 

4.4 Source Apportionment

4.4.1 Introduction

The goal of source apportionment is to identify the signature of the sources of the particulate material

reaching the monitoring network. The method used for source apportionment depends on the information

available. Typically, there is more information for the receptors than for the sources and statistical

methods are required. Exploratory factor analysis has been used but is too limited to provide interpretable

and trustworthy solutions. Exploratory factor analysis is a subset of a more general methodology – latent

variable modeling  or LVM (a. k. a., structural equation modeling or SEM). Kline (1998) provides an

introduction and overview to this metthodology. This more flexible approach can better accommodate the

limited source information and provide identifiable sources. 

Typically, this methodology in it's simplest form assumes statistically independent samples. The

assessment of statistical significance and the construction of confidence intervals are very sensitive to

departures from the assumption of statistical independence. For source apportionment, the samples at each

point in time at a monitoring site are correlated, i. e., statistically dependent. Simple bootstrap sampling

has been successfully used to assess statistical significance and to construct realistic confidence intervals

for problems where statistical independence is reasonable. When misapplied to dependent data, the results

are misleading. For dependent data, special bootstrapping techniques such as block bootstrap sampling are

required (Davidson and Hinkley, 1997).

4.4.2 Handling Time Dependence Using Block Bootstrapping

The goal of the method of bootstrap sampling is to recreate the variability due to sampling and determine

the sampling distribution of the statistic of interest. For random sampling the samples are statistically

independent. In this case, bootstrapping creates samples from the original raw data that mimic the

sampling procedure to produce the sampling distribution of the statistic of interest. In practice, the method

of Monte Carlo simulation is used to estimate the sampling distribution. There are no distributional

assumptions. The only assumption is that the data are randomly sampled, i.e., statistically independent.

This is a strong assumption and if is not reasonable, the estimate of the sampling distribution will be far

from the true sampling distribution.
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Measurement data used to determine source apportionment (for example, SO2 concentrations) tend to

exhibit serial correlation - measurements a day apart and a year apart tend to be more similar than

measurements a month apart. This autocorrelation is an expression of statistical dependence and runs

counter to the often made assumption of statistical independence or randomness which forms the

backbone of many statistical methods. The statistical dependency can take many forms including seasonal

dependencies. Even a "small" amount of autocorrelation can have a big impact on the estimated standard

errors for estimated parameters and thus it is necessary to account for this statistical dependency. In

particular, positive dependency causes the standard errors to be underestimated and thus overstates

statistical significance.

One approach to handling autocorrelated measurements is to construct a parametric model that describes

the dependency and estimate the model's parameters. For example, the GLARMA modeling proposed for

health counts is an example of a parametric model that accounts for autoregressive and moving average

types of dependencies in order to provide optimum parameter estimates and realistic estimates of standard

errors of the explanatory factors.
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Listing 13: Example of estimating the standard error (SE) of sample mean from a random sample.

> X <- rnorm(10,100,4) # Generate a random sample n  = 10 true mean = 100 true sd =
4

> X
 [1]  98.37693  98.78957 102.30517 105.25546 103.30 310  97.01523  99.92815
107.94604  96.38650  96.25442

> mean(X)   # Sample mean
[1] 100.5561

> sd(X)     # Sample sd
[1] 3.999888

> sd(X)/sqrt(10)  # Estimated standard error (SE) f or sample mean
[1] 1.264876

# 95% Confidence Interval - Assumptions: Normal Dis tribution & Statistical
Independence
> t.test(X)$conf.int
[1]  97.6947 103.4174
attr(,"conf.level")
[1] 0.95

Listing 14: Bootstrap estimate of the sampling distribution for the sample mean from a random sample.

# Basic concept - sample the raw data WITH replacem ent of the same size (n=10)

# sample(X,10,replace=TRUE)  # This samples the obs erved data with replacement n =
10

# Repeat this 10,000 times:

ave.X <- rep(NA,10000)
for(i in 1:10000) {
  ave.X[i] <- mean(sample(X,10,replace=TRUE))
  }
  
> mean(ave.X)   # Mean of all 10,000 bootstrapped s amples of size n=10
[1] 100.5681   

> sd(ave.X)     # SD of all 10,000 bootstrapped sam ples of size n=10
[1] 1.194682  <- compare this to conventional estim ate: 1.264876

# Bootstrapped 95% confidence interval
> quantile(ave.X,c(0.025,0.5,0.975))
     2.5%       50%     97.5%
 98.34433 100.54959 102.94844  <- compare this to c onventional confidence interval
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Figure 73: Bootstrap results for random sample example.
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Time series data typically and almost always exhibit statistical dependence. The usual approach is to try to

model the dependence (in addition to making assumptions about the distribution shape). The simple

bootstrap assumes statistical independence so that it is not appropriate and will give incorrect results.

Block bootstrapping is a modification of the simple bootstrap that takes the dependence pattern into

account. There are a number of versions of block bootstrapping (non-overlapping blocks, overlapping

blocks, nested blocks, and so forth) but we will only look at the non-overlapping block bootstrapping. (For

seasonal data, nested block bootstrapping should be used.)

The block length is important. We want it long enough to capture the dependence (too short and we miss

some of the dependence) but not too long (too few available blocks to sample from).

Listing 15: Analysis of raw PM2.5 time series data.

# Mean of PM 2.5 time series

> mean(Y,na.rm=TRUE)
[1] 17.42429

# Median of PM 2.5 time series

> median(Y,na.rm=TRUE)
[1] 15.1

# SD of PM 2.5 time series

> sd(Y,na.rm=TRUE)
[1] 9.404735

# SE of mean under assumption of statistical indepe ndence

> sd(Y,na.rm=TRUE)/sqrt(1640)
[1] 0.2322334

# 1,000 block bootstrapped samples

# Mean of 1,000 blocked bootstrapped sample means

> mean(ave.Y)
[1] 17.41190

# SD of 1,000 blocked bootstrapped sample means = e stimated SE for mean
> sd(ave.Y)
[1] 0.7319725  <= This is over 3 times the estimate  assuming independence

# 95% block bootstrapped confidence interval for tr ue mean

> quantile(ave.Y,c(0.025,0.5,0.975))
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    2.5%      50%    97.5%
16.05655 17.39201 18.85222

The R function to create the blocks is shown in Listing 17. We will need 82 blocks of length 20 (set as the

defaults for the arguments). Figure 75 shows examples of the blocks. Note that simple block boostrapping

does not replicate the seasonality. For seasonal time series, a nested block bootstrap is required. An

example of estimating the sampling distribution for the time series sample mean is shown in Listing 18

and the results are shown in Figure 77. Listing 16 shows the sample statistics for a PM2.5 time series

(Lawrenceville from 6/30/01 to 12/31/05). The mean of the time series is 17.42429  µg/m3  standard

deviation is  9.404735 µg/m3 and under the assumption of statistical independence the standard error for

the sample mean would be 0.2322334. The time series exhibits a great deal of statistical dependence. An

autoregressive integrated moving average (ARIMA) model could be fitted to the series and the standard

error computed for the sample mean assuming the fitted model. The block bootstrap does not require a

model (although a parametric block bootstrap could be employed) and the results are shown in Listing 16

and Figure 77. The bootstrap standard error is  0.7319725 and is over three times  the estimate under the

assumption of statistical independence. Listing 19 and Figure 77 show the results of using a log

transform. The block bootstrap appears to work well even without a log transform although the log

transform results are very slightly more Normally distributed. Note that the confidence interval does not

depend on Normality.
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Listing 16: R function to create blocks for block bootstrapping and example function call.

blocks <- function(Y,n=82,l=20)
{
  j <- 0        
  ymat <- matrix(NA,20,n)        
  for(i in 1:n) {
    ymat[,i] <- Y[(j+1):(j+l)]
    j <- j + l
    }
  ymat  
}

> blocks(Y,n=82,l=20)  # series length = 20*82 = 16 40

Listing 17: Example R code to estimate the sampling distribution for the sample mean using 1,000

bootstrapped samples.

# Take 1,000 samples with replacement of 82 blocks of length 20 and compute 
#  the sample means

ave.Y <- rep(NA,1000)
for(i in 1:1000) {
  cat(i,"\r")
  ave.Y[i] <- mean(as.numeric(ymat[,sample(82,82,re place=TRUE)]),na.rm=TRUE)
 }
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Figure 74: Actual PM2.5 concentrations and three block bootstrap samples.
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Figure 75: Results for estimating the time series mean using block bootstrapping.
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Listing 18: Analysis of log transformed PM2.5 time series data.

# Mean of Log PM 2.5 time series

> mean(lY,na.rm=TRUE)
[1] 2.722636

# Back transformed

> exp(mean(lY,na.rm=TRUE))
[1] 15.22039

# Median of Log PM 2.5 time series

> median(lY,na.rm=TRUE)
[1] 2.714695

# Backtransformed

> exp(median(lY,na.rm=TRUE))
[1] 15.1

# SD of Log PM 2.5 time series

> sd(lY,na.rm=TRUE)
[1] 0.5296111

# SE of mean under assumption of statistical indepe ndence

> sd(lY,na.rm=TRUE)/sqrt(1640)
[1] 0.01307781

# 1,000 block bootstrapped samples

# Mean of 1,000 blocked bootstrapped sample means
> mean(ave.lY)
[1] 2.722894

# SD of 1,000 blocked bootstrapped sample means = e stimated SE for mean

> sd(ave.lY)
[1] 0.0395186 <- Over 3 times larger than SE under the assumption of independence

# 95% block bootstrapped confidence interval for tr ue mean

> quantile(ave.lY,c(0.025,0.5,0.975))
    2.5%      50%    97.5%
2.647613 2.722427 2.800952

# Back transformed
> exp(quantile(ave.lY,c(0.025,0.5,0.975)))
    2.5%      50%    97.5%
14.12029 15.21721 16.46031
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4.4.3 Source Apportionment via a Multivariate Receptor Model

There are various ways of determining how to apportion emissions at receptor sites (monitors) to sources.

Which method is appropriate  or possible depends on what source profile information is available. If

extensive information is available, the problem can be approached using a chemical mass balance using

the regression model:

x
t
=� f

t

e

t

where xt is a p-vector of observed concentrations (a.k.a, manifest variables) at time t, � is a p ⋅ k matrix of

nonnegative source compositions (source profile matrix, a.k.a, factor loading matrix), ft is a k-vector of

nonnegative pollution source contributions (unobserved factors), and et is a vector of errors. For the mass

balance case, the number of sources k is known and � is known. For example, if there are just three

sources: 1) auto emissions, 2) coal fired power plant emissions, and 3) industrial emissions, then for SO2-
4:
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= [% SO2-
4 in auto emissions][concentration of auto emissions in atmosphere] +

[% SO2-
4 in coal fired power plant emissions][concentration of coal fired power plant emissions in

atmosphere] +

[% SO2-
4 in industrial emissions][concentration of industrial emissions in atmosphere] + e1t

For the mass balance case, the % SO2-
4 in auto emissions, power plant emissions, and industrial emissions

would be known. Then regression can be used to estimate the source contributions  f.

Without comprehensive source profile information, the �'s are not known so regression type estimation is

not feasible. Exploratory factor analysis will not work because there is no unique solution and it cannot

guarantee that each element of �� is nonnegative and each should sum to no more than 100%. In addition,

conventional factor analysis assumes that et  is statistically independent in time. A more general class of

models, referred to as latent variable models (or structural equation models) must be used. According to

Christensen and Sain (2002): "We propose using a flexible latent variable model to guarantee physically

valid model fits using only limited information about the relationship between the observed ambient

species and the pollution sources. Latent variable modeling allows the researcher to incorporate physical

constraints, laboratory measurements, past data, or other subject matter knowledge into the model so that

the fitted model is interpretable." A path diagram for a hypothetical three factor model is shown in Figure

76. If there are q factors then it will be necessary to fix the factor loadings of q of the observed variables

using available source profile information in order to eliminate factor indeterminacy. The method assumes

the errors for a given species are statistically independent and from different species are uncorrelated and

Normally distributed and explains the observed covariance matrix of the species concentrations as a

function of the model parameters. The method of maximum likelihood is used to estimate the parameters.

PITT-PM 277



4.4 Source Apportionment

Other factor analysis related techniques include target transformation factor analysis (Alpert, 1980),

positive matrix factorization (PMF) (Paatero, 1994), UNMIX (Henry, 1997; Henry, 2001), and a Bayesian

methodology (Park, 2001). PMF uses nonnegative factor elements and uses weighted least squares where

the standard deviations of the species are used to determine the weights.

Christensen and Sain (2002) list four problems with exploratory (unconstrained) factor analyses (EFA):

1) EFA does not prevent negative estimates for parameters that must be nonnegative,

2) EFA does not provide a unique solution (the model is not identifiable),

3) EFA cannot include partial source profile information, and

4) EFA does not allow for temporal dependence (autocorrelated errors).

PMF and UNMIX only correct the first problem. Latent variable modeling corrects for the first three

problems. To account for serial dependency, Christensen and Sain (2002) propose (in addition to the latent

variable model with constraints discussed above) the block bootstrap and in particular the nested block

bootstrap to handle seasonal dependency. The general method of block bootstrapping is well-understood
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Figure 76: Multifactor latent variable model for source apportionment.
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4.4 Source Apportionment

and accounts for serial dependence without having to model the dependence. This feature is especially

important because modeling temporal dependence can be difficult especially in the case of extensive

missing data.

4.4.4 Latent Variable Multivariate Receptor Model Example

In this example of using block bootstrapping to estimate the parameters of a latent variable / multivariate

receptor model there are five hypothesized latent sources. The source profiles are based on the source

apportionment results that ACHD obtained by applying PMF to the data from the Lawrenceville site.

The five latent sources identified by ACHD were as follows:

1. Secondary Sulfates

2. Secondary Nitrates

3. Mobile / Industrial

4. Crustal / Road Dust

5. Miscellaneous Burning / Cooking

ACHD included the following twenty-three PM2.5 species in their model: NH4, NO3, SO4, OC, EC, Al, As,

Br, Ca, Cl, Cr, Cu, Fe, Pb, Mn, Hg, Ni, K, Se, Si, Ti, V, and Zn.

Table 54: Fractional contributions of five important species for five hypothesized latent sources.

Secondary Sulfates Secondary

Nitrates

Mobile / Industrial Crustal / Road

Dust

Misc. Burning /

Cooking

NO3 0.008 0.519 0.000 0.171 0.000

SO4 0.592 0.187 0.179 0.116 0.144

EC 0.005 0.016 0.159 0.033 0.075

Pb 0.000 0.000 0.004 0.000 0.000

Si 0.000 0.000 0.001 0.043 0.000

Table 54 shows the fractional contributions of five important species - SO4, NO3, EC, Pb, and Si to the

mass of each source. (e.g., for SO4 in the secondary sulfates source, the fractional contribution of 0.592

means that SO4 accounted for 59.2% of the total mass of PM2.5 associated with this source, based on the

ACHD PMF results). These values were assigned to the corresponding parameters in the Λ matrix in
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order to create an identified latent variable model. The R code shown in Listing 20 creates a block

bootstrap sample, computes and writes the variance-covariance matrix and sample size to a file and then

invokes the Mx code. The Mx code inputs the variance-covariance matrix file and then computes the

parameter estimates and outputs the results to a file. R then inputs the results from Mx and stores the

estimates. This process was repeated 1,000 times.

The speciation data used in this example were taken from the Lawrenceville site from 6/30/2001 to

12/31/2005. The estimated variance-covariance matrix is shown in Table 61. The Λ parameter estimates

are shown in Listing 21. The individual estimates are all non-negative and sum for each factor to 1 or less

thus honoring the model constraints. The block bootstrapped estimated sampling distributions are plotted

in Figure 77. The medians, means, and standard deviations of the estimated Λ sampling distributions are

shown in Table 57. The 95% confidence interval lower and upper bounds were computed as the 2.5th and

97.5th percentiles, respectively, of the estimated sampling distributions and are shown in Table 56. The

standard deviations represent the standard errors of the estimated parameters. For example, the actual

estimate for NH4 for Factor 1 (Secondary Sulfates) is 0.355 (35.5%). The mean of the estimated sampling

distribution was 0.3616 (36.16%) and the median was 0.3576  (35.76%). The estimated standard error for

this estimate was 0.0138 (1.38%) and the 95% confidence interval was  0.3424 to 0.3929 (34.24% to

39.29%). The shape of the sampling distribution is non-Normal and positively skewed. Many of the

estimated sampling distributions were highly non-Normal, especially when the parameter value was close

to zero. The parameter estimates for Factor 4 (OC, Al, As, Fe, and K) had especially large standard errors

and wide confidence intervals compared to the other factors.

Table 55: Variance-covariance matrix for Lawrenceville site based on data from 6/30/2001 to

12/31/2005.

        NH4    NO3   SO42    OC     EC     Al    As     Br    Ca     Cl    Cr    Cu    Fe    Pb    Mn H g    Ni     K    Se     Si    Ti V    Zn

NH4   1.960  0.497  6.070 1.584  0.257  0.001 0.000  0.002 0.016  0.006 0.001 0.002 0.044 0.003 0.002  0 0.001 0.022 0.003 -0.014 0.002 0 0.007

NO3   0.497  2.115 -0.864 0.411  0.097 -0.004 0.000  0.002 0.001  0.028 0.000 0.001 0.010 0.001 0.000  0 0.000 0.010 0.001 -0.049 0.000 0 0.009

SO42  6.070 -0.864 23.110 4.799  0.710  0.007 0.001  0.003 0.052 -0.014 0.002 0.005 0.125 0.007 0.005  0 0.002 0.067 0.009  0.022 0.008 0 0.009

OC    1.584  0.411  4.799 4.129  0.589  0.010 0.001  0.003 0.040  0.018 0.003 0.004 0.104 0.010 0.007  0 0.001 0.056 0.008  0.051 0.005 0 0.025

EC    0.257  0.097  0.710 0.589  0.183  0.001 0.000  0.001 0.008  0.006 0.001 0.001 0.030 0.002 0.002  0 0.000 0.006 0.002 -0.004 0.001 0 0.007

Al    0.001 -0.004  0.007 0.010  0.001  0.004 0.000  0.000 0.001  0.000 0.000 0.000 0.002 0.000 0.000  0 0.000 0.002 0.000  0.027 0.000 0 0.000

As    0.000  0.000  0.001 0.001  0.000  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Br    0.002  0.002  0.003 0.003  0.001  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Ca    0.016  0.001  0.052 0.040  0.008  0.001 0.000  0.000 0.002  0.000 0.000 0.000 0.002 0.000 0.000  0 0.000 0.001 0.000  0.002 0.000 0 0.000

Cl    0.006  0.028 -0.014 0.018  0.006  0.000 0.000  0.000 0.000  0.002 0.000 0.000 0.001 0.000 0.000  0 0.000 0.000 0.000 -0.001 0.000 0 0.000

Cr    0.001  0.000  0.002 0.003  0.001  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Cu    0.002  0.001  0.005 0.004  0.001  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Fe    0.044  0.010  0.125 0.104  0.030  0.002 0.000  0.000 0.002  0.001 0.000 0.000 0.009 0.000 0.001  0 0.000 0.002 0.000  0.003 0.000 0 0.001

Pb    0.003  0.001  0.007 0.010  0.002  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Mn    0.002  0.000  0.005 0.007  0.002  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.001 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Hg    0.000  0.000  0.000 0.000  0.000  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Ni    0.001  0.000  0.002 0.001  0.000  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

K     0.022  0.010  0.067 0.056  0.006  0.002 0.000  0.000 0.001  0.000 0.000 0.000 0.002 0.000 0.000  0 0.000 0.008 0.000  0.003 0.000 0 0.000

Se    0.003  0.001  0.009 0.008  0.002  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Si   -0.014 -0.049  0.022 0.051 -0.004  0.027 0.000  0.000 0.002 -0.001 0.000 0.000 0.003 0.000 0.000  0 0.000 0.003 0.000  0.619 0.000 0 0.000

Ti    0.002  0.000  0.008 0.005  0.001  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

V     0.000  0.000  0.000 0.000  0.000  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.000

Zn    0.007  0.009  0.009 0.025  0.007  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.001 0.000 0.000  0 0.000 0.000 0.000  0.000 0.000 0 0.001
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Listing 19: Estimated Λ parameters based on the speciated Lawrenceville site data computed by Mx.

           FACTOR-1     FACTOR-2     FACTOR-3     F ACTOR-4     FACTOR-5
  NH4    3.5511E-01   1.6364E-01   7.3005E-02   1.1 257E-01   0.0000E+00
  NO3    8.0000E-03   5.1900E-01   0.0000E+00   1.7 100E-01   0.0000E+00
 SO42    5.9200E-01   1.8700E-01   1.7900E-01   1.1 600E-01   1.1400E-01
   OC    3.8216E-02   0.0000E+00   2.3096E-01   2.2 319E-01   7.8353E-01
   EC    5.0000E-03   1.1600E-01   1.5900E-01   3.3 000E-02   7.5000E-02
   AL    0.0000E+00   0.0000E+00   1.6019E-01   1.5 394E-01   8.7086E-09
   AS    0.0000E+00   0.0000E+00   1.1625E-01   1.0 971E-01   8.7506E-09
   BR    0.0000E+00   0.0000E+00   4.1964E-03   3.6 121E-03   9.0809E-09
   CA    6.2582E-04   0.0000E+00   6.3889E-03   2.3 358E-03   6.4958E-03
   CL    0.0000E+00   0.0000E+00   8.4529E-03   6.3 564E-03   9.6178E-09
   CR    0.0000E+00   0.0000E+00   7.8932E-03   6.6 863E-03   9.0087E-09
   CU    6.0181E-05   3.1872E-04   8.3532E-04   2.8 553E-04   6.9677E-05
   FE    5.4357E-04   1.0199E-02   3.0879E-02   6.2 569E-03   9.8234E-03
   PB    0.0000E+00   0.0000E+00   4.0000E-03   0.0 000E+00   0.0000E+00
   MN    0.0000E+00   0.0000E+00   3.0619E-03   1.0 231E-03   0.0000E+00
   HG    0.0000E+00   0.0000E+00   1.0920E-03   9.9 407E-04   0.0000E+00
   NI    0.0000E+00   0.0000E+00   1.3159E-03   9.9 405E-04   0.0000E+00
    K    4.4621E-04   0.0000E+00   3.1223E-04   4.1 037E-03   1.0122E-02
   SE    0.0000E+00   0.0000E+00   2.4072E-03   1.0 797E-03   0.0000E+00
   SI    0.0000E+00   0.0000E+00   1.0000E-03   4.3 000E-02   0.0000E+00
   TI    0.0000E+00   0.0000E+00   1.9585E-03   1.0 809E-03   0.0000E+00
    V    0.0000E+00   0.0000E+00   1.0797E-03   9.7 871E-04   0.0000E+00
   ZN    0.0000E+00   3.8467E-03   6.7309E-03   1.7 939E-03   9.6170E-04
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Table 56: Block-bootstrapped 95% confidence intervals for parameters. Grayed cells indicate parameters with assigned values.

Factor 1 - Secondary

Sulfates

Lower Upper

NH4 34.24 39.29

NO3 0.80 0.80

SO42 59.20 59.20

OC 0.18 5.17

EC 0.50 0.50

Al 0.00 0.00

As 0.00 0.00

Br 0.00 0.00

Ca 0.00 0.16

Cl 0.00 0.00

Cr 0.00 0.00

Cu 0.00 0.01

Fe 0.00 0.33

Pb 0.00 0.00

Mn 0.00 0.00

Hg 0.00 0.00

Ni 0.00 0.00

K 0.00 0.26

Se 0.00 0.01

Si 0.00 0.00

Ti 0.00 0.00

V 0.00 0.00

Zn 0.00 0.00

Factor 2 - Secondary

Nitrates

Lower Upper

NH4 15.60 16.98

NO3 51.90 51.90

SO42 18.70 18.70

OC 0.00 0.00

EC 11.60 11.60

Al 0.00 0.00

As 0.00 0.00

Br 0.00 0.00

Ca 0.00 0.16

Cl 0.00 0.45

Cr 0.00 0.00

Cu 0.00 0.05

Fe 0.37 1.41

Pb 0.00 0.00

Mn 0.00 0.00

Hg 0.00 0.00

Ni 0.00 0.00

K 0.00 0.42

Se 0.00 0.10

Si 0.00 0.00

Ti 0.00 0.00

V 0.00 0.00

Zn 0.25 0.47

Factor 3 - Mobile /

Industrial

Lower Upper

NH4 4.87 9.49

NO3 0.00 0.00

SO42 17.90 17.90

OC 17.93 31.35

EC 15.90 15.90

Al 11.24 19.03

As 8.09 13.80

Br 0.31 0.48

Ca 0.45 1.02

Cl 0.53 1.14

Cr 0.58 0.92

Cu 0.05 0.11

Fe 2.63 3.71

Pb 0.40 0.40

Mn 0.26 0.35

Hg 0.08 0.13

Ni 0.10 0.15

K 0.00 0.71

Se 0.17 0.34

Si 0.10 0.10

Ti 0.15 0.24

V 0.08 0.13

Zn 0.56 0.77

Factor 4 - Crustal / Road

Dust

Lower Upper

NH4 5.23 11.66

NO3 17.10 17.10

SO42 11.60 11.60

OC 21.27 53.90

EC 3.30 3.30

Al 0.00 16.13

As 0.00 11.56

Br 0.00 0.38

Ca 0.17 2.06

Cl 0.00 0.69

Cr 0.00 0.70

Cu 0.02 0.10

Fe 0.51 3.07

Pb 0.00 0.00

Mn 0.00 0.11

Hg 0.00 0.10

Ni 0.00 0.10

K 0.00 3.69

Se 0.00 0.12

Si 4.30 4.30

Ti 0.00 0.22

V 0.00 0.10

Zn 0.12 0.32

Factor 5 - Misc. Burn./

Cook.

Lower Upper

NH4 0.00 0.00

NO3 0.00 0.00

SO42 11.40 11.40

OC 77.62 81.06

EC 7.50 7.50

Al 0.00 0.00

As 0.00 0.00

Br 0.00 0.00

Ca 0.00 0.78

Cl 0.00 0.00

Cr 0.00 0.00

Cu 0.00 0.04

Fe 0.00 1.32

Pb 0.00 0.00

Mn 0.00 0.00

Hg 0.00 0.00

Ni 0.00 0.00

K 0.00 1.50

Se 0.00 0.04

Si 0.00 0.00

Ti 0.00 0.00

V 0.00 0.00

Zn 0.00 0.26



4
.4

 S
o
u
rc

e 
A

p
p
o
rt

io
n
m

en
t

P
IT

T
-P

M
2
8
3Table 57: Summary statistics for the block bootstrapped parameter sampling distributions. Grayed cells indicate parameters

with assigned values.

Factor 1 - Secondary

Sulfates

Med. M

ean

SD

NH4 35.76 36.16 1.38

NO3 0.80 0.80 0.00

SO42 59.20 59.20 0.00

OC 3.46 3.19 1.33

EC 0.50 0.50 0.00

Al 0.00 0.00 0.00

As 0.00 0.00 0.00

Br 0.00 0.00 0.00

Ca 0.03 0.04 0.05

Cl 0.00 0.00 0.00

Cr 0.00 0.00 0.00

Cu 0.00 0.00 0.00

Fe 0.00 0.06 0.09

Pb 0.00 0.00 0.00

Mn 0.00 0.00 0.00

Hg 0.00 0.00 0.00

Ni 0.00 0.00 0.00

K 0.00 0.05 0.08

Se 0.00 0.00 0.01

Si 0.00 0.00 0.00

Ti 0.00 0.00 0.00

V 0.00 0.00 0.00

Zn 0.00 0.00 0.00

Factor 2 - Secondary

Nitrates

Med. M

ean

SD

NH4 16.37 16.35 0.37

NO3 51.90 51.90 0.00

SO4
2 18.70 18.70 0.00

OC 0.00 0.00 0.00

EC 11.60 11.60 0.00

Al 0.00 0.00 0.00

As 0.00 0.00 0.00

Br 0.00 0.00 0.00

Ca 0.00 0.02 0.05

Cl 0.00 0.05 0.13

Cr 0.00 0.00 0.00

Cu 0.03 0.03 0.01

Fe 0.94 0.93 0.27

Pb 0.00 0.00 0.00

Mn 0.00 0.00 0.00

Hg 0.00 0.00 0.00

Ni 0.00 0.00 0.00

K 0.00 0.05 0.13

Se 0.00 0.01 0.03

Si 0.00 0.00 0.00

Ti 0.00 0.00 0.00

V 0.00 0.00 0.00

Zn 0.37 0.37 0.06

Factor 3 - Mobile /

Industrial

Med. M

ean

SD

NH4 7.05 7.08 1.21

NO3 0.00 0.00 0.00

SO4
2 17.90 17.90 0.00

OC 24.33 24.46 3.73

EC 15.90 15.90 0.00

Al 15.33 15.24 2.04

As 11.12 11.03 1.50

Br 0.40 0.40 0.05

Ca 0.71 0.71 0.16

Cl 0.82 0.82 0.15

Cr 0.76 0.76 0.09

Cu 0.09 0.08 0.01

Fe 3.17 3.18 0.28

Pb 0.40 0.40 0.00

Mn 0.30 0.30 0.02

Hg 0.10 0.10 0.01

Ni 0.13 0.13 0.01

K 0.09 0.19 0.22

Se 0.23 0.24 0.04

Si 0.10 0.10 0.00

Ti 0.19 0.19 0.02

V 0.10 0.10 0.01

Zn 0.67 0.67 0.05

Factor 4 - Crustal / Road

Dust

Med. M

ean

SD

NH4 11.08 10.39 1.78

NO3 17.10 17.10 0.00

SO4
2 11.60 11.60 0.00

OC 22.39 31.11 12.57

EC 3.30 3.30 0.00

Al 15.35 10.13 7.48

As 10.93 7.23 5.34

Br 0.36 0.24 0.18

Ca 0.24 0.73 0.71

Cl 0.63 0.42 0.31

Cr 0.67 0.44 0.32

Cu 0.03 0.05 0.03

Fe 0.65 1.31 0.99

Pb 0.00 0.00 0.00

Mn 0.10 0.07 0.05

Hg 0.10 0.07 0.05

Ni 0.10 0.07 0.05

K 0.42 1.03 1.24

Se 0.11 0.07 0.05

Si 4.30 4.30 0.00

Ti 0.11 0.10 0.05

V 0.10 0.06 0.05

Zn 0.18 0.18 0.05

Factor 5 -  Misc. Burn./

Cook.

Med. M

ean

SD

NH4 0 0 0.07

NO3 0.00 0.00 0.00

SO4
2 11.40 11.40 0.00

OC 78.65 79.11 1.22

EC 7.50 7.50 0.00

Al 0.00 0.00 0.00

As 0.00 0.00 0.00

Br 0.00 0.00 0.00

Ca 0.56 0.42 0.30

Cl 0.00 0.00 0.00

Cr 0.00 0.00 0.00

Cu 0.00 0.01 0.01

Fe 0.83 0.64 0.48

Pb 0.00 0.00 0.00

Mn 0.00 0.00 0.00

Hg 0.00 0.00 0.00

Ni 0.00 0.00 0.00

K 0.91 0.80 0.59

Se 0.00 0.00 0.01

Si 0.00 0.00 0.00

Ti 0.00 0.00 0.00

V 0.00 0.00 0.00

Zn 0.11 0.11 0.07
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Figure 77: Block-bootstrapped sampling distributions for estimated parameters of Λ.
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Listing 20: R code for block-bootstrapped latent variable / multivariate receptor model. This code

repeatedly executes the structural equation program Mx code shown in Listing 22.

labs <- c("NH4","NO3","SO42","OC","EC","Al","As","B r","Ca",
  "Cl","Cr","Cu","Fe","Pb","Mn","Hg","Ni","K","Se", "Si","Ti",
  "V","Zn")

################################
Y1 <- lawrenceville$NH4[1:1640]
Y2 <- lawrenceville$NO3[1:1640]
Y3 <- lawrenceville$SO42[1:1640]
Y4 <- lawrenceville$OC[1:1640]
Y5 <- lawrenceville$EC[1:1640]
Y6 <- lawrenceville$Al[1:1640]
Y7 <- lawrenceville$As[1:1640]
Y8 <- lawrenceville$Br[1:1640]
Y9 <- lawrenceville$Ca[1:1640]
Y10 <- lawrenceville$Cl[1:1640]
Y11 <- lawrenceville$Cr[1:1640] 
Y12 <- lawrenceville$Cu[1:1640] 
Y13 <- lawrenceville$Fe[1:1640] 
Y14 <- lawrenceville$Pb[1:1640] 
Y15 <- lawrenceville$Mn[1:1640] 
Y16 <- lawrenceville$Hg[1:1640] 
Y17 <- lawrenceville$Ni[1:1640] 
Y18 <- lawrenceville$K[1:1640]
Y19 <- lawrenceville$Se[1:1640] 
Y20 <- lawrenceville$Si[1:1640] 
Y21 <- lawrenceville$Ti[1:1640] 
Y22 <- lawrenceville$V[1:1640]  
Y23 <- lawrenceville$Zn[1:1640] 

dim(na.omit(cbind(Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y10,Y1 1,Y12,
  Y13,Y14,Y15,Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y23)))

vc.actual <- var(na.omit(cbind(Y1,Y2,Y3,Y4,Y5,Y6,Y7 ,Y8,Y9,Y10,Y11,
  Y12,Y13,Y14,Y15,Y16,Y17,Y18,Y19,Y20,Y21,Y22,Y23)) )
dimnames(vc.actual) <- list(lab,lab)

write.table(vc.actual,
  "/projects/PITT-PM/Source_Apportionment/Data/varc ov/vca23.txt",
  row.names=FALSE,col.names=FALSE,sep=" ")

round(vc.actual,3)

ymat1 <- blocks(Y1)
ymat2 <- blocks(Y2)
ymat3 <- blocks(Y3)
ymat4 <- blocks(Y4)
ymat5 <- blocks(Y5)
ymat6 <- blocks(Y6)
ymat7 <- blocks(Y7)
ymat8 <- blocks(Y8)
ymat9 <- blocks(Y9)
ymat10 <- blocks(Y10)
ymat11 <- blocks(Y11)
ymat12 <- blocks(Y12)
ymat13 <- blocks(Y13)
ymat14 <- blocks(Y14)
ymat15 <- blocks(Y15)
ymat16 <- blocks(Y16)
ymat17 <- blocks(Y17)
ymat18 <- blocks(Y18)
ymat19 <- blocks(Y19)
ymat20 <- blocks(Y20)
ymat21 <- blocks(Y21)
ymat22 <- blocks(Y22)
ymat23 <- blocks(Y23)
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N <- 1000

vc <- array(NA,c(23,23,N))
nobs <- rep(NA,N)
for(i in 1:N) {
  cat(i,"\r  ")
  samp <- sample(82,82,replace=TRUE)
  x <- cbind(as.numeric(ymat1[,samp]),
             as.numeric(ymat2[,samp]),
             as.numeric(ymat3[,samp]),
             as.numeric(ymat4[,samp]),
             as.numeric(ymat5[,samp]),
             as.numeric(ymat6[,samp]),
             as.numeric(ymat7[,samp]),
             as.numeric(ymat8[,samp]),
             as.numeric(ymat9[,samp]),
             as.numeric(ymat10[,samp]),
             as.numeric(ymat11[,samp]),
             as.numeric(ymat12[,samp]),
             as.numeric(ymat13[,samp]),
             as.numeric(ymat14[,samp]),
             as.numeric(ymat15[,samp]),
             as.numeric(ymat16[,samp]),
             as.numeric(ymat17[,samp]),
             as.numeric(ymat18[,samp]),
             as.numeric(ymat19[,samp]),
             as.numeric(ymat20[,samp]),
             as.numeric(ymat21[,samp]),
             as.numeric(ymat22[,samp]),
             as.numeric(ymat23[,samp]))

vc[,,i] <- var(x,use="complete")
nobs[i] <- dim(na.omit(x))[1]
print(nobs[i])

 }

lab <- c("V1","V2","V3","V4","V5","V6","V7","V8","V 9",
         "V10","V11","V12","V13","V14","V15","V16", "V17","V18","V19",
         "V20","V21","V22","V23")

B <- array(NA,c(23,5,N))

for(i in c(1:N))
{
  print(i)
  write.table(data.frame(vc[,,i]),
    "/projects/PITT-PM/Source_Apportionment/Data/va rcov/vca23.txt",
    row.names=FALSE,col.names=FALSE,sep=" ",quote=F ALSE)
  write.table(paste("Data NObservations=",nobs[i],"  NInput_variables=23",sep=""),
    "/projects/PITT-PM/Source_Apportionment/Data/va rcov/nobs_vars.txt",
    col.names=FALSE,row.names=FALSE,quote=FALSE)
  system(paste("mxt < /projects/PITT-PM/Source_Appo rtionment/R/sa_23s_5f.
    mx > /projects/PITT-PM/Source_Apportionment/Dat a/mx/sa_23s_5f_",i,"_output.mx",sep=""))
  A <- scan("/projects/PITT-PM/Source_Apportionment /Data/A.txt",what=" ",sep="\n")
  A <- gsub("D","E",A)
  write.table(A[2:21],"/projects/PITT-PM/Source_App ortionment/Data/B.txt",
    row.names=FALSE,col.names=FALSE,sep=" ",quote=F ALSE)
  E <- read.fwf("/projects/PITT-PM/Source_Apportion ment/Data/B.txt",
    widths=rep(13,6),header=FALSE)
  B[,,i] <- t(matrix(na.omit(as.vector(t(as.matrix( E)))),5,23))

}

Listing 21: Mx code for latent variable / multivariate receptor model for five latent factors.

#NGroups 6
Source Apportionment - 23 manifest variables - 5 la tent factors ( To run: > mxt < sa_23s_5f.mx >
sa_23s_5f_output.txt )
!Data NObservations=488 NInput_variables=23
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 #Include /projects/PITT-PM/Source_Apportionment/Da ta/varcov/nobs_vars.txt
 CMatrix Full
 #Include /projects/PITT-PM/Source_Apportionment/Da ta/varcov/vca23.txt
 Labels NH4 NO3 SO42 OC EC Al As Br Ca Cl Cr Cu Fe Pb Mn Hg Ni K Se Si Ti V Zn
 Begin Matrices;
  A Full 23 5
  D Diag 23 23
  X Iden 5 5
 End Matrices;
 Specification A
 101  201  301  401  501  
 0    0    0 0    0  
 0    0    0 0    0  
 104  204  304 404  504  
 0    0    0 0    0  
 106  206  306 406  506  
 107  207  307 407  507  
 108  208  308 408  508  
 109  209  309 409  509  
 1010 2010 3010 4010 5010 
 1011 2011 3011 4011 5011 
 1012 2012 3012 4012 5012 
 1013 2013 3013 4013 5013 
 0    0    0 0    0    
 1015 2015 3015 4015 5015 
 1016 2016 3016 4016 5016 
 1017 2017 3017 4017 5017 
 1018 2018 3018 4018 5018 
 1019 2019 3019 4019 5019 
 0    0    0 0    0 
 1021 2021 3021 4021 5021 
 1022 2022 3022 4022 5022 
 1023 2023 3023 4023 5023  
 Value  0.098    D 1 1
 Value  0.21     D 2 2
 Value  0.58     D 3 3
 Value  0.06     D 4 4
 Value  0.001    D 5 5
 Value  0.38     D 6 6
 Value  0.28     D 7 7
 Value  0.0092   D 8 8
 Value  0.00055  D 9 9
 Value  0.016    D 10 10
 Value  0.017    D 11 11
 Value  0.00047  D 12 12
 Value  0.004    D 13 13
 Value  0.0025   D 14 14
 Value  0.0025   D 15 15
 Value  0.0025   D 16 16
 Value  0.0025   D 17 17
 Value  0.0025   D 18 18
 Value  0.0025   D 19 19
 Value  0.0025   D 20 20
 Value  0.0025   D 21 21
 Value  0.0025   D 22 22
 Value  0.0025   D 23 23
 Value  0.008    A 2  1
 Value  0.519    A 2  2
 Value  0.000    A 2  3
 Value  0.171    A 2  4
 Value  0.000    A 2  5
 Value  0.592    A 3  1
 Value  0.187    A 3  2
 Value  0.179    A 3  3
 Value  0.116    A 3  4
 Value  0.114    A 3  5 
 Value  0.005    A 5  1
 Value  0.116    A 5  2
 Value  0.159    A 5  3
 Value  0.033    A 5  4
 Value  0.075    A 5  5 
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 Value  0.000    A 14 1
 Value  0.000    A 14 2
 Value  0.004    A 14 3
 Value  0.000    A 14 4
 Value  0.000    A 14 5 
 Value  0.000    A 20 1
 Value  0.000    A 20 2
 Value  0.001    A 20 3
 Value  0.043    A 20 4
 Value  0.000    A 20 5 
 Boundary 0 1 all
 Labels Row A
! 1   2    3  4  5  6  7  8  9 10 11 12 13 14 15 16  1718 19 20 2122 23 
NH4 NO3 SO42 OC EC Al As Br Ca Cl Cr Cu Fe Pb Mn Hg  Ni K Se Si Ti V Zn
 Labels Row D
! 1   2    3  4  5  6  7  8  9 10 11 12 13 14 15 16  1718 19 20 2122 23 
NH4 NO3 SO42 OC EC Al As Br Ca Cl Cr Cu Fe Pb Mn Hg  Ni K Se Si Ti V Zn
 Labels Col D
! 1   2    3  4  5  6  7  8  9 10 11 12 13 14 15 16  1718 19 20 2122 23 
NH4 NO3 SO42 OC EC Al As Br Ca Cl Cr Cu Fe Pb Mn Hg  Ni K Se Si Ti V Zn
 Labels Col A
! 1        2        3        4        5        
  Factor-1 Factor-2 Factor-3 Factor-4 Factor-5 
 Start 0 all
 Covariance_model A*X*A' + D ;
 Options RSiduals MxA=/projects/PITT-PM/Source_Appo rtionment/Data/A.txt
End

Constrain Factor 1 coefficients <= 1
  Constraint
  Begin Matrices;
   A Full 23 5 = A1
   T Unit 1  1
   C Full 1  4
   K Unit 23 1
  End Matrices;
  Matrix C 1 1 23 1
  Constraint \part(A,C)'*K < T;
End

Constrain Factor 2 coefficients <= 1
  Constraint
  Begin Matrices;
   A Full 23 5 = A1
   T Unit 1  1
   C Full 1  4
   K Unit 23 1
  End Matrices;
  Matrix C 1 2 23 2
  Constraint \part(A,C)'*K < T;
End

Constrain Factor 3 coefficients <= 1
  Constraint
  Begin Matrices;
   A Full 23 5 = A1
   T Unit 1  1
   C Full 1  4
   K Unit 23 1
  End Matrices;
  Matrix C 1 3 23 3
  Constraint \part(A,C)'*K < T;
End

Constrain Factor 4 coefficients <= 1
  Constraint
  Begin Matrices;
   A Full 23 5 = A1
   T Unit 1  1
   C Full 1  4
   K Unit 23 1
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  End Matrices;
  Matrix C 1 4 23 4
  Constraint \part(A,C)'*K < T;
End

Constrain Factor 5 coefficients <= 1
  Constraint
  Begin Matrices;
   A Full 23 5 = A1
   T Unit 1  1
   C Full 1  4
   K Unit 23 1
  End Matrices;
  Matrix C 1 5 23 5
  Constraint \part(A,C)'*K < T;
End

4.5 Constructing a Roadway Exposure Time Series

4.5.1 Introduction

Particulates related to roadway transportation are not separately nor directly measured. Some of these of

these particles likely reach ambient PM2.5 and PM10 monitors. In order to help separate these particles from

other sources, an attempt was made to create a daily proxy based on available vehicle mileage data. The

usefulness of this approach in modeling will need to be explored as the time series models are constructed.

The available data likely provide more information for spatial resolution compared to time resolution.

4.5.2 Annual Averaged Daily Vehicle Mileage Traveled (VMT)

The annually averaged daily VMT data is provided by Pennsylvania Department of Transportation (Penn

DOT) in geo-database format that can be directly visualized and retrieved  through a geo-database query

system in GIS programs. The VMT data is composed of a segment identification number, a start route

identification number, a segment length, a traffic pattern group (TPG) classification, an annual averaged

daily VMT, an annual averaged daily truck VMT, and so on.

4.5.3 Average Day of Week by Month Factors Compiled for Total Vehicles

Average day of week by month factors for 2004 were provided by Penn DOT in table format. The data is a

group factor which can be applied to a 24-hour raw traffic count taken during any day of the year to

develop an annual average daily traffic as shown below. 

Traffic Counts 
Annual Average

 = (Traffic Counts 
taken during any day of the year

 )⋅ (average day of week by month

factor)

The average day of week by month factors can be used to estimate daily vehicle mileage travel for each

traffic segment in the Pittsburgh study area with an assumption that annual averaged daily VMT is
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proportional to annual averaged daily traffic counts. These daily factors data are also available for trucks.

An example set of data for January 2004 is shown Table 58.

Table 58: Average day of week by month factors for January 2004.

DAY TPG 1 TPG 2 TPG 3 TPG 4 TPG 5 TPG 6 TPG 7 TPG 8 TPG 9 TPG 10

Monday 1.110 1.280 1.060 1.149 1.157 1.233 1.170 1.248 1.160 1.383

Tuesday 1.071 1.282 0.998 1.111 1.096 1.203 1.116 1.198 1.096 1.291

Wednesday 1.038 1.276 0.994 1.119 1.099 1.208 1.098 1.209 1.096 1.311

Thursday 1.036 1.254 1.001 1.108 1.100 1.205 1.101 1.205 1.111 1.303

Friday 1.034 1.139 0.971 1.079 1.084 1.096 1.032 1.135 1.081 1.262

Saturday 1.297 1.434 1.355 1.306 1.226 1.372 1.213 1.310 1.283 1.247

Sunday 1.497 1.407 1.750 1.445 1.351 1.574 1.472 1.507 1.524 1.283

Day of Month 1.155 1.296 1.161 1.188 1.159 1.270 1.172 1.259 1.193 1.297

The traffic pattern group (TGP) is defined in Table 59.

Table 59: Traffic pattern group (TPG).

Description

TPG 1 URBAN - INTERSTATE

TPG 2 RURAL - INTERSTATE

TPG 3 URBAN - OTHER PRINCIPAL ARTERIALS

TPG 4 RURAL - OTHER PRINCIPAL ARTERIALS

TPG 5
URBAN - MINOR ARTERIALS, COLLECTORS,

LOCAL ROADS

TPG 6 NORTH RURAL - MINOR ARTERIALS

TPG 7 CENTRAL RURAL- MINOR ARTERIALS

TPG 8
NORTH RURAL - COLLECTORS AND LOCAL

ROADS

TPG 9
CENTRAL RURAL- COLLECTORS AND LOCAL

ROADS

TPG 10 SPECIAL RECREATIONAL

4.5.4 Hourly Percentages Compiled for Total Vehicles

Hourly percentages of total vehicles sorted by traffic pattern group for the year 2004 was provided by

Penn DOT in table format. The data is a group factor which can be applied to less than 24-hour averaged

raw traffic counts. The hourly percentage data can be used to estimate hourly vehicle mileage travel for

each traffic segment of study area in the Pittsburgh area. An example table for hourly percentages by

traffic pattern groups for the year 2004 is shown Table 60.
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Table 60: Total vehicle hourly percentages.

Hour TPG1 TPG2 TPG3 TPG4 TPG5

1 1.30% 1.50% 0.70% 0.90% 0.80%

2 1.00% 1.30% 0.50% 0.60% 0.50%

3 0.90% 1.20% 0.40% 0.50% 0.40%

4 0.90% 1.20% 0.50% 0.60% 0.40%

5 1.20% 1.40% 0.90% 1.00% 0.70%

6 2.50% 2.30% 2.60% 2.60% 2.10%

7 5.60% 3.80% 6.20% 5.70% 5.30%

8 7.80% 5.10% 8.50% 7.40% 7.80%

9 6.50% 5.10% 7.00% 6.40% 6.70%

10 5.40% 5.40% 5.40% 5.50% 5.30%

11 5.30% 5.90% 5.20% 5.40% 5.10%

12 5.40% 6.20% 5.30% 5.50% 5.40%

13 5.40% 6.00% 5.50% 5.70% 5.80%

14 5.40% 6.10% 5.60% 5.70% 5.80%

15 5.80% 6.40% 6.10% 6.30% 6.10%

16 6.50% 6.80% 6.70% 6.90% 6.90%

17 6.60% 6.90% 6.90% 7.10% 7.20%

18 6.40% 6.30% 6.70% 6.80% 7.00%

19 5.20% 5.10% 5.40% 5.40% 5.60%

20 4.10% 4.20% 4.10% 4.10% 4.40%

21 3.40% 3.70% 3.30% 3.30% 3.70%

22 3.00% 3.20% 2.80% 2.90% 3.00%

23 2.50% 2.80% 2.20% 2.30% 2.20%

24 1.90% 2.20% 1.40% 1.50% 1.50%

Total 100% 100% 100% 100% 100.00%

4.5.5 Daily Traffic Counts for 2000 to 2006

Daily traffic counts were provided from Penn DOT. The data were randomly collected from 2000 to 2006

by segments. Annual averaged traffic counts can be estimated based on the daily traffic counts and the

average day of week by month factors. 
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4.5.6 Estimation of Daily Vehicle Mileage Traveled for 2004

Daily VMT can be estimated based on annual average daily VMT and the average day of week by month

factors.  Initially the average day of week by month factors were induced by Penn DOT to be applied to

24-hour raw traffic count taken during any day of the year to develop an annual average daily traffic.

Daily VMT can be assumed to be in proportion to 24-hour raw traffic count data. The following equation

can be used to estimate daily VMT by each segment for 365 days of the year 2004. 

VMTDaily = (VMT
annual averaged daily

 ) / (average day of week by month factor)

The results will be similar to the spatial distribution map shown Figure 78 for daily VMT on January 5,

2004.

This method has limitations in terms of accuracy of daily VMT estimation for individual days of a month.

For example, the daily VMT on Mondays for a given month will be the same. However, this approach

may provide reasonable temporal and spatial resolution of vehicle mileage travel pattern in the Pittsburgh

area in order to compare with health outcomes and air quality pollutants. 

As an example, two route segments close to a hospital in the Pittsburgh region were selected, (Figure 79)
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and the average day of week by month factors were applied to the annual average daily VMT of the two

route segments utilizing the above equation for June to August 2004. The lengths of the selected urban

interstate and urban arterial are 1144 and 1359 meters respectively. Daily VMT level was the lowest on

Sundays and the highest on Fridays for the selected urban interstate and arterial routes. Daily VMT levels

in the selected urban arterial was significantly lower than in the selected urban interstate during weekends.

4.5.7 Estimation of Hourly Vehicle Mileage Traveled for 2004

Hourly VMT can be estimated based on annual average daily VMT and the total vehicle hourly

percentages.  Initially the hourly percentages were calculated by Penn DOT to be applied to less than 24-

hour raw traffic count. Hourly VMT can be assumed to be in proportion to less than 24-hour raw traffic

count data. Thus the following equation can estimate hourly VMT by each segment for 24 hours of a day

in the year 2004:

VMThourly = (VMTdaily ) ⋅ (Hourly percentages for total vehicles)

PITT-PM 293

Figure 79: Selected route segments and hospital locations.



4.6 Generalized Linear Autoregressive Moving Average Models

4.6 Generalized Linear Autoregressive Moving Average Models

4.6.1 Introduction

The health outcomes will be counts so that a generalized model using a Poisson link would be needed. To

appropriately account for the inevitable autocorrelation in the health outcome time series (even after

accounting for the effects of explanatory factors), a generalized autoregressive moving average model

(GLARMA) as developed by Davis (1999, 2003, 2005) will be used:

Model: Y
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Although software for estimating the parameters of the GLARMA model is not generally available, we
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have GLARMA estimation code contributed by Drescher (2005, 2006) for use in the R environment for

statistical computation and graphics. Analysis of the use of GLARMA models with daily PM2.5 mass

concentration and elderly hospital admissions shows that it is important to account for the autocorrelation

typically exhibited in the data otherwise the coefficient estimates and their standard errors are not

correctly estimated. Typically, the standard errors are underestimated causing statistical significance to be

exaggerated. Researchers have focused on non-time series type models (notably generalized additive

models (GAM) and generalized linear models (GLM)) and have largely ignored handling autocorrelation

that persists after including explanatory covariates.

We propose forming separate time series of health counts and explanatory factors for each county and

possibly at the ZIP code level and then combining these into one comprehensive model to allow an overall

estimate of effects and the variation in effects by county and/or ZIP code. The county / ZIP code effect

will be treated as a random effect if a large enough number of areas are available or if not, as a fixed

effect. 

4.6.2 Example GLARMA Model Estimation of the PM2.5 Effect on Elderly

Hospital Admissions

The ACAPS/NMMAPS data used for the power analyses was used to illustrate the advantages of

GLARMA time series models over GAM and GLM non-time-series models. A GLM model was fitted for

elderly hospital admissions and the results are shown in Listing 22. (The R code for this analysis is shown

in Listing 24.) The relative size of the coefficients and the p-values are very similar to the regression

model coefficients estimated for the power analysis. The standard deviation of the residuals is 1.67 and the

range is from -11.99 to 6.10.  The histogram and normal probability plots for the GLM model residuals are

shown in Figure 81. The residual distribution is roughly Normal but somewhat negatively skewed. GLM

(and GAM) models do not provide a way to model autocorrelation in the residuals. The deficiency of the

fitted GLM model is illustrated in the time series plot and the ACF and PACF graphs shown in Figure 82.

The PACF indicates the need for autoregressive components up to and including lag 8. The correlation for

lag 1 in the PACF is about 0.5. In most models, it is virtually impossible to include all the relevant

explanatory factors that would account for all the dependence in the response.

A GLARMA model with eight autoregressive parameters (lags 1 through 8: φ1, φ2, … , φ8) fitted to the

same data with the same explanatory factors is shown in Listing 23. The estimated autoregressive

coefficients are all highly statistically significant with the exception of lag 7. The standard deviation of the

residuals for the GLARMA model is 1.42 and they range from -8.5 to 4.30.  Table 61 provides a

comparison of the descriptive statistics for the residual errors from both models. The standard deviation,

the interquartile range,  and the range are substantially smaller for the GLARMA residuals compared to

the GLM residuals. The histogram and normal probability plots shown in Figure 83 are more Normal
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(with less negative skewness) compared to those for the GLM residuals. The time series plot and ACF and

PACF graphs shown in Figure 84 show little if any evidence of non-randomness and all of the

correlations in both the ACF and PACF graphs fall within the two standard error limits. All the evidence

in Table 61 indicates that the residuals for the GLARMA model have less variability. The residual time

series plot is much more homogeneous and shows almost no non-random patterns in contrast for the GLM

plot. Clearly, the GLARMA time-series model is a substantial improvement over the GLM non-time-

series model. The estimated coefficient for PM
2.5

 for the GLARMA model  (0.0002)  is less than half of

the estimate (0.0005) for the GLM model. Similarly, the p-value for the GLARMA model (0.6489) is

more than two and one-half times that of the GLM model (0.235).

Listings 24 - 27show the R code used for GLARMA estimates. The routines for GLARMA estimation

were written by and kindly provided by Daniel Drescher.

Listing 22: R output for Poisson non-time-series estimation using GLM. The coefficient estimates are

used as starting values for the GLARMA estimation.

> #Poisson non-timeseries estimation
> GLM <- glm(Y~-1+X, family = poisson, x = T)
> summary(GLM)

Call:
glm(formula = Y ~ -1 + X, family = poisson, x = T)

Deviance Residuals:
      Min         1Q     Median         3Q        M ax
-11.98624   -0.82050    0.07845    0.91292    6.096 21

Coefficients:
            Estimate Std. Error z value Pr(>|z|)
Xsun       5.9088416  0.2450335  24.114  < 2e-16 ** *
Xmon       6.4073235  0.2435913  26.304  < 2e-16 ** *
Xtue       6.3714463  0.2435174  26.164  < 2e-16 ** *
Xwed       6.3362099  0.2434679  26.025  < 2e-16 ** *
Xthu       6.3117545  0.2437341  25.896  < 2e-16 ** *
Xfri       6.2745184  0.2447092  25.641  < 2e-16 ** *
Xsat       5.9423186  0.2447792  24.276  < 2e-16 ** *
Xtp       -0.0001528  0.0000218  -7.007 2.43e-12 ** *
Xcs        0.1265367  0.0135518   9.337  < 2e-16 ** *
Xsn        0.0924945  0.0070599  13.101  < 2e-16 ** *
Xpm25mean -0.0005034  0.0004237  -1.188    0.235
Xso2      -0.9923606  0.9111303  -1.089    0.276
Xno2       0.6529158  0.7861352   0.831    0.406
Xno        0.0249012  0.2649844   0.094    0.925
Xozone     0.2586509  0.4735412   0.546    0.585
Xmntp      0.0028332  0.0004921   5.758 8.53e-09 ** *
Xmnrh      0.0001718  0.0002523   0.681    0.496
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to b e 1)
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    Null deviance: 525758.1  on 607  degrees of fre edom
Residual deviance:   1684.2  on 590  degrees of fre edom
AIC: 5689.2

Number of Fisher Scoring iterations: 4

# sd of GLM residuals
> sd(resid(GLM))
[1] 1.666426

# Interquartile Range
> IQR(resid(GLM))
[1] 1.733423
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Listing 23: R output results for GLARMA estimation.

> GL <- Poisson_GLARMA_NR(Y,X,delta0,length(GLM$coe fficients),phi.lags,theta.lags,
+   round, maxit, conv,lambda, type)
There were 50 or more warnings (use warnings() to s ee the first 50)
> GL$results
      estimate   s.e. t-value p-value derivative of  ll
 [1,]   6.4706 0.6930  9.3367  0.0000    -6.473044e -12   Sunday
 [2,]   6.9756 0.6928 10.0692  0.0000     1.083011e -11   Monday
 [3,]   6.9311 0.6928 10.0051  0.0000    -9.616530e -12   Tuesday
 [4,]   6.8910 0.6927  9.9474  0.0000     4.654055e -12   Wednesday
 [5,]   6.8767 0.6928  9.9255  0.0000    -7.861267e -12   Thursday
 [6,]   6.8329 0.6931  9.8581  0.0000     1.525891e -12   Friday
 [7,]   6.5068 0.6929  9.3900  0.0000     5.886847e -12   Satday
 [8,]  -0.0002 0.0001 -3.1855  0.0014    -6.810296e -09   tp
 [9,]   0.0891 0.0219  4.0722  0.0000    -3.286260e -13   cs
[10,]   0.0754 0.0186  4.0566  0.0000    -5.528911e -13   sn
[11,]  -0.0002 0.0004 -0.4553  0.6489     4.092726e -11   PM2.5
[12,]   1.2461 0.8820  1.4127  0.1577    -2.405021e -14   SO2
[13,]   0.0117 0.7699  0.0152  0.9879    -1.476597e -14   NO2
[14,]  -0.2970 0.2827 -1.0507  0.2934    -3.186340e -14   NO
[15,]  -0.4008 0.4889 -0.8198  0.4123     2.285672e -14   ozone
[16,]   0.0023 0.0006  3.7422  0.0002    -3.899459e -11   mntp
[17,]   0.0000 0.0003  0.0000  1.0000    -5.115908e -12   mnrh
[18,]   0.0336 0.0030 11.2462  0.0000     4.348522e -12   �1

[19,]   0.0322 0.0032 10.2083  0.0000    -2.643219e -12   �2

[20,]   0.0289 0.0033  8.7038  0.0000     8.071765e -12   �3

[21,]   0.0246 0.0033  7.4138  0.0000     4.789058e -12   �4

[22,]   0.0202 0.0032  6.3266  0.0000    -3.055334e -12   �5

[23,]   0.0128 0.0031  4.0968  0.0000    -2.404477e -11   �6

[24,]  -0.0006 0.0030 -0.2026  0.8394     5.524470e -12   �7

[25,]   0.0125 0.0031  4.0248  0.0001     1.359268e -11   �8

# sd of GLARMA residuals
> sd(GL$e)
[1] 1.419827

# Minimum and Maximum
> range(GL$e)
[1] -8.49780  4.29599

# Interquartile Range
> IQR(GL$e)
[1] 1.603282

# Range
> diff(range(GL$e))
[1] 12.79379

> summary(GL$e)
    Min.  1st Qu.   Median     Mean  3rd Qu.     Ma x.
-8.49800 -0.77450  0.02851 -0.03108  0.82880  4.296 00
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Table 61: Comparison of residual error for the GLM non-time-series model and the GLARMA time series

model.

Summary Statistic

Model

GLM GLARMA

Mean -0.05 -0.03

Median 0.08 0.03

Standard deviation 1.67 1.42

Interquartile range 1.73 1.60

Range 18.08 12.79

Minimum -11.99 -8.50

Maximum 6.10 4.30
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Figure 84: Time series plot and ACF and PACF plots for GLARMA residuals.
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Listing 24: R code for GLM and GLARMA estimation of the PM2.5 effect on elderly hospital admissions.

# Modified slightly by Rick Bilonick
################################################### #
# This program estimates an POisson-GLARMA(p,q)    #
# model as proposed by Davis et al. (1999, 2003).  #
# The program offers the option to use alternative #
# model-driving residuals in the GLARMA model.     #
# This program has been written by Daniel Drescher #
# July 2005. (Drescher.D@gmx.net)                  #
################################################### #

# Full data set with missing values
dow <- factor(as.character(weekdays(complete.copy$d ate)),
  levels=c("Sat","Sun","Mon","Tue","Wed","Thu","Fri "))
tp <- as.numeric(complete.copy$date)
sun <- ifelse(dow=="Sun",1,0)
mon <- ifelse(dow=="Mon",1,0)
tue <- ifelse(dow=="Tue",1,0)
wed <- ifelse(dow=="Wed",1,0)
thu <- ifelse(dow=="Thu",1,0)
fri <- ifelse(dow=="Fri",1,0)
sat <- ifelse(dow=="Sat",1,0)

cs <- cos(2 * pi * tp/365)
sn <- sin(2 * pi * tp/365)

x3 <- with(complete.copy,data.frame(sun,mon,
  tue,wed,thu,fri,sat,tp=tp,cs=cos(2 * pi * tp/365) ,
  sn=sin(2 * pi * tp/365),
  pm25mean,so2,no2,no,ozone,mntp,mnrh))

#read functions - changed the paths - rab
source("/projects/glarma/R/GLARMA_Example/Methods/P oisson_GLARMA_NR.txt")
source("/projects/glarma/R/GLARMA_Example/Methods/P oisson_DDW.txt")

dow <-
factor(as.character(weekdays(complete.copy$date[!is .na(complete.copy$pm25mean)])),
  levels=c("Sat","Sun","Mon","Tue","Wed","Thu","Fri "))
tp <- as.numeric(complete.copy$date[!is.na(complete .copy$pm25mean)])
sun <- ifelse(dow=="Sun",1,0)
mon <- ifelse(dow=="Mon",1,0)
tue <- ifelse(dow=="Tue",1,0)
wed <- ifelse(dow=="Wed",1,0)
thu <- ifelse(dow=="Thu",1,0)
fri <- ifelse(dow=="Fri",1,0)
sat <- ifelse(dow=="Sat",1,0)

cs <- cos(2 * pi * tp/365)
sn <- sin(2 * pi * tp/365)

x <- with(complete.copy[!is.na(complete.copy$pm25me an),],data.frame(sun,mon,
  tue,wed,thu,fri,sat,tp=tp,cs=cos(2 * pi * tp/365) ,
  sn=sin(2 * pi * tp/365),
  pm25mean,so2,no2,no,ozone,mntp,mnrh))
x2 <- with(complete.copy[!is.na(complete.copy$pm25m ean),],data.frame(dow,
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  tp,cs=cos(2 * pi * tp/365),
  sn=sin(2 * pi * tp/365),
  pm25mean,so2,no2,no,ozone,mntp,mnrh))

#read data - changed the path - rab
#Data <- read.csv("/projects/glarma/R/GLARMA_Exampl e/Data/Asthma_CTown.csv",
sep=";")
Y<-complete.copy[!is.na(complete.copy$pm25mean),2]
#Y<-complete.copy[,2]
X<-as.matrix(x[,1:17])
#X2<-as.matrix(x2[,1:11])
#X<-as.matrix(x3[,1:17])

# Set model parameters

#theta.lags <- c(7)
#phi.lags <- rep(0,0)
theta.lags <- c(1,2,3)
phi.lags <- rep(0,0)

round <- 4   # sets the numbers of digits after the dot for the results
conv <- 1e-10   # convergence criterion based on the  gradient
maxit <- 10   # maximum number of iterations
lambda <- 1.0   # lambda for the scaled deviation
type <-  "FT"   # type of model-driving residual:

  #  "SD" - scaled deviation,
  #  "VS" - variance stabilized residuals
  #  "A"  - Anscombe residuals,
  #  "FT" - Freeman tukey residuals,
  #  "NP" - normal pseudo residuals,

# Set Initial Values
#theta.init <- c(0.0)
#phi.init <-  rep(0,0)
theta.init <- rep(0,3)
phi.init <-  rep(0,0)
N <-  length(Y)

#Poisson non-timeseries estimation
GLM <- glm(Y~-1+X, family = poisson, x = T)
#GLM2 <- glm(Y~dow+tp+cs+sn+pm25mean+so2+no2+no+ozo ne+mntp+mnrh, family = poisson,
x = T,data=x)

# initial parameter vector for time series model
delta0 <- c(GLM$coefficients, phi.init, theta.init)

# time series estimation by using Newton-Raphson me thode
GL <- Poisson_GLARMA_NR(Y,X,delta0,length(GLM$coeff icients),phi.lags,theta.lags, 
  round, maxit, conv,lambda, type)
GL$results

# value of the loglikelihood function at the estima tes
GL$ll

PITT-PM 303



4.6 Generalized Linear Autoregressive Moving Average Models

#numbers of iterations for reaching convergence
GL$iterations

# results estimates (1st column), standard error (2 nd column), t-value (3rd
column), 
#     two-sided probability (4 column), value of th e gradient at the estimates (5th
column)
GL$results

acf(GL$e)

Listing 25: R function "Poisson_GLARMA_NR." Written by Daniel Drescher.

Poisson_GLARMA_NR <- function(Y, X, delta, r, phi.l ags, theta.lags, round, maxit, conv,  lambda, type)
{
counter<-0
maxgrad<- 1

        n <- length(Y)
        p <- length(phi.lags)
        q <- length(theta.lags)

while((counter< maxit)&(maxgrad>conv)){

        beta <- delta[1:r]
        phi <- delta[(r + 1):(r + p)]
        theta <- delta[(r + p + 1):(r + p + q)]
        mpq <- 0
        if((p + q) > 0) {
                mpq <- max(phi.lags[p], theta.lags[ q])
        }
        nmpq <- n + mpq
        s <- r + p + q
        e <- array(0, nmpq)
        Z <- array(0, nmpq)
        W <- array(0, nmpq)
        mu <- array(0, nmpq)
        e.d <- array(0, c(s, nmpq))
        Z.d <- array(0, c(s, nmpq))
        W.d <- array(0, c(s, nmpq))
        e.dd <- array(0, c(s, s, nmpq))
        Z.dd <- array(0, c(s, s, nmpq))
        W.dd <- array(0, c(s, s, nmpq))
        eta <- X %*% beta

        ll <- 0
        ll.d <- matrix(0, ncol = 1, nrow = s)
        ll.dd <- matrix(0, ncol = s, nrow = s)
        for(time in 1:n) {
                tmpq <- time + mpq

                if(p > 0) {

                        Z.d[(r + 1):(r + p), tmpq] <- Z[tmpq -phi.lags] + e[tmpq - phi.lags]
                        Z.dd[(r + 1):(r + p),  , tm pq] <- t((Z.d + e.d)[, (tmpq -phi.lags)])
                        Z.dd[, (r + 1):(r + p), tmp q] <- Z.dd[, (r + 1):(r + p), tmpq] +
                                                          (Z.d + e.d)[, (tmpq -phi.lags)]

                        for(i in 1:p) {

                                Z[tmpq] <- Z[tmpq] + phi[i] * (Z + e)[tmpq - phi.lags[i]]
              Z.d[, tmpq] <- Z.d[, tmpq] + phi[i] *  (Z.d[, tmpq - phi.lags[i]] +
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                              e.d[, tmpq - phi.lags [i]])
                                Z.dd[,  , tmpq] <- Z.dd[,  ,tmpq] + phi[i] * (Z.dd[,  ,tmpq - phi.lags [i]]
+
                                                  e .dd[,  , tmpq - phi.lags[i]])
                        }}

                if(q > 0) {

                        Z.d[(r + p + 1):(r + p + q) , tmpq] <- e[tmpq - theta.lags]
                        Z.dd[(r + p + 1):(r + p + q ),  ,tmpq] <- t(e.d[, tmpq - theta.lags])
                        Z.dd[, (r + p + 1):(r + p +  q), tmpq] <- Z.dd[, (r + p + 1):(r + p + q), tmpq]  +
                                                                e.d[, tmpq - theta.lags]

                        for(i in 1:q) {

                                Z[tmpq] <- Z[tmpq] + theta[i] * e[tmpq - theta.lags[i]]
                                Z.d[, tmpq] <- Z.d[ , tmpq] + theta[i] * e.d[, tmpq - theta.lags[i]]
                                Z.dd[,  , tmpq] <- Z.dd[,  ,tmpq] + theta[i] * e.dd[,  ,tmpq -
theta.lags[i]]
                        } }

                W[tmpq] <- eta[time] + Z[tmpq]
                W.d[, tmpq] <- matrix(c(X[time,  ],  rep(0, p +q)), ncol = 1) + Z.d[, tmpq]
                W.dd[,  , tmpq] <- Z.dd[,  , tmpq]
                mu[tmpq] <- exp(W[tmpq])

        if(type=="SD"){
                e[tmpq] <- (Y[time] - mu[tmpq])/mu[ tmpq]^(lambda)
                e.W<- -(mu[tmpq]^(1-lambda) + lambd a * e[tmpq])
                e.WW<- ((2*lambda-1)*mu[tmpq]^(1-la mbda)+ (lambda^2)*e[tmpq])
                }

        if(type=="VS"){
                e[tmpq] <- 2*(Y[time]^(0.5) - mu[tm pq]^(0.5))
                e.W<- -(mu[tmpq]^(0.5))
                e.WW<- - 0.5*(mu[tmpq]^(0.5))
                }

        if(type=="A"){
                e[tmpq]<- 1.5*(Y[time]^(2/3) - mu[t mpq]^(2/3))/(mu[tmpq]^(1/6))
                e.W<-  -(mu[tmpq]^(0.5)+ (1/6)*e[tm pq])
                e.WW<-  -(1/3)*mu[tmpq]^(0.5)+ (1/3 6)*e[tmpq]
                }

        if(type=="FT"){
                e[tmpq] <-   Y[time]^(1/2) +( Y[tim e]+1)^(1/2) - (4*mu[tmpq]+1)^(1/2)
                e.W<- -(2*mu[tmpq])/((4*mu[tmpq]+1) ^(1/2))
                e.WW<- -(2*mu[tmpq]*(2*mu[tmpq]+1)) /((4*mu[tmpq]+1)^(3/2))
                }

        if(type=="NP"){
                e[tmpq] <- qnorm(ppois(Y[time],mu[t mpq], lower.tail=TRUE, log.p=FALSE) , mean=0, sd=1,
lower.tail=TRUE, log.p=FALSE)
                DFW<-Poisson_DDW(Y[time],mu[tmpq])
                e.W<- DFW$DF*(1/(dnorm(e[tmpq], mea n=0, sd=1, log=FALSE)))
                e.WW<- e[tmpq]*(e.W^2)+DFW$DDF*(1/( dnorm(e[tmpq], mean=0, sd=1, log=FALSE)))
                }

                e.d[, tmpq] <- e.W*W.d[, tmpq]
                e.dd[,  , tmpq] <- e.W*W.dd[,  , tm pq]+e.WW*W.d[, tmpq] %o% W.d[, tmpq]

        #update likelihood and derivatives.
                ll <- ll + Y[time] * W[tmpq] - mu[t mpq] - log(factorial(Y[time]))
                ll.d <- ll.d + (Y[time] - mu[tmpq])  * W.d[,tmpq]
                ll.dd <- ll.dd + (Y[time] - mu[tmpq ]) * W.dd[,  , tmpq] -
                          mu[tmpq] * W.d[, tmpq] %o % W.d[, tmpq]
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Listing 26: R function "Poisson_DDW."

Poisson_DDW <- function(Y, Mu)
{
DF<-0
DDF<-0
        for(k in 0:Y) {
                DF<- DF + (k-Mu)*(Mu^(k)*exp(-Mu))/ (factorial(k))
                DDF<- DDF + (-Mu + (k-Mu)^2)*(Mu^(k )*exp(-Mu))/(factorial(k))
                 }

list(DF=DF, DDF=DDF)

Listing 27: R code for GLM diagnostic residual plots.

postscript("/projects/PITT-PM/GLARMA_PM2.5/PS/glm_a cf_pacf.eps",height=7,
  width=7,onefile=FALSE,
  horizontal=FALSE,paper="special")
par(mfrow=c(3,1))
plot(resid(GLM))
abline(h=0,lty=2)
acf(resid(GLM))
pacf(resid(GLM))
dev.off()
system("evince /projects/PITT-PM/GLARMA_PM2.5/PS/gl m_acf_pacf.eps &")
system("oodraw /projects/PITT-PM/GLARMA_PM2.5/PS/gl m_acf_pacf.eps &")

postscript("/projects/PITT-
PM/GLARMA_PM2.5/PS/glm_hist.eps",height=4,width=7,o nefile=FALSE,
  horizontal=FALSE,paper="special")
par(mfrow=c(1,2))
hist(resid(GLM),breaks=seq(-12,7,1))
qqnorm(resid(GLM))
qqline(resid(GLM))
dev.off()
system("evince /projects/PITT-PM/GLARMA_PM2.5/PS/gl m_hist.eps &")
system("oodraw /projects/PITT-PM/GLARMA_PM2.5/PS/gl m_hist.eps &")

4.7 Case-Crossover Analysis

The case-crossover design, initially proposed by Maclure (1991), provides an attractive approach to

estimating the effects of environmental triggers on acute health outcomes. The design is an alternative to

time-series analysis for assessing the acute health effects of air pollution. The application of case-

crossover analysis of daily mortality and particulate matter was first carried out by Neas et al. (1999) in

Philadelphia, Pennsylvania. Subsequently, the case-crossover design has been widely applied to assess the

association between air pollution and adverse health effects, including mortality and cardiopulmonary

hospitalizations (D'Ippoliti et al., 2003; Kwon et al., 2001; Sunyer et al., 2000; Tsai et al., 2006; Zanobetti
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and Schwartz, 2005).

In the case-crossover design, only cases are involved and the exposure of each case during an at-risk

“hazard period” just before the event is compared with the exposure levels during one or more reference

periods when the event did not occur. Cases serve as their own controls. Therefore, time-invariant

confounding factors, such as individual characteristics (e.g., age, gender, race, socioeconomic status, etc.)

are controlled by design rather than by statistical adjustment.

The case period is usually defined as the current day of the event or alternatively 0 to 1 or 2 days before

the event. The control periods are chosen from time periods that precede the event. However, if the

exposures exhibit a time trend, risk estimates from unidirectional sampling could be confounded by the

time trend in such an exposure (Greenland, 1996).  Bateson and Schwartz (1999) proposed a symmetric

bidirectional case-crossover design, in which “control” periods are selected as the same day of week as the

case period both before and after the event.  This strategy of referent sampling is used in most case-

crossover studies of air pollution and would be used for the proposed retrospective study.  

In many air pollution studies, the case-crossover analysis will produce results similar to those from a time-

series analysis (Basu et al., 2005; Lu and Zeger, 2006). In comparison with time series analysis, the case-

crossover approach has a few significant strengths. First, it avoids complex mathematical modeling and

adjusting for seasonality because this approach controls some confounding factors such as long-term

trend, seasonality and day of week by design rather than by modeling. Moreover, personal characteristics

and other time-invariant variables are also controlled by the design. However, the drawback of case

crossover design is that the efficiency of case-crossover design estimators has been shown to be lower

than that of time series analysis (Bateson and Schwartz, 1999; Pope, 1999). Therefore, both approaches

have their strengths and weaknesses.

In the proposed retrospective study, both types of analyses will be used to examine the associations

between PM2.5 and health outcomes and the comparability and consistency of results will be assessed.

4.8 Spatial Bootstrap Sampling for Confidence Intervals and P-Values

The daily health outcome count time series for each ZIP code area are likely to be positively correlated

and this correlation is likely to increase as the areas in question are closer together. In order to properly

assess the statistical significance of an estimated parameter or construct the confidence interval for the

parameter in the GLARMA model which incorporates all ZIP code areas, it will be necessary to take this

spatial correlation into account. The basic idea of spatial bootstrap sampling (Lahiri, 2003)  is similar to

block bootstrap sampling discussed in section 4.4.2 that would be used for handling dependence in one

dimension for the latent variable multivariate receptor model. The basic idea is to randomly select clusters

of ZIP code areas where the included ZIP code areas are adjacent or close together in order to preserve the

spatial dependence.
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5 Work Plan

Tasks To Be Performed

The PITT-PM study will characterize the relationship between human health and ambient airborne fine

particles (PM2.5) from coal-fired power plants and other emission sources in the Pittsburgh, Pennsylvania

region. The proposed study area has approximately 2.4 million people, almost one fifth of the total

Pennsylvania population in 2002.  More than one half of the population of the Pittsburgh Metropolitan

Statistical Area (MSA) resides in Allegheny County (1.24 million; 83.7% Caucasian, 13.0% African

American; Other 2.3%). The time period of the study will span 1999 to 2006 for PM2.5 mass and 1999 to

2003 for speciated PM2.5 components which are constrained by the availability of sufficient component

data. Air monitoring and meteorological data from the larger 35-county region will be used to help inform

exposure estimates for the MSA. Analysis performed in this feasibility study has demonstrated that, with

the inclusion of data from archived air monitoring filters, sufficient exposure and health outcomes data

exists for the characterization of health effects over the period from 1999 to 2006.

There are four main tasks to be completed:

1. Assembly of an air monitoring/exposure daily database using existing datasets and yet-to-be-

analyzed archived filters for speciated PM2.5 components (see the blue boxes in Figure 1,

Section 1),

2. Assembly of a health outcomes daily database (see the yellow boxes in Figure 1, Section 1,

3. Statistical analysis and modeling to characterize the relationship between various health outcomes

and PM2.5 mass concentration, components, and emissions from coal-fired power plants while

adjusting for confounding factors (see the orange boxes in Figure 1, Section 1), and

4. Writing of interim progress reports and a final scientific report providing a comprehensive

description of the methods, results and conclusions.

These tasks are described in more detail below. During the completion of Task 1 and Task 2, it will be

necessary to acquire numerous data sets. These data sets will be stored in an interim database for analysis

and manipulation using the R statistical programming language before being assembled into a

comprehensive daily database suitable for statistical time series modeling and other analyses. PostgreSQL

will be used to house the database on a secure server. Because the air monitoring/exposure data were

collected using various monitors distributed irregularly in space and time, considerable effort will be

required to estimate daily exposure for each ZIP code area. Given the availability of sufficient speciated

PM2.5 data only from August 1999 to August 2004, statistical models focusing on PM2.5 components (while

accounting for confounding factors) can only be constructed for this time period. Statistical models 
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focusing on PM2.5 mass concentrations, however, can be constructed for the entire period from 1999 to

2006.

It is expected that the study will take three years to complete. Figure 85 provides a Gantt chart illustrating

the start times and durations of the various tasks comprising the proposed study. Most of the first two

years will consist of acquiring the air monitoring/exposure data and health outcomes data, organizing and

performing quality assurance, quality control and statistical calibration procedures, and conducting

extensive geostatistical modeling and latent variable modeling to help construct daily time series of health

outcomes and air monitoring/exposure parameters for ZIP code areas within the study region. Once the

daily database is constructed, the last 15 months will be devoted to time series modeling/analysis and other

applicable techniques. These methods will be used to characterize the relationships between PM2.5 mass,

components, latent parameters determined by source apportionment and health outcomes while accounting

for confounding effects of gaseous co-pollutants and meteorological factors among others.

Task 1 – Assembly of an Air Monitoring/Exposure Daily Database

The objective of this task is to assemble a database of daily ambient PM2.5 mass, PM2.5 speciation, co-

pollutant, and meteorological data for use in representing the exposures of the population of the Pittsburgh

Metropolitan Statistical Area (MSA) to these parameters in a retrospective time series epidemiology study

according to the design that was developed.  It was concluded that there are a sufficient quantity and

quality of existing PM2.5 samples and archived PM2.5 samples to permit a retrospective epidemiology study

of PM2.5 from coal-fired power plants and other emission sources in the Pittsburgh region. A four-year

study focusing on the Pittsburgh MSA between August 3, 1999, and August 2, 2003 was recommended.

To develop exposure estimates for chemical components of PM2.5, the study will utilize existing PM2.5

speciation data collected by seven monitoring sites (i.e., the Bruceton, Hazelwood, Lawrenceville, and

Schenley Park sites in Allegheny County, the Florence site in Washington County, and the Greensburg

and St. Vincent College sites in Westmoreland County) that operated in the Pittsburgh MSA during some

or all of the four-year study period, as well as additional PM2.5 speciation data that will be obtained by

chemically analyzing archived PM2.5 samples collected by the Bruceton, Florence, Lawrenceville, Liberty

Borough, and St. Vincent College sites during that period.  Existing PM2.5 speciation data that were

collected by eight monitoring sites (i.e., Franciscan University of Steubenville, Holbrook, Hopedale, M.K.

Goddard, Quaker City, Tomlinson Run State Park, Wheeling Jesuit University, and Youngstown) located

in a larger region surrounding the Pittsburgh MSA will also be included in the database for possible use in

geostatistical modeling to help inform the exposure estimates developed for the MSA.  Estimates of PM2.5

total mass concentrations, co-pollutant (i.e., PM10-2.5, SO2, CO, NO2, and O3) concentrations, and

meteorological conditions in the Pittsburgh MSA will be derived by geostatistically modeling data that

were collected during the study period at numerous sites located in a 35-county region centered on

Pittsburgh.

PITT-PM 310



Tasks To Be Performed

Table 24 (Section 2) summarizes the expected availability of PM2.5 speciation data, including both

preexisting data and data that will be obtained by analyzing archived PM2.5 samples, for the four-year

study.  (The statistics presented in the table do not include PM2.5 speciation data from outside of the

Pittsburgh MSA).  The study will include, at a minimum, the following PM2.5 species: sulfate, nitrate,

elemental carbon (EC), organic carbon (OC), and 14 trace and crustal elements (As, Br, Ca, Cr, Cu, Fe, K,

Mn, Ni, Pb, Se, Si, Ti, Zn).  Archived PM2.5 samples were collected on either Teflon or quartz filters; all of

the archived quartz filters and some of the archived Teflon filters have been stored under refrigeration

since collection.  The numbers shown in the table were tabulated under the assumptions that all archived

Teflon-filter-based samples can be analyzed to provide valid fine particulate sulfate and trace/crustal

element data, that refrigerated Teflon-filter-based samples can additionally be analyzed to provide valid

fine particulate nitrate data, and that all archived quartz-filter-based samples can be analyzed to provide

valid fine particulate sulfate, nitrate, and EC/OC data.  As indicated in Table 24 (Section 2), for each

PM2.5 species, data are expected to be available from at least one monitoring site in the Pittsburgh MSA on

greater than 90% of the 1460 study days, with many days (90% for sulfate, 66% for nitrate, 42% for

EC/OC, and 88% for trace/crustal elements) having data available from multiple sites.  Although not

shown in Table 24 (Section 2), >90% data availability is also expected for PM2.5 total mass, co-pollutants,

and meteorological parameters.

In addition to the four-year retrospective study focusing on chemical components of PM2.5, performing a

longer study focusing on PM2.5 total mass and co-pollutants is also proposed.  This study would take

advantage of the additional statistical power afforded by the Pittsburgh region’s vast record of daily data

for these criteria pollutants.  Hence, rather than focusing only on the August 1999 to August 2003 period,

the database of air monitoring data will include all publicly available PM2.5, PM10, SO2, CO, NO2, and O3

data that were collected in the 35-county greater Pittsburgh region between 1999 and 2006.  There were at

least 47 sites that measured PM2.5, 56 sites that measured PM10, 49 sites that measured SO2, 20 sites that

measured CO, 16 sites that measured NO2, and 34 sites that measured O3 in the region during some or all

of the 1999-2006 period.  

Work on Task 1 will be carried out according to a series of four subtasks, as detailed below.

Task 1.1 – Obtain and Organize Existing Air Monitoring Data and Archived PM2.5

Samples

Work to be performed under this task includes:

1. Obtaining and organizing existing PM2.5 chemical speciation data that were collected at monitoring

sites in the greater Pittsburgh region between August 3, 1999, and August 2, 2003.  All associated

metadata (e.g., validation flags, sampling start and end times, etc.) will also be gathered.  Data will be

obtained from the following sources, per the inventory that was conducted as part of the DOE-
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sponsored PITT-PM feasibility assessment:

• Speciation Trends Network (STN) – Florence, Greensburg, Hazelwood, Lawrenceville, and

Youngstown sites

• National Energy Technology Laboratory, Office of Science and Technology (NETL/OST) –

Bruceton site

• Pittsburgh Air Quality Study (PAQS) – Schenley Park site

• Upper Ohio River Valley Project (UORVP) – Lawrenceville and Holbrook sites

• Steubenville Comprehensive Air Monitoring Program (SCAMP) – Franciscan University of

Steubenville, Hopedale, Tomlinson Run State Park, St. Vincent College, and Wheeling Jesuit

University sites

• Clean Air Status and Trends Network (CASTNet) – M.K. Goddard and Quaker City sites

• Interagency Monitoring of Protected Visual Environments (IMPROVE) Network  – M.K.

Goddard and Quaker City sites

These data are all publicly available; most have already been obtained by CONSOL as part of the DOE-

sponsored feasibility assessment.  Under this task, the remaining data will be obtained and all data

organized in an electronic database by data source, monitoring site, and parameter.  Electronic data files

will be kept on a secure server and routinely backed up to prevent catastrophic loss.  

2. Obtaining and organizing existing PM2.5 mass, co-pollutant (i.e., PM10, SO2, CO, NO2, and O3), and

meteorological (i.e., temperature, relative humidity, dew point, wind speed, and wind direction) data

that were collected by monitoring sites in the 35-county greater Pittsburgh region between 1999 and

2006.  All associated metadata (e.g., validation flags, sampling start and end times, etc.) will also be

gathered.  Data will be obtained from the following sources, per the inventory that was conducted as

part of the DOE-sponsored PITT-PM feasibility assessment:

� U.S. Environmental Protection Agency’s Air Quality System (AQS)

� National Energy Technology Laboratory, Office of Science and Technology (NETL/OST)

� Pittsburgh Air Quality Study (PAQS)

� Upper Ohio River Valley Project (UORVP)

� Steubenville Comprehensive Air Monitoring Program (SCAMP)
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� Clean Air Status and Trends Network (CASTNet)

� Interagency Monitoring of Protected Visual Environments (IMPROVE) Network 

� Automated Surface Observing System (ASOS) and Automated Weather Observing System

(AWOS) Stations

� Roadway Weather Information System (RWIS)

These data are all publicly available; many have already been obtained as part of the DOE-sponsored

feasibility assessment.  Under this task, the remaining data will be obtained and all data will be

organized in an electronic database by data source, monitoring site, and parameter.  Electronic data

files will be kept on a secure server and routinely backed up to prevent catastrophic loss.  

3. Requesting, obtaining, and organizing all archived PM2.5 samples (including blanks and duplicates)

that were collected at the Bruceton, Lawrenceville, Florence, Liberty Borough, and St. Vincent

College monitoring sites between August 3, 1999, and August 2, 2003 (as well as any samples from

outside of this date range that are needed to complete Task 1.2.2 – e.g., for the Liberty Borough site).

Sampler operating data and QA/QC data regarding the collection of these samples will also be

gathered.  Samples will be obtained from the Allegheny County Health Department (for the

Lawrenceville and Liberty Borough sites), NETL/OST (for the Bruceton site), Pennsylvania DEP (for

the Florence site), Desert Research Institute (for the Lawrenceville site), and CONSOL (for the St.

Vincent College site).  Activities to be performed include:

• Requesting and securing permission to obtain and analyze the archived PM2.5 samples.

Discussions in this regard have already been initiated with all of the groups listed above as part

of the DOE-sponsored feasibility assessment, and all were preliminarily agreeable to

contributing archived samples for use in the study.

• Physically obtaining the samples, organizing them (i.e., according to monitoring site, filter

type, collection date, blank vs. non-blank, etc.), and storing them prior to analysis.  Samples

will be stored at the CONSOL R&D facility in South Park, PA.  Refrigerated storage will be

provided for samples that previously were being stored under refrigeration.  Standard chain of

custody forms will be used to track sample stewardship.

Task 1.2 – Develop and Validate Procedures for Obtaining Chemical Speciation

Data from Archived PM2.5 Samples

In order to maximize data quality and avoid unnecessary costs, prior to beginning full-scale analysis of

archived PM2.5 samples, a pilot study will be conducted to confirm the quality of results that can be

obtained from the filters obtained in Task 1.1.3.  The study will take advantage of the fact that, for all sites
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except St. Vincent College, there are days from which both existing PM2.5 speciation data and an archived

PM2.5 sample are available.  Hence, pairwise comparisons between the existing speciation data and the

speciation data obtained by analyzing the archived samples can be used to establish the validity of the

archived sample results and to allow any artifacts resulting from the use of these archived samples to be

corrected. Specific objectives of the pilot study include resolving uncertainties regarding the quality of

trace/crustal element results that can be obtained by analyzing archived PM2.5 samples and the feasibility

of obtaining nitrate and ammonium data from archived samples that have not been stored under

refrigeration.  Results of the pilot study will be used to refine the plan for archived filter analysis

(including the specific filters to be analyzed and the methods used to analyze them), thereby ensuring that

analyses that would not contribute any valuable data to the study are not performed. Subtasks to be

performed under Task 1.2 include:

1. Developing QA/QC protocols and standard operating procedures (SOPs) for the determination of

inorganic ions (by ion chromatography), elemental and organic carbon (by thermal optical

transmittance), and trace and crustal elements (by X-ray fluorescence spectroscopy) from archived

PM2.5 samples.  These will be adapted from existing protocols and SOPs where possible.

2. For each of the Bruceton, Florence, Lawrenceville, Liberty Borough, and St. Vincent College sites,

chemically analyzing up to 100 archived PM2.5 samples that were collected on days from which

collocated PM2.5 speciation data are already available.  (In the absence of collocated, preexisting

speciation data from the monitoring site under consideration, preexisting data from a nearby site will

be used for comparison with the archived sample results – e.g., archived sample results from the St.

Vincent College site will be compared with preexisting data from the Greensburg site, which was

located about 10 km away).  Teflon-filter-based samples will be analyzed for trace and crustal

elements by X-ray fluorescence spectroscopy and for inorganic ions by ion chromatography, and

quartz-filter-based samples will be analyzed for EC and OC by thermal optical transmittance and for

inorganic ions by ion chromatography.

3. Applying latent variable modeling and Bland-Altman analyses to develop calibrations relating the

archived sample results to the existing speciation data.  Random and systematic errors resulting from

use of the archived sample results will be rigorously characterized.

4. Finalizing plans for the chemical analysis of archived PM2.5 samples, based on the results of Task

1.2.3.  As discussed above, the purpose of this task is to provide a means for avoiding unnecessary

project costs by ensuring that only analyses that will contribute useful information to the retrospective

epidemiology study are performed.  Modifications to analytical methods may be explored and

implemented if necessary to improve data quality (e.g., by providing better sensitivity for determining

trace element species); revisions to the SOPs developed under Subtask 1.2.1 will be made accordingly.

The final plan will specify in detail the archived PM2.5 samples to be analyzed, the chemical species to

be determined from each sample, and the analytical techniques to be used to perform these analyses. A
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final budget for archived sample analysis will also be developed.

Task 1.3 – Chemically Analyze Archived PM2.5 Samples to Supplement Existing

Speciation Data

Work to be performed under this task includes:

1. Chemically analyzing archived PM2.5 samples according to the final plan developed under Task 1.2.4.

2. Reducing and quality assuring all data produced by the chemical analysis of archived PM2.5 samples in

Task 1.3.1.  This includes converting laboratory results to ambient air concentration units using the

sampler operating data collected as part of Task 1.1.3.  QA/QC will be conducted according to the

protocols developed under Task 1.2.1.

Task 1.4 – Reduce Data and Assemble Final Database

The ambient air monitoring data that will be used to represent exposures in the retrospective epidemiology

study in many cases were collected by different groups who used different sampling and analytical

techniques and employed different QA/QC protocols.  Hence, a major objective of this task is to provide

for consistency among these data before they are used in geostatistical and epidemiological modeling.  An

air monitoring database for the study will then be assembled.  Specific tasks to be performed include:

1. Applying a consistent set of QA/QC standards to the data.  Data will be reviewed to identify

inconsistencies in QA/QC procedures, and a consistent set of QA/QC criteria will be applied where

practical.  All data will be qualified using NARSTO standard validation flags.  Data will be vetted

using descriptive statistics and graphs, and any outliers or anomalies will be investigated and

documented.

2. Mathematically adjusting data (e.g., using calibrations such as those developed as part of Task 1.2.3)

to account for relative biases resulting from discrepancies in sampling and analytical techniques, blank

correction practices, archiving procedures, etc.  Calibrations will be performed using latent variable

modeling or Bland-Altman analysis, as appropriate.  This task will also include, for example,

conversion of PM10 concentration data, which are commonly reported at standard temperature and

pressure, to local conditions so that these data can be used in conjunction with PM2.5 data (reported at

local conditions) to derive PM10-2.5 estimates.  All procedures will be thoroughly documented and

reported with the results of the study.

3. Aggregating data, as required, to compute daily, midnight-to-midnight average values for each

parameter at each monitoring site.  This includes: 

� Aggregating measurements that were measured on a finer-than-daily time resolution (e.g., hourly,
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3-hour, etc.) to compute 24-hour mean values (or other metrics appropriate for quantifying

exposure, such as maximum 1-hour average concentration, maximum 8-hour average

concentration, etc.), provided that the data satisfy appropriate completeness criteria (e.g., >75%

valid data availability per day). 

� For 24-hour integrated data that were not measured from midnight-to-midnight, combining these

data (e.g., using time-weighted means) to derive midnight-to-midnight averages.  This applies to

24-hour integrated data from the Bruceton monitoring site, which were routinely measured from

noon to noon, and to 24-hour integrated data from the SCAMP monitoring sites, which were

routinely measured from 9:00 am to 9:00 am.  Where available, hourly PM2.5 measurements may

be used to inform the averaging process.  

� All procedures will be thoroughly documented and reported with the results of the study.

4. Assembling the reduced, validated, daily data from all sites into a comprehensive database for use in

the study.  The database will be formatted so that it can easily be imported into the geostatistical and

epidemiological models, and it will be housed on a secure server and routinely backed up to prevent

catastrophic loss.

Task 2 – Assembly of a Health Outcomes Daily Database for the Pittsburgh MSA

The overall objective of this task is to assemble a database of daily health outcomes focusing on the

Pittsburgh MSA for the period from 1999 to 2006. The retrospective nature of this study will necessitate

the use of existing secondary data on mortality, hospitalizations and emergency department (ED) visits

within the seven-county region of interest. These data will ultimately be linked to PM2.5 (both mass and

chemical components) for the same region to examine the relationship between PM2.5 and these daily

health outcomes. Epidemiological studies and the time series power analysis (Section 4.1) have suggested

that a minimum of three years of data are needed to acquire the statistical power necessary to identify the

health effects of typical PM2.5 exposures. The proposed study period for optimal retrospective data

coverage for speciated PM2.5 is 4 years (August 3, 1999-August 2, 2003). However, health outcomes data

will be obtained for the period from 1999-2006 to take advantage in a longer study of the extensive PM2.5

mass data available for the Pittsburgh region. It is desirable to have access to various categories of specific

health outcomes (hospitalizations, ED visits) as well as total, cardiovascular and respiratory mortality for

this region that can then be correlated with PM2.5 in a rigorous manner. 

It was determined that standardized data for both mortality and hospitalizations are available from 1999-

2003 (and through 2006) for the region of interest. It was also demonstrated that an ED visit dataset can

be constructed but will likely be more limited in geographic coverage.  ED data are available from 40% of

the area hospitals from 1999-2004 and the hospitals with the most complete data are associated with the

large healthcare systems (UPMC Health System, West-Penn Allegheny Health System, Mercy Health
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System). These hospitals are more likely to partner with university and industry-based research groups. 

Based on a complete comprehensive inventory and assessment of available mortality and morbidity

datasets, the primary identified sources of secondary data include:

1. National Center for Health Statistics, Division of Vital Statistics

2. Pennsylvania Department of Health, Bureau of Health Statistics and Research

3. Allegheny County Health Department

4. PA Health Care Cost Containment Council Hospital Discharge Datasets (l999-2004) 

5. Ohio Department of Health Hospital Discharge Datasets (l999-2004)

6. West Virginia Health Care Authority Hospital Discharge Datasets (l999-2004)

7. Emergency Department Visit Data (from hospital systems and individual hospitals)

8. UPMC Medical Archival Retrieval System (MARS) 

Unlike the PM2.5 data, individual level health outcomes data are not publicly available and must be

requested by specific protected access application to the agency or institution responsible for data

collection. We intend to also acquire mortality and hospitalization data for counties in West Virginia and

Ohio that border the Pittsburgh MSA and are considered a part of the broader Ohio River Valley. 

Task 2.1 – Obtain Required Institutional Review Board Approval for Acquisition of

Secondary Limited Datasets from the Pennsylvania Department of Health, the

Pennsylvania Health Care Cost Containment Council, West Virginia and Ohio

Hospital Associations, Hospital Systems and Individual Hospitals

Institutional review board (IRB) approval of a project is mandatory prior to the requesting of data if a
study or project involves human subjects and requires the receipt of records with personal identifiers from
medical or other agencies. This task will be completed within the first three months of the project period.

Task 2.2 – Submit Protected Access Applications for Mortality and Hospitalization

Data to the Pennsylvania Department of Health, PA Health Care Cost Containment

Council and Allegheny County Health Department

The process of obtaining confidential data is initiated with the submission of a completed “Application for

Access to Protected Data” to the institutions or agencies. Guidelines and procedures for these “follow-
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back” activities using Pennsylvania records are covered in detail in the Pennsylvania “User’s Guide for

Access to Protected Data.” The application must be reviewed and approved by the Department of Health

and/or the PHC4 prior to release of the information. Applications can be obtained by writing to the

Director, Division of Health Statistics and Research and the PHC4 Special Requests Unit. Similar

procedures are in place in West Virginian and Ohio. This task with be completed within the first 6 months
of the project period.

Task 2.3 – Construct and Execute Data Use Agreements with Individual Hospital

Administrations for Access to Limited Datasets for Emergency Room Data That

Has Been De-identified but Provides ZIP Code of Residence, Age, Race and

Gender of Individual, Date of Visit/Admission and Discharge (If Admitted to the

Hospital), Both Admission and Discharge Diagnoses and Vital Status Outcome at

Discharge 

Unlike hospital admission data, emergency department (ED) visit data for population-based

epidemiological assessments are not captured by a single centralized agency in Pennsylvania. Therefore

ED data will need to be accessible in electronic format from hospital systems or individual hospitals in the

Pittsburgh MSA. Data use agreements will be constructed and executed with each hospital system and/or

hospital of interest. This task will be completed by the end of the first quarter of the second project year.

Task 2.4 – Acquire Secondary Databases and Determine Quality and Completeness

for Daily Total, Respiratory and Cardiovascular Mortality, Hospitalizations and ED

Visits 

Health outcomes data will be obtained from secondary sources per the inventory conducted as a part of the

feasibility assessment. These sources are outlined briefly below.

Daily Mortality Data for the Pittsburgh MSA

Mortality data in the Pittsburgh MSA and the region are relatively well characterized for the 1999-2004

time period of interest through the National Center for Health Statistics (NCHS) Division of Vital

Statistics and the Pennsylvania Department of Health.  Pennsylvania mortality data is also available

directly through the Pennsylvania Department of Health Bureau of Health Statistics and Research.

Complete datasets are currently available from 1999-2004. Protected access datasets from the Bureau of

Health Statistics and Research include street address and ZIP code of residence (ZIP+4), as well as

demographic variables such as age, race, education, marital status and occupation. During the proposed 4-

year study period, approximately 114,000 all-cause deaths were observed in the Pittsburgh MSA (Table
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26, Section 3).

Daily Hospitalizations

Hospitalization data are readily accessible from 1999 (and earlier) through 2006 at the geographic level of

5-digit ZIP code from the Pennsylvania Health Care Cost Containment Council (PHC4). Through a

protected access data user agreement with PHC4, researchers can obtain customized datasets that contain

dates of hospital admission and discharge in addition to age, gender, race, ZIP code of residence and other

variables of interest for all subjects. Admission type and admission source codes are also available to

determine if the subject was admitted through the emergency department or other external entity in an

unscheduled admission. This is an important consideration for time-series studies of air pollution and

health outcomes. Individual street addresses, however, are not available.

Table 62 presents a summary of admissions to hospitals located within the Pittsburgh MSA by county of

residence and specific hospital from 1999-2004. As observed in the summary table, more than half

(53.4%) of the total hospital admissions from 1999-2004 in the 7-county Pittsburgh MSA (2.23 million)

involve residents of Allegheny County (1.19 million). Of the 1.19 million Allegheny County residents

admitted to hospitals during this time period, 98.7% were admitted to hospitals located within the

boundaries of Allegheny County. A total of 78% of all hospital admissions represent residents of the three

most populated counties in the Pittsburgh MSA: Allegheny, Washington and Westmoreland.

Approximately 99% of the residents of these three counties are admitted to hospitals within the 3-county

area. Approximately 27-30% of all hospital admissions in the Pittsburgh MSA were determined to be of

circulatory or respiratory origin. A custom dataset of total admissions or admissions for residents of each

Pennsylvania county within the Pittsburgh MSA by specific ICD 9/10 code(s) will be obtained in Excel or

SPSS format for a minimal cost outlay.

Table 62: Resident admissions to hospitals in the Pittsburgh MSA by county of residence and hospitals, 1999-2004.

Hospitals by County

County of Residence
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Allegheny County

Alle Kiski Medical Center 21363 9513 9553 28156 68585

Allegheny General Hospital 91203 3344 7019 9523 3905 8011 7738 130743

Childrens Hospital of Pittsburgh 32736 1420 2565 3633 2260 3848 5972 52434

Forbes Regional Hospital 58721 578 139 270 343 200 25245 85496

Jefferson Regional Medical Center 78907 53 79 5077 7725 2979 94820
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Hospitals by County

County of Residence
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Magee Womens Hospital of UPMC 86205 865 1995 6639 2222 5094 8058 111078

Mercy Hospital of Pittsburgh 94521 425 1540 2256 4756 5977 3974 113449

Mercy Providence Hospital 17024 155 67 354 113 17713

Ohio Valley General Hospital 24401 615 144 76 1218 96 26550

Sewickley Valley Hospital 31046 26750 1138 52 852 146 59984

St. Clair Memorial Hospital 76340 185 167 288 12004 238 89222

Suburban General Hospital 22787 228 359 56 23430

UPMC Braddock 36643 66 313 58 192 181 937 38390

UPMC McKeesport 53178 123 261 2693 56255

UPMC Passavant 42999 79 1435 15384 57 134 275 60363

UPMC Presbyterian/Shadyside 184891 4001 6044 7297 10418 10427 25244 248322

UPMC South Side 31856 108 105 102 279 258 32708

UPMC St. Margaret 52093 1085 303 1876 279 451 6665 62752

Western Pennsylvania Hospital 93647 2054 1639 4354 2033 1992 9039 114758

St. Francis Medical Center (now closed) 43323 478 1137 2228 580 882 3056 51684

St. Francis Central (now closed) 4064 149 331 135 244 96 5019

Allegheny County hospital subtotal 1177948 23908 52372 65461 32898 60190 130978 1543755

Armstrong County

Armstrong County Memorial Hosp. 303 27327 3966 1760 33356

Armstrong County hospitals subtotal 303 27327 3966 1760 33356

Beaver County

Aliquippa Community Hospital 890 17445 102 18437

Medical Center Beaver 2109 83191 698 186 86184

Beaver County hospitals subtotal 2999 100636 698 288 104621

Butler County

Butler Memorial Hospital 1257 2390 528 60807 75 322 65379

UPMC Passavant Cranberry (St. Francis) 782 397 2406 3585

Butler County hospitals subtotal 2039 2390 925 63213 75 322 68964
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Hospitals by County

County of Residence
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Fayette County

Brownsville General Hospital 9484 2326 84 11894

Highlands Hospital 14451 88 832 15371

Uniontown Hospital 102 57498 645 373 58618

Fayette County hospitals subtotal 102 81433 3059 1289 85883

Washington County

Canonsburg General Hospital 1845 128 20550 22523

Monongahela Valley Hospital 1548 15607 38580 10899 66634

Washington Hospital 1674 99 58 1900 75260 292 79283

Washington County hospitals subtotal 5067 99 58 17635 134390 11191 168440

Westmoreland County

Frick Hospital 95 13030 153 19767 33045

Latrobe Area Hospital 270 187 969 89 56385 57900

Mercy Jeannette Hospital 1210 795 122 33610 35737

Monsour Medical Center 736 53 789 226 9051 10855

Westmoreland Regional Hospital 1031 76 5085 237 75446 81875

Citizens General (now closed) 1492 763 103 6331 8689

Westmoreland County hospitals subtotal 4834 1079 103 20668 827 200590 228101

County of residence subtotal 1193292 54704 154032 133499 152634 198829 346130 2233120

Daily Emergency Department Visits

Unlike hospital admission data, clinical emergency department (ED) visit data for population-based

epidemiological assessments are not captured by a single centralized agency in Pennsylvania. Therefore

ED data will need to be accessible in electronic format from hospital systems or individual hospitals in the

Pittsburgh MSA. If records are not electronically formatted, manual data abstraction of medical charts

would be required to assemble the necessary variables, a process that is costly, time-consuming, and most

likely prohibited under the Health Insurance Portability and Accountability Act (HIPPA) of 1996.  Table

45 (Section 3) presents a summary of the availability of electronic records for ED visits at 36 hospitals in
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the Pittsburgh MSA for the 1999-2004 time-period. Allegheny County has the largest number of hospitals

(20), followed by Westmoreland (4), Washington and Fayette (3 each) and Beaver and Butler (2 each). In

Allegheny County, most hospitals are components of one of four major health systems: University of

Pittsburgh Health Care System, West-Penn Allegheny Health System, Pittsburgh Mercy Health System,

and the Pittsburgh VA Health System. These systems are more likely to have ED data in electronic format

than smaller, independent hospitals located in the other counties in the Pittsburgh MSA. However, many

smaller hospitals have recently merged with one of the 4-primary systems, allowing the information to be

more readily accessed.

Task 2.5 – Technical Review and QA/QC of the Individual Health Outcomes

Datasets

Mortality data will be obtained from the Pennsylvania Department of Health Bureau of Health Statistics

and Research and verified using National Center for Health Statistics (NCHS) Division of Vital Statistics.

Recent quality analysis comparing these electronic datasets to death certificates suggests that the error rate

is 2% or less. Hospitalization data is collected by the Pennsylvania Health Care Cost Containment Council

(PHC4). The data are processed using a series of validation rules before being finalized and made

available for further analysis and public release. PHC4 edits the data and provides error reports for  each

data source. The health care facility will make error corrections and provide PHC4 with corrected

information. Compliance across health care institutions in Pennsylvania approaches 100% (99% in

recently released 2006 reports). Emergency department (ED) data will be acquired from individual

hospitals/hospital systems through directed agreements. If necessary, the investigators will utilize an

“honest broker” system to acquire identified ED data from hospitals for use in the study. Verification of

the accuracy and integrity of the ED and other data will be conducted by the data research associate and

will include ID verification, data range, type verification, and duplicate entry checks. Additional data

editing and report generation will be performed to assure data integrity and completeness.

Task 2.6 – Construction of the Master Individual Level and Aggregated Daily Health

Outcomes Datasets

All data will be organized into electronic data files (PostgreSQL database). Due to the confidential nature
of some of the individual data elements, the files will be maintained on secure computer servers. If
necessary, we will use an “honest broker” to de-identify the files such that any individual level
information (name, street address, SSN, etc.) will be removed and replaced by a study ID code before
access by study investigators. The resulting dataset is defined by HIPPA as a “limited dataset.” The
limited data set can include the following (potentially identifying) information:

• Admission, discharge, and service dates; 
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• Dates of birth and, if applicable, death; 

• Age (including age 90 or over); and 

• Five-digit ZIP code or 

• Any other geographic subdivision, such as state, county, city, precinct and their equivalent

geocodes (except street address). 

Separate databases for individual level health outcomes and aggregated daily outcome data will be created.

Each health outcome of interest (deaths, hospitalizations, ED visits) will be represented by two distinct

datasets. One dataset will maintain individual level data listed by date of admission or visit, and the other

will contain aggregated daily counts of each health outcome by date of death, admission or ED visit as

appropriate by ICD-9/10 diagnostic codes for primary and secondary diagnoses.

Task 2.7 – Construct Multiple Linked Health Outcomes-PM2.5 Datasets for Analysis

of the Impact of PM2.5 and Its Speciated Components on Mortality and Morbidity

Health Endpoints

Final formatting and preparation of health outcomes dataset for linkage to exposure datasets by date of

death, admission, or ED visit will be completed by the end of the second project year. The health

outcomes datasets (individual record level and aggregated) will be linked to exposure data in a manner

consistent with the stated objectives of conducting both times series and case crossover analyses.

Task 3 – Statistical Analysis and Modeling to Characterize the Relationship

between Various Health Outcomes and PM2.5

The main goal of the PITT-PM study is to characterize the relationship between human health outcomes

and ambient airborne fine particles (PM2.5) from coal-fired power plants and other emission sources  while

accounting for the effects of other confounding factors (such as gaseous co-pollutants and meteorology,

among others). Once all of the air monitoring/exposure data are quality assured, calibrated where

necessary, and organized in a raw database, some further processing will be required. In assembling the

daily air monitoring/exposure daily database in Task 1,  a latent variable multivariate source

apportionment model will be constructed based on the PM2.5 speciation data and used to characterize the

daily contributions from coal-fired power plants and include this information in the database. It then will

be necessary to combine all the spatial and temporal data available for a given parameter and optimally

estimate a daily value (using geostatistical/spatial statistical methods) for each day of the study time period

and for each ZIP code area. A time series model (for each health outcome of interest) will be constructed

using this information, along with information on numerous potentially confounding factors such as

gaseous co-pollutants, meteorologic factors, day of week effect, and ZIP code (represented by indicator
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variables or as a random effect). The method of generalized linear autoregressive moving average

(GLARMA) time series analysis will be the primary approach used to characterize the relationship. In

addition, the results from the GLARMA analysis will be compared with other non-time series methods

that have been typically used such as generalized linear models (GAMs), generalized additive models

(GLMs), and a case-crossover analysis. Each of these methods have their strengths and weaknesses and

similar outcomes from all the methods would lend credence to the results.

Task 3.1 – Compile Descriptive and Summary Data Analyses for Health Outcomes

and Exposure Monitoring

Before more advanced statistical analyses are attempted, it will be necessary to describe and summarize

appropriately the data from the health outcomes and exposure monitoring networks.

A series of descriptive analyses will be conducted and tables will be generated to consider both the

quantity of cardiopulmonary admission and control disease data  by age and gender as well as the

distribution by time (month, year, day of week) and specific diagnosis.   Specific descriptive analyses will

include, but not be limited to, the following for circulatory diseases, respiratory diseases, and the control

disease, respectively:  

1. Number and distribution of hospital admissions by year, month, and day of week,

2. Average annual admission numbers and rates by age and gender,

3. Descriptive statistics (mean, SD, median, minimum, maximum) of daily hospital admissions and

graphs of daily admissions over time, and

4. Correlation between hospitals for daily admissions.

In addition, these analyses will be performed with data stratified by whether or not the admission was

emergent (admitted through the Emergency Department) and by relevant disease categories (e.g., asthma,

acute myocardial infarction.)

Naïve spatial maps will be made for the exposure monitoring parameters. Monthly summary statistics will

be compiled and daily time series will be plotted for both the air monitoring parameters and the health

outcomes. These summaries will be useful for ensuring data quality and will provide a foundation for the

more complex statistical modeling efforts.

Task 3.2 – Develop Source Apportionment Using a Latent Variable Multivariate

Receptor Model

The monitoring networks collect PM2.5 particles without directly identifiable sources. Only limited source
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profile information is available. A latent variable multivariate receptor model (LVM) will be used to

model the correlation among the observed PM2.5 components. The parameters of the LVM characterize the

distributions of the latent sources and the relationship among the sources and their relationships to the

measured components. The latent sources explain the observed component correlations. The observed

correlation matrix of the PM2.5 components will be modeled as a function of these unknown parameters.

Enough source profile information will be used to construct an identifiable and interpretable LVM. In

addition, all known constraints on the parameters  will be included (for example, that all source

contributions be positive and that the sum of the percentages of all components for a particular source be

less than or equal to 100%). Finally, to account for the autocorrelation in the observed exposure time

series measurements, nested block bootstrap sampling will be used to construct robust confidence interval

estimates for each unknown parameter.

Task 3.3 – Conduct Geostatistical Modeling for the Determination of Optimal

Exposure Estimates

The monitoring networks collect information for each exposure parameter at discrete points irregularly

distributed spatially and somewhat more regularly distributed temporally. The area actually sampled (as is

typical with all forms of sampling) is a tiny fraction of the total region. Optimal exposure estimates will be

constructed for each parameter for each day and each ZIP code area. The geostatistical (i.e., spatial

statistical) methodology of kriging will be used. This method produces an optimally weighted average of

measurements available spatially and temporally. The appropriate weights will be estimated from the

space-time correlation structure derived from the variographic analysis of the observed measurements.

When estimating a particular ZIP code area for a given day, typically measurements closest to the area

spatially and closest to the particular day are given more weight. For example, any measurement inside the

ZIP code area on the particular day being estimated would tend to be given a higher weight than

measurements outside the area or on preceding or following days. (The exact weighting is also tempered

by the clustering of measurements in that any measurements that are close together tend to have smaller

individual weights given that they tend to have less statistically independent information.) The optimal

weighting depends on the observed space-time correlation structure (which must be estimated and

modeled). For each exposure parameter (including PM2.5 components and source contributions) a space-

time variogram will be estimated and modeled. The resulting models will be used to produce optimal daily

estimates for each exposure parameter.

Task 3.4 – Model Health Outcome Time Series and Conduct Diagnostic Checks of

Model Assumptions

The final daily database will contain all the air monitoring/exposure estimates along with all the health

outcomes for each day in the study period and each ZIP code area. Each health outcome time series will be

modeled as a function of the air monitoring/exposure estimates, trend, seasonality, day-of-week, and ZIP
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code area (represented either as a random effect or a fixed effect via indicator variables). Three types of

models will be used: 1) generalized autoregressive moving average (GLARMA) time series models, 2)

generalized additive non-time series models (GAMs) and generalized linear non-time series models

(GLMs), and 3) case-crossover analysis.

Task 3.4.1 – Fit Generalized Linear Autoregressive Moving Average Time Series

Models to Health Outcomes

If the outcomes were continuous and Normally distributed, various time series models such as

autoregressive integrated moving average (ARIMA) models could be potentially useful. This type of

model in certain cases can successfully handle the autocorrelation in the time series response. The

importance of accounting for time series autocorrelation in the response variable cannot be overstated as

not taking account of the autocorrelation typically produces standard errors for parameter estimates that

are substantially biased downward which produces confidence intervals that are too narrow and overstates

statistical significance. (Extensions to this methodology include handling long memory dependence via

fractionally integrated models, and heterogeneous variances through autoregressive conditionally

heterogeneous (ARCH) and generalized  autoregressive conditionally heterogeneous (GARCH) models.)

If the health outcomes (which are essentially counts) are high enough, a Normal approximation to the

Poisson distribution could be reasonable and the use of ARIMA methods could be feasible. The

generalized autoregressive moving average (GLARMA) model (a new extension to time series models for

Normal continuous responses) can directly handle discrete Poisson count responses. Poisson GLARMA

models will be constructed for each health outcome and used to characterize the relationship between the

health outcome and PM2.5 while adjusting for confounding exposure factors. 

For example, a model for daily hospital admissions cardiovascular disease would include PM2.5

components, gaseous co-pollutants, meteorological factors (such as temperature and relative humidity),

allowance for trend and seasonality and day-of-week effects, and ZIP code area. The primary interest are

the estimated GLARMA parameters for PM2.5 components that describe the relationship with hospital

admissions. The other factors are included to remove confounding effects given that they also influence

admissions. The inclusion of ZIP code area either as an indicator variable for a fixed effect or otherwise as

a random effect would help assess the spatial heterogeneity and account for differences in exposure over

the region. A large number of models will be constructed by changing the particular health outcome and

by looking at different sets of PM2.5 components, PM2.5 mass instead of components, or instead latent PM2.5

factors from the LVM source apportionment.

Standard diagnostic analyses of model residuals will be employed to assess how well the models fit the

observed data. The inclusion of many ZIP code areas will help account for and allow the examination of

the degree of spatial heterogeneity in the health outcomes. To account for the expected spatial correlation

among the ZIP code areas, spatial bootstrapping will also be used to provide more realistic standard errors
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and confidence intervals for each estimated model parameter. It should also be noted that less information

is available for estimating separate ZIP codes when dealing with PM2.5 components compared to PM2.5

mass due to the more limited speciation data.

Task 3.4.2 – Fit Non-Time Series Generalized Additive Models and Generalized

Linear Models

Many air pollution studies have relied on the use of generalized additive models (GAMs) and generalized

linear models (GLMs) for modeling health outcomes. The apparent advantage of GAMs  over GLMs has

to do with the nonparametric handling of meteorological factors in GAMs. These models, however, do not

necessarily or typically account for the autocorrelation in the health outcome response. Even when many

plausible covariates are included in the model, the model residuals can still be substantially autocorrelated

thus throwing into doubt the reasonableness of the estimated standard errors and confidence intervals for

the parameters. GAMs and/or GLMs will also be constructed and compared to the GLARMA models.

Standard diagnostic analyses of model residuals will be employed to assess how well the models fit the

observed data. It should be possible to use nested block bootstrap sampling to produce more realistic

standard error estimates and confidence intervals for the GAM/GLM models.

Task 3.5 – Perform Case-Crossover Analyses

Time series models have been successfully applied in air pollution studies (and in many other areas) so

their general usefulness cannot be questioned. It can, however, be difficult to construct appropriate models

if only because of the necessity of handling trends and seasonality. Also, time series modeling may not

handle factors dealing with individual differences (although including ZIP code area as a factor in the time

series analysis should help counteract this limitation). In the case-crossover design, only cases are

involved and the exposure of each case during an at-risk “hazard period” just before the event is compared

with the exposure levels during one or more reference periods when the event did not occur. Cases serve

as their own controls. Therefore, time-invariant confounding factors, such as individual characteristics

(e.g., age, gender, race, socioeconomic status, etc.) are controlled by design rather than by statistical

adjustment. In comparison with time series analysis, the case-crossover approach has a few significant

strengths. First, it avoids complex mathematical modeling and adjusting for seasonality because this

approach controls some confounding factors such as long-term trend, seasonality and day of week by

design rather than by modeling. Moreover, personal characteristics and other time-invariant variables are

also controlled by the design. However, the drawback of the case crossover design is that the efficiency of

case-crossover design estimators has been shown to be lower than that of time series analysis A case-

crossover analysis will be performed for each health outcome and compared to the results from the

GLARMA modeling and the  GAM/GLM results
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Task 3.6 – Summarize, Interpret and Compare Results from  Statistical Modeling

and Analysis

The results of the statistical modeling efforts will be summarized and the results will be interpreted in

terms of the implications for human health. The degree of concordance of the results from the various

models will determine the credibility of the evidence for or against health effects.

Task 4 – Write Annual Progress Reports and Final Study Report

Technical progress reports will be produced at the end of the first and second project years. A final

comprehensive scientific report will be written that summarizes, describes and explains the results and

conclusions of the study.

Estimated Budget

The budget shown in Table 63 assumes a three year time period to complete the study with a principal

investigator, three co-investigators, two graduate student researchers, data manager, project director, and

resource manager. The total cost (both direct and indirect) for the study is estimated to be about $1.96

million.

Table 63: Estimated budget for PITT-PM Study by year and task.Includes both direct and indirect costs.

Task Year 1 Year 2 Year 3 Total Task Year 1 Year 2 Year 3 Total

1 Total $314,791 $296,308 $611,099 3 Total $147,072 $194,754 $211,522 $553,348

1.1 $29,166 $29,166 3.1 $90,304 $47,072 $16,768 $154,145

1.2 $118,672 $118,672 3.2 $33,536 $16,768 $50,304

1.3 $129,356 $258,711 $388,067 3.3 $56,768 $47,072 $16,768 $120,609

1.4 $37,597 $37,597 $75,194 3.4 $16,768 $28,536 $45,304

2 Total $317,689 $332,626 $21,217 $671,533 3.4.1 $16,768 $28,536 $45,304

2.1 $79,458 $79,458 3.4.2 $16,768 $28,536 $45,304

2.2 $102,570 $102,570 3.5 $16,768 $28,536 $45,304

2.3 $79,880 $26,627 $106,507 3.6 $47,072 $47,072

2.4 $27,890 $55,781 $83,671 4 Total $26,519 $26,519 $70,716 $123,754

2.5 $27,890 $55,781 $83,671 Total $806,071 $850,207 $303,456 $1,959,733

2.6 $109,568 $109,568

2.7 $84,870 $21,217 $106,087
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Inventories

Air Monitoring Data

• PM2.5 Total Mass

o Location(s) where Data were Collected

o Inventory of Data at Each Location

� Period of collection – start date, end date

� Frequency of collection (e.g., daily, 1-in-3 days, etc.)

� Time resolution of collection (e.g., continuous sampling, 24-hr integrated sampling,

etc.)

� Identify periods/days of missing or invalid data

� Method of collection (e.g., FRM sampler, 30oC TEOM, 50oC TEOM, etc.)

� QA/QC protocol used to validate results

o Availability of results for use in an epidemiology study (e.g., are data publicly available?)

� Preferably, obtain data now for use in development of statistical methods,

exploratory data analysis.

• PM2.5 Speciation

o Location(s) where Data were Collected

o Inventory of Data at Each Location

� Which species were determined? (e.g., sulfate, nitrate, ammonium, elemental

carbon, organic carbon, trace elements – which ones?, etc.)

� Period of collection for each species – start date, end date

� Frequency of collection for each species (e.g., daily, 1-in-3 days, etc.)

� Time resolution of collection for each species (e.g., continuous sampling, 24-hr

integrated sampling, etc.)
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� Identify periods/days of missing or invalid data for each species

� Sampling Method(s)

• Type of sampler (e.g., Speciation sampler, FRM sampler, Hi-Vol sampler,

Continuous carbon analyzer, Continuous sulfate/nitrate analyzer, etc.) –

make, model, type of inlet, presence of denuder, etc.

• Type of filters (e.g., Teflon, quartz, nylon, polycarbonate, etc.)

� Analytical Method(s)

• Ions (e.g., ion chromatography, continuous sampler, etc.)

• Carbon (e.g., TOT, TOR, continuous sampler, etc.)

• Trace Elements (e.g., XRF, low-res ICP-MS, high-resolution ICP-MS, DRC

ICP-MS, PIXE, INAA, etc.)

� QA/QC protocol used to validate results

• e.g., data flagging protocol, was blank subtraction performed during data

reduction?

o Availability of results for use in an epidemiology study (e.g., are data publicly available?)

� Preferably, obtain data now for use in development of statistical methods,

exploratory data analysis.

• Gaseous Pollutants

o Location(s) where Data were Collected

o Inventory of Data at Each Location

� Which gases were measured (e.g., CO, SO2, NO/NO2/NOx, O3, etc.)

� Period of data collection for each gas – start date, end date

� Frequency of data collection for each gas (e.g., continuous samplers operating

every day?)

� Time resolution of data collection for each gas (e.g., hourly averages, daily

averages, etc.)
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� Identify periods/days of missing or invalid data for each gas

� Sampling methods (i.e., instrument make, model)

� QA/QC protocol used to validate results

• e.g., were continuous monitoring data corrected by interpolation between

daily calibrations?

o Availability of results for use in an epidemiology study (e.g., are data publicly available?)

� Preferably, obtain data now for use in development of statistical methods,

exploratory data analysis.

• Weather Data

o Location(s) where Data were Collected

o Inventory of Data at Each Location

� Which variables were measured (e.g., wind speed, wind direction, temperature,

barometric pressure, relative humidity, etc.)

� Period of data collection for each variable – start date, end date

� Frequency of data collection for each variable (e.g., continuous samplers operating

every day?)

� Time resolution of data collection for each variable (e.g., 15-minute averages,

hourly averages, daily averages, hourly max/min, daily max/min)

� Identify periods/days of missing or invalid data

� Method of collection (e.g., 10-m tower, etc.)

� QA/QC protocol used to validate results

o Availability of results for use in an epidemiology study (e.g., are data publicly available?)

� Preferably, obtain data now for use in development of statistical methods,

exploratory data analysis.

• Other Data of Potential Interest

o Examples: PM10 mass, speciated PM10 mass, PM2.5 number concentration, etc.
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o Obtain general information regarding quantity, quality, availability.

Archived PM2.5 Filters

• Obtain an inventory of all archived PM2.5 filter-based samples, including:

o Number of archived filter-based samples

o Location(s) where samples were collected

o Dates on which samples were collected at each location

o Type of sampler used to collect samples at each location (e.g., Speciation sampler, FRM

sampler, Hi-Vol sampler, etc.) – make, model, type of inlet, presence of denuder, etc.

o Type(s) of filter(s) on which samples were collected (e.g., Teflon, quartz, nylon,

polycarbonate, etc.)

o Way in which filters are being stored (e.g., Are they in well-sealed containers? Are they

being refrigerated? Are they being stored in dark or well-lit areas?, etc.)

• Would the filters be available for use in a retrospective epidemiology study if they are needed?

o Would they be available for analysis using non-destructive techniques? (e.g., XRF, etc.)

o Would they be available for analysis using destructive techniques? (e.g., IC, ICP-MS, etc.)
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Inventory Results

Figure 86: Database design for air monitoring data inventory results.

AvailableData

Date (date/time)
SiteID (integer)
QAQCID (integer)
PM25D (1/0)
PM25DSampCode (integer)
PM25H (1/0)
PM25HSampCode (integer)
SO4= (1/0)
NO3- (1/0)
Cl- (1/0)
NH4+ (1/0)
K+ (1/0)
Na+ (1/0)
IonSampCode (integer)
IonAnalyticCode (integer)
ContSO4 (1/0)
ContSO4SampCode (integer)
ContNO3 (1/0)
ContNO3SampCode (integer)
EC (1/0)
OC (1/0)
CSampCode (integer)
CAnalyticCode (integer)
ContECOC (1/0)
ContECOCSampCode (integer)
Elem (1/0)
Ag (1/0)
Al (1/0)
.
.
.
Zn (1/0)
Zr (1/0)
ElemSampCode (integer)
ElemAnalyticCode (integer)
WSElem (1/0)
WSElemSampCode (integer)
WSElemAnalyticCode (integer)
PM10D (1/0)
PM10DSampCode (integer)
PM10H (1/0)
PM10HSampCode (integer)
DataSourceCode (integer)

Site

SiteID (integer)
Name (text)
Program (text)
State (text)
County (text)
Lat (numeric)
Long (numeric)
SiteCode (text)

QAQC

QAQCID (integer)
QAQCProtocol (text)

Sampling

SampCode (integer)
SamplerType (text)
SamplerModel (text)
FilterType (text)
InletType (text)
Resolution (text)
Denuder (text)
StartTime (date/time)
EndTime (date/time)

Analysis

AnalyticCode (integer)
AnalyticMeth (text)
BlankSub (yes/no)

DataSource

DataSourceCode (integer) 
DataSource (text)

AvailableData

Date (date/time)
SiteID (integer)
QAQCID (integer)
PM25D (1/0)
PM25DSampCode (integer)
PM25H (1/0)
PM25HSampCode (integer)
SO4= (1/0)
NO3- (1/0)
Cl- (1/0)
NH4+ (1/0)
K+ (1/0)
Na+ (1/0)
IonSampCode (integer)
IonAnalyticCode (integer)
ContSO4 (1/0)
ContSO4SampCode (integer)
ContNO3 (1/0)
ContNO3SampCode (integer)
EC (1/0)
OC (1/0)
CSampCode (integer)
CAnalyticCode (integer)
ContECOC (1/0)
ContECOCSampCode (integer)
Elem (1/0)
Ag (1/0)
Al (1/0)
.
.
.
Zn (1/0)
Zr (1/0)
ElemSampCode (integer)
ElemAnalyticCode (integer)
WSElem (1/0)
WSElemSampCode (integer)
WSElemAnalyticCode (integer)
PM10D (1/0)
PM10DSampCode (integer)
PM10H (1/0)
PM10HSampCode (integer)
DataSourceCode (integer)

Site

SiteID (integer)
Name (text)
Program (text)
State (text)
County (text)
Lat (numeric)
Long (numeric)
SiteCode (text)

QAQC

QAQCID (integer)
QAQCProtocol (text)

Sampling

SampCode (integer)
SamplerType (text)
SamplerModel (text)
FilterType (text)
InletType (text)
Resolution (text)
Denuder (text)
StartTime (date/time)
EndTime (date/time)

Analysis

AnalyticCode (integer)
AnalyticMeth (text)
BlankSub (yes/no)

DataSource

DataSourceCode (integer) 
DataSource (text)



APPENDIX C – Available Filters

Timelines for archived filter availability are shown in Figures 87-90.
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Figure 87: Timeline showing the days for which sulfate data are available from the sites in the 35-county greater Pittsburgh

region that monitored for PM
2.5

 speciation between 1999 and 2005.  Sites in the top portion of the plot are located in Allegheny

County; sites in the middle portion are located in the Pittsburgh MSA, and sites in the lower portion are located outside of the

Pittsburgh MSA.
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Figure 88: Timeline showing the days for which nitrate data are available from the sites in the 35-county greater Pittsburgh

region that monitored for PM
2.5

 speciation between 1999 and 2005.  Sites in the top portion of the plot are located in Allegheny

County; sites in the middle portion are located in the Pittsburgh MSA, and sites in the lower portion are located outside of the

Pittsburgh MSA.
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Figure 89: Timeline showing the days for which elemental and organic carbon data are available from the sites in the 35-county

greater Pittsburgh region that monitored for PM
2.5

 speciation between 1999 and 2005.  Sites in the top portion of the plot are

located in Allegheny County; sites in the middle portion are located in the Pittsburgh MSA, and sites in the lower portion are

located outside of the Pittsburgh MSA.
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Figure 90: Timeline showing the days for which trace and crustal element data are available from the sites in the 35-county

greater Pittsburgh region that monitored for PM
2.5

 speciation between 1999 and 2005.  Sites in the top portion of the plot are

located in Allegheny County; sites in the middle portion are located in the Pittsburgh MSA, and sites in the lower portion are

located outside of the Pittsburgh MSA.



APPENDIX D – Database Design for Archived PM2.5 Sample Inventory Results

Figure 91: Flowchart for database design for archived PM2.5 sample inventory results.
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APPENDIX E – Checklist for Health Outcomes Data Inventories

� Deaths, Hospital Admissions, Emergency Room Visits, Physician Visits, etc.

� Location(s) where Data were Collected

� Inventory of Data at Each Location

� Mortality

� Period of collection (start date, end date)

� Identify periods/days of missing or invalid data

� Time resolution of data collection

� Identify Data format (electronic, hard copy, microfiche, etc)

� Death certificate availability

� Date of death

� Cause of death

� Secondary causes

� Street Address of residence available 

� 9-digit or 5-digit Zip Codes of residence available

� Other data recorded in database

� QA/QC protocol used to validate results

� Morbidity

� Period of collection – start date, end date

� Identify periods/days of missing or invalid data

� Time resolution of data collection

� Identify Data format (electronic, hard copy, microfiche, etc)

� Determine if aggregate data or individual records available



APPENDIX E – Checklist for Health Outcomes Data Inventories

� Unique subject identifier recorded

� Age, gender, ethnicity recorded

� Street address of residence available

� 9-digit or 5-digit Zip Codes of residence available

� Chief complaint

� ICD 9/10 Codes recorded (primary and secondary)

� Dates of admission/discharge

� Other data recorded in database

� QA/QC protocol used to validate results

� Availability of data for use in an epidemiology study 

� Are data publicly available?

� Or is there a cost to obtain the data?

� Procedure to obtain the data

� Preferably, obtain data now for use in development of statistical methods, exploratory

data analysis

� Pharmaceutical sales

� Location(s) where Data were Collected 

� Inventory of Data at Each Location

� Period of collection (start date, end date)

� Identify periods/days of missing or invalid data

� Time resolution of data collection

� Determine if aggregate data or individual records are available 

� Date of sale

� Medication name provided or class of drug, etc.
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� Street Address of residence available

� 9-digit or 5-digit Zip Codes of residence available

� Chief complaint

� QA/QC protocol used to validate results

� Availability of data for use in an epidemiology study 

� Are data publicly available?

� Or is there a cost to obtain the data?

� Procedure to obtain the data

� Preferably, obtain data now for use in development of statistical methods, exploratory data

analysis

� Cohort Analysis

� Location(s) and size of available cohorts for longer term retrospective analyses

� Inventory of data available within each cohort 

� Date of cohort initiation (ongoing?)

� Residential history (e. g municipalities, street addresses, 9-digit or 5-digit Zip Codes, etc.) 

� Demographics (e.g. age, gender, ethnicity)

� Medical history

� Clinical results (laboratory tests, EKGs, heart scans, pulmonary function, etc)

� Lifestyle factors (e.g. smoking, etc.)

� Availability of data for use in an epidemiology study 

� Are data publicly available?

� Or is there a cost to obtain the data

� Procedure to obtain the data
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APPENDIX F – Metadata Matrix for Health Outcomes Datasets

Below is Table 64 which provides information on relevant elements of the important health outcome

datasets to be used in the proposed study.  Included in the table are the following – time period,

availability of electronic data, cost to obtain the data, geographic resolution, and selected variables.
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Table 64: Metadata matrix for health outcomes datasets. Source of information: Survey by Allegheny County Health Department

and University of Pittsburgh Graduate School of Public Health.

DATA TYPE AND SOURCE(S) TIME PERIOD AVAILABLE/Data Format

(E=electronic; HC=hard copy)

1999 2000 2001 2002 2003 2004

COST TO

DATA?
GEOGRAPHIC

RESOLUTION

SELECTED VARIABLES IN

ELECTRONIC FORMAT

Address Zip9 Zip5 Unique

Subj. ID

ICD

Death/

Disease

Age Gender Race//

Ethnicity

Date of

Death

or

Admis-

sion

A.  Mortality Data:  PA Department of Health E E E E E E Yes Yes No Yes Yes Yes Yes Yes Yes Yes

B.  Hospital In-Patient:  PA Health Cost Care

        Containment Council

E E E E E E Yes No No Yes Yes Yes Yes Yes Yes Yes

C.  Emergency Department Visits:

  1.  UPMC MARS System (UPMC hospitals) E E E E E E Yes Yes Unk. Yes Yes Yes Yes Yes Yes Yes

  2.  Data from individual (non-UPMC) hospitals SEE BELOW Unknown SEE

BELOW

SEE

BELOW

    Allegheny County Hospitals

    Alle Kiski Medical Center HC HC HC HC HC HC - - - - - - - -

    Allegheny General Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Childrens Hospital of Pittsburgh HC HC HC E E E Yes Unk. Yes No Yes Yes Yes Yes Yes

    Forbes Regional Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Jefferson Regional Medical Center HC HC HC HC HC HC - - - - - - - - -

    Magee Womens Hospital of UPMC not obtained not

obtain-

ed

not

obtain-

ed

    Mercy Hospital of Pittsburgh HC HC HC HC HC E Yes Unk. Yes Yes Yes Yes Yes No Yes

    Mercy Providence Hospital merged with

Mercy

Hospital

1/2004

- - - - - - - - -

    Ohio Valley General Hospital HC HC HC HC HC HC - - - - - - - - -

    Sewickley Valley Hospital HC HC E E E E No Unk. No Yes No Yes No No Yes

    St. Clair Memorial Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes No Yes

    Suburban General Hospital HC HC HC HC HC HC - - - - - - - - -

    UPMC Braddock E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes
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(E=electronic; HC=hard copy)

1999 2000 2001 2002 2003 2004

COST TO

DATA?
GEOGRAPHIC

RESOLUTION

SELECTED VARIABLES IN

ELECTRONIC FORMAT

Address Zip9 Zip5 Unique

Subj. ID

ICD

Death/

Disease

Age Gender Race//

Ethnicity

Date of

Death

or

Admis-

sion

    UPMC McKeesport E E E E E E No Unk. No Yes No Yes No No Yes

    UPMC Passavant E E E E E E No Unk. Yes Yes Yes Yes Yes No Yes

    UPMC Presbyterian/Shadyside E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    UPMC South Side HC HC/

E

E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    UPMC St. Margaret HC HC E E E E No Unk. No Yes Yes No No Yes Yes

    Western Pennsylvania Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    VA Healthcare (Federal) E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

   Armstrong County Hospitals

    Armstrong County Memorial Hosp. E E E E E E Yes Unk. Yes No Yes Yes Yes Yes Yes

   Beaver County

    Aliquippa Community Hospital HC HC HC HC E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Medical Center Beaver HC HC E E E E Yes Unk. Yes Yes No Yes Yes Yes Yes

   Butler County

    Butler Memorial Hospital E E E E E E Yes Yes Yes Yes Yes Yes Yes Yes Yes

    UPMC Passavant Cranberry not

obtained

not

obtain-

ed

not

obtain-

ed

   Fayette County

    Brownsville General Hospital HC HC HC HC HC HC - - - - - - - - -

    Highlands Hospital HC HC HC HC HC p - - - - - - - - -

    Uniontown Hospital HC HC HC HC/

E

E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

   Washington County

    Canonsburg General Hospital HC HC HC HC HC HC - - - - - - - - -

    Monongahela Valley Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Washington Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes
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(E=electronic; HC=hard copy)

1999 2000 2001 2002 2003 2004

COST TO

DATA?
GEOGRAPHIC

RESOLUTION

SELECTED VARIABLES IN

ELECTRONIC FORMAT

Address Zip9 Zip5 Unique

Subj. ID

ICD

Death/

Disease

Age Gender Race//

Ethnicity

Date of

Death

or

Admis-

sion

   Westmoreland County

    Frick Hospital HC HC HC HC/

E

E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Latrobe Area Hospital HC E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Mercy Jeannette Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes

    Monsour Medical Center HC HC HC HC HC HC - - - - - - - - -

    Westmoreland Regional Hospital E E E E E E Yes Unk. Yes Yes Yes Yes Yes Yes Yes
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APPENDIX H – PHC4 Data Layouts

PHC4 Data Layout: 1999-2002



PHC4 Data Layout: 1999-2002
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PHC4 Data Layout: 1999-2002
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PHC4 Data Layout: 1999-2002
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PHC4 Data Layout: 2003-2005

PHC4 Data Layout: 2003-2005
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PHC4 Data Layout: 2003-2005
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PHC4 Data Layout: 2003-2005
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PHC4 Data Layout: 2003-2005
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PHC4 Data Layout: 2003-2005
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PHC4 Data Layout: 2003-2005
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PHC4 Data Layout: 2003-2005
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APPENDIX I – ACHD Emergency Room Visit Data Archival Survey

(2005)

The Allegheny County Health Department (ACHD) Air Quality Program and Office of Epidemiology/Biostatistics are

collaborating with the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) on a project

entitled “Design and Feasibility of a Retrospective Epidemiological Study of Coal-Fired Plant Emissions and Health Effects

in the Pittsburgh, Pennsylvania Region”. We are requesting information from all hospitals within the Pittsburgh greater

metropolitan area to determine the type and extent of archived emergency room (ER) visit data that are readily accessible,

particularly in electronic format in the 1999-2004 time period. Please answer the following questions:

Facility name:____________________ Facility Contact: ___________________Phone: ________________

1. How are you currently archiving ER visit data collected from 1999-2004? (Please check)

 Electronic

 Hard copy only

 Both electronic and hard copy

 Unknown

2. If data are stored electronically, what format(s) are you currently using to archive your ER visit data (i.e.,

Oracle, SQL, etc).    Format type:  __________________________________

a,As of what year did you begin collecting ER data electronically?   __________________

b. Please check all variables that are included in your electronic ER data archival system.

      Facility identifier 

      Date of admission

     Time of admission

     Admitting point location (i.e. hospital, clinic, urgent center, etc)

     Age

 Date of birth

    Ethnic group

     Gender

     Zip code

    Admitting diagnosis (ICD-9/10 code)

     Admitting diagnosis description (i.e. chest pain, shortness of breath, traumatic injury, etc)

     Principal (discharge) diagnosis (ICD-9/10 code)



APPENDIX I – ACHD Emergency Room Visit Data Archival Survey (2005)

     Secondary (discharge) diagnosis 1 (ICD-9/10 code)

     Secondary (discharge) diagnosis 2 (ICD-9/10 code)

     Secondary (discharge) diagnosis 3 (ICD-9/10 code)

     Discharge status (admitted to hospital, transferred, discharged, deceased, etc.)

    Discharge date

3. If archived in hard-copy format, where are the data housed?  Please check:

    In-house

    Off-site

    Other ____________________

a. How is the ER hard-copy data stored (i.e. chart format, Microfiche, etc.)?   ______________

b. How far back do you maintain your ER hard-copy data? Year: __________

c. Do you intend to convert to electronic format? Yes ___ No ____   If yes, when? Year ________

Thank you for taking the time to fill out this survey. Please return the survey in the enclosed envelope to the ACHD by July

15, 2005 or if you prefer to fax the completed survey, please fax to Dr. Samuel Schlosberg, at 412-578-8325.

Version: May 2, 2005
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APPENDIX J – MARS Databases

The Medical Archival Retrieval System (MARS) at the University of Pittsburgh Medical Center (UPMC)

aggregates office visit and other data for physicians affiliated with UPMC. The available datasets are

detailed in the following tables.
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Table 65: UPMC MARS databases - (As of 07/01/05) -  https://mars.mars-systems.com.

CLINICAL DATABASES Frequency BMC CHP BRH HHG HHS LEE MCH MWH PAS PUH QST REH SHY SMH SSH WPIC

Autopsy Reports hourly Jul-00 Jun-99 Jul-99 Dec-98 Dec-98 Sep-00 May-99 Nov-01 Jul-04 Jan-81 Dec-97 Feb-99 Mar-97

Cardiac Cath. Lab Reports daily Sep-04 Jan-90 Apr-04 Jan-05 Jun-04

Case Log for Procedures in OR daily May-05 Jun-04 Jul-04 Jul-96 Jun-04 Apr-03

Cytology Reports hourly Jul-00 Jun-99 Jul-99 Dec-98 Dec-98 Sep-00 May-99 Nov-01 Jul-04 Jan-81 Dec-97 Feb-99 Mar-97

Discharge Summaries hourly Jun-00 Jan-01 Mar-01 Jun-05 Sep-04 Jan-90 Nov-03 Jan-98 Feb-00 Jun-03 Jan-92

Echocardiogram Reports hourly Sep-04 Apr-91 + Jun-04

Electroencephalogram/Electromyogram daily Nov-02 Jan-93

Electrocardiogram hourly Oct-04 Feb-96 Aug-03 Feb-96

Emergency Room Notes hourly Jan-01 ** Nov-04 Jan-95 Feb-99

EPIC Outpatient PhysicianProgress Notes daily Jul-00 Jul-00

History & Physicals hourly Jun-00 Jan-01 Mar-01 Jun-05 Sep-04 Jan-90 Nov-03 Jan-98 Feb-00 Jun-03 Jan-92

Laboratory Results every 30 minutes Mar-92 Jul-99 Dec-98 Dec-98 May-99 Apr-05 Sep-05 Oct-90 May-00 Jan-99 Feb-99 Mar-97 Oct-90

Nuclear Cardiology Reports daily Sep-04 Jan-92 Jun-04

Operative Notes hourly Jun-00 Jan-01 Mar-01 Jun-05 Sep-04 Jan-90 Jan-98 Feb-00 Jun-03

PV Lab Reports daily 1/1/2002 - 02/05 Sep-03

Pharmacy Discharge Summaries daily Jun-04 Apr-92 Mar-97 Jan-92

Pharmacy Orders hourly Nov-03 Nov-03 Nov-03 Nov-03 Jun-04 Jan-97 Nov-03 Nov-03 Mar-97 Jan-97

Progress Notes daily Jun-00 Jan-90 Feb-04 Jan-98 Feb-00 Jan-96

Pulmonary Function Tests hourly Nov-02 Jan-98

Radiology Reports every 15 minutes Jul-99 Jul-99 Dec-98 Dec-98 May-99 Nov-00 ** Sep-04 Jan-90 Dec-97 Feb-99 Mar-97

Referral Letters hourly Jan-90 Feb-00

Sleep Lab Tests hourly Sep-04 Mar-99 Mar-04

Surgical Pathology Reports hourly Jul-00 Jun-99 Jul-99 Dec-98 Dec-98 Sep-00 May-99 Nov-01 Jul-04 Jan-81 Dec-97 Feb-99 Mar-97

FINANCIAL DATABASES BMC BRH HHG HHS LEE MCH MWH PAS PUH QST REH SHY SMH SSH WPIC

Inpatient Charges daily Jul-99 Dec-98 Dec-98 May-99 Aug-05 Jul-92 Oct-99 Jul-99 Feb-99 Mar-97 Jul-94

Medical Record Discharge Abstracts monthly Jul-99 Dec-98 Dec-98 May-99 Jul-92 Oct-99 Nov-01 Feb-99 Mar-97 Jul-98

Outpatient Charges daily Jul-99 Dec-98 Dec-98 May-99 Aug-05 Jul-92 Oct-99 Jul-99 Feb-99 Mar-97 Jul-94

Payment Transactions daily Jul-99 Dec-98 Dec-98 May-99 Jul-92 Oct-99 Nov-01 Feb-99 Mar-97 Jul-94

Ratio of Cost to Charge Table annually X X X X X X X X X

AUXILIARY DATABASES BMC BRH HHG HHS LEE MCH MWH PAS PUH QST REH SHY SMH SSH WPIC

Admission/Discharge/Transfer hourly X X X X X X X X X
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Charge Description Master weekly X X X X X X X X X X

Data Dictionary- Map tables monthly X X X X X X X X X X

Inpatient Census hourly X X X X X X X X X X X

Patient Demographics daily X X X X X X X X X

Physician Information weekly X X X X X X X X X X
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Table 66: Hospital codes for Table 65.

UPMC Bedford BMC *Notes:

UPMC Braddock BRH Date

Childrens CHP

UPMC Horizon - Greenville Campus HHG

For SHY- Incomplete History and Physicals,

Discharge Summaries, Operative Notes and Progress

Notes from 7/99-9/99

UPMC Horizon - Shenango Campus HHS
When historical data was loaded, variable data

elements may exist within a data feed

UPMC Lee Regional LEE ** not all sites within hospital provide report type

UPMC McKeesport MCH

Magee Womens Hospital MWH
+ missing reports from Nov 11, 2002 - October 21,

2003

UPMC Presbyterian/Montefiore/EEI PUH

UPMC Passavant PAS

Quest Diagnostics QST

UPMC Rehabilitation Hospital
REH - merged

with SSH 7/05
prepared by Melissa Saul

UPMC St. Margaret SMH

UPMC South Side SSH

Western Psychiatric Institute and Clinic WPIC
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Table 67: MARS clinical databases.

Dataset name Description Freq.

Update

Hospital* Number of

Reports

AUT Autopsy records- includes final anatomical diagnosis, cause of

death, summary of hospital course, anatomical descriptions

hourly PUH, WPIC, SSH, SHY,

HHG, HHS, SMH, BRH,

MCH,MWH, LEE,

BMC,PAS,CHP

*included in SP

record count 

CATH Cardiac catherization lab records- includes indication, procedure

type, medications used in procedure, and complications

daily PUH,SHY,SMH,

SSH,PAS

62,621

CYTO Cytology records- includes specimen type, description and

diagnosis

hourly PUH, WPIC, SSH, SHY,

HHG, HHS, SMH,

BRH,MCH,MWH,

LEE,BMC,PAS,CHP

*included in SP

record count

DEROY Completed OR case log - includes all procedures done in the

operating room, includes surgeons, assistants, time-in, time-out,

and description of operation

daily PUH,SSH,MCH,MWH,

SMH,BRH

366,056

DRUGS Pharmacy real-time orders  - includes dosage, frequency, route,

and allergy information

hourly PUH,WPIC,SSH,HHG,

HHS,SMH,BRH,MCH,

REH,MWH

18,765,388

DS Discharge summaries – includes summary of present illness,

discharge medications, discharge location

hourly PUH,WPIC,SSH, SHY,

SMH,MCH,BRH,REH,

PAS,MWH,CHP

948,311

ECHO Echocardiograph records- includes echocardiographic

dimensions, clinical impression

hourly PUH,SSH,PAS 116,115

EEG Neurodiagnostics EEG records daily PUH,WPIC, SHY,SSH,

MCH

32,306

EKG Electrocardiogram records hourly PUH,WPIC,SMH,MCH,SHY 492,995

EMG Neurodiagnostics EMG records daily PUH,WPIC,SHY 28,137

ER Emergency room notes- includes chief complaint, past medical

history and assessment and plan

hourly PUH,WPIC,SSH,SHY,

SMH,MCH,BRH,PAS,

MWH,CHP

10,56,688

HP History and Physical- includes history of present illness, social

history, medications on admission, physical exam, clinical

assessment and plan

hourly PUH,WPIC,SSH,SHY,

SMH,MCH,BRH,REH,

PAS,MWH,CHP

1,136,870

LAB Laboratory results- includes chemistry, hematology,

microbiology, immunopathology, blood bank tests

hourly PUH,WPIC,SSH,

SHY,HHG, HHS,

SMH,MCH,BRH,MWH,

QST,CHP

50,685,565

LETT Referral letters hourly PUH,WPIC,SSH,SHY 745,264

NUCLEAR Nuclear cardiology study daily PUH,SSH 50,862

OP Operative notes- includes title of procedure, event date,

preoperative and postoperative diagnoses, OR description

hourly PUH,SSH,SHY,

SMH,MCH,BRH,

PAS,MWH,CHP

1,088,238

PGN Progress notes, includes outpatient clinic notes, ambulatory EMR

summaries and inpatient physician progress notes

daily PUH,WPIC,SSH,SHY

SMH,MCH, BRH,

REH,PAS,MWH,CHP

5,606,336

PSG Polysomnogram Sleep Report hourly PUH,BRH 8,512

PULM Pulmonary function tests- includes predicted spirometry and lung

volumes, clinical impression

hourly PUH,MCH,BRH

27407

RAD

Radiology records - includes diagnostic radiology, CT, MRI,

PET, vascular studies, special procedures

every 15

minutes

PUH,WPIC, SSH,SHY,

HHG, HHS, SMH, MCH,

BRH,MWH,PAS,CHP

8,948,260
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Dataset name Description Freq.

Update

Hospital* Number of

Reports

SP Surgical pathology record- includes date of event, specimen type,

final diagnosis, and gross description

hourly PUH,WPIC,SSH,SHY, HHG,

HHS, SMH, 

MCH, BRH,MWH,LEE,

BMC,PAS,CHP

206,0097

Table 68: MARS financial databases.

Dataset name Description Freq.

Update

Hospital* Number of

Reports

CDM Charge description master weekly PUH,WPIC,SHY, SSH,

HHG, HHS,

SMH,MCH,BRH, REH

2,517,377

CHGIN Inpatient charges- includes patient name, account number, date of

service, transaction code, quantity, charge amount, physician

daily PUH,WPIC,SHY,SSH,

HHG, HHS,

SMH,MCH,BRH, REH

184,560,715

CHGOUT Outpatient charges- includes same data as CHGIN daily PUH,WPIC,SHY,SSH,

HHG, HHS,

SMH,MCH,BRH, REH

66,793,018

MPAX Medical record discharge abstracts - includes social security

number, medical record number, hospital location, admission and

discharge dates, date of birth, sex, race, marital status, financial

class, current address, visit type, discharge disposition, attending

physician, admitting service, admit source, admitting diagnosis,

admitting chief complaint and onset date and time, primary

diagnosis, final diagnoses (25 fields), procedures (25 fields), DRG

monthly PUH,WPIC,SHY,SSH,

HHG, HHS, SMH,MCH,

BRH, REH

10,299,088

PAY Patient payments- (see CHGIN; also includes payor name) daily PUH,WPIC,SHY,SSH,

HHG,HHS,SMH,MCH,

BRH, REH

33,198,515

Table 69: MARS auxiliary databases.

Dataset

name

Description Freq.

Update

Hospital*

ADT Admission, discharge, and transfer transactions hourly PUH, WPIC,SHY, SSH,  HHG, HHS, SMH,

MCH,BRH, REH

DOCS Physician information, including office address, phone, and hospital

privileges

weekly PUH, WPIC, SSH, SHY, HHG, HHS, SMH,

MCH, BRH,REH

CENSUS Inpatient bed census, admit date, chief complaint, admitting diagnosis hourly PUH, WPIC, SSH, SHY, HHG, HHS, SMH,

MCH,BRH,REH

MAP Data Dictionary containing admission, discharge, and service types;

census, medipac, and docs database fields; state, county, CPT, ICD-9,

DRG, race, financial class and codes;  UPMC Cost Centers codes

as needed PUH, WPIC, SSH, SHY, HHG, HHS, SMH,

MCH,BRH

PATIENTS Patient demographic information, including address, phone, DOB,

and emergency contact

daily PUH, SSH, SHY, HHG, HHS, SMH,MCH,

BRH, REH
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Hospital codes for Tables 67, 68, and 69:

� PUH - Presbyterian/Montefiore/Eye and Ear Institute

� WPIC -Western Psychiatric Institute and Clinic

� SSH - South Side

� SHY - Shadyside

� HHS - Horizon(Shenango)

� HHG - Horizon(Greenville)

� SMH-St. Margaret’s

� MCH – Mckeesport

� BRH – Braddock

� BMC – Bedford Memorial

� MWH – Magee Womens

� CHP – Childrens’

� REH-  Rehabilitation Hospital(07/05 end)

� LEE – Lee(08/05 end)

� QST – Quest Diagnostics

� PAS – Passavant
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APPENDIX K – General Health Plan Data Sharing Information

Contact Sheet for HMOs, PPOs and POS Plans for Pitt-PM Study: April 10, 2006

Name of Health Plan:                                         Initial Phone Number:                                          

HMO/PPO or POS                                                                                                                            

Contact person:                                       Phone#:                                           Email:                                

1. Year of plan inception (in Pittsburgh area) ______________________________

2. Geographic coverage area _____________________________________________

3. Local enrollment (Pgh. SMA) ______________Total enrollment (PA)___________

4. Is electronic data available? __________________Years Available_____________ 

5. Is there a specific category for unscheduled office visits in the electronic database? 

___________________________________________________________

6. Is it possible to search on chief complaint or billing code for office visit to delineate

cardiovascular or respiratory disease exacerbations?________________________

7) Procedure for requesting access to data from you health plan for research purposes:

g. Application process (packet or written information via email or regular mail)

_________________________________________________________

h. What are the IRB requirements? Through University of Pittsburgh IRB or through

external entity associated with the health plan?___________________
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i. Is there a cost to obtain the data or access to the data?_________________

Approximate cost:___________________________

j. Is de-identified (aggregated) data available?_____________

k. Can we obtain a HIPPA- compliant limited dataset to include dates of office visits,

city/municipality and Zip Code of residence?________________________

l. Can we obtain street addresses for geocoding if the Health Plan acts as an “honest

broker”? ____________________________

Comments or other information

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

_________________________________
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