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Numerical models of complex phenomena often contain approximations due to our 
inability to fully model the underlying physics, the excessive computational resources 
required to fully resolve the physics, the need to calibrate constitutive models, or in some 
cases, our ability to only bound behavior. Here we illustrate the relationship between 
approximation, calibration, extrapolation, and model validation through a series of 
examples that use the linear transient convective/dispersion equation to represent the 
nonlinear behavior of Burgers’ equation. While the use of these models represents a 
simplification relative to the types of systems we normally address in engineering and 
science, the present examples do support the tutorial nature of this document without 
obscuring the basic issues presented with unnecessarily complex models. 
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1.0 Introduction 
 

1.1 Previous Reports 
 
This report is the sixth in a series presenting issues related to model validation 
methodology. In the first report (Hills and Trucano, 1999), the conceptual ideas behind 
model validation in the presence of experimental and model parameter uncertainty were 
presented. We discussed the use of statistical methodology to develop model validation 
metrics for linear and nonlinear models. Examples were presented showing the 
application of these metrics to several physical applications. 
 
The second report (Hills and Trucano, 2001) further demonstrated the use of these 
metrics for one-dimensional shock data. We also introduced the idea of a metric that 
relates the anticipated target application of a model to the measurements taken from 
validation experiments. This linkage is important since the validation experiments 
generally do not exactly represent the target application. Validation experiments are 
typically more carefully controlled so that the sources of potential differences between 
observation and prediction can be better resolved. For the same reason, validation 
experiments are typically designed to test a subset of the physics important to the system. 
Suites of validation experiments are used to cover the range of physics and the range of 
anticipated conditions (or parameters) for the target application. Mathematically defining 
the link between the validation experiments and the target application is important if we 
wish to provide quantitative evidence as to how well our suite of experiments represent 
the anticipated application of the model. The application-based metric presented in the 
second report was designed to weight the experimental data so that they better represent 
the application. More specifically, data that does not have as direct of an impact on the 
target application were weighted less. This modification was based on eliminating the 
linear combinations (or the directions in the validation space – see Hills and Trucano, 
2001) that are not important to the application. An example was presented relating a two-
dimensional shock application to the one-dimensional shock physics data. 
 
The third report (Hills and Trucano, 2002) focused on the application of the Maximum 
Likelihood method to the non-application based validation metrics developed in the first 
two reports. The use of Maximum Likelihood allows highly nonlinear problems with 
non-normally distributed uncertainties in the measurements and the model parameters to 
be more easily handled.  
 
The fourth report (Hills and Leslie, 2003) further developed the relationship between the 
component or unit level validation experiments and the system level target application. 
Specifically, the relationship between the decision variables that are important to the 
target application and the measurements obtained from the suite of supporting validation 
experiments was investigated. In this context, we consider a decision variable to be a 
predicted variable that is important to the application. It is that quantity that defines 
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whether a design is successful or not. A decision variable may be the temperature in a 
component, the probability that a component will detonate, or the stress at a critical 
location. It is not unusual for the decision variable to be different than the quantities 
measured in the validation experiments. For example, one may not be able to directly 
measure maximum stress in a component because the location of maximum stress is not 
accessible. The methodology presented in the fourth report uses first order sensitivity 
analysis 1) to assess whether the suite of validation experiments adequately represents the 
physics of an anticipated target application; 2) to evaluate how to weight the 
measurement data to best represent the sensitivities of the target application to the 
physics tested by these experiments; and 3) to evaluate the sensitivity of the 
reconstructed decision variables to uncertainties in the experimental measurements, and 
to uncertainties in the model predictions due to uncertainties in the model parameters for 
the validation experiments and the target application.  
 
The fifth report (Hills, et. al., 2004) focused on the application of model validation 
metrics developed by Hills and Trucano (1999, 2001) to a particular application, the 
thermal decomposition of foam when heated from one side. Rigid polyurethane foams are 
used in weapons systems to isolate and support sensitive components. Abnormal thermal 
environments, such as fire, can cause foam decomposition and subsequent exposure of 
the components to undesirable thermal input. The ability to model and predict this 
decomposition is a critical aspect of the behavior of engineered components in abnormal 
environments. To this end, we investigated the uncertainties in the model predictions due 
to uncertainties in the model parameters, and used the metrics developed by Hills and 
Trucano to evaluate consistency between the model predictions and the experimental 
observations. The model predictions of foam-decomposition front location as a function 
of time were obtained using CPUF/COYOTE (Hobbs et al., 2003, Gartling et al., 1994) . 
We used a first order sensitivity analysis combined with a Monte Carlo approach to 
estimate uncertainty in these model predictions.  
 
The present report focuses on issues related to model validity when the model is to be 
extrapolated from the conditions under which the model was tested. Unlike previous 
work by the present authors, this work addresses the use of approximate models in some 
detail; including issues associated with calibration, and with bounds on predicted 
behavior. We begin with a conceptual discussion of models and their use in extrapolation 
and interpolation. 

1.2 Models 
 
It is characteristic of humans to model the environment around them. Models can range 
from purely subjective (i.e., intuitive models for human behavior) to models based on 
physical and mathematical principles.  Many of these models are used to provide insight 
as to the anticipated or possible behavior of a system under various external influences, 
and do not claim to accurately predict behavior. Other models, such as engineering 
models, are based on well established principles (theoretical basis with considerable 
supporting experimental observation). Predictions from such models can be used for 
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engineering design, when safety factors are used to compensate for possible model errors. 
In other cases, the ability to model the physical phenomena (response of an elastic solid, 
thermal heat conduction in a simple solid) exceeds our ability to accurately characterize 
the external influences on the parameters that appear in the model (i.e., boundary 
conditions, initial conditions).   
 
Many models used for engineering design possess some type of approximation. As the 
complexity of the system increases, the uncertainty in the predictions generally increases. 
The basic theory (mathematical equations) modeling the phenomena is often 
approximate. The numerical schemes used to solve the mathematical equations contain 
approximations and add uncertainty to the model predictions. The appropriate values for 
the parameters defining the constitutive equations, and the boundary and initial 
conditions, are often uncertain due to the lack of knowledge (i.e., not sufficiently 
measured or controlled), or due to natural variability in the system. Many models 
represent approximate extensions of well-established principles outside the range of the 
application originally anticipated during the development of the principle. For example, 
Darcy’s law for single phase flow through a porous media is well established. When 
multiple phases are present and one of the phases is a wetting phase, capillary effects can 
become important. An example is the flow of water through unsaturated soils. Darcy’s 
equation is often applied to such cases, but only after the proportionality constant 
between pressure gradient and flow is empirically modified to account for capillary 
tension. 
 
For the case of well established system level models, such as those based on conservation 
principles, the uncertainties in the application of such models to different scenarios is not 
due to the uncertainty in the system level model, but due to the uncertainties in the 
calibration of the constitutive models, the boundary and initial conditions, and in the 
numerical approximations.  If we can characterize the uncertainty in the constitutive 
models (e.g., the spatial variability in geological media), the boundary and initial 
conditions, and bound the uncertainty due to the numerical approximations, then we can 
propagate these uncertainties through system level models to predict the uncertainty in 
the system due to these effects.  
 
In the present work, we present a series of modeling scenarios and discuss the 
extrapolation/validation issues associated with these models.  We look at the impact of 
approximate bounding models, calibration, and other practical issues associated with 
complex engineering systems. The intent of this document is to provide a series of 
simple, but instructive examples. 
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2.0 Background 
 

2.1 Introduction 
 
We begin with a brief discussion of terminology, followed with a literature review of 
model extrapolation and validation. 

2.1.1 Data Based Model 
 
For the purpose of discussion, we define a data-based model as one which represents the 
behavior of a system, based strictly on fitting non-physically based functions to observed 
data. Regression models (linear and polynomial) and many calibration models are 
examples of such models. Many constitutive models are also based on simple linear 
regression (such as thermal conductivity as a function of temperature). These models 
make no assumption as to the physics of the phenomena being modeled and simply 
attempt to represent the behavior of the system over the restricted range of data used to 
calibrate the model. These models may be in the form of look-up-tables based on direct 
experimental observation, direct measurements of scalar quantities, or regression. These 
data-based models may be deterministic in the sense that single values are returned, or 
they may include the effect of uncertainty in their representation of the behavior through 
error bounds or other representations of uncertainty.  
 
Extrapolation of these models to domains different than those used to calibrate the model 
should be a cautious endeavor unless one has evidence that the assumed behavior (linear 
for example) is appropriate outside the data support range. Interpolation can also be 
fraught with danger if the calibration data is sparse. For example, fitting a high order 
polynomial through a limited number of data points can lead to oscillatory behavior 
between the data points and serve as a poor interpolation scheme. 

2.1.2 Physical Based Models 
 
Here we consider physically based models to be models that are based on fundamental 
principles. These models can be based on physical laws, such as the conservation of 
mass, momentum, and energy. These models often contain constitutive parameters to 
represent some sort of integrated behavior of the material, such as conductivity in 
Fourier’s law. These models can also be well established approximations, such as the k-
epsilon model in turbulence, which have physical justification for its form.  
 
The advantage of physically based models relative to data-based models is we generally 
have more confidence in the extrapolation of these models outside the range of conditions 
tested. This is based on expert subject matter knowledge. For example, we fully expect 
the thermodynamic laws to extrapolate to an application.  
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We also expect physically based models, for which there are calibration parameters to 
account for material properties, to apply to various applications and geometries, as long 
as we use the correct calibration parameters for that material. Our mathematical 
expression for Fourier’s law - heat flux is equal to the negative of the product of the 
thermal conductivity and the temperature gradient - is generally considered invariant for 
heat conduction in many engineering applications.  
 
In contrast, fitting a mathematical surface or curve to the measurements of heat flux over 
a range of conditions, can represent heat flux only over the range of conditions defined 
by the geometry, initial conditions, and boundary conditions for the generating 
experiments. A model for heat flux based on Fourier’s law is much more useful as we 
expect to be able to apply this law to heat conduction under conditions other than those 
tested, as long as we properly account for the thermal conductivity of the materials. 
 
Caution must be exercised in some cases when making the distinction between data-
based and physical based models. Many constitutive models may be more data-based 
than they at first appear. As mentioned earlier, Darcy’s law relates the flux of a single 
phase fluid through a porous media to the pressure gradient, just as Fourier’s law relates 
the flux of thermal energy to a temperature gradient. In fact, the proportionality constant 
for Darcy’s law is called the hydraulic conductivity. In some applications in hydrology, 
Darcy’s law is extended to the transport of a two component system (water and air) 
through porous media. For unsaturated media, the primary driving potential is often 
capillary tension rather than pressure. Darcy’s law is extended to such cases by using 
multi-parameter models for hydraulic conductivity developed though experimental 
observation and parameter estimation. Because of the nature of capillary tension (very 
high tensions when the soil is dry, low tensions when the soil is near saturated), the 
representation of hydraulic conductivity is often a highly non-linear function of 
saturation and very dependent on the soil, due to the complexity of pore geometry.  While 
there sometimes is a fundamental phenomenological principle for the choosing a function 
to relate hydraulic conductivity to water saturation, these functions are often chosen 
simply because they simulate the empirical data well. Even though the extension of 
Darcy’s law to unsaturated flow is an approximation, we still expect mass to be 
conserved at the system level. 

2.1.3 Model Interpolation 
 
Most researchers have the intuitive sense that model interpolation means application of a 
model to conditions bounded by the calibration and validation experiments. At first 
glance, this description seems rather straight forward. However, the application of this 
idea to complex models quickly reveals that this definition is somewhat nebulous.  
 
While calibration of the constitutive models used in the system model can often be 
performed over a range of conditions associated with the application of a model, the 
validation of a system level model against system level measurements may not be as 
straight forward. This is especially true for multidimensional models with a high number 
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of constitutive model parameters. For example, consider a model with 25 parameters. If 
we were to test this model at three values for each parameter (the min, the max, and the 
median), we would require 253 = 15,635 experiments. Clearly, this is not practical.  
Another approach could be to test the model at the median values of the parameters (or 
the anticipated values), and then perturb one parameter at a time and retest. This would 
result in 26 experiments which also may not be practical. Even if this approach were 
practical, this experimental scheme ignores potential correlation that can occur in the 25 
parameter model, and cannot adequately cover the parameter space. Another procedure is 
to use some form of experimental design to randomly pick the values of the model 
parameters to test at according to some sampling scheme. This approach does allow the 
observation of some correlation structure in the experiment, and provides some 
representation over the space of the samples. However, this approach still cannot fully 
cover the space of the parameters for the 25 parameter example discussed above. There 
will be some regions in the parameter space (often near the boundaries) that are not well 
represented by the series of experiments. Thus the use of the model near the boundary 
will represent an extrapolation simply because the experiments did not span this region. 
So what appears at first glance to be model interpolation may, in-fact, be model 
extrapolation due to the high dimension of the model parameter space. 

2.1.4 Model Extrapolation 
 
Model extrapolation has different meanings to different investigators. It can mean the 
extrapolation of the model outside the range of model parameters tested, or the 
extrapolation of the model to conditions not tested (i.e., different geometries or boundary 
conditions), or in the most extreme case, the extrapolation of the model to different 
physical phenomena for which the model acts as a surrogate.  
 
In this present work, we consider extrapolation to include the following: 
 

1. Prediction of a quantity by a model that was not measured directly during the 
experiment even for similar test conditions: For example, we may be interested in 
the stresses in a bolt, but can only measure strain in the components surrounding 
the bolts. In this case, a model will be used to relate the strain measured at one 
location to infer stress at another. Because we are using a model to relate the 
response variable tested during the experiment to one that was not tested, we 
consider this to be extrapolation. 

 
2. Prediction of a quantity outside the range of model parameters or conditions 

tested: For example, we may perform validation experiments on a response 
variable over some temperature range, but then use the model to predict behavior 
at higher temperatures.  

 
3. Use of the model as a surrogate for another type of system: This represents an 

extreme form of the case discussed in item 2. 
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Our primary focus in this work is on extrapolation of the type described in item 2. 
Extrapolation of the type described in item 3 is not normally accepted in engineering, 
unless we have collaborating experimental evidence that the system we are extrapolating 
to is well represented by the surrogate model.   

2.1.5 Approximate Physics-Based Models and Impact on Model Validation 
 
In the previous work by this author (Hills and Trucano, 1999, 2001, 2002; Hills and 
Leslie, 2003; Hills et al., 2003), we focused on the development of model validation 
methodology which finds a model valid if the errors introduced by non-modeled or 
approximately modeled physics, are less significant than those introduced by the 
uncertainties in the validation experiments. This approach does provide useful insight as 
to the methodology required to account for the effects of uncertainty in the model 
parameters and the experimental measurements on model validation. However, 
engineering models that approximate or bound behavior are often more practical to 
develop and implement. For some complex systems, approximate or bounding models 
may be the only feasible approach. For example, while we may not be able to accurately 
estimate the amount of diffusion that takes place in a system, we may be able to estimate 
a lower bound or a range for diffusion. This may allow us to use these bounds to bound 
predicted behavior of the system. Another example is the use of approximate models to 
represent sub-grid behavior. If there is a consensus in the scientific community that such 
a model consistently provides an estimate of the behavior that is conservative in some 
sense (however, this may be defined), then we may be able to use this model to bound the 
behavior of the system. 
 
The concept of a model validation for bounding models is different than that for models 
that we claim accurately represent the physics within validation experiment uncertainty. 
Rather than answering the question – are model predictions consistent with experimental 
observations, given the uncertainty in the validation exercise; here we ask – do the model 
predictions bound (from above or below) the experimental observations, given the 
uncertainty in the validation exercise? In the case of bounding approximate models, our 
validation tests will often take on a one-sided nature, which complicates the 
corresponding statistical inference for multivariate data. This feature of bounding models 
will be addressed in a later chapter. 

2.2 Literature on Model Extrapolation/Validation 
 
A search of the SciSearch Plus scientific article database (ISI, 2003) for the phrase 
“model validation”, yields a significant number of hits. Investigation of these hits 
suggests that to most authors, model validation is the comparison of model predictions to 
experimental observations through graphical means. The impact of experimental and/or 
model uncertainty on these comparisons is generally ignored. A general literature review 
on model validation is provided by Oberkampf and Trucano (2000) and Oberkampf et al. 
(2003). Additional literature on statistical methods in model validation is discussed by 
Hills and Trucano (1999).  In recent years, there has been an increased emphasis on using 
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statistical methodology to characterize experimental and/or parameter uncertainty in the 
comparisons between experimental data and physics-based model predictions. Examples 
of such methodology include the work by Dowding et al. (2004), Easterling (2003), 
Rutherford and Dowding (2003), and the series of reports by Hills and Trucano (1999, 
2001, and 2002), Hills and Leslie (2003), and Hills et al., (2003). 
 
A search of the scientific article databases for the term model extrapolation yields 
significantly fewer hits. Since engineering/scientific models are generally developed for 
the purpose of providing insight for conditions other than those tested (i.e., model 
extrapolation), this observation is not surprising. The technical areas for which we found 
the largest number of hits for the phrase “model extrapolation” were in the environmental 
and medical fields. For example, extrapolation is an important aspect in environmental 
risk assessment and health fields. This includes the extrapolation over different physical 
scales (from patch scale to landscape scale; Landis, 2002, Munns, 2002), across different 
temporal scales (Munns, 2002, Kalberlah et al., 2002), and biological extrapolation 
(across levels of biological organization - Munns, 2002; between animals and human – 
Bernillon and Bois, 2000, Kalberlah et al., 2002, Vermeire et al., 2001).   
 
More specifically, Bernillon and Bois (2000) present statistical issues associated with 
toxicokinetic modeling. As discussed in their paper, toxicokinetic models can be 
classified into two broad categories, classical compartmental toxicokinetic (TK) models 
and physiologically based toxicokinetic (PBTK) models. 
 
The classical models represent the body by several compartments which may or may not 
represent the anatomy of the species. Chemical transport between the compartments, each 
of which is assumed to contain a uniform distribution of chemicals, is modeled through 
differential equations. The parameters appearing in the differential equations are 
estimated through parameter estimation based on empirical data. Because of this, TK 
models are often referred to as data-based or empirical models. These models are found 
to be reliable when used to interpolate from the calibration data. Because they are not 
physiologically based, they are not appropriate for the extrapolation to other species, 
exposure conditions, and routes.  
 
The physiologically based toxicokinetic models are based on compartments 
corresponding to specific organs or lumped tissue and organ groups. The transport 
between compartments is based on blood flow, lymphatic circulation and chemical 
transfers between these compartments; and is represented by differential equations for the 
corresponding mass balances. The model parameters have physical significance 
(solubility, tissue volumes, diffusion, etc.). Because these models are more closely 
representative of actual physiological systems, they are felt to better model the linear and 
nonlinear dynamics associated with the metabolism of the toxic compound under study. 
As a result, the extrapolation to species with the same structures (between mammals for 
example) is appropriate with the proper choice of parameters for that species. In addition, 
extrapolation to different forms of exposure (between air, ingestion, and intravenous 
injection) can be made with the appropriate application of source terms. Because these 
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models can require a substantial number of parameters (20 or more) to characterize the 
underlying phenomena, and because the values of these parameters have uncertainty due 
to both estimation and natural variability within and between species, the predictions of 
PBTK models will contain uncertainty. Bernillon and Bios (2000) discuss the 
uncertainties associated with both TK and PBTK models and present a Bayesian based 
approach to the calibration of these models. They provide an example of the calibration 
of TK models and illustrate the pitfalls associated with ignoring the probabilistic 
structure, such as correlation of the parameters. They also discuss the ability of the 
Bayesian approach to use prior knowledge to help constrain parameter estimates when 
sufficient calibration data is not available.  
 
Even though the literature previously cited acknowledges uncertainty and provides 
methodology for the assessment of uncertainty due to parameter uncertainty, the concept 
of model validation and model validation methodology is not addressed with the rigor 
desired here (see Trucano et al., 2001, 2002). Model validation has different meanings to 
different disciplines. For example, the statistical concept of cross-validation can be used 
to discriminate between competing models. Lockwood, et al. (2001) looks at competing 
models for arsenic occurrence in source waters across the United States community water 
systems. Because the corresponding observation data is sparse and uncertain, Bayesian 
approaches to model calibration are used. Lockwood, et al., consider models of 
increasing complexity, calibrate the various models to subsets of data, and rank the 
predictive ability of the models using the remaining data through the use of predictive 
density. By repeating selecting subsets of the data to calibrate and to validate against, one 
can select the model that has high predictive ability over a large percentage of the cross-
validation samples. Note that this approach uses a relative metric to choose the best 
model, but does not necessarily set a criteria for predictive density for which a model is 
declared invalid (or valid).  
 
Warren-Hicks, et al., (2002) explicitly discuss the role of uncertainty in model validation. 
They argue that prediction uncertainty must be used in the comparison of prediction to 
observation. Otherwise, complex models can easily fail validation tests simply due to the 
uncertainty in the model’s parameters rather than due to some structural defect in the 
model. Warren-Hicks, et al., point out that typical estimators of model accuracy are mean 
squared error, paired t-statistics, and correlation statistic. They state that 
 

“While these statistics may or may not be valid indicators of statistical accuracy, 
a larger issue arises in that these statistics do not reflect the uncertainty in model 
use, such as the decisions made in model calibration, model structure, or choice 
of time step.” 

 
They argue that 
 

“… a simple comparison of observations and predictions is a naïve 
approximation of the usefulness of the model or the expected inferences that can 
be drawn from the model output.” 
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As Warren-Hicks et al. discuss, the use of classical statistical indicators, such as the 
paired t test, use the variance in the differences between measurements and predictions as 
the test statistic. This estimate of uncertainty is appropriate if the experimental data truly 
represents all sources of uncertainty, such as multiple builds of the experimental 
apparatus, manufacturing lot-to-lot differences of the materials, and uncertainties in 
boundary conditions over repeated independent experiments. They argue that an 
appropriate method to account for these effects, if not reflected in the data, is to use the 
Monte Carlo method of propagating these uncertainties through a model. This allows one 
to model important sources of uncertainty that may not be reflected in the validation 
experiments. Of course, one must have sufficient knowledge to adequately characterize 
these sources for use in a Monte Carlo analysis. 
 
Warren-Hicks et al. (2002) quantify model validity by measuring the percentage of the 
probability density function for the predicted measurement that lies below and above the 
experimental observations. When the measured value is “near the center” of the predicted 
distribution, the model is considered to be accurate. When the measured value is in the 
lower or upper portions of the predicted distribution, the model is considered to be less 
accurate. If the entire distribution is below or above the measured value, the model is 
considered to be inaccurate. No guidance as to what constitutes “near the center” of the 
distribution is given.  
 
A thoughtful tutorial of model validation is provided by Robinson (1999). He breaks 
model validation into several components as follows: Conceptual Model Validation is the 
determination “that the scope and level of detail of the proposed model is sufficient for 
the purpose at hand, and that any assumptions are correct.” Data Validation is 
evaluating “that the data required for model building, validation and experimentation are 
sufficiently accurate.” White-Box Validation is evaluating whether “the constitutive parts 
of the computer model represents the corresponding real world elements with sufficient 
accuracy.” Black-Box Validation is “determining that the overall model represents the 
real world with sufficient accuracy.” Experimental Validation is “determining that the 
experimental procedures adopted are providing results that are sufficiently accurate.” 
Solution Validation is “determining that the results obtained from the model of the 
proposed solution are sufficiently accurate.” Solution Validation takes place after the 
designed product is complete. It is a comparison of the final performance of the product 
to the predicted performance. Guidance of what constitutes or how to measure 
“sufficiently accurate” is not addressed. 
 
While the concept of model extrapolation and model validation is discussed in the 
literature, we are not aware of work, other than that by Hills and Trucano (2001) and 
Hills and Leslie (2003), which directly tie model validation metrics to extrapolation. The 
work by Hills et al. focuses on the modification of validation metrics at the unit or 
subsystem level to reflect the target application. In this work, the relationship 
(extrapolation) between the unit or subsystem level to the system level and the effect of 
uncertainty is investigated. This work assumes that the underlying models, if proven 
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valid for the intended application, represent the physics with an error that is within the 
effect of measurement and model parameter uncertainty.  
 
In the present work, we focus on a different aspect of model extrapolation, that of 
temporal extrapolation. We also relax the emphasis that a valid model be consistent with 
the experimental data, within the uncertainty induced by the model parameters and the 
experimental data. Here we explicitly address the use of approximate and approximate 
bounding models that need not be statistically consistent with the data - those which do 
not fully represent the physics, but approximate or bound the physical behavior.   
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3.0 Simulated Data and Approximate Model 
 
Two models will be used in this work. The “true” physics will be defined by a two 
parameter form of Burgers’ equation. This equation is non-linear, transient, and can 
produce fully developed moving fronts. This equation will be used to generate simulated 
measurements of front velocity by taking random realizations of the parameters, 
approximating the resulting solution to Burgers’ equation and the associated front 
movement, and adding random noise to the predicted measurements to represent 
experimental error.  
 
To illustrate the effect of non-modeled physics, we will use the convective-dispersive 
equation as the approximate predictive model. This equation does not possess the non-
linearity in the convective term that Burgers’ equation does, and cannot accurately 
represent the physics for both short and long times. However, this equation can be used 
to approximate the nonlinear behavior of Burgers’ equation over a limited time period, 
and can be effectively used to bound the behavior (predict upper and lower bounds) if 
properly conditioned. 
 
We begin with Burgers’ equation. 

3.1 Simulated Measurements (Burgers’ Equation) 
 
We use Burgers’ equation to represent the correct model of the true physics of the 
validation experiment. A two parameter form of Burgers’ equation can be written as 
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 We define the initial condition to be a pulse defined by 
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c is the dependent variable, D the dispersion coefficient, and U is a parameter that affects 
front speed. We take the range of x large enough (i.e., 0 ≤ x ≤ 10) so that the leading edge 
of the front does not reach a boundary during the first 2.5 times units, given the values of 
our parameters and the form of the initial condition. We take our validation variable to be 
the front location as a function of time. Here we define the front location X as that 
location for which c = 0.25 on the leading edge of the +x moving front.  
 
We consider two forms of uncertainty in the simulated data. First, we consider the 
uncertainty associated with the true model parameters for the validation experiment. For 
illustrative purposes, we take the mean and standard deviation for these parameters to be 
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 Dmean  =  0.08,    Umean = 1.0  (3.3a, b) 
   
 σD = 0.008,   σU = 0.1 (3.4a, b) 
 
We assume that the uncertainty between these two parameters is not correlated and the 
uncertainty in each parameter is normally distributed. Note that the standard deviations 
are 10% of the mean values. We also consider measurement noise, which we take to be 
normally distributed, uncorrelated, with zero mean and a standard deviation of 0.05. 
 
 σmeas = 0.05 (3.5) 
 
To approximate the uncertainty in the model parameters due to the uncertainty in the 
model predictions, we use a multivariate linear sensitivity analysis presented by Hills and 
Trucano (2001). We begin by relating changes in predicted front location X(t) at the 
discrete times t = t1, t2, …, tn, to perturbations in the vector α of model parameters from 
its mean. 
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The sensitivity matrix (composed of the sensitivity coefficients) is given by  
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We can now estimate the covariance matrix for the model predictions using first order 
sensitivity analysis (see Hills and Trucano, 2001): 
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The covariance matrix of the differences between the simulated measurements and the 
experimental data, including the effect of measurement uncertainty, is given by 
 
 )cov()cov()cov( modelexptotal XXX +=  (3.10) 
where 
 IX 2

measexp )cov( σ=  (3.11) 
 
and I is an nxn dimensional identity matrix corresponding to the n discrete times of the 
measurements.  
 
To minimize the effect of numerical diffusion, Eq. (3.1) is solved numerically using an 
operator splitting technique. This equation was split into a strictly advective equation and 
a dispersive equation for each time step (Hills et al., 1994). The resulting advective 
equation is solved using the second order TVD scheme of Roe and Sweby combined with 
a Superbee limiter (Roe, 1985, 1986 and Sweby, 1984). Comparison of this method with 
other shock-capturing methods, as applied to Burgers’ inviscid equation, is presented by 
Yang and Przekwas (1992). In solving Eq. (3.1), we used ∆x = 0.1, ∆t = 0.02. Reducing 
the time step by a factor of 50 and the spatial step by a factor of 2 resulted in a shift in the 
predictions that were within 0.2% at t =0.1 and 0.04% at t=1.0. We did not perform a 
more rigorous convergence analysis on the numerical algorithm since the purpose of this 
exercise was to generate simulated measurements that contained uncertainty. Any bias 
that may result from the lack of convergence simply adds non-modeled uncertainty to our 
examples, increasing the possibility that a model will be rejected as valid.  
 
We use a multinormal random number generator with a mean of zero and the covariance 
defined by Eq. (3.10) to generate simulated realizations of the data. These realizations 
thus incorporate uncertainty in both the model parameters and the simulated 
measurements. The uncertainty in the model parameters is important because it reflects 
the uncertainty in the execution of the validation experiment (i.e., uncertainty in the true 
parameters for our particular realization of the validation experiment). Because we 
included parameter uncertainty in our realization, our simulated measurements will 
contain bias from the predictions of Burgers’ equation using mean parameters 
 
Simulated data were generated on 0.05 time increments out to t = 2.5. This gives 51 
measurements. The random realization of these simulated measurements used here is 
tabulated in Table 3.1. The second random realization is tabulated in Table 3.1 for later 
use as “independent” validation data. We use finite differences to estimate the 
components of the sensitivity matrix. Specifically, we use forward differences with an 
increment that is 5% of the mean value of the model parameter of interest for each term 
in Eq. (3.8). 
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Table 3.1 Simulated Front Locations  
 

Time X_mean X_exp_1 X_exp_2 Time X_mean X_exp_1 X_exp_2
0.00 4.000 3.945 3.985 1.30 5.268 5.456 5.233
0.05 4.113 4.136 4.148 1.35 5.304 5.423 5.201
0.10 4.168 4.237 4.197 1.40 5.337 5.531 5.267
0.15 4.224 4.242 4.207 1.45 5.375 5.578 5.315
0.20 4.281 4.309 4.256 1.50 5.408 5.547 5.314
0.25 4.329 4.426 4.315 1.55 5.440 5.543 5.290
0.30 4.386 4.406 4.325 1.60 5.476 5.615 5.405
0.35 4.432 4.429 4.402 1.65 5.507 5.653 5.390
0.40 4.489 4.647 4.434 1.70 5.538 5.712 5.512
0.45 4.533 4.621 4.540 1.75 5.572 5.783 5.485
0.50 4.589 4.666 4.530 1.80 5.602 5.811 5.557
0.55 4.632 4.748 4.582 1.85 5.632 5.726 5.542
0.60 4.686 4.735 4.716 1.90 5.664 5.813 5.608
0.65 4.729 4.757 4.616 1.95 5.693 5.831 5.612
0.70 4.779 4.803 4.854 2.00 5.722 5.828 5.574
0.75 4.822 4.828 4.810 2.05 5.751 5.894 5.640
0.80 4.867 4.953 4.893 2.10 5.781 5.964 5.669
0.85 4.913 5.127 4.819 2.15 5.808 6.043 5.855
0.90 4.949 5.125 4.902 2.20 5.836 6.066 5.782
0.95 4.998 5.195 4.916 2.25 5.864 6.027 5.780
1.00 5.034 5.131 4.924 2.30 5.891 6.089 5.751
1.05 5.079 5.213 5.078 2.35 5.917 6.183 5.837
1.10 5.117 5.184 5.223 2.40 5.944 6.094 5.969
1.15 5.153 5.295 5.157 2.45 5.971 6.272 5.985
1.20 5.195 5.348 5.053 2.50 5.996 6.153 5.942
1.25 5.229 5.300 5.280

 
 
Figure 3.1 illustrates the front location as a function of time, using the mean values of the 
parameters, Eq. (3.3), as well as, two sets of simulated measurements containing the 
effect of uncertainty in both the parameters and the measurements. As discussed above, 
the two sets of simulated measurements represent the effect of two different realizations 
of D and U. Note that the inclusion of both measurement noise and parameter uncertainty 
resulted in significant bias of the simulated measurements from the predictions of 
Burgers’ equation using the mean values of the parameters. Note also that the second 
realization of the data shows a slower front motion than that predicted using the mean 
parameter values. In contrast, the first realization of the data shows a faster front motion. 
These two realizations were intentionally chosen to illustrate issues related to calibration 
later in the report. The 95% measurement uncertainty intervals, based the measurement 
noise defined by Eq. (3.5), are also shown for both sets of simulated measurements.  
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Figure 3.1 Simulated Measurements of Front Location 
 
 

3.2 Approximate Model (Convective-Dispersion Equation) 
 
To illustrate the effect of non-modeled physics, we use predictions from the following 
convective-dispersive (C-D) equation to approximate the behavior of Burgers’ equation. 
 
 

 5.20,100,2

2

≤≤≤≤
∂
∂

−
∂
∂

=
∂
∂ tx

x
cV

x
cD

t
c  (3.12) 

 
 with 
 

 
⎩
⎨
⎧ ≤≤

=
otherwise,0

43,1
)0,(

x
xc  (3.13) 

 
where c is the dependent variable, D the dispersion coefficient, and V is convective 
velocity. Note that we used the same initial pulse condition as was used for the simulated 
measurements, and thus assume that we have good knowledge of these conditions. As 
before, the time period of the simulation was chosen such that the front does not reach 
either boundary. We also measure front location as that location for which c = 0.25 at the 
leading edge of the front. We use a simple explicit finite difference algorithm to model 
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Eq. (3.12), with the convective term approximated using an upwinded difference. The use 
of this algorithm results in the presence of some numerical diffusion. As in the case of the 
approximation for Burgers equation, we did not perform a detailed convergence study. 
As a result, our model and algorithm contain both non-modeled physics and numerical 
approximation errors (uncertainties). Since the purpose of the present work is to develop 
validation metrics that apply to engineering models that invariably contain both 
numerical approximation and non-modeled physics, we suggest that the inclusion of 
numerical diffusion in our approximate model is not unrealistic. Here we used ∆x = 0.1 
and ∆t = 0.02. We found that the results were within a line width of the results shown in 
Figure 3.2 (for X_mean) when we reduced the spatial and time step by a factor of two. 
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Figure 3.2 Predicted and Experimental Measurements for Front Location: X_mean 
– prediction base on mean model parameters; X_exp_1, X_exp_2 – simulated 
experimental data for experiments 1 and 2, respectively: X_cd – prediction 
based on convective-dispersive equation. 

 
 

A comparison of the simulated measurements from the previous section and the 
predictions using the following somewhat arbitrary choice for the parameters in the C-D 
equation is illustrated in Figure 3.2. 
 
 D = 0.08,   V = 1.0 (3.14a, b) 
 
We will discuss less arbitrary choices for these parameters in Chapter 5.  Note that due to 
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the nonlinearity in Burgers’ equation, the front moves at increasing slower speeds, 
relative to that for the C-D equation. Clearly, the non-modeled physics of Burgers’ 
equation is not well approximated by the C-D equation for this measure of system 
response. However, as will be shown later, the two parameters in the C-D model can be 
calibrated to obtain improved results over a limited time interval. We will demonstrate 
this process and discuss its implications on validation in Chapter 5. 
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4.0 Complete Physics-Uncertainty Model 
 

4.1 Introduction 
 
The procedures and results discussed in this chapter focus on the validation of models 
that we claim accurately represent the physics, but contain uncertainty in their 
parameters. We use the phrase “accurately represent the physics” to mean that the model 
resolves physical behavior within the characterized uncertainty of the validation 
experiments. The metrics developed previously by this author (Hills and Trucano, 1999, 
2001, 2002; Hills and Leslie, 2003; and Hills et al., 2003) evaluates whether this 
accuracy is obtained. While the presentation of this approach does not provide any new 
concepts, it does provide some insight as to how one might test a model for it’s ability to 
extrapolate from the test conditions and provides background for the evaluation of 
approximate models in the next chapter.  

4.2 Validation – Complete Data Set 
 
We begin with the use of the r2 metric of Hills and Trucano (1999, 2001) applied to the 
data of Figure 3.1, and the predictions of Burgers’ equation. Since Burgers’ equation was 
used to generate the simulated data, we expect that a validation metric should find this 
data to be consistent with the model predictions.  
 
While we could perform a full Monte Carlo analysis to evaluate the effect of parameter 
uncertainty on Burgers’ equation, we will use the locally linear approximation employed 
by Hills et al. (2003) to estimate the prediction uncertainty. This approximation, Eq. 
(3.6), is based on a first order sensitivity analysis discussed in the previous chapter and 
requires considerably fewer function evaluations of Burgers’ equation than does a Monte 
Carlo analysis for this two parameter problem. We assume previous experience indicates 
that the model predictions are normally distributed with a know distribution, and will 
derive the covariance matrix derived from a first order sensitivity analysis, Eq. (3.9). 
Because we assumed that the uncertainty in the measurements is normally distributed, the 
difference between model predictions and experimental observations will also be 
normally distributed. Hills and Trucano (2001) illustrate methodology based on Monte 
Carlo analysis to handle non-normal distributions. Hills and Trucano (2002) provide an 
alternative metric based on maximum likelihood, which does not require a sensitivity 
analysis or as many function evaluations as a Monte Carlo analysis for nonlinear, non-
normally distributed systems. 
 
The r2 metric used here inversely weights the differences relative to their uncertainty. The 
added advantage of this metric is the resulting r2 has a χ2 distribution for normally 
distributed differences, which is tabulated in most statistics text books (see for example, 
Brownlee, 1965). This metric is given by 
 



     

 

 22 
 
  
 
 

 r2 = (Xmodel – Xexp)T [cov-1(Xmodel – Xexp)] (Xmodel – Xexp) (4.1) 
where 
 
    cov(Xmodel – Xexp) = cov(Xmodel) + cov(Xexp) (4.2) 
 
Xmodel is a vector of model predictions using mean values for the parameters, and  Xexp is 
the vector of experimental observations developed at the beginning of the previous 
chapter. The covariance matrix for the model predictions is estimated using Eq. (3.9) 
where the mean values for D and U are given by Eq. (3.3). For our case, the covariance 
matrices of the model parameters and the experimental observations are (see Eqs. (3.4) 
and (3.5)) 
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We use a finite difference approximation to estimate the components of the sensitivity 
matrix. Specifically, we use a forward difference with an increment that is 5% of the 
mean value of the model parameter of interest.  Using the above results to evaluate Eq. 
(4.1) gives 
 
     X_exp_1: r2 = 56.85 (4.5a) 
     X_exp_2: r2 = 64.68 (4.5b) 
 
The significance of this value for r2 can be evaluated from the χ2(df) distribution where 
df is the degrees of freedom. In our case, we have 51 differences with known variances. 
Since we did not estimate any parameters, the total degrees of freedom is 51. Given the 
χ2(51) distribution, the probability of obtaining an r2 = 56.85, 64.68 or larger is 
 
     X_exp_1: P(r2 > 56.85) = 0.266 (4.6a) 
     X_exp_2: P(r2 > 64.68) = 0.094 (4.6b) 
 
Thus, given our models for uncertainty in the model predictions due to parameter 
uncertainty, and in the uncertainty in the measurements, the probability of a valid model 
given this large or larger value of uncertainty in the weighted distance squared, Eq. (4.1), 
is 26.6% for data set 1 and 9.4% for data set 2. This is more significant than the 5% that 
we typically require to reject a model. We can thus say that the data do not provide 
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sufficient evidence to reject the model as valid. This is not surprising since this model 
was used to generate the simulated data. But it is a sanity check on our methodology. 

4.3 Validation – Partial Data Set 
 
If the model of interest will be used to extrapolate over time, then we will not have data 
over the full range of time. We can simulate this by using only the data for t ≤ 1.0, (i.e., 
the first 21 data points) from the first data set. We use only the first 21 rows of the 
sensitivity matrix, Eq. (3.8), and the upper left 21x21 submatrix of the measurement 
covariance matrix, (4.4), to evaluate a distance squared for the corresponding 21 degrees 
of freedom. 
 
 r2 = 30.175,    df = 21,   P(r2 > 30.175) = 0.0885 (4.7) 
 
Compared to the previous case for data set 1, there is less evidence that the model is 
correct. A valid model would have only a 9% chance of possessing this r2. Because the 
level of significance for this test is approaching the 5% level, we should investigate the 
validity of this model further before it is used for extrapolation to later times. There are 
several reasons why one may obtain a low level of significance, even though the model is 
valid. These include the following: 
 

1. The numerical model does not accurately represent the mathematical model 
(algorithm or convergence issues).  

2. The uncertainty in either the model parameters and/or the measurements has been 
underestimated, and/or we are using the wrong distribution, and/or the method 
used for the uncertainty propagation may not be accurate. 

3. There is significant bias in the measurements. 
4. We simply have a set of measurements or model parameters that were realized 

near the tails of their distributions.  
 
In the present work, we intentionally choose a realization for data set 1 whose joint 
probability for the first 21 differences between the model predictions and the simulated 
measurements was near the tail of the predicted distribution (item 4). This is reflected in 
Figure 3.1 and provides a more interesting case to study than a realization for which the 
data aligns with the model predictions when using the mean values for the model 
parameters. 

4.4 Extrapolation  
 
If we are confident that the model can simulate the correct physics and that the models 
for uncertainty capture the true uncertainty, then we may feel confident that this model 
can be used to extrapolate outside the parameter or time range tested. One advantage of 
characterizing uncertainty in the model parameters, and testing a model against this 
uncertainty, is this provides us some confidence in not only extrapolation of the model 
predictions, but also the extrapolation of the predicted uncertainty.  
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We illustrate this extrapolated predicted uncertainty by using the sensitivity analysis 
performed at the beginning of this section, applied to all 51 data points, to estimate 
prediction intervals on extrapolated model predictions. The square root of the diagonal 
elements of the covariance matrix for the model predictions, Eq. (3.9), gives the standard 
deviations for the corresponding prediction times. Figure 4.1 illustrates the prediction 
intervals at the 5% significance level (±1.96 σ) for each measurement time. Note that the 
parameter-induced uncertainty increases from zero at time zero, to larger values at later 
times. Our current model for the uncertainty assumes no uncertainty in the initial 
conditions. If uncertainty in the initial conditions is significant, we could incorporate this 
through the parameterization of the initial conditions and the incorporation of the 
respective sensitivities of the front motion to these additional parameters. Note also that 
the variation in the interval width appears to not be entirely smooth. We believe that this 
is due to numerical noise generated by the flux correctors in the numerical scheme. The 
effect of this noise is amplified when using finite differences to estimate the sensitivity 
matrices, as required by Eq. (3.9). 
 
The simulated measurements from Figure 3.1 are also shown in Figure 4.1 for reference. 
Because we have not included the effects of measurement uncertainty in the error bars of 
this figure, one should not judge the ability to extrapolate until such uncertainty is 
included. This will be evaluated in the next section. 
 
We wish to emphasis that these prediction intervals are only as good as our underlying 
model. Based on the validation test for the first 21 data points performed in the previous 
section, the uncertainty in the experimental data and model predictions can account for 
the differences between model predictions and experimental observations at the 9% 
significance level. While we do not consider this a significant reason to reject the model, 
we suggest that our standards of performance should be higher if a model is to be used 
for extrapolation rather than interpolation.  
 

4.5 Validation of the Extrapolated Model 
 
If we have sufficient data, we can use a bootstrap approach to march our way up the front 
location versus time curve to see if the consistency of the model with the data decreases 
with time. More specifically, we can look at the significance of the agreement between 
the data and the model predictions over time, using a sliding window. A decrease in 
significance over time can serve as an indicator that the model’s ability to extrapolate 
also decreases over time. While this approach does not provide a fail safe check for the 
validity of model extrapolation (there is no fail safe check for this other than through data 
at the extrapolated conditions), it can show trends relative to the known validation 
exercise uncertainty. 
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Figure 4.1 Prediction Intervals for Burgers’ Equation due to Parameter 
Uncertainty 

 
 
 
To demonstrate the use of significance for the present model, we use the following 5 time 
windows of the data from Table 3.1. 
 
 0 < t ≤ 0.5,   0.5 < t ≤ 1.0,   1.0 < t ≤ 1.5,   1.5 < t ≤ 2.0,   2.0 < t ≤ 2.5 (4.8) 
 
Applying the metric defined at the beginning of this chapter to the model predictions and 
the simulated experimental observations listed in Table 3.1, we obtain the results for 
significance (df = 10 for each case) as a function of time shown in Table 4.1. 
 
Note that the significance is quite large for all the time windows greater than t = 1.0 for 
the X_exp_1. This is in contrast to the significance for the first 21 data points indicating 
that the agreement between predictions and measurements, relative to the uncertainty in 
the validation experiment, is better at later times than for the first 21 data points (t ≤ 1). 
Because this is a random process, we would expect that significance to vary somewhat 
randomly over time. If we find that the trend in significance at later time is approaching 
small values (say ≤ 0.1), then we should question whether the model is appropriate for 
further extrapolation without further investigation of the reason for these small values of 
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significance. Note that the last time interval for both X_exp_1 and X_exp_2 has a 
significance that is less than the previous interval. This could be due to a reduction in the 
ability of the model to extrapolate to future times, or due to the random nature of the 
process. In the present case, we know that this reduction is due to the random nature of 
the process because we used Burgers’ equation to generate the data. We would not have 
the luxury of knowing the data came from a known model in a real world case. This 
effect is also illustrated by the X_exp_2 data in the interval 1 ≤ t ≤ 1.5. This data contains 
a large quantity of noise, and its trend does not appear to be consistent with the model as 
indicated by the metric. 
 

Table 4.1 Significance of Agreement as a Function of Time  
 
 Time r2 P(ρ2 > r2)  
 X_exp_1 
 0.0 < t ≤ 0.5 10.94 0.362 
 0.5 < t ≤ 1.0 20.18 0.028 
 1.0 < t ≤ 1.5 9.44 0.491 
 1.5 < t ≤ 2.0 8.62 0.569 
 2.0 < t ≤ 2.5 11.93 0.290 
 X_exp_2 
 0.0 < t ≤ 0.5 3.41 0.970 
 0.5 < t ≤ 1.0 15.29 0.122 
 1.0 < t ≤ 1.5 20.28 0.027 
 1.5 < t ≤ 2.0 6.58 0.765 
 2.0 < t ≤ 2.5 15.30 0.122 
 
 
The advantage of using significance to measure agreement over time is that it accounts 
for uncertainty in the model parameters and experimental observations. Thus even though 
we may see a systematic degradation in agreement between measurement and prediction 
over time, this degradation may simply be due to the increase in uncertainty of the 
validation experiments as a function of time, and not due to decreasing consistency of the 
model as it is extrapolated. This approach also properly accounts for parameter-induced 
correlation in the model predictions as one extrapolates over time. 
 
The previous results do suggest a weakness of using data in this fashion to test the ability 
of a complete physics model to extrapolate. The present methodology gives the benefit of 
doubt to a model in that we require a small level of significance before we reject the 
model. This methodology has a small probability of rejecting a good model, at the 
expense of increasing the probability of accepting a bad model. In the next chapter, we 
discuss the use of bounding models. Since we do not use these models to represent 
behavior, but only to bound behavior, we are able to apply higher standards of acceptance 
that the bounding models are consistent with the data. This will be illustrated in the next 
chapter. 
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5.0 Approximate Physics Models 
 

5.1 Introduction 
 
In contrast to the previous chapter, here we assume (or acknowledge) that our model is 
approximate and that we use it to represent or bound behavior. As an example, we will 
illustrate the use of both a data-based, linear correction to predictions from the 
convective-dispersive equation (C-D equation); and the use of a calibrated C-D equation 
to approximate the behavior of a non-linear system (modeled by Burgers’ equation).  
 
We also develop several types of bounding models. Bounding models are sometimes 
used when 1) we do not have knowledge of the appropriate model for the full physics, but 
we are confident in our ability to bound the physics; or 2) we do have knowledge of the 
appropriate model for the full physics, but practical considerations do not allow full 
numerical resolution of the physics. Modeling at less than full resolution can occur when 
we have multi-scale physical phenomena, such as turbulence, chemical reactions in a 
mass transport system, and joint friction (typically modeled with one or a few finite 
element cells) in a complex structure.  

5.2 Linear Correction Model 
  
In this section, we develop a linear correction based on the differences between 
experimental observations and model predictions of front motion from the C-D equation. 
The purported advantage of this approach is one can develop corrections using simple 
linear regression on the differences between the experimental results and the model 
predictions, which require that the model be run only once. Using the following 
parameter values in Eq. (3.12) result in the predictions for front location as a function of 
time illustrated by the curve labeled X_cd in Figure 5.1. 
 
 D = 0.08, V = 1.0 (5.1a, b) 
 
We used the same diffusivity and velocity as was used for Burgers’ equation for 
demonstration purposes. Inspection of Figure 5.1 indicates that the resulting predictions 
are somewhat consistent for early time, but too high for later time. We develop a linear 
correction model for the differences between the first 21 measurements from data set 1 
and the first 21 predictions of the C-D equation, as follows. The correction equation is 
defined as: 
 
 Xexp(t) – X_cd(t) ≈ a + bt (5.2) 
 
a and b are estimated using simple least squares. Applying Eq. (5.2) to the first 21 data 
points gives 
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Figure 5.1 Linear Correction: The data labeled X_exp_cal was used for calibration  
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where A is the sensitivity matrix (second matrix in Eq. (5.3)). The least squares solution 
is given by 
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The covariance matrix of the estimated parameters is 
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The corresponding corrected equation is 
 
  X_cd_cal(t) =X_cd  +  (a + bt) (5.7) 
 
with the associated prediction uncertainty given by (assuming no uncertainty in X_cd) 
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Application of Eq. (5.4) to the first 21 measurements (i.e., measurements for which t ≤ 
1.0) results in the following least squares estimate for the linear correction parameters: 
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Adding this correction (see Eq. (5.7)) to the predicted X_cd results in the curve labeled 
X_cd_cor shown in Figure 5.1. Note that the corrected results do appear to provide good 
predictions over the times of calibration, t ≤ 1, when compared to the data from X_exp_1. 
While the corrected model provides predictions closer to the experimental observations 
than the uncorrected model, the corrected model still over predicts the results for t ≥ 1. 
The 95% confidence prediction intervals (±1.96 σ) due to estimated parameter 
uncertainty are also shown in Figure 5.1 where the σ are given by the square roots of the 
diagonal elements in Eq. (5.8). The corresponding ±1.96 σmeas uncertainty intervals for 
the measurements are shown in Figure 3.1. The expanding height of the uncertainty 
intervals over time reflects the sensitivity of the linear correction model to uncertainty in 
the linear correction model parameters, as one extrapolates from the time range of the 
calibration data. Note that little of the data for t > 1 falls outside these prediction 
intervals. 
 
The natural question is – are the differences between the calibrated model predictions and 
the experimental data significant? To answer this question, we must account for the 
uncertainty in both the calibration parameters and in the measurements.  Because we 
have assumed normal distributions throughout, and because our correction model is 
linear in the parameters, the uncertainty in the corrected predictions will also be normally 
distributed. Using the r2 metric defined by Eq. (4.1) gives 
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 r2 = (X_cd_cal – Xexp)T [cov-1(X_cd_cal – Xexp)] (X_cd_cal – Xexp) (5.10) 
 
where 
    cov(X_cd_cal - Xexp) = cov(X_cd_cal) + cov(Xexp) (5.11) 
 
Because we estimated two parameters from the data when developing the calibration, r2 
is distributed as a χ2(n-2) distribution with n - 2 degrees of freedom. Applying the above 
equations to our data results in the significances listed in Table 5.1 for several time 
windows. Note that in all cases, except for the case when all measurement times are used, 
the significance is greater than 5% for data set 1. Also note that as time increases past the 
calibration time (t ≤ 1), the significance decreases over time. This suggests that the 
extrapolation of the model much past t = 2.5 is questionable. The reason for the low 
significance (zero to 3 significant figures) when using all measurement times is the 
ability of the metric to resolve a bad model increases with more data, assuming 
correlation is properly accounted for. This indicates that the linear correction model is 
not consistent with the data, within the uncertainty defined by our estimates of the linear 
correction parameters and the uncertainty associated with measurement error, over the 
full range of data. 
 

Table 5.1 Significance of Agreement: Linear Calibration  
 
 Time ro

2 P(r2 > ro
2)  

 X_exp_1 
 0.0 < t ≤ 2.5 88.53 0.000 
 0.0 < t ≤ 1.0 24.63 0.173 
 1.0 < t ≤ 1.5 6.29 0.614 
 1.5 < t ≤ 2.0 9.88 0.274 
 2.0 < t ≤ 2.5 11.69 0.166 
 X_exp_2 
 0.0 < t ≤ 2.5 97.29 0.000 
 0.0 < t ≤ 1.0 48.80 0.000 
 1.0 < t ≤ 1.5 20.27 0.010 
 1.5 < t ≤ 2.0 9.11 0.333 
 2.0 < t ≤ 2.5 16.13 0.041 
 
The results of Table 5.1 and Figure 5.1 assume that there was no variability in the values 
of the parameters used in the convective-dispersive equation. To account for such 
variability, one must propagate this variability through the convective-dispersive 
equation. Doing so negates the purported advantages of the linear correction method, that 
of requiring only one evaluation of the model. The effect of another experimental 
realization is illustrated by comparisons between the calibrated model and X_exp_2. We 
see visually that the comparisons are much worse. The lower significances tabulated in 
Table 5.1 for X_exp_2 relative to X_exp_1 also support the statement that the calibrated 
model is only relevant to the particular realization of the experiment represented by the 
data from data set 1. This last result illustrates the dangers of calibrating a model which 
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contains significant prediction uncertainty, due to unit to unit variability, to results from a 
single experiment. A necessary but not sufficient condition to mitigate this danger is to 
use of data from an ensemble of experiments that truly reflect this unit to unit variability. 
 

5.3 Calibration of the Convective-Dispersive Equation 
 
Rather than developing a linear correction to the C-D equation, we can calibrate the C-D 
equation directly. In either case, we are estimating two parameters. The disadvantage of 
calibrating the C-D equation directly, relative to the linear correction, is this approach 
requires multiple evaluations of the physics-based model. The advantage is that we are 
using a calibrated model that incorporates some of the true physics. To perform the 
resulting nonlinear calibration, we use the IMSL (1997) function bconf. This function is 
a nonlinear optimization routine that allows for simple bounds. Specifically, we select D 
and V in Eq. (3.12) that minimizes the sum of the square of the differences between the 
measured front location and the predicted front location for the first 21 measurements for 
X_exp_1.  The resulting calibrated parameters are listed below and the resulting model 
predictions are shown in Figure 5.2. Twenty four function evaluations were required by 
bconf. 
 
 D = 0.0808,   V = 0.853 (5.12a, b) 
 
We can show the effect of uncertainty in the estimated parameters as we did in the 
previous section. However, we prefer to show the effect of model parameter uncertainty 
on predicted front location, to account for the uncertainty from realization of the 
experiment to experiment. We use Eq. (3.9) to estimate the covariance of the predictions 
due to the covariance of the parameters from experiment to experiment. For illustrative 
purposes, we assume that this covariance is given by 
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The effect of the resulting parameter uncertainty is illustrated through 95% prediction 
intervals in Figure 5.2. In contrast to the previous case, we see that the later time 
X_exp_2 data lies outside the model-parameter induced prediction intervals. We also see 
that the prediction intervals are somewhat smaller at later times than those shown in the 
previous figure. This is because we are accounting for the uncertainty in the model 
parameters based on our prior knowledge of this uncertainty, not on the uncertainty in the 
estimates of the calibrated model parameters due to the uncertainty in the calibration 
data. If we were to account for both, the intervals would be even larger than those shown 
in Figure 5.2.  
 
Because we have assumed normal distributions throughout, and because our first order 
sensitivity analysis is linear in the parameters, we will model the corrected predictions as 
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normally distributed. Hills and Trucano (2001) demonstrate the use of Monte Carlo 
methods to account for non-normal distributions and nonlinearity in the model 
parameters. Using the r2 metric defined at the beginning of Chapter 4.1 gives 
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Figure 5.2   Calibrated Convective Dispersion Equation 

 
 
 r2 = (X_cal – Xexp)T [cov-1(X_cal – Xexp)] (X_cal – Xexp) (5.14) 
 
where 
    cov(X_cal - Xexp) = cov(X_cal) + cov(Xexp) (5.15) 
 
We evaluate cov(X_cal) by applying the first order sensitivity analysis developed for 
Burgers’ equation in Chapter 3 (see Eq. 3.9) to the convective dispersion equation. 
Since we estimate two parameters, we have lost two degrees of freedom. In this case, the 
appropriate distribution is the χ2(n-2) distribution with the degrees of freedom equal to 
the number of measurements, n, minus the number of estimated parameters, 2. The 
corresponding significances of the calibrated model are listed in Table 5.2 for various 
time windows. Note that the significances are somewhat smaller than those found using 
linear calibration. As in the case for linear calibration, we see that the significance 
decreases for time greater than 1.0 for X_exp_1. This indicates that, relative to the 
uncertainty in the measurements and the parameters, we have evidence that the calibrated 
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model becomes less effective as time increases.  The zero significance (to 3 significant 
figures) for the calibrated model when using all measurement times indicates that even a 
calibrated C-D equation, when calibrated to the first 21 points, cannot predict front 
movement at all times within the uncertainty of the model parameters and the 
experimental measurements. As mentioned earlier, the more data one uses in the  
 
 
Table 5.2 Significance of Agreement: Calibrated Convective-Dispersion 

Equation  
 
 Time ro

2 P(r2 > ro
2)  

 X_exp_1 
 0.0 < t ≤ 2.5 113.7 0.000 
 0.0 < t ≤ 1.0 24.92 0.163 
 1.0 < t ≤ 1.5 6.435 0.599 
 1.5 < t ≤ 2.0 11.94 0.154 
 2.0 < t ≤ 2.5 13.51 0.096 
 X_exp_2 
 0.0 < t ≤ 2.5 88.58 0.000 
 0.0 < t ≤ 1.0 22.91 0.242 
 1.0 < t ≤ 1.5 26.23 0.001 
 1.5 < t ≤ 2.0 12.57 0.128 
 2.0 < t ≤ 2.5 18.84 0.016 
 
evaluation of the above metric, the better the ability to resolve a bad model. Comparison 
of the results for X_exp_1 and X_exp_2 indicates that the significance of the model for 
several of the time windows is well less than the 5% at which we typically reject a model. 
So we see that a model calibrated to data from one realization of an experiment, may not 
represent the experimental behavior for another realization of the experiment. Proper 
calibration requires data from an ensemble of experiments that are sufficient to represent 
this unit to unit variability. 

5.4 Bounding Models 
 
In this section, rather than develop corrected  or calibrated models, we develop bounds on 
the model predictions in the form of two bounding models, one for the lower bound and 
one for the upper bound. We begin by considering the case for which we have good 
knowledge of the physics and can develop bounding models based on this physics. 
 
Consider the use of the convective-dispersive (C-D) equation to bound experimental 
observations from a system well modeled by Burgers’ equation with the parameter values 
provided in the previous chapter. The governing equations for each of these models are 
repeated here: 
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Burgers’ equation: 
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C-D equation: 
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Assume that we know and can represent the full physics mathematically (i.e., Eq. 3.1), 
but do not wish to do so with our numerical approximations. Comparison of these two 
equations indicates that the dispersive term in Burgers’ equation is correctly modeled by 
the C-D equation, but the convective term is not. Rather than attempting to accurately 
model Burgers’ equation with the C-D equation, we will attempt to use the C-D equation 
to bound predictions by Burgers’ equation. This is equivalent to bounding non-modeled 
physics with good knowledge of this non-modeled physics.  
 
If we wish to over-predict the front movement of Eq. (3.1), we should choose the last 
term in Eq. (3.12) so that it provides a faster moving front than the last term in Eq. (3.1). 
We can do this by setting V = 2cmaxU and recognizing that the maximum c we can 
observe in the system (see Eq. (3.2)) represented by Eq. (3.1) is unity. Thus we take V = 
2U and use the following form of the C-D equation to bound the maximum front velocity 
of Burgers’ equation from above: 
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where D and U are the corresponding values for Burgers’ equation (we will discuss the 
case where we use different values in following sections).  
 
Likewise, we can bound front velocity from below by using a value for V that is always 
smaller in magnitude than 2cminU.   Since the lowest value for c, for which we can 
observe the front for the current metric, is c = 0.25 (i.e., that value at which we define the 
front location, see Chapter 3), we can bound the front velocity from below by using V=2 
(0.25 U) = 0.5 U. The corresponding C-D equation is 
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The resulting prediction of front motion as a function of time and the experimental data 
are illustrated in Figure 5.3. Note that the model does, in-fact, bound front movement 
over the times of interest for both data sets, especially at later times. Unfortunately, the 
bounds are very broad and may not be very useful to the modeler. This is especially true 
for the upper bounds.  
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Figure 5.3 Front Movement: Bounding Models 
 

5.4.1 Prediction Intervals 
 
Figure 5.3 also contains prediction intervals on the predictions due to model parameter 
uncertainty. Unfortunately, the evaluation of these prediction intervals does not follow 
from the methodology presented previously. Here we discuss the approximate technique 
used to generate these intervals.  
 
The difficulty in developing these intervals are three fold: 1) we actually have two 
models, one for the upper bound and one for the lower bound with uncertainty around 
each of these models due to parameter uncertainty, 2) the prediction interval on each 
bound represent one-sided intervals, and 3) the upper and lower bounds are correlated to 
each other since they both are derived from the same model parameters, D and U (see 
Eqs. (5.16) and (5.17)). If we wish to develop overall upper and lower prediction 
intervals that account for parameter uncertainty, then we need some method to develop 
the joint probability of these two distributions for each time. We will use an approximate 
method to develop these limits. 
 
We wish to develop a lower prediction interval on the lower bound and an upper 
prediction interval on the upper bound such that the cumulative probability of obtaining a 
parameter set that leads to predictions outside these intervals is less than α0. Specifically, 
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we wish to define significance levels on each of these two bounding models so that the 
overall significance is given by the following: 
 
 α0 =  1 – P(no Type 1 error on Ho1 and no Type 1 error on Ho2) (5.18) 
 
where P(no Type 1 error on Ho1) is the probability that a parameter set will result in 
predicted measurements above the lower prediction interval on the lower bounding model 
(i.e., due to parameter uncertainty), and P(no Type 1 error on Ho2) is the probability that 
the same parameter set will result in predicted measurements below the upper prediction 
interval on the upper bounding model. Since these two hypotheses are not independent, 
we cannot assume that the joint probability is equal to the product of their probabilities. 
Rather, we will use the Bonferroni inequality (see Miller, 1980) to estimate these 
intervals.  
 
When applied to two events, Bonferroni’s inequality states that the joint probability of 
the two events, E1 and E2, is related to the probability of the individual events by the 
following: 
 
 P(E1 and E2) ≥ 1 - P(E1

C) - P(E2
C) (5.19) 

 
where E1

C and E2
C are the complementary events to E1 and E2. If we require that the 

prediction intervals are defined so that the probabilities of these complementary events 
are both equal to α, then Eqs. (5.18) and (5.19) lead to 
 
 1 - α0 ≥ 1 - α - α = 1 - 2 α (5.20) 
 
If we wish the overall probability of both of these events to be 95% or greater, then the 
significance of each event follows from Eq. (5.20). 
 
 α ≥ α0 / 2 = 0.05 / 2 = 0.025 (5.21) 
 
So we see that the significance of each event must be greater than or equal to 0.025. The 
broadest prediction intervals are obtained with the use of 0.025 (i.e., the smallest value of 
significance).  
 
For the case considered here, we note that V=2U for the upper bound and V=0.5U for the 
lower bound. Because of this, the variance of V will be 4 times (i.e., 22) that of U for the 
upper bound and 0.25 (i.e., 0.52) that of U for the lower bound. The covariance matrices 
for the model parameters become (see Eq. (3.4)) 
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The sensitivity analysis method demonstrated for Burger’s equation (see Eq. (3.8)) is 
applied to the present model for each bound, and the results are used in Eq. (3.9), along 
with the corresponding covariance matrices for the parameters, Eqs. (5.22) and (5.23), to 
evaluate the variances of the differences between the measurements and the model 
predictions.  
 
The prediction intervals plotted in Figure 5.3 are at 1.96 σ for the lower bounds and 1.96 
σ for the upper bounds. Note that for a one-sided prediction interval, 1.96 σ represents a 
significance of 2.5% for a normal distribution as defined by Eq. (5.21). We see from 
Figure 5.3 that the effect of parameter uncertainty is zero at time zero, but increases with 
time. This is due to the accumulative effect of error in front velocity over time and 
because we assumed that the initial conditions are known perfectly. Also note that the 
prediction interval height for the upper bound is much higher than that for the lower 
bound. This is due to the significantly larger uncertainty in the upper bound, velocity 
parameter, as reflected in Eq. (5.23) relative to Eq. (5.22). 

5.4.2 Validation 
 
As discussed above, the previous analysis serves to show the effect of parameter 
uncertainty on D and U on the upper and lower bounding models. Here we consider the 
development of a validation metric for bounding models. In this case, we need to 
consider both the effects of measurement uncertainty and model parameter uncertainty. 
As was the case for the prediction intervals due to parameter uncertainty, the 
development of a validation metric is complicated by the fact that we are dealing with 
two correlated, bounding models. In the spirit of the multivariate metric developed 
previously by Hills and Trucano (2001), we develop a multivariate metric for bounding 
models which accounts for correlation. Unfortunately, we cannot use the r2 approach 
applied previously since we are interested in testing whether the models bound behavior 
rather than represent behavior. Thus we are interested in two one-sided tests rather than 
one two-sided test as discussed previously.  
 
Here we use an approximate Monte Carlo approach which allows us to perform one-
sided, multivariate tests while accounting for correlation. Specifically we evaluate the 
percentage of time that the Monte Carlo realizations for upper and lower bounds 
(including the effect of measurement error) are not violated by the observed 
measurements.  The procedure is as follows: 
 

1. The covariance matrix of the measurements is used to generate a perturbation 
vector, containing one element for each measurement time, for a mean of zero, 
using our chosen measurement distribution. While we used a normal distribution 
for the present case, other distributions can be just as easily handled with the 
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Monte Carlo method described here. 
 
2. The probability distributions of the model parameters are used to generate a 

realization for these parameters. Again, we assumed a normal distribution. 
 
3. Each realization of the model parameters is used to estimate the corresponding 

upper and lower bounding models for front histories though a first order 
approximation to the solution of Eqs. (5.16) and (5.17) given by the following 
equation. 

 
 ( )boundbound ααXXX α −∇+=  (5.24) 
  

where the subscript “bound” indicates that the quantity is evaluated at the 
parameter values established in Section 5.4 for the lower or the upper bounds. 
The sensitivity matrix is evaluated through the application of Eq. (3.8) to the 
model predictions for front locations, based on Eqs. (5.16) and (5.17). As before, 
we use forward differences with an increment that is 5% of the “bound” values of 
the model parameters to estimate the elements in the sensitivity matrix. 

 
4. We add the measurement perturbation vector generated in step 1 to the upper and 

lower bound predictions found in step 3 to account for the additional uncertainty 
of the measurements.  

 
5. Steps 1 through 4 are repeated 10,000 times and the fraction of times the 

individual observed measurements fall within the realizations of the bounds 
(including measurement uncertainty) are counted. We use this fraction as an 
estimate for probabilities that the bounds contain the measurements, which, in-
turn, are used as a measure of consistency of the bounding models with the 
observations.  

 
The results of applying the above procedure are listed in Table 5.3 for several time 
intervals for both data sets. Because the solutions of Eqs. (5.16) and 5.17) are 
inexpensive, we can solve these equations directly for each realization rather than use the 
first order approximation defined by Eq. (5.24). We choose to use the approximate 
method in this report to illustrate the methodology. However, to check adequacy of our 
approximate method, we performed the Monte Carlo analysis (using the same initial 
random number seed and 10,000 realizations of each bounding model) using Eqs. (5.16) 
and (5.17) directly. We found that the results agreed within 0.001 of the results shown in 
Table 5.3 for all cases shown. 
 
The results of Table 5.3 indicate that despite the uncertainty in the model parameters and 
the experimental measurements, the resulting bounding models bound the data 93% to 
100% of the time for X_exp_1 and 75% to 99% of the time for X_exp_2. This indicates 
that the bounds are sufficiently conservative. The variability of these bounds, due to 
parameter uncertainty, is not sufficient to significantly overlap the variability in the 
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measurement, due to measurement uncertainty. Also note that the bounding models 
bound 98% of the data for time intervals greater than t = 0.5. This is a much stronger 
statement than that for the non-bounding models of the previous section. In the previous 
case, we gave the model the benefit of doubt because we required a very high certainty 
that a valid model could not produce the observed differences between experiment and 
model prediction before we would reject a model as valid. In the present case, we show a 
very high level of certainty that our bounds do bound the model. Of course, if we wish to 
narrow the bounds so that the bounds are within model parameter and measurement 
uncertainty of the data, then our level of significance will be smaller and our confidence 
that the model bounds the behavior, as reflected by the validation data, will be less.  
 
 

Table 5.3 Significance of Bounding Models 
 
 Time   P(Xlb ≤ data) P(data ≤ Xub) P(Xlb ≤ data ≤ Xub) 
X_exp_1 
 0.0 < t ≤ 0.5 0.929 0.982 0.955 
 0.5 < t ≤ 1.0 1.000 1.000 1.000 
 1.0 < t ≤ 1.5 1.000 1.000 1.000 
 1.5 < t ≤ 2.0 1.000 1.000 1.000 
 2.0 < t ≤ 2.5 1.000 1.000 1.000 
 0.0 < t ≤ 2.5 0.969 0.994 0.981 
X_exp_2 
 0.0 < t ≤ 0.5 0.755 0.981 0.868 
 0.5 < t ≤ 1.0 0.953 1.000 0.977 
 1.0 < t ≤ 1.5 0.989 1.000 0.994 
 1.5 < t ≤ 2.0 0.977 1.000 0.988 
 2.0 < t ≤ 2.5 0.972 1.000 0.986 
 0.0 < t ≤ 2.5 0.918 0.989 0.954 
 
 

5.5 Calibration of Bounding Models 
 
The results from the previous section provided good confidence in the ability of our 
bounding models to bound the experimental measurements, for the data sets tested. This 
is not surprising considering how wide the bounds are. What can we do to narrow these 
bounds?  One approach is to use calibration of the bounding models with the hope that 
the bounds will be narrower, but still acceptable. However, we must understand the 
assumptions associated with calibration, and the impact on validation. 
 
5.5.1 Issues  
 
Model calibration is typically performed using data which does not represent the full 
variability of the underlying system. For example, we often take data from one or more 
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experiments performed on a single experimental apparatus. Variability from test unit to 
test unit is not represented. An example of a case for which such variability is important 
is vibration damping due to slippage (including micro slippage) in mechanical joints. 
Mechanical slippage can be a very effective damping mechanism under high shock loads, 
and has been found to provide significant protection to electronics and other components 
under such conditions. Unfortunately, the modeling of such damping is very difficult due 
to the importance of fastener configuration and load, and changes in surface contact 
conditions due to fretting, chemical changes, and thermally induced stresses. Even the 
process of disassembly and reassembly of the same components can result in 
considerable differences in damping characteristics. For such cases, we must be very 
careful about assuming that the calibration constants are appropriate if the model is to be 
extrapolated to other shock loading conditions; applied to a different assemblage of 
components (or even reassembly); or applied to other environmental conditions that 
could affect joint surface friction, such as temperature, or changes in force distribution 
over the joint. The extrapolation to other conditions is fraught with danger due to the 
sensitivity of the model (in the case of structural vibration – predictions at high 
frequency) to external loading and assembly conditions. If, on the other hand, one can 
develop distributions or bounds on reasonable values for the parameters, then this 
information can be used to bound behavior.  
 
If we do have sufficient experimental resources to run multiple, independent tests at the 
system level, we may be able to calibrate the model to the individual tests, resulting in a 
distribution of calibration constants. This approach was used by Hobbs et al. (2003) at the 
unit level to develop a distribution of activation energies for very small samples of foam. 
This distribution can then be propagated through the system level model to evaluate the 
corresponding uncertainty in the system predictions. 
 
Various types of calibration can be used to condition a model. The worst case scenario, 
from a validation perspective, is pure calibration with a total lack of independent 
knowledge of the parameters and their distributions. In this case, we simply fit the model 
to a fixed set of data. If we have more measurements than the number of fitted model 
parameters, we can estimate uncertainty intervals on the fitted model parameters through 
the variance of the data about the fitted model. These, in-turn, can be used to estimate the 
corresponding uncertainty in the evaluation of a model at a given set of independent 
variables, due to the uncertainty in the estimated parameters. However, this uncertainty is 
the uncertainty in the mean or fitted values of the parameters, and is based exclusively on 
the variability of the data about the fitted model for that particular set of data. A single 
calibration experiment cannot tell us anything about the variability of these parameters 
from experiment to experiment, or the extrapolation from validation experiment to target 
application. We must have additional knowledge, either in the form of additional 
independent experiments to develop additional calibrations so that distribution of model 
parameters can be estimated, or prior knowledge of the uncertainty in the parameters and 
the measurements themselves. We take the position that a calibrated model, with the lack 
of additional independent data, cannot be used for model validation. If we must calibrate, 
then we must have other independent knowledge to validate against. An example of a 



     

 

 41 
 
  
 
 

method that uses calibration with independent data for validation, is the Maximum 
Likelihood method discussed by Hills and Trucano (2002). In this case, calibration was 
used to estimate likely values of the parameters; and the significance of the estimated 
parameters, based on prior independent knowledge of the uncertainty distribution of the 
parameters, was used to evaluate validity. For example, if the values for the estimated 
parameters are unlikely, given our prior knowledge of their distribution; we reject the 
combined model for the physics, and the associated uncertainties in the model parameters 
and in the measurements.  
 
If one does not possess complete knowledge of the distribution of model parameters, but 
does have some estimate of the bounds of these parameters, then calibration can be used 
to further condition the model for this particular realization of the tested system. This 
approach is useful if one desires to bound behavior in interpolation, or to bound 
extrapolation if and only if one has confidence that the calibrated constants apply to the 
extrapolated conditions without change. This later statement implies that the calibration 
constants are not sensitive to different realizations of the experiment, or to the extrapolate 
variables. Because this is an approach used (i.e., sometimes called dial turning or 
parameter tuning) for some systems of interest to the DoE, we provide an example of this 
approach below. As will be shown, one can obtain useful information from this approach 
if the purpose is to bound behavior rather than to predict behavior, and if we have some 
assurances that the calibrated parameters are appropriate for the extrapolation. 

5.5.2 Under-Constrained Calibration 
 
We begin with a case of model calibration when we have more unknown model 
parameters than measurements. We assume that we have prior knowledge of the bounds 
of the uncertain model parameters, but no knowledge of their distributions. We will also 
assume that the calibrated bounding parameters are appropriate for extrapolation, if the 
model is to be used for extrapolation. The applicability of this last assumption to a 
specific application is largely a matter of engineering judgment. 
 
Consider the use of the linear C-D equation to model front movement well represented by 
the non-linear Burgers’ equation. Also assume that we have knowledge that the following 
bounds on the parameters for the approximate model are reasonable (perhaps 
conservative). 
 
 0.04 ≤ D ≤ 0.12 (5.25) 
 
 0.5 ≤ V ≤ 1.5 (5.26) 
 
Note that the range of these bounds is quite large. Now assume that we have measured 
the system response at a single time, t = 1, from X_exp_1, and obtained the results listed 
in Table 3.1.  
 
 X exp (1) = 5.131 (5.27) 
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Our hope is that by requiring the model for front movement to go through this data point 
(within experimental error), combined with the parameter bounds of Eqs. (5.25) and 
(5.26); useful information can be provided. To implement these constraints, we define the 
following objective functions. 
 
 flb = 10.0 | Xpred(1) – Xexp (1) + 2.58 σexp| + Xpred(1) (5.28) 
 
 fub = 10.0 | Xpred(1) – Xexp (1) – 2.58 σexp| – Xpred(1) (5.29) 
 

Note that σexp is the standard deviation due to measurement uncertainty. In defining the 
objective functions, we have subtracted and added the normally distributed measurement 
uncertainty at the 1% significance level (i.e., 2.58 σexp), which define the upper and lower 
bounds of the calibrated model. While this approach to defining the bounds is appropriate 
for this application, a random sampling approach will often be required when there is no 
evidence of a monotonic relationship between the measurement and the corresponding 
bound (i.e., monotonic in the sense that a lower value for the measurement results in a 
lower bound on the prediction). The IMSL (1997) function bconf was used to find the 
sets of parameters that minimize each of these equations for each time of interest. This is 
the poor man’s approach to minimization of nonlinear functions with simple and 
nonlinear constraints. The use of this approach does require some trial and error to find 
the value of the weight (10.0 in Eq. (5.28) and (5.29)) that results in good agreement 
between the predicted and measured value of front location at t = 1, offset by the 
measurement uncertainty, while minimizing Xpred and –Xpred. In our case, we found the 
agreement to be within three significant figures. The preferred approach would be to use 
an algorithm that allows for nonlinear constraints, such as those provided in DAKOTA 
(Eldred, 2002), or a sampling method for more complex problems. The resulting 
parameter sets (all developed from the measurement at t = 1) as a function of time for the 
lower and upper bounds are listed in Table 5.4. Note that we define parameter bounds for 
times before as well as after the time of the calibration measurement. Also note that for 
the case of this model, the resulting diffusivity is at either its upper (late time) or lower 
bound (early time), with the estimated velocity taking on values that allow the bounding 
curves to satisfy the constraints given by Eqs. (5.28) and (5.29). 

The bounding curves for the bounding parameters defined by the measurement at t = 1 
are shown in Figure 5.4. We must evaluate the upper and lower bounds by evaluating 
Eqs. (5.16) and (5.17), up to the time of interest, for the parameter set evaluated for that 
time. Since the corresponding parameter sets are essentially constant over large periods 
of time for this case, we could use larger time increments and fewer function evaluations 
to evaluate the results of Figure 5.4 if computational resources were limited. We also 
show the lower and upper bounds of the model predictions given the original bounds on  
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Table 5.4 Bounding Parameters 
 

t Dlb Vlb Dub Vub

0.00 0.040 0.746 0.040 0.991
0.05 0.040 0.746 0.040 0.991
0.10 0.040 0.746 0.040 0.991
0.15 0.040 0.746 0.040 0.991
0.20 0.040 0.746 0.040 0.991
0.25 0.040 0.746 0.040 0.991
0.30 0.040 0.746 0.040 0.991
0.35 0.040 0.746 0.040 0.991
0.40 0.040 0.746 0.040 0.991
0.45 0.040 0.746 0.040 0.991
0.50 0.040 0.746 0.040 0.991
0.55 0.040 0.746 0.040 0.991
0.60 0.040 0.746 0.040 0.991
0.65 0.120 0.641 0.040 0.991
0.70 0.120 0.641 0.040 0.991
0.75 0.120 0.641 0.040 0.991
0.80 0.120 0.641 0.040 0.991
0.85 0.120 0.641 0.040 0.991
0.90 0.120 0.641 0.040 0.991
0.95 0.120 0.641 0.040 0.991
1.00 0.120 0.641 0.040 0.991
1.05 0.120 0.641 0.040 0.991
1.10 0.120 0.641 0.040 0.991
1.15 0.120 0.641 0.040 0.991
1.20 0.120 0.641 0.040 0.991
1.25 0.120 0.641 0.040 0.991
1.30 0.120 0.641 0.040 0.991
1.35 0.120 0.641 0.040 0.991
1.40 0.120 0.641 0.040 0.991
1.45 0.120 0.641 0.040 0.991
1.50 0.120 0.641 0.040 0.991
1.55 0.120 0.641 0.040 0.991
1.60 0.120 0.641 0.040 0.991
1.65 0.120 0.641 0.040 0.991
1.70 0.120 0.641 0.040 0.991
1.75 0.120 0.641 0.040 0.991
1.80 0.120 0.641 0.040 0.991
1.85 0.120 0.641 0.040 0.991
1.90 0.120 0.641 0.040 0.991
1.95 0.120 0.641 0.040 0.991
2.00 0.120 0.641 0.040 0.991
2.05 0.120 0.641 0.040 0.991
2.10 0.120 0.641 0.040 0.991
2.15 0.120 0.641 0.040 0.991
2.20 0.120 0.641 0.040 0.991
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2.25 0.120 0.641 0.040 0.991
2.30 0.120 0.641 0.040 0.991
2.35 0.120 0.641 0.040 0.991
2.40 0.120 0.641 0.040 0.991
2.45 0.120 0.641 0.040 0.991
2.50 0.120 0.641 0.040 0.991

 
 
 
the model parameters. The results are labeled X_lbt and X_ubt and they occur at 
 
 Dlb = 0.04, Vlb = 0.5 (5.30a, 5.30b) 
 
 Dub = 0.12, Vub = 1.5 (5.31a, 5.31b) 
 
which represent the overall bounds for each parameter (see Eqs. (5.25), (5.26)). Note that 
the calibrated bounds are significantly narrower than the overall bounds. This suggests 
that if our calibration holds for the anticipated application of the model, then calibration 
can increase precision of the extrapolation of the bounding model. If calibration does not 
hold because we expect experiment to experiment variability due to parameter variability, 
then calibration to this one experiment does not help us and we must use the overall  
bounds. 
 
 

Bounds: Single Point Calibration
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Figure 5.4  Bounding Models - Calibrated at Single Point (t = 1.0) 
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The calibrated bounds are clearly narrower than those shown in Figure 5.3, which 
indicate that calibration to this one point does allow us to narrow the bounds. We can 
evaluate the significance of these results using the procedure previously defined. In 
contrast to the previous case, here we hold the parameter values of the upper and lower 
bounds fixed at the values listed in Table 5.4, since we do not assume that we have 
uncertainty in these bounding parameter values. This allows us to use the bounding 
predictions shown in Figure 5.4 directly rather than generating Monte Carlo realizations 
of these predictions. We account for only the uncertainty in the measurements in the 
Monte Carlo analysis described in Section 5.4.2. The results of this analysis are presented 
in Table 5.5. 
 
The results show that the combined bounds bound 99% or more of the measurements for 
each time interval for X_exp_1, including the effect of measurement uncertainty. We see 
that the lower bound is not as conservative as the upper bound, as illustrated in Figure 
5.4, nor is the lower bound as conservative as it was for the previous case for later times. 
The calibrated bounds show less significance for X_exp_2. Inspection of Figure 5.4 and  
Table 5.5 illustrates that this lower significance is due to the decreased performance of 
the lower bound. This result is not surprising considering the data used for the calibration 
was from X_exp_1 rather than from X_exp_2.  
 
 

Table 5.5 Significance of Bounding Models: Single Point Calibration 
 
 Time   P(Xlb ≤ data) P(data ≤ Xub) P(Xlb ≤ data ≤ Xub) 
X_exp_1 
 1.0 < t ≤ 1.5 0.996 0.997 0.997 
 1.5 < t ≤ 2.0 0.993 1.000 0.996 
 2.0 < t ≤ 2.5 0.989 1.000 0.994 
 0.0 < t ≤ 2.5 0.992 0.999 0.996 
X_exp_2 
 1.0 < t ≤ 1.5 0.469 1.000 0.735 
 1.5 < t ≤ 2.0 0.110 1.000 0.555 
 2.0 < t ≤ 2.5 0.106 1.000 0.553 
 0.0 < t ≤ 2.5 0.228 1.000 0.614 
 
 
The advantage of this approach, relative to the previous case, is we did not require 
knowledge of the full physics model to develop these bounds (i.e., we did not assume a 
relationship between U and V). We also did not require full knowledge of the distribution 
of the model parameters of the approximate model, but rather only conservative bounds 
on these parameters. We do have to assume that the bounds, in-fact, bound behavior of 
the true physics, and that the single measurement, plus and minus the uncertainty, is 
representative of the range of possible realizations at this measurement time. Such was 
clearly not the case as the performance of the bounding models for X_exp_2 was 
considerably less than for X_exp_1. The validation metric presented here provides a 
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statistic measure to evaluate whether the bounding models bound the observations over 
the time range tested. 

5.5.3 Calibration Using the First 21 Data Points 
 
We now extend the case represented in Figure 5.4 to calibration using multiple data in an 
attempt to further narrow the upper and lower bounds. We calibrate the C-D equation to 
the first 21 measurements, and then extrapolate the results using the bounding 
methodology discussed earlier in this chapter. More specifically, we use the following 
model parameters: 
 
 D = Dcal,  0 ≤ t (5.32) 
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where the subscript “cal” indicates calibrated values using the data up to t = 1 (i.e., the 
first 21 data points). Note that we maintain the ratio between the multipliers on U in Eqs. 
(5.16) and (5.17). The calibrated parameters are defined by finding the set of parameters 
that minimizes the sum of squared residuals between the first 21 measurements and the 
corresponding predictions. Again, we use the IMSL (1997) function bconf. The resulting 
estimated parameters were found to be (24 function evaluations required) 
 
 Dcal = 0.0808,    Vcal = 0.853 (5.34a, b) 
 
The resulting upper and lower bound predictions are shown in Figure 5.5 along with the  
corresponding estimates of the prediction intervals. We use the covariance matrices 
defined by Eqs. (5.22) and (5.23) for the bounding parameters and do not include the 
effect of parameter estimation uncertainty. As the results of the first example presented at 
the beginning of this chapter suggests, the uncertainty due to parameter estimation may 
be significant when we use only the first 21 points for calibration. This added uncertainty 
could result a significant increase in the width of the intervals for t > 1.0. Note that the 
uncertainty in the upper bounds is significantly larger than in the lower bounds. This is 
because we assumed that the standard deviation of the velocity for the upper bound 
model is 4 times that for the lower bound as indicated by Eqs. (5.22) and (5.23).  
 
The corresponding significances of the observed data are listed in Table 5.6. These 
significances are less than those obtained from the previous case since we did not solve 
for the maximum and minimum bounds consistent with the data, but used a least squares 
estimate of the parameters in the bounding models. We also have considerable 
uncertainty in the tolerance intervals, especially the upper interval, as indicated by Figure 
5.5. Note that the prediction intervals are actually two sided for each bounding curve. 
The true bounding curve can be either above or below the curves shown in the Figure. 
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The results of Table 5.6 indicate that the uncertainty in the upper bound is a significant 
contributor to the lower significance of the results for X_exp_1. However, note that the 
significance for the sliding time window increases with increasing time. This indicates 
that the bounds are becoming more and more conservative.  This process illustrates the 
importance of evaluating the effect of parameter uncertainty when testing bounding 
models for validity. For such a model to be useful at the 95% confidence level, we would 
either need to reduce the uncertainty in the model parameters for the upper bound, or  
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Figure 5.5  Bounding Models - Calibrated using 21 Points (t ≤ 1.0) 
 
 

 
Table 5.6 Significance of Bounding Models: 21 Point Calibration 

 
 Time   P(Xlb ≤ data) P(data ≤ Xub) P(Xlb ≤ data ≤ Xub) 
X_exp_1 
 1.0 < t ≤ 1.5 0.695 0.583 0.639 
 1.5 < t ≤ 2.0 0.926 0.693 0.809 
 2.0 < t ≤ 2.5 0.987 0.739 0.863 
 0.0 < t ≤ 2.5 0.869 0.672 0.770 
X_exp_2 
 1.0 < t ≤ 1.5 0.109 0.791 0.450 
 1.5 < t ≤ 2.0 0.172 0.870 0.521 
 2.0 < t ≤ 2.5 0.447 0.880 0.663 
 0.0 < t ≤ 2.5 0.243 0.847 0.545 
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settle for a more conservative model for this bound (i.e., shift the upper bounding curve 
upward). 
 
If on the other hand, we use the prediction intervals shown in Figure 5.5 themselves as 
the bounds (i.e., more conservative), then we obtain the following results: 
 

Table 5.7 Significance of Bounding Models: 21 Point Calibration, Intervals 
 
 Time   P(Xlb ≤ data) P(data ≤ Xub) P(Xlb ≤ data ≤ Xub) 
X_exp_1 
 1.0 < t ≤ 1.5 0.996 1.000 0.998 
 1.5 < t ≤ 2.0 1.000 1.000 1.000 
 2.0 < t ≤ 2.5 1.000 1.000 1.000 
 0.0 < t ≤ 2.5 0.999 1.000 0.999 
X_exp_2 
 1.0 < t ≤ 1.5 0.678 1.000 0.839 
 1.5 < t ≤ 2.0 0.872 1.000 0.936 
 2.0 < t ≤ 2.5 0.993 1.000 0.997 
 0.0 < t ≤ 2.5 0.848 1.000 0.924 
 
Since we do not estimate the uncertainty in the location of the prediction interval, we do 
not include this source of uncertainty in the above results. The only source considered is 
the uncertainty due to measurement noise. Clearly, the bounds that are defined at the 
prediction intervals of Figure 5.5 include more of the data. These broader bounds are 
more conservative as indicated by both the figure and the significances listed in Table 
5.7. However, as was the case for the previous calibrations, the calibration of a model to 
data from one realization of the experiment (X_exp_1) does not insure that the bounds 
will perform as well for another experimental realization (X_exp_2).  

5.6 Summary 
 
In this chapter, we introduced the concept of using and testing approximate, bounding, 
and calibrated models. While we present multiple types of bounding and calibrating 
models, there are many other combinations that can be considered. We also demonstrated 
methodology to test these models against data. We will discuss the relative merits of 
these various approaches in the next chapter. 
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6.0 Discussion 
 
Our original plan was to focus on model extrapolation. As work progressed, we quickly 
realized that the impact of approximation on modeling, which exists in most complex 
system models, has a critical impact on extrapolation. For this reason, we broadened our 
focus to extrapolation and validation of approximate and bounding models. 
 
In the review of the literature related to model validation and extrapolation, we did not 
find contributions that closely align with our interests. Generally, the concept of model 
extrapolation is implicit in modeling, when the model is based on fundamental principles 
(conservation principles, etc.), and issues associated with extrapolation are not explicitly 
discussed. The intent of most physical and engineering models is to incorporate sufficient 
fundamental knowledge so that models can be extrapolated over a reasonable range of 
parameters.  
 
The issue of extrapolation complicates the concept of model validation. The simple use 
of the term extrapolation suggests that we are extrapolating outside the range of 
conditions for which the model is tested. Doing so puts increased dependence on our 
confidence that a model is valid at the test conditions, and that the fundamental principles 
incorporated in the model are sufficient for the extrapolation. Because we do not have 
data for the extrapolated conditions to test the model, we are ultimately depending on our 
confidence in the model to extrapolate to these conditions.  
 
The acknowledgement that many (if not all) models for complex engineered systems 
contain approximation further complicates the concept of model validation and model 
extrapolation. In previous work by the first author and others (Hills and Trucano, 1999, 
2001, 2002; Hills and Leslie, 2003; Hills et al., 2003), we focused on the case where the 
model, including any approximation that might have been incorporated, could predict 
behavior within the uncertainty of the validation experiments. We found that many of the 
models tested in this previous work could, in fact, predict behavior within this 
uncertainty. However, as the systems being modeled become more complex, the need to 
approximate some of the components of behavior increases due to the increased 
computation resources required to model all of these components. The idea of 
approximation invariability enters the modeling process.  
 
The acknowledgement of approximation affects our approach to model validation. We no 
longer require that the model predict behavior within the uncertainty of the validation 
exercise (this uncertainty includes the effects of both the parameter uncertainty and the 
measurement uncertainty), but only that we test whether the model provides useful 
bounds on expected behavior. These bounds may be one sided in that we may wish to 
evaluate whether a critical component does not exceed a specified temperature, or may be 
two sided in that we bound temperature from above and below. In the case of 
approximation, we modify our concept of model validation to answer the question – are 
the observed experimental data consistent with the bounds defined by the approximate 
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models? Note that this statement leaves little room for models for which we acknowledge 
are approximate, but do not quantification of the level of this approximation, such as 
provide by prediction intervals or bounding models. While comparisons of model 
predictions to experimental observations, without a quantifiable sense of uncertainty, can 
be useful for the characterization of these differences, for this particular realization of the 
experiments; such comparisons do not provide useful results for the extrapolation of this 
model outside the range of the experiments. We contend that to extrapolate approximate 
models, we must not only compare the model predictions against the experimental 
observations, but we must also test the ability to bound the differences between 
prediction and observation (e.g., through bounding models or prediction intervals). 
 
This last observation introduces an interesting question. Do we prefer to develop models 
that appear to represent behavior over the range of data tested and hope that the model 
extrapolates to the conditions required, or do we prefer to develop models that are 
conservative in the sense that we have high confidence that they bound behavior when 
extrapolated, rather than accurately represent behavior? As is the case with most 
engineering and scientific applications, the answer depends on our application, and on 
how confident we are that our model truly represents physical behavior. 
 
The acknowledgement of approximation introduces another issue, that of calibration. 
Since approximate models generally have parameters that are calibrated to condition the 
approximation on observed data, the impact of calibration on approximate models is an 
issue that cannot be ignored.  
 
In the present work, we presented a potpourri of ideas on possible methodology that 
acknowledges the effect of approximation and calibration on model validation and 
extrapolation. No attempt was made to provide a comprehensive overview of these ideas. 
Rather we intended to provide examples to suggest possible approaches to model 
validation, in the presence of approximation and extrapolation. We discuss these 
approaches below. 

6.1 Full Physics Model 
 
The first type of model we considered were those that we claim resolves the physics of 
the validation experiments to a level of uncertainty, sufficiently less than the uncertainty 
in the validation experiments (Chapter 4). In this case, we used Burgers’ equation to 
model data that was, in-fact, generated by Burgers’ equation. To provide simulated data 
that is somewhat realistic, we included different realizations of system behavior though 
the use of off-mean realizations of the model parameters, as well as the addition of 
measurement noise with zero mean. 
 
To provide consistency with previous work (Hills and Trucano, 1999, 2001, 2002; Hills 
and Leslie, 2003; Hills et al., 2003), we first demonstrate one of their r2 model validation 
metrics. We then looked at the use of time windows to investigate the temporal variation 
of the validation metric as an indicator of the ability of a model to extrapolate over time. 
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Because the model used was valid, we expect that the comparisons to support validity. 
However, as the example illustrated, we should also expect the agreement between the 
model and the experiment to be somewhat random for different time windows. Because 
of this expectation, it can be difficult to infer whether the model can correctly 
extrapolate, using trends in r2 with time. A decrease in r2 over the last two time windows 
may simply be a result of the randomness of the process and not an indication that the 
model is not valid for extrapolation. If, on the other hand, the value r2 over any of the 
windows has a very low significance, then we must question the validity of the model 
over this window. One thing to keep in mind is that in this process, we are giving the 
benefit of doubt to the model. We require significant evidence (i.e., a low significance of 
agreement) before we reject the model as valid. Because of this, we are less likely to 
reject a good model, but more likely to fail to reject a bad model.  

6.2 Approximate Model 
 
The second set of examples provided was based on the calibration of predictions of the 
linear convective-dispersive (C-D) equation. In the two cases considered, we used the 
first 21 data points (i.e., the early time data) for calibration, and investigated the impact 
of this calibration on extrapolation over time using the remaining 30 data points. We 
consider two types of calibration. In the first, we developed a simple linear correction to 
the model predictions, as a function of time. In this case, we assumed that this linear 
correction over time, developed using the first 21 data points, extrapolates to later times. 
In the second case, we calibrated the dispersion coefficient and the velocity in the 
convection-dispersion equation to the first 21 data points, and used these estimated 
parameters in the C-D equation to extrapolate over time. We then demonstrated the time-
windowed r2 validation metrics used previously, to evaluate the consistency of the 
calibrated predictions to the experimental observations at later time.  
 
It is an issue with both of these approaches that we know that calibrated models only 
approximate behavior, and we fully expect them to add bias to the later time predictions 
simply because these are approximate models. In fact, unless we understand something 
about the physics not being modeled, we will not know if the corrected or calibrated 
model will over or under predict behavior in extrapolation to later time without later time 
data. 
 
A second issue with our implementation of the linear correction approach is that we did 
not incorporate known uncertainty in the model parameters into the correction. While we 
can bound the estimated linear model parameters due to estimation error resulting from 
the characterization of measurement uncertainty, we cannot incorporate the impact of 
experiment to experiment parameter uncertainty without either running the multiple 
realizations of the experiments, or by propagating this uncertainty through the model for 
the convective-dispersive equation.  
 
A more rigorous approach in both cases would be to account for both parameter 
estimation uncertainty and experiment to experiment uncertainty. This would expand the 
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bounds further and make it less likely to reject a good model when using multiple 
realizations of the data, but also less likely to reject a bad model. 

6.3 Bounding Models 
 
The focus of the last set of examples was on the use of bounding models. Bounding 
models, by their nature are approximate. One advantage of bounding models, if they are 
valid, is they have a sense of direction from the true physics (i.e., they bound from above 
or below) and they can be developed to become increasingly conservative in the 
extrapolation. In contrast, models that we hope accurately represent the physics within 
the uncertainties of the validation exercise (Chapter 4), cannot become more conservative 
in extrapolation. The ability to become increasingly conservative over the extrapolation 
increases our confidence in bounding extrapolated behavior. Unfortunately, the 
development of bounding models that are truly conservative is not always an easy task, 
especially for models that must be conservative over multiple design variables. There is 
also a real danger of developing bounding models with bounding intervals so large that 
the model is not sufficiently predictive for the anticipated application. 
 
One advantage of bounding models, from a model validation point of view, is these 
models represent an alternative hypothesis from the model that represents the data 
accurately. We can test at a very high level of significance, say 95% rather than 5%, that 
a model bounds behavior, given a set of observations. This is because we can require that 
the bounding models bound behavior, regardless of the uncertainty introduced due to 
parameter uncertainty and measurement uncertainty. Thus we are much more likely to 
reject an invalid bounding model. This does come at the expense of broader bounds. 
 
Two types of bounding models were considered. The first model was developed through 
the use of known physics to develop bounding models without calibration. The second 
was developed through the use of single point and multiple point calibration. One 
advantage of calibration is that if the calibrated parameters are appropriate for 
extrapolation (i.e., there is no need to re-calibrate at later times), then calibration provides 
a mechanism to narrow the bounds of bounding models. If, on the other hand, we expect 
the realization of the application to possess different calibration parameters than the 
validation experiments, the use of calibration will lead to incorrect bounds at later times 
due to the bias introduced by the incorrect values for the parameters. If we possess a 
model for variability of the calibration parameters from experiment to experiment, then 
we can incorporate this into the bounding models to increase the bounding width. 
Unfortunately, the typical approach assumes that model predictions, using the calibrated 
parameters, represent the mean behavior. In-fact, our estimated parameters are likely to 
be biased from their true means. Unless we have multiple, independent realization of the 
experiments, the assumption of mean behavior is very weak.  
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6.4 Further Comments on Extrapolation and Calibration 
 
In presenting the results of Chapters 4 and 5, we glossed over some important issues of 
model extrapolation. These are discussed below: 
 

1. We considered only extrapolation of a single variable (front location) over time. 
We did not look at multi-variable extrapolation. Because of this, our prediction 
intervals were one-dimensional (i.e., represented as upper and lower intervals). 
Multiple variable extrapolation will possess multidimensional prediction regions 
rather than the simple upper and lower intervals illustrated here. While the 
methodology presented can be extended to such cases, it is more difficult to 
visualize this extension graphically. 

 
2. We considered only the extrapolation of a variable to itself at later time. We did 

not look at the effect of extrapolation to another variable (e.g., from front location 
to maximum temperature). The methodology that was based on sensitivity 
analysis or on Monte Carlo analysis can be extended to these cases since we are 
using the assumed form of the underlying model to related one variable to 
another. While this assumed form of the model may be in error, it does contain 
more of the modeled physics that the simple linear correction method shown at 
the beginning of Chapter 5.  

 
3. Our use of calibration of the approximate physics-based model (i.e., in contrast to 

the linear correction term), coupled with our model of uncertainty of the model 
parameters, provided estimates of prediction intervals on the bounding models, 
assuming the calibrated parameters are appropriate for the extrapolation. These 
estimates did not incorporate possible prior knowledge of the mean values of the 
parameters. We assumed that the prediction intervals were symmetric about the 
estimated parameters rather than the true means for the parameters. If we have 
prior knowledge of the parameter distributions, this assumption can be relaxed by 
using a maximum likelihood approach, such as was discussed by Hills and 
Trucano (2002). 

 
4. The prediction intervals developed for the calibration example of Section 5.2 did 

not include the effect of test unit to test unit parameter variability. The intervals 
included only the effects of estimation uncertainty, based on the uncertainties in 
the measurements for that one experiment. The inclusion of both types of 
uncertainty will broaden the prediction intervals further. 

 
5. The prediction intervals developed for the calibration examples of Sections 5.3 

and 5.5 did not include the effect of estimation uncertainty in the parameters. The 
intervals did include the effects of test unit to test unit parameter variability. The 
inclusion of parameter estimation uncertainty will broaden the prediction intervals 



     

 

 54 
 
  
 
 

further.  
 

Finally, we wish to reemphasize several points discussed in previous chapters related 
to the calibration of models to be used for extrapolation.  
 
1. We suggest that the model validation and model calibration can coexist if and 

only if we have validation data that is independent of that used for the calibration. 
Examples of independent data include prior knowledge of the model parameter 
distributions, or additional independent experimental data.   

 
2. The acknowledgement that a predictive (i.e. to be used for extrapolation) model is 

approximate, in the sense that it is not consistent with the data within 
measurement and model parameter uncertainty, requires that we not only bound 
the model predictions, but that we also test or validate these bounds. The simple 
calibration of models to differences between model prediction and experimental 
observation does not provide an independent test of the ability of bounding 
models to predict bounded behavior.  

 
3. We demonstrated the effect of independent realizations of the data in the previous 

chapters. As was clearly shown, the calibration of a model or model bounds, to a 
single realization of the data does not ensure that the results will be valid for 
another realization of the data (or of the experiment).   

 
4. If an extrapolated model is sensitive to the values of its parameters and we have 

little confidence that the parameter set for the validation experiment applies to the 
target application, then we must either have 1) independent knowledge of the 
distributions (or bounds) on the parameters, or 2) sufficient independent 
realizations of the validation experiments which adequately represent the full 
uncertainty in the parameters, to perform extrapolation. We should have little 
confidence in our ability to extrapolate if we have little confidence in the 
appropriate range of values (or distributions) of the parameters under the 
extrapolated conditions. 

6.5 Summary 
 
The work presented here represents an overview of issues related to model calibration, 
extrapolation, and validation. While we do not claim that this work provides a 
comprehensive or fully rigorous description of the issues addressed, we suggest that this 
work does provide some insight into the issues that calibration and extrapolation bring to 
model validation. 
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