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                                            Abstract 
 
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. 
The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, 
the coefficients of which can be estimated via the usual random walk process in a conventional 
Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is 
simply the conventional histogram tally, corresponding to a flat mode. This research project 
studied the applicability of using the FET to estimate the fission source, from which fission sites 
can be sampled for the next generation. The idea is that individual fission sites contribute to 
expansion modes that may span the geometry being considered, possibly increasing the 
communication across a loosely coupled system and thereby improving convergence over the 
conventional fission bank approach used in most production Monte Carlo codes. The project 
examined a number of basis functions, including global Legendre polynomials as well as “local” 
piecewise polynomials such as finite element hat functions and higher order versions. The global 
FET showed an improvement in convergence over the conventional fission bank approach. The 
local FET methods showed some advantages versus global polynomials in handling geometries 
with discontinuous material properties. The conventional finite element hat functions had the 
disadvantage that the expansion coefficients could not be estimated directly but had to be 
obtained by solving a linear system whose matrix elements were estimated. An alternative fission 
matrix-based response matrix algorithm was formulated. Studies were made of two alternative 
applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s 
method of minimized iterations. Preliminary results for both methods indicate improvements in 
fission source convergence. These developments indicate that the FET has promise for speeding 
up Monte Carlo fission source convergence. 
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I. Introduction 
 
The prediction of global neutron scalar flux and thermal power profiles throughout a reactor core 
is key for improved performance of nuclear reactors, from efficient utilization of fuel to 
improved burning and transmutation of nuclear waste isotopes and increased confidence 
regarding margins for safety. As nuclear reactor designs become more complex, there is an 
increasing need to perform 3-D "full-core" simulations that will provide accurate predictions of 
the neutron phase space density in space, energy, and angle, as well as time. This is inherently a 
7-D problem including time dependence and has traditionally stressed computational methods 
and computing capacity since the early days of nuclear power. The Monte Carlo method can 
solve the Boltzmann transport equation “exactly” to the extent that the geometry and 
composition can be specified and the neutron interaction cross sections are known. 
 
However, the caveat "in principle" is operative for full-core reactor analyses because the use of 
Monte Carlo to analyze a large, loosely-coupled system such as a modern light water reactor is 
problematical. Smith [1] estimated 20 billion histories would be needed to obtain a solution with 
1% statistics on assembly-wise peak powers, and a large factor (100x) in this estimate was due to 
the fact that the dominance ratio (ratio of two largest eigenvalues) was very close to unity for 
loosely-coupled systems, necessitating a large number of generations (and a large number of 
particles per generation) to converge the solution to within the desired precision. This extreme 
computational time is compounded by the observation that over 6 billion tallies would be needed 
to characterize the solution, including depletion.  
 
A recently developed methodology, the functional expansion technique (FET), utilizes high 
order polynomials to estimate quantities of interest in a Monte Carlo simulation, such as the 
scalar flux distribution within a lattice, and results indicate that the resultant high order 
approximations are substantially better estimates of the true distributions than histogram 
(binning) estimates used in conventional Monte Carlo codes. 
 
As a result of this success with FET, we proposed a research project to use FET to accelerate 
Monte Carlo fission source convergence for loosely-coupled systems [2-7]. The idea here was to 
expand the fission source in terms of expansion functions (e.g., high order global polynomials, 
piece-wise polynomials, etc.) and then sample from this fission source during the fission source 
iterations. The hope was in improvement in convergence due to either the high order polynomial 
basis functions and/or the increased coupling of regions across the reactor as a result of the 
estimation and sampling approaches inherent in the FET.  It was also proposed to imbed the FET 
into a response matrix methodology as an alternative approach to speed up fission source 
convergence. This proposed effort included the following key tasks: 
 

o Estimation and sampling of the fission source with FET, including the use of piecewise 
expansion functions as well as global basis functions 

o Using FET to accelerate fission source convergence within MCNP5 
o Imbed FET into a Monte Carlo-based response matrix method 

 
Work on each of these topics is discussed in the sections below. 
 



Final Report  Date 
DE-FG07-04ID14607  December 2007 

 5

II. Estimation of the fission source with FET 
 
A. Fission source iteration 
This section describes the methodology to use FET with global polynomials to (1) estimate the 
fission source distribution during a fission generation and (2) sample from this source 
distribution to obtain the fission neutron birth sites for the next generation.    

Estimating the system eigenvalue from a Monte Carlo simulation is relatively simple because it 
is an integral quantity, 

 
( ) ( ) ( )

( )
, , ,

,

Σ
= ∫ ∫

∫ ∫
f kx E

eff
kx E

x E x E x E dx dE
k

S x E dx dE

ν φ
, (1)  

where kφ  is the scalar flux distribution that results from an assumed (or predicted) source 
distribution kS , fΣ  is the macroscopic fission cross section in the system, and ( ),x Eν  is the 
average number of neutrons produced per fission event at x due to a neutron of energy E. This 
quantity is typically estimated by either the collision or track length estimator: 
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where ,i cw , ,i cx , and ,i cE  are the weight, position, and energy, respectively, of neutron i  just 
prior to event c , N  is the total number of independent particle histories in a single neutron 
generation , and L is the total number of generations. The number of events due to history i  is 
defined by iC , and is indexed by the variable c  and ,i cd  is the total distance traveled by particle 
i  between events 1c −  and c . (An event is a collision for the collision estimator and either a 
collision or boundary crossing for the track length estimator.) The total number of fissile isotopes 
in a problem is defined as J , with each individual isotope denoted by the identifier j . The 
macroscopic fission and total cross sections for an isotope j  are represented by ,Σ f j  and ,t jΣ , 
respectively. The average number of neutrons released per fission event in isotope j  is denoted 
by jν . At the end of generation , Eqs. (2) and (3) gives an estimate for the effective 

multiplication factor ˆC
effk  for the system with a collision estimator or track length estimator, 

respectively.  

The previous paragraphs described the relatively straightforward methods for estimating the 
effective multiplication factor effk . However, the spatial dependence of the fission source 
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distribution is also needed in order to determine the converged flux/power distribution 
throughout the core. The conventional Monte Carlo approach is to store the sites of individual 
fission events that are produced by particles during the current generation . At each collision 
event, the number of secondary neutrons due to fission is sampled, along with the energy of the 
emitted neutron. The locations and energies of these fission neutrons are stored in a list, 
commonly referred to as the fission bank. After each fixed-source calculation has ended, the 
contents of the fission bank are used as the source points for the next generation. Thus, the actual 
shape of the fission source is never known since the fission bank is only used to store samples of 
the source distribution.  

 

B. Application of FET to Estimate the Fission Source 
We now describe the FET for determining the fission source distribution and sampling from it. 
We begin by writing the fission source distribution as a series expansion in Legendre 
polynomials, 

 ( ) ( )
0

2 1
2=

+
=∑

M

n n
n

nS x a P x , (4)  

where ( )nP x  is the thn  Legendre polynomial, na  are the expansion coefficients, M  is the 
truncation order of the series, and x  is a scaled spatial variable defined on the Legendre domain 

[ 1,1]x∈ − . Using the orthogonality property of the Legendre polynomials, it is possible to solve 
Eq. (4) for the expansion coefficients 

 ( ) ( )= ∫n nx
a S x P x dx . (5)  

Finally, rewriting Equation (5) in terms of the flux distribution from the previous neutron 
generation, 1−φ , 

 ( ) ( ) ( ) ( )1, , ,−= Σ∫ ∫n f nx E
a x E x E x E P x dE dxν φ , (6)  

gives the an expression for the expansion coefficient in terms of a convenient flux moment 
integral that is suitable for estimation by Monte Carlo. 

Using our previous results for Monte Carlo FET estimators for quantities of the form shown in 
Eq. (6), it follows that the expansion coefficients can be estimated with either a collision or track 
length FET estimator as follows: 
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Notice that the FET estimators for the fission source expansion coefficients given in Eqs. (7) and 
(8) are similar to the eigenvalue estimators given in Eq. (2) and (3). In fact, in the case where 

0n = , the FET estimators reduce exactly to the eigenvalue estimators, giving 

 0

0

ˆˆ ,
ˆˆ .

C C
eff

TL TL
eff

a k

a k

=

=
 (9)  

During each neutron generation, either Eq. (7) or Eq. (8) can be used to estimate a set of 
Legendre moments for the spatial source distribution. These moments can be used in Eq. (4) to 
give a functional approximation for the spatial shape of the fission source. During the next 
generation, source points can be sampled directly from this functional approximation, 
eliminating the need for the fission bank.  

 

C. Controlling the Truncation and Statistical Errors with a Cost-Benefit Ratio 
As with all Monte Carlo tallies, minimizing the statistical uncertainty in each of the Legendre 
moment estimates is very important for achieving an accurate result. Poorly converged moments 
can contaminate the functional source approximation with statistical noise, thus slowing the 
convergence rate of the source iteration. In addition to the statistical uncertainty, functional 
approximations produced with FET also contain truncation error due to approximating the true 
fission source by a low order series expansion. Therefore, any FET-based source convergence 
scheme must use a sufficiently high order expansion to ensure that the source distribution is well 
represented by the functional approximation. 

In the FET, these two sources of error are inversely related to each other. Low order expansion 
coefficients are easier to estimate with Monte Carlo and, therefore, have smaller statistical 
uncertainties. However, using too few coefficients in a series expansion will result in large 
truncation error and a low resolution approximation. On the other hand, keeping too many poorly 
converged coefficients will result in a final approximation that is heavily contaminated by 
statistical noise. In order to maximize the effectiveness of an FET source convergence method, 
an optimal balance must be found between these two sources of error, such that the total error in 
the approximation is minimized. To help with finding this optimal balance, a simple cost-to-
benefit ratio has been developed [7,8] to help users determine which coefficient estimates should 
be included in the series expansion approximation. The metric is defined as 

 ˆ2
ˆ2 1
ˆ2

na
n

n

nR
a
σ+

= , (10)  
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where ˆˆ
naσ  is the sample standard deviation for the coefficient estimate ˆna . The 2

nR  metric is 
simply the ratio of the increase in statistical error to the decrease in truncation error due to 
adding a nonzero coefficient ˆna  to the series expansion in Eq. (4). 

This cost-to-benefit ratio provides a convenient test for determining how many expansion 
coefficients should be used for a given source approximation. Coefficients with values of 

2 1nR >>  should not be included in the approximation because they are not well converged and do 
not add any useful information to the result. Terms with 2

nR  values less than, or close to 1, should 
be included in the approximation because they provide valuable information about the shape of 
the true function. 

The methods discussed above were implemented in a special version of MCNP4C as discussed 
in Section II.A below.  

 

D. Formulation of FET with Piecewise Polynomial Basis Functions 
 
This section describes the application of piecewise basis polynomial basis functions (e.g., finite 
element basis functions) with FET instead of global basis functions that have been discussed 
above. This section includes derivations of expressions that can be used to compute the 
uncertainty (standard deviations and covariance matrix) of the node values of a finite element 
based functional expansion tally [9-10].  
 
This section describes the application of piecewise polynomial basis functions (e.g., finite 
element basis functions) with FET rather than global basis functions that have been discussed up 
till now. The reason for this is that typical reactor configurations have numerous internal 
boundaries where material properties are discontinuous, resulting in strongly varying neutron 
flux distributions, including scalar fluxes as well as angular fluxes. These cause Gibbs-like 
phenomena in the approximate solution near the discontinuities and degrade the convergence rate 
of the method to the true solution. This behavior is also seen with the FET when used to analyze 
problems with discontinuities, or “kinks”, in the desired solution.  
  
Derivation of Equations. First approximate the true pdf  p(x) with an approximate pdf ( )p x  that 
is an expansion in a finite element basis, 

 
1

( ) ( )
=

=∑
M

n n
n

p x a xΛ  (11) 

where ( )n xΛ   is zero at all points on a grid, except for point nx , where it is unity. That, is  

 ( ) =n m nmxΛ δ  (12) 

It is assumed that the ( )n xΛ  are piecewise linear basis functions, which necessarily have a 
support spanning only three grid points in 1-D, but this does not affect the general considerations 
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presented here. The expansion coefficient  na  will represent the value of the approximation on 
the grid, i.e.,  ( ) , 1, 2,...,= =n np x a n M . 
 
To find the expansion coefficients, we require that the weighted residual vanish over the domain 
for all basis functions ( )n xΛ , 

 [ ]( ) ( ) ( ) 0, 1,2,...,− = =∫ np x p x x dx n MΛ  (13) 

which yields the following set of equations, 

 
1

( ) ( ) ( ) , 1, 2,...,
=

= =∑∫ ∫
M

n m n m
m

p x x dx a x dx n MΛ Λ Λ  (14) 

Equation (14) can be represented as a matrix equation for 1 2[ , , ..., ]= Ncol a a aa , 

 =Λ a c  (15) 

where  ( ) ( )= ∫nm n mx x dxΛ Λ Λ  (16) 

and ( ) ( )= ∫n nc p x x dxΛ  (17) 

 
We now sample a point x from the pdf  p(x) using Monte Carlo, and estimate the integrals nc , 

 
1

1ˆ ( )
=

= ∑∫
N

n n i
i

c x dx
N

Λ  (18) 

where N is the number of histories. We must also estimate the covariances, but this will be 
discussed later. With estimates for the elements of ĉ  in hand we can now solve for the 
"estimated" expansion coefficients â ,  

 ˆ ˆ= −1Λa c  (19) 

The quantity â  is an unbiased estimate of the true vector of coefficients [ ]= Ea a .  
 
Covariance Matrix. Our next task is to compute the uncertainty in each of the coefficients that 
results from the stochastic estimates of the values nc . Note that the nc  terms are not 
independently estimated so we need to introduce their covariance matrix , 
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 ( )( )⎡ ⎤= − −⎣ ⎦
TEC c c c c  (20) 

where [ ]Ec = c   and E denotes expected value. The diagonal elements of this matrix are the 
variances of each of the nc  terms, while the off-diagonal elements are of the form 

 ( )( )⎡ ⎤= − −⎣ ⎦nm n n m mC E c c c c  (21) 

and can be estimated using  

 ( )( )
1

1ˆ ˆ ˆ( ) ( )
=

= − −∑
N

nm n i n m i m
i

C x c x c
N

Λ Λ  (22) 

We can now compute the covariance matrix A of the a vector, starting from the definition 

 ( )( )⎡ ⎤= − −⎣ ⎦
TEA a a a a  (23) 

and then inserting Eqs. (6) and (8), 

 

( )( )
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⎡ ⎤= ⎣ ⎦
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1 1

1 1

Λ Λ Λ Λ

Λ Λ

Λ Λ

T

T T

T T

A = E c - c c - c

E (c - c c - c

(c - c c - c

− − − −

− −

− −

 (24) 

so finally 

 1 1Α = Λ Λ TC− −  (25) 

Here 1Λ T− denotes the transpose of the inverse matrix 1Λ− . Thus, once we know the covariance 
matrix C we can compute the covariance matrix  1 1Α = Λ Λ TC− − . Note that A contains the 
variances of each of the na  as its diagonal elements. It should also be noted that C contains non-
diagonal elements that may be either positive or negative, hence treating the nc  as independent 
can result in an over-estimate or an under-estimate of the error in the na  terms. 
 
We can compute the variances in the random variables nc  and in the random variables na  using 
the covariance matrices just described. But what we really want is the variance in the estimates 
of the samples means ˆnc  and ˆna , for each n. For ˆnc  we appeal directly to the Central Limit 
Theorem, which gives us directly that ˆnc  is normally distributed about the true mean value nc  
with variance 
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 2 21ˆ( ) ( )= ≈ nn
n n

cc c
N N

σ σ  (26) 

Through the linear relationship between a and c is it clear that each ˆna  is also an average of N 
independent samples of identically distributed random variables, and it was the covariance 
matrix of these that we computed in Eq. (25). Therefore, the Central Limit Theorem still applies, 
and we have ˆna  is normally distributed about the true mean value na  with variance, 

 2 21ˆ( ) ( )= ≈ nn
n n

aa a
N N

σ σ  (27) 

 
E. Computational Results using FET with Piecewise Polynomial Basis Functions 
 
The conventional Monte Carlo algorithm utilizes “histogram” tallies for all output quantities, 
where the score for a cell is simply the sum of the individual scores from each neutron trajectory 
that contributes to that region, either by colliding in and/or traversing the region. This can be 
viewed as a piecewise constant expansion of the tally. Since we are trying to develop a FET-
based tally methodology that improves on the conventional histogram tally, we decided to look 
more carefully at local basis functions that span conventional histogram regions, and compare 
the accuracy and efficiency of local FET versus histogram tallies. As a result, the following 
schemes were investigated: 
 

o Conventional tallies – histogram tally within each cell 
o Local Legendre tallies – local Legendre expansion within each cell 
o Continuous finite element tallies – linear, cell-edged finite element basis functions 
o Modified continuous hat tallies – linear from cell-center to cell-center 

 
Numerical results for these schemes will now be given. For all of these simulations, the same 
cells are used for any of the above schemes; the primary differences are (1) the choice of basis 
functions, (2) the domain of support for the basis functions, (3) the definitions of the expansion 
coefficients, (4) the location of the expansion coefficients, and (5) whether or not a linear system 
of equations has to be solved for the expansion coefficients. The last item may be important 
because the system of equations will be as large as the number of tally cells, which can result in 
an increase in computational time to solve this system for the expansion coefficients. Table 1 
summarizes these properties for each of the above methods that we investigated.  
  
Local Legendre functional expansion tallies use Legendre polynomial expansions within each 
cell of a spatial mesh. As noted above, local Legendre polynomial expansions suffer from fewer 
scores as the mesh size is decreased. While this is a well-understood effect with using histogram 
tallies, it creates more significant problems for the local Legendre expansion tally because the 
shape of the distribution has to be estimated as well as its average value. As the mesh is refined, 
the statistical fluctuations in the estimates of these derivatives can have a deleterious effect on 
the resultant tally. The top plot in Figure 1 illustrates this effect.  
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Table 1. Properties of Different Tally Methods  
Basis Functions Expansion Coefficients 

Tally Method Type 
Domain 
of 
support 

Continuous 
across cell 
edge? 

Definition/location 
Solve 
System of 
Equations? 

Histogram 
(conventional) 

Piecewise 
constants Cell No Cell average No 

Local 
Legendre 

Continuous 
linear within 
cell 

Cell No Cell average No 

Linear FEM Piecewise 
linear (hats) 

Cell and 
nearest 
neighbors

Yes Cell edge Yes 

Modified FEM Centered 
hats 

Cell and 
nearest 
neighbors

Yes Cell center No 

 
 

 
Figure 1.  Legendre Expansion with Large Bins on a Truncated Gaussian 

(The errors given in the title are the L2 errors for the differences between the actual and 
approximate distributions.) 
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The results in Figure 1 were obtained by sampling from a truncated Gaussian and using the 
resultant samples to estimate the original distribution using the methods listed in Table 1. This 
plot shows the conventional histogram tally along with the local Legendre tally for a linear 
functional expansion within each cell. The slope is not very well estimated near the peak of the 
distribution where the slope is close to zero and passes from positive to negative.  
 
If there are not enough scores to resolve a linear shape, then the first moment coefficient (i.e., the 
slope) only adds noise to the tally. To alleviate this problem, a significance test (see Section II.C) 
is used based on the ratio of the increase in statistical error to the decrease in truncation error due 
to the addition of the first moment to the tally: 

 1

2
2

1 2
1

3*=
Δ

aR
a x
σ

  (28) 

In Eq. (28), 1a  is the estimated expansion coefficient for the first Legendre moment and 
1

2
aσ  is 

the estimated variance in 1a . Basically, 2
1R  is the relative variance in the first moment times a 

normalization factor that accounts for a local linear Legendre expansion over the mesh xΔ . The 
first Legendre moment expansion coefficient is set to zero if 2

1 1>R . Otherwise the coefficient is 
assumed to add statistically significant information about the distribution within the tally mesh 
and is retained. The bottom plot in Figure 1 shows the effect of using the 2

1R  significance test; 
namely, the statistically insignificant slope in the central mesh cell did not pass the significance 
test and was eliminated. As can be seen, the resultant tally yields a more accurate fit visually as 
well as quantitatively.   
 
In Figure 1, only the central bin’s first moment failed the significance test and was set to zero. 
Figure 2 shows the truncated Gaussian case with a finer mesh and a larger number of samples. In 
this case, several of the first moment expansion coefficients did not pass the significance test. It 
appears that the significance criterion 2

1 1>R  was too strict in this case and eliminated first 
moments that appear to be acceptable, at least by visual inspection. This behavior can be 
changed by finding an appropriate value of R for the significance test, i.e., where 2

1 >R R , and 
this will be a topic of investigation over the next few months.   
 
Other linear FET techniques have also been examined. The linear continuous finite element 
expansions actually proved to be effective when expanding smooth, continuous functions. 
However, if an insufficient number of bins are used in the finite element method to characterize 
the problem, then the function that is to be expanded can appear to be kinked, i.e. discontinuous 
in the first derivative. Since the finite element expansion is generated by solving a linear system 
of equations, the appearances of kinks in the function being expanded are anticipated to give 
fitting errors beyond the mesh in which the kink originated. 
 
Using the same truncated Gaussian distribution as in Figures 1 and 2, the finite element 
expansion shown in Figure 3 has errors similar to that shown in Figure 1 with the first Legendre 



Final Report  Date 
DE-FG07-04ID14607  December 2007 

 14

moment expansion. However, when the number of bins and particles is increased, the finite 
element FET seems to work extremely well as shown in Figure 4. 
 

 
Figure 2. Legendre Expansion with Small Bins on a Truncated Gaussian 

 
 
Figure 4 demonstrates that the finite element expansions are slightly better than the 
corresponding Legendre expansion (without the cost-benefit test) when using the same bins and 
number of histories. While the added benefit of continuity is a plus, the linear finite elements add 
computational complexity because a global linear system of equations must be solved as a post 
processing step. For a large number of tally cells, this could be a limiting factor.   
 
To maintain continuity but remove the coupled system of equations, two other linear expansion 
ideas are examined. The first is an approximate collocation scheme with linear interpolation 
between the collocation points, in which the delta function is approximated by a hat function.  
The Monte Carlo is then used to estimate the integral of the sampled flux against this 
approximate delta function. The magnitude of one score in this “hat” tally is weighted by the 
magnitude of the linear line evaluated at the position of the score. In one-D a given score will 
contribute to two collocation point tallies that bracket the score. The advantage of this method is 
the increase in the region that contributes to a tally score, essentially doubling the scoring region 
for a uniform bin size. Although there is coupling between adjacent cells, there is no need to 
solve a coupled system of equations for the expansion coefficients. 
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Figure 3. Linear Continuous Finite Element Expansion with Large Bins 

 
 

 
Figure 4. Linear Continuous Finite Element Expansion with Small Bins 

 
The tally created by this scoring scheme is normalized by the total number of samples multiplied 
by the number of meshes N divided by 2 for normalization. A straight line is drawn between the 
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results of each bin’s normalized tally and constitutes the functional expansion for this tally. This 
method is called the Modified Hat (MH) expansion. 
 
Another very simple linear interpolation method is to draw a linear line between the centers of 
neighboring histograms; this is a more reasonable scheme to compare histogram tallies to the 
piecewise linear tallies. To effectively match the histogram interpolation with the MH expansion, 
the histograms at the edge of the entire problem are cut in half while the interior histograms keep 
their original width. This effectively allows the interpolation points of the MH, histogram and the 
finite element methods to be directly compared in Figures 5 and 6. 
 
All of the methods should appear highly correlated in Figure 5 since they all are using the exact 
same samples to calculate their distribution. While the results vary from run to run, the MH on 
average has the lowest error followed by the histogram interpolation and finally the finite 
element method as shown in Table 2. With more particles run, the finite element method has the 
smallest error on average, then the histogram method, then finally the MH method as shown in 
Table 2. Figure 6 plots the results for the same case as Figure 5 but with more particles.  

 
 

Table 2. Average Errors for Different Tally Schemes 

 
 

       
Figure 5. Histograms, Modified Hats, and Finite Elements on a Truncated Gaussian with 1000 

Particles 

Number of 
Particles 

Finite Element 
Error 

Modified Hat 
Error 

Average Histogram 
Error 

1000 0.063 0.049 0.054 
10000 0.020 0.030 0.026 
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F. Adaptive coarsening method 
This method is an extension of the discontinuous Legendre FET to allow adaptive coarsening of 
the bins depending on the problem data. The idea is to use the uncertainty filter discussed above 
and if the first moment of a given cell has a large uncertainty (R1 > 1),  merge the cell with its 
neighboring cell and expand the solution in a discontinuous Legendre basis for the larger cell. 
This is straightforward to do because it only requires the Legendre moments over the original 
cells, not the sampled data. Figure 7 shows a comparison of a local Legendre (discontinuous 
Legendre) FET over a mesh that is too fine, hence yielding poor statistics, compared to a 
coarsened mesh using the above method. These results are preliminary but are promising enough 
to warrant a slight change in direction for this research project. We plan to direct effort to this 
method in the coming months and move away from the use of finite element basis functions.   

 

 

     
 Figure 6. Histograms, Modified Hats, and Finite Element with 10,000 Particles 
 
 
G. Comments 
However, there is a drawback to the use of local basis functions for the FET: a neutron will 
contribute to the score for a given expansion coefficient if it moves (or collides) in a region of 
local support for that basis function. For global basis functions, every neutron trajectory 
contributes to every expansion coefficient, which results in a reduced variance compared to the 
use of local basis functions. So there is a tradeoff between truncation error and statistical error, as 
previously reported [7-8]. In general, a larger domain of support for the basis function translates 
to more “counts” hence decreased variance, but for a realistic flux a larger basis of support 
translates into a larger truncation error.  
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 Figure 7. Adaptive Coarsening with Local Legendre Basis Functions 

 
 
III. Using FET to Accelerate Fission Source Convergence 
 
A. Implementation in MCNP4C 
In order to test the use of functional expansion tallies for eigenvalue calculations, the FET 
estimators given in Eqs. (7) and (8) were implemented in a modified version of MCNP4C [11]. 
The set of Legendre polynomials was chosen as the expansion basis set. The initial version of the 
code is designed to estimate the first 20 spatial Legendre moments of the fission source. In this 
test code, both the collision and track length FET estimators operate concurrently with the 
original fission bank method. This means that each neutron generation produces three separate 
approximations for the spatial shape of the next fission source in our test code. The birth sites for 
the following generation can then be sampled from any of the three source approximations.  

For the FET source approximations, particle birth locations are sampled directly from the 
appropriate functional approximation using simple rejection sampling. To determine the 
functional approximation, the code considers all 20 spatial source moments estimated during the 
previous generation and rejects (sets to zero) those moments that have a cost-to-benefit ratio 

2( )nR  greater than a user defined threshold. This filtering helps to reduce statistical noise in the 
functional approximation. The remaining coefficients are then normalized by the zeroth 
coefficient and used in the Legendre series expansion to give a normalized polynomial source 
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approximation. For rejection sampling, sample points along the polynomial can be quickly and 
efficiently evaluated using the Legendre recursion relationships. 

At birth, the initial direction of a source neutron is sampled isotropically in angle. The initial 
energy of the source neutron is sampled from the Maxwell fission energy spectrum with a mean 
temperature of 1.2895 MeV 

 ( ) ( )1.28950.77059
E

P E e E
−

= . (29) 

Note that the distribution in Eq. (29) does not take into account the energy of the neutron that 
causes the fission event. Unlike the fission bank method, the 1-D FET source convergence 
method does not retain any information about the parent neutrons for the source particles. This is 
because the source neutrons in the FET method are not directly associated with a single parent 
neutron. Rather they are sampled independently from the approximate source distribution created 
from all of the neutrons in the previous generation. This independent sampling strategy means 
that an unlimited number of source locations can be generated, without concern about intra-
generation correlation between the samples.  

For the fission bank source approximation, particle birth locations are taken directly from the list 
of stored fission sites during the previous generation. The internals of the fission bank source 
iteration scheme remained unchanged from the original distribution version of MCNP4C, with 
two minor exceptions. First, the source particle energies stored in the fission bank were not used. 
Instead, the initial energy of each source particle was sampled from the Maxwell fission 
spectrum given in Eq. (29), as was done with the FET approach. This resampling in energy 
allows a fair comparison between the FET and fission bank methods. Also, MCNP4C was 
modified to give a histogram edit for the contents of the fission bank after each generation. This 
change was made to allow easier visualization of the fission bank source shape. 

B. Numerical results 
For numerical verification of the FET source convergence method, the modified version of 
MCNP was run on two one-dimensional homogeneous benchmark problems, a fast reactor 
problem characteristic of a tightly coupled system and a thermal reactor problem characteristic of 
a loosely coupled system. 

Fast reactor test problem. A homogeneous fast-spectrum critical assembly was modeled as a 
100 cm bare slab of pure uranium with a density of 10.97 g/cc. The isotopic composition of the 
uranium was 6.5% U235 and 93.5% U238. In order to characterize this system a reference 
criticality calculation was performed using an unmodified version of MCNP4C. The reference 
calculation used 500 generations of 10,000 neutron histories. The first 50 generations of the 
simulation were discarded to avoid biasing the results with the initial (poor) source distribution. 
The simulation produced an eigenvalue estimate of 0.96674 with a relative standard deviation of 
0.00021.  

When compared with the diameter of the reactor, the mean free path of neutrons in the system is 
relatively large. This means that neutrons are able to spread from one side of the reactor to the 
other in only a few generations. Systems such as these are typically referred to as tightly coupled 
systems. In practice, source iteration schemes are very efficient for tightly coupled systems 
because local perturbations within the fission source shape are quickly dissipated, allowing rapid 
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convergence of the global solution. Thus, it should be anticipated that both the fission bank and 
FET source convergence methods should provide fast convergence to the critical fission source 
distribution. 

To compare the FET and fission bank source convergence methods, two separate k-code 
calculations were run. Each simulation used 3,000 source generations with 10,000 neutron 
histories per generation. Because the initial convergence of the fission source is of primary 
interest, no source generations were discarded. During each generation the collision FET was 
used to estimate the first 20 spatial Legendre expansion coefficients of the fission source. These 
coefficients were filtered using a cost-to-benefit ratio threshold of 0.95. Any coefficients with an 

2
nR  value greater than 0.95 were set to zero. For sampling source points for the following 

generation, one simulation used sites stored in the fission bank, while the second simulation 
sampled directly from the FET functional approximation.  

For both sampling methods, as the fission source converges, the Legendre coefficients will each 
converge to a constant value. These constants are the source moments for the converged source 
distribution. As long as any of the expansion coefficients are showing systematic changes 
between generations the fission source is not converged and additional generations will be 
required in the source iteration process.  

Figure 8 shows a plot of the first through the fourth Legendre coefficients for the fission bank 
and FET source convergence methods as a function of the source generation number. Results are 
shown for both the fission bank (red) and collision FET (blue) source sampling routines. Both 
sets of results were generated in independent Monte Carlo criticality calculations using 3000 
generations and 10,000 histories per generation. Legendre moments with a cost-to-benefit ratio 
greater than 0.95 were considered poorly converged and filtered out of the functional 
approximation. As expected, the coefficients for both convergence methods appear to converge 
immediately to the same values and remain nearly constant over all of the generations. The first 
and third coefficients appear randomly distributed about zero, while the second and fourth 
coefficients appear randomly distributed about -0.18 and 0.007, respectively. The empty gaps 
that appear in the first, third and fourth moments are a result of the 2

nR  filtering used to reduce 
statistical uncertainty in the functional approximation. Data points that would normally appear 
within these gaps contain large statistical uncertainties and therefore were filtered out and set to 
zero. The width of these gaps can be reduced by either raising the 2

nR  filter threshold or 
increasing the number of histories per generation. 
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Figure 8. Low order Legendre moments of the fission source by generation for fast-spectrum 
critical assembly  

 

Based on the coefficient plots, both the fission bank and FET convergence methods produce 
nearly identical results for this benchmark problem. This is confirmed by a visual comparison 
between the FET fission source approximation and a histogram representation of the fission bank 
data taken after cycle number 3000, shown in Figure 9. This comparison highlights the excellent 
agreement between the fission source shapes produced by the two methods. These results verify 
that the new FET based method is implemented correctly and that it can be used to accurately 
estimate the converged fission source distribution for this problem. 
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Figure 9. Comparison of spatial source distribution produced by the fission bank and collision 
FET source sampling routines for the fast-spectrum critical assembly benchmark.  

 

Thermal reactor test problem. The second series of benchmark tests were conducted on a 
homogenous, one-dimensional, thermal-spectrum critical assembly. The assembly was modeled 
as a 100 cm bare slab of a homogenized water and uranium mixture with a density of 10.97 g/cc. 
The ratio of hydrogen to uranium atoms in the mixture was 900:1. The isotopic composition of 
the uranium was 40% U235 and 60% U238. The system was again characterized by a reference 
criticality calculation using an unmodified version of MCNP4C. As with the previous 
benchmark, the reference calculation used 500 generations of 10,000 neutron histories, with the 
first 50 cycles being discarded. The estimated eigenvalue from the simulation was found to be 
0.96531 with a relative standard deviation of 0.00010, and the mean free path of neutrons in the 
simulation was 0.113 cm. 

The mean free path of neutrons in the water/uranium assembly is much smaller than the mean 
free path in the pure uranium assembly analyzed above. The smaller mean free path means that it 
will take neutrons in the system many generations to spread between local regions in the 
assembly. A system like this is commonly referred to as being loosely coupled. In general, source 
iteration techniques will converge slowly for loosely coupled systems. In fact, the convergence 
rate depends heavily on how loosely coupled the system under consideration is. The problem 
with loosely coupled systems is that separate local regions of a single global system often start to 
converge independently of one another. For example, during the early source generations, an 
extremely wide reactor may behave neutronically like two, or more, smaller reactors placed side 
by side. Only after many generations (typically thousands) do these local sources begin to 
coalesce into the global solution. Unfortunately, for large scale problems, such as commercial 
reactor cores, running a sufficiently large number of neutron generations to achieve source 
convergence with current Monte Carlo codes is computationally very expensive. It is hoped that 
the FET source convergence method can help to accelerate the initial fission source convergence 
rate for loosely coupled systems, thus reducing the overall computational cost. 
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To test this hypothesis, a series of Monte Carlo eigenvalue calculations were conducted on the 
water/uranium system. Each calculation used 1000 generations with either 10-, 50-, or 100,000 
neutron histories per generation. Both collision and track length tallies were used to estimate sets 
of 20 Legendre expansion coefficients of the fission source. These coefficients were filtered 
using a cost-to-benefit ratio threshold of 0.6. Source points for the next generation were either 
taken directly from the fission bank or sampled from the FET source approximations. The 
combination of the three source sampling routines and the three different generation sizes gave a 
total of nine independent criticality simulations used for this study.  

 As with the fast-spectrum system, the convergence of the fission source was assessed by 
examining the convergence of the individual Legendre moments as a function of the generation 
number.  Figures 10 through 12 shows the first through sixth expansion coefficients for all three 
source convergence methods. For all three figures, results are shown for the conventional fission 
bank (red), collision FET (blue), and track length FET (green) source sampling routines. All 
results were generated with independent Monte Carlo criticality calculations using 3000 
generations and 10,000 histories per generation. Legendre moments with a cost-to-benefit ratio 
greater than 0.95 were considered poorly converged and filtered out of the functional 
approximation.  

The convergence behavior of the expansion coefficients in the thermal system is strikingly 
different than that observed in the fast spectrum benchmark. In the fast system the moments 
appeared to change by a large margin between generations, but they always appeared to be 
approximately randomly distributed about a mean value. In the thermal system the values of 
individual moments change relatively little between generations. Furthermore, in the thermal 
system the moments are obviously not converged during the early cycles. Rather, each moment 
shows a steady trend from generation to generation. This trending clearly illustrates the 
convergence of the source shape. Statistical noise in the source shape of the thermal system 
appears as slow drifts over time in each of the moments, instead of large oscillations about a 
central value. These slow drifts make it difficult to assess when, and where a particular moment 
has converged.  

For this example it is useful to compare the numerical results with an analytical approximation to 
the source shape, in order to verify that the methods are converging to the correct shape. Because 
this benchmark problem is a bare, homogenous, critical slab it is reasonable to expect that 
diffusion theory should apply and the fission source should be roughly a cosine shape over much 
of the slab. For comparative purposes the first 6 exact Legendre moments for a cosine over the 
slab are listed in Table 3. We note that the continuous energy Monte Carlo solutions should not 
be expected to converge to exactly the cosine shape. However, the fact that the dominant second 
order expansion coefficient appears to converge to a value close to the simple one-group 
diffusion approximation provides an indication that the methods are working as predicted. 
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Figure 10. Low order Legendre moments of the fission source by generation for the thermal-
spectrum critical assembly for 10,000 neutrons/generation. 
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Figure 11. Low order Legendre moments of the fission source by generation for the thermal-
spectrum critical assembly for 50,000 neutrons/generation.  
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Figure 12. Low order Legendre moments of the fission source by generation for the thermal-

spectrum critical assembly with 100,000 neutrons/generation. 
 

 

In the simulation with 10,000 histories per generation (Figure 10), both FET source sampling 
routines clearly outperform the fission bank. The fission bank solution has a large 1st moment, 
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which indicates that the distribution is tilted towards one side of the assembly. The FET source 
method, by contrast, is able to quickly converge the odd moments to zero, which is physically 
correct for a symmetric system. In the simulation with 50,000 histories per generation (Figure 
11), the FET appears to show faster convergence than the fission bank for the second coefficient 
(the dominant term). In fact, it appears as though the FET estimates for 2a  reach convergence 
near generation 400, several hundred cycles before the fission bank estimates. At 100,000 
histories per generation (Figure 12) all three source sampling routines appear to show roughly 
the same performance. However, even with this large number of histories per generation the FET 
sampling methods seem to do slightly better on the odd moments. For all of these test cases, 
there appears to be no significant difference between the collision FET and track length FET 
source convergence methods. 

 

       Table 3. Exact Legendre expansion coefficients for a cosine fission source distribution. 

Legendre Order (n) Expansion Coefficient (an) 
1 0 
2 -2.60 
3 0 
4 0.00903 
5 0 
6 -0.000161 

 

Note that, in some cases, the results appear to converge, but may suddenly drift away from 
convergence (i.e. get a large first moment component) and then drift slowly back towards the 
original converged value. This behavior is observed for both the FET and the fission bank 
methods. The magnitude of this drift is, in some cases, surprisingly large. The causes of these 
drifts are not well understood. One possible explanation is that the drifts are due to a temporary 
false convergence towards a higher (non-stable) eigenmode. It is clear that analysis of the 
individual Legendre moments can provide valuable information about the convergence of the 
fission source shape.  

For smaller numbers of histories per generation, the fission bank has more noise in the source 
shape than the FET based method. This difference is illustrated by a comparison of the functional 
approximation and a histogram representation of the fission bank data, shown in Figure 13. The 
blue line shows the 20th order Legendre approximation to the source shape. The red bars show a 
histogram representation of fission bank. Results used 3000 neutron generations with 10,000 
histories per generation. Data shown are for the fission source produced after generation 3000. 

To a large extent this reduction in noise is due to the filtering of moments with high statistical 
uncertainty. In order to study the effect of different filtering thresholds on the source 
convergence a series of three additional criticality calculations were conducted using the 
collision FET source sampling method. Each of these additional calculations used 1000 
generations with 10,000 neutron histories per generation. The filtering threshold for each of the 
three simulations was set to 0.3, 0.6 and 0.95, respectively. Plots of the first through sixth 
expansion coefficients are shown in Figure 14. All results were generated in independent Monte 
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Carlo criticality calculations using collision FET source sampling with 1000 generations and 
100,000 histories per generation.  
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Figure 13. Comparison of spatial source distribution produced by the fission bank and collision 
FET source sampling routines for the thermal-spectrum critical assembly. 

 

With the largest threshold, 0.95, the FET allows a large amount of fluctuation in the first and 
third expansion coefficients, but generally does a good job in quickly converging the important 
second and fourth moments. Reducing the threshold to 0.6 eliminates the fluctuation in the odd 
moments, but maintains the rapid convergence of the even terms. In the final simulation, the 
threshold was further reduced to 0.3. The results show that this threshold is set too low, and as a 
result, the FET filtered out important 6a  coefficients during the early generations. Without these 
initial 6a  terms, the fission source actually takes longer to converge than with the other filter 
threshold values. 

These results indicate that the FET based method is a viable alternative to the traditional fission 
bank approach and offers several advantages over the traditional fission bank approach. The data 
can be filtered to eliminate some of the statistical noise present in the results. Also, the new 
method is not limited to a fixed number of source points per generation like the fission bank. 
This property of the FET based method means that it is possible to use a variable number of 
neutron histories per generation. In fact, one promising idea is to allow each generation to run 
until a number of expansion coefficients have passed some user defined convergence test, before 
starting the next generation.  

Aside from accelerating the source convergence, tallying the expansion moments of the source 
distribution may also provide a new and interesting method for studying source convergence 
behavior.  
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Figure 14. Filtered low order Legendre moments of the fission source by generation for the 
thermal-spectrum critical assembly. Results are shown for the cost-to-benefit ratio filter threshold 
values of 0.95 (red), 0.6 (blue), and 0.3 (green). 
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C. Alternative FET-like Methods for Fission Source Convergence 
Since the primary emphasis of this research grant was to accelerate fission source convergence 
with FET, two alternative methodologies have been studied with promising results. The first 
method below, the kernel density estimator, is the PhD thesis research for Kaushik Banerjee. The 
second method, implementing Arnoldi’s method with FET, is the PhD thesis research of Jeremy 
Conlin. These methods are discussed below.   
 
1. Kernel Density Estimator 
The implementation of the kernel density estimator (KDE) for fission source iterations can be 
viewed as a dynamic FET scheme because the samples (e.g., fission sites) are used implicitly to 
construct an expansion of the fission source in terms of a prescribed basis set, perhaps a 
Gaussian or a polynomial with finite support, for example. This section describes the KDE 
method as applied to Monte Carlo fission source convergence and presents preliminary results.  
 
The Kernel Density Estimator (KDE), a nonparametric density estimator, is studied and applied 
to Monte Carlo eigenvalue calculations for reactor analyses. The Monte Carlo method is an 
important tool for performing reactor calculations because of its ability to handle complex 
geometry and complex physics. One major drawback of Monte Carlo is slow fission source 
convergence rates for large, loosely coupled systems. In this work, KDE is used to estimate the 
shape of the fission source at the end of each neutron generation and samples from this estimated 
source distribution are used as the starting particles for the next generation. 
 
Previous applications of the KDE method to nuclear engineering have been to resample electron 
trajectories as part of a response matrix approach [13] and to resample photon trajectories in the 
phase space resulting from the patient-independent portion of a radiation transport calculation as 
part of a cancer treatment plan [13]. Both of these applications involve resampling of electron or 
photon trajectories close to previously sampled trajectories and the application of KDE to fission 
source iterations is a natural extension.  
 
Our preliminary results for a large, loosely coupled system in 1D slab geometry are promising: 
the converged fission source distribution is satisfactory and there is a substantial increase in 
fission source convergence as measured by the relative source entropy [14,15]. We also note that 
the traditional sampling of the fission source introduces correlation among the source points 
between neutron generations [11] and it is hoped that the KDE method will reduce this 
correlation by decreasing the propagation of the correlated source particles from generation to 
generation. Finally, KDE can be used to represent Monte Carlo tallies instead of histograms, 
resulting in a smooth estimation of the tally distribution.  
  
Methodology. Consider n real observations X1,…….., Xn whose underlying density ( f(x) )  is to 
be estimated. The kernel estimator with kernel k for univariate data is defined by 
 

 
n

i

i 1

x X1f (x) k
nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  (30) 
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where h ( ∞→→ nash 0 )is the band width, also called the smoothing parameter. Usually, but 
not always, k will be a symmetric probability density function (pdf) about zero, the normal 
density for instance. The basic properties of )(xf  are well known from the literature [16]: 

 { } 2ˆBias E f (x) f (x) O(h )= − =  (31) 

and 

 

22

2

1 1 2

1 1 x y 1 x yˆvar f (x) k f (y)dy k f (y)dy
n h h h h

n h f (x) k(t) dt.− −

⎡ ⎤− ⎧ − ⎫⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥⎣ ⎦

=

∫ ∫

∫
 (32) 

The estimator )(xf  itself is a pdf, normalized to 1, as the kernel function ⎟
⎠
⎞

⎜
⎝
⎛ −

h
Xxk

h
i1  is 

normalized to 1. It is straightforward to sample from the estimator )(xf .  Realizations Y from 
)(xf  can be generated as follows [16]: 

(1) Choose I uniformly with replacement from {1,…….,n}by 1+= nI ξ , where ξ  is 
the random number between 0 and 1 

(2) Generate sample ε  from the kernel k (e.g., Box-Muller if k is Gaussian). 
(3) Set εhXY I +=  

 
Therefore, the KDE method is a variation on FET in the sense that the samples are expanded in 
terms of basis functions but the coefficients of the expansion are not explicitly calculated this is 
all done on the fly.  
 
The most widely used way of estimating the global accuracy of f  as an estimator of f is the 
mean integrated square error (abbreviated as MISE), which is defined by [16] 

 { }
2

MISE(f ) E f (x) f (x) dx= −∫  (33) 

The global band width (h) is selected from the point of view of minimizing the approximate 
mean integrated square error.  
 
However the performance of  )(xf  is poor near the boundaries due to the boundary effect that 
occurs in nonparametric curve estimation problems. This is due to the fact that the bias of )(xf is 
of O(h) instead of O(h2) at boundary points. Whenever data points are near boundaries the 
associated kernel will not integrate to unity over the problem domain because it overlaps the 
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boundary. Simply truncating the estimator at the boundaries and then renormalizing )(xf  to 
unity will not solve the problem as noted by Silverman [16] and also tested by the authors. To 
remove the boundary effect we have examined several methods that have been proposed [17]:    
 

o Reflection – reflect the sampled point back into the computational domain. 
o Boundary kernel – define a separate kernel for data points within a small distance 

(e.g., h) of the boundary. 
o Transformation – transform the sampled domain within a short distance of the 

boundary to minimize the boundary bias. 
 
Reflection boundary correction works well if the first derivative of the density function is zero at 
the boundary. However, we found that it does not work well in general. We have found that 
transformation seems to work best for the fission source application. Karunamuni and Alberts 
[17] present a transformation that preserves an O(h2) boundary bias for a single boundary at x=0. 
We have extended this work to a slab of width a with two boundaries at x=0 and x=a, resulting 
in the following estimator: 

 

n
1 i 1 i

i 1

n
i

i 1

n
2 i 2 i

i 1

x g (X ) x g (X )1f̂ (x) k k , 0 x h
nh h h

x X1 k , h x a h
nh h

x g (X ) x 2a g (X )1 k k , a h x a
nh h h

=

=

=

⎧ − + ⎫⎛ ⎞ ⎛ ⎞= + ≤ ≤⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭
−⎛ ⎞= < < −⎜ ⎟

⎝ ⎠
⎧ − − + ⎫⎛ ⎞ ⎛ ⎞= + − ≤ ≤⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭

∑

∑

∑

 (34) 

where h is the bandwidth k is the kernel function with support [-1,1] and g1 and g2 are the 
boundary transformations. It can be shown that the above estimator has a boundary bias of O(h2). 
The transformations are given by 

 ( )0

2/ 2 / 3
1 0 c 0 c0

g (y) y 0.5d k y 0.5 d k y= + +  (35) 

where 
(1)

0
f (0)d
f (0)

=  (36) 
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−
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∫

∫
 (37) 
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and                               ( )a

2/ 2 / 3
2 a c a ca

g (y) (2a y) 0.5d k (a y) 0.5 d k (a y)= − + − + −  (38) 

where 
(1)

a
f (a)d
f (a)

=  (39) 
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a a
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/ 1
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a a
1

2 (t c )k(t)dt
k

c 2 (t c )k(t)dt

−

−

−
= −

+ −

∫

∫
 (40) 

and 
h
xc =0 , 

h
axca

−
= . The logarithmic derivatives d0 and da are estimated by conventional 

FET. We have found that the estimation of these terms is important for obtaining good results 
near the boundaries. 
 
Numerical results. The first problem is a simple example to demonstrate that KDE can 
reproduce a known pdf, in this case a clipped exponential on the interval [0, 2]. To depict this 
graphically, 100,000 data points were drawn from f(x) and Eq. (34) was used to evaluate )(xf  at 
200 equally spaced points between 0 and 2. These points are plotted in Figure 15. To illustrate 
the importance of the boundary correction terms, the 200 points were evaluated without the 
boundary correction terms (using the same set of 100,000 data points) and are plotted in Figure 
15. It is clear that the general boundary correction algorithm contained in Eq. (34)  is necessary 
to avoid poor estimation of the pdf near the edges of the distribution.  
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Figure 15. Using KDE with boundary correction for Example 1. 
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Figure 15 also illustrates the potential for KDE to plot tallies, since the tally points can be treated 
as if they were un-normalized samples from a pdf and then plotted as we have done in Figure 15.    
 
The second example is to predict the criticality of a large slab. Monte Carlo criticality 
calculations with KDE and the conventional fission source method are carried out for a 100 mfp 
(mean free path) wide multiplying slab. With KDE, the starting neutrons for each cycle are 
sampled from the estimated source distribution of the previous cycle using Eq. (34).  Both 
simulations used 100,000 particles per batch and 3000 batches. Figure 16 presents the 
comparison between the conventional and KDE methods. The binned sources for both cases are 
calculated by averaging the source distributions over the final 1000 cycles. This averaged source 
is also used for the relative entropy calculation [14].  
 
It is clear from Figure 16 that the KDE method has improved source convergence. Based on our 
parametric studies of 1D versus 2D for simple problems, we believe the advantage of KDE over 
conventional source iteration will increase for multi-D problems.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Relative entropy and the averaged source distribution for Example 2. 
 
The use of KDE to implement fission source iteration in criticality problems has been shown to 
be successful in simple 1D geometries. KDE results in substantially faster source convergence 
than conventional fission source iteration for simple 1D system. A boundary correction method 
was developed and implemented and yields accurate fission source distributions near the 
boundaries. The results show the feasibility of the KDE approach and we are now extending this 
methodology to multi-D geometry and expect to have results soon.  
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2. Arnoldi’s Method with FET.  
 
Krylov Subspace Methods. The power method is the method of choice for Monte Carlo 
criticality calculations. The power method generates a Krylov subspace [18] by applying a linear 
operator, A, to a starting vector, v, repeatedly. The result of these operations is a set of vectors, 
defining a Krylov subspace, Km = span{v, Av, A2v, . . . , Am−1v}. 
  
After each iteration, the power method calculates a new estimate of the dominant eigenvalue. 
The associated eigenvector estimate is A2v and approaches the true eigenvector as k gets larger. 
The variance of the average of the calculated eigenvalues is a measure of the statistical 
uncertainty in the eigenvalue estimate. 
 
The linear operator A does not have to be known explicitly to be able to use the power method, 
rather we only need to know how to apply the linear operator A to the vector v. In Monte Carlo 
particle transport the vector v is a fission source. We can apply the operator A by transporting the 
fission source and generating a new fission source from the resulting fission sites. 
 
Arnoldi’s method. Arnoldi’s method of Minimized Iterations [19] is another method used for 
calculating eigenvalues. Like the power method, Arnoldi’s method only requires knowing how to 
apply the operator A to the vector v. Arnoldi’s method uses the same Krylov subspace as the 
power method but builds an orthonormal basis for it. The process of orthogonalizing and 
normalizing the basis vectors creates an upper Hessenberg matrix, H, of size equal to the number 
of basis vectors; H is the orthogonal projection of A onto the Krylov subspace. The Ritz pairs of 
H are easily found because the size of H is small; generally much smaller than A. The Ritz pairs 
of H approximate the eigenpairs of A. 
 
Arnoldi’s method requires all the basis vectors be stored in order to orthogonalize them. The 
memory requirements for orthogonalization of Arnoldi’s method increases with the size of the 
Krylov subspace. A way to reduce these memory requirements is to restart Arnoldi’s method 
after a predetermined number of iterations (size of Krylov subspace). At the end of an Arnoldi 
restart, a Ritz pair is calculated. The Ritz vector is used as the starting vector of a new Arnoldi 
calculation. This process can be repeated indefinitely. An Arnoldi restart can be treated similar to 
a power method iteration. A Ritz pair is calculated at the end of each restart, the variance of the 
average of these eigenvalues is the statistical uncertainty. 
 
Recently Warsa et al. [20] have shown that Arnoldi’s method provides a significant decrease in 
the overall computational expense as compared to the power method for a deterministic SN 
transport code. This effect was even more dramatic for problems with poor dominance ratios. In 
this paper we show that Arnoldi’s method can be used in a Monte Carlo criticality application. 
 
Implementation of Arnoldi’s method. The orthogonalization of the basis vectors in Arnoldi’s 
method requires taking the inner product of two vectors. In our studies, we have discretized the 
fission source into spatial bins and so have represented the infinite-dimensional fission source as 
a B-dimensional vector 
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 ∑
B

i i
i=1

q(x)= a f (x)  (41) 

where B is the number of spatial bins and 

 
1 ≤ ≤⎧

⎨
⎩

i i+1
i

 ,  x x x
f (x)=

0  ,      otherwise
 (42) 

Representing the fission source vector in this manner, taking the inner product of two fission 
sources is simply the dot product of two vectors of coefficients { }i i 1

a
=

B . This introduces a 
discretization error from which the power method does not suffer when calculating the 
eigenvalue of A. The power method creates a similar discretization error when binning tally 
results. 
 
Operating A on a vector of coefficients { }i i 1

a
=

B  simply requires sampling the piecewise constant 
source function q(x) in Eq. (41), transporting these neutrons until they cause another fission and 
tallying the resulting fission neutrons over the bins.  
 
The source function qn-1(x)  at Arnoldi iteration n−1 will generally be negative because it has 
been orthogonalized against previous fission sources. We define the normalized source 
distribution 

 
∫

n-1

n-1

q (x)
P(x)=

q (x) dx
 (43) 

and sample source locations xi from P(x) and give the corresponding particle an initial weight 
n-1 n-1w= q (x)/ q (x) . This ensures sampling each bin with correct probability and preserving the 

correct sign for the particle weight. Monte Carlo transport then proceeds as usual with the 
neutron scoring ( )f T/νΣ Σw  in the proper spatial bin at each collision. The resulting discrete 
fission source ˆnq (x)  is normalized after each iteration by the number of particles thrown per 
iteration, N, 

 ˆ
N

∫ n-1
n n

q (x) dx
q (x)= q (x)  (44) 

Here the integral of the fission source from the previous iteration, ∫ n-1q (x) dx , is the strength of 
the previous source including both positive and negative sources. This scheme is equivalent to 
sampling a total of N histories from the positive and negative sources, with the ratio of the 
number of histories from the positive to the number of histories from the negative source equal to 
the ratio of the positive to the negative source strengths. 
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Numerical Results. We have performed some preliminary calculations using Arnoldi’s method 
to calculate the dominant eigenvalue and eigenvector for a 1-D, homogeneous slab of width 
equal to 20 mfp ( )s f0.5, 0.5Σ = νΣ =  surrounded by vacuum. We used 5000 histories per 
iteration, 50 Arnoldi restarts, and five Arnoldi iterations per restart. The power method also used 
5000 histories per iteration and 250 iterations; both methods had the same total number of active 
histories. Both methods discarded the first 10 iterations (2 Arnoldi restarts) to allow for source 
convergence. In Arnoldi’s method, we discretized the space into 50 equally spaced bins. 
 
The eigenvalue convergence of the active cycles is shown in Figure 17 for both methods. The 
errorbars indicate one standard deviation from the estimated mean eigenvalue. The true 
eigenvalue (calculated with an SN code and compared to published results [21]) is marked as 0λ . 
In Figure 18, the estimated eigenvector is shown for both methods as well as an SN method for 
comparison. Errorbars have been left off this figure due to space limitations, but are on the order 
of 0.005 for both methods. 
 
 
 

 
Figure 17. Eigenvalue convergence of Arnoldi’s method compared to power method. 
Arnoldi’s method uses 5000 histories per iteration, 5 iterations per restart, and 50 active 
restarts – 2 restarts were discarded. The power method also used 5000 histories per 
iteration with 250 active iterations – 10 iterations were discarded. Only the active 
iterations are shown. 0λ  is the correct eigenvalue. 
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Conclusion. We have presented preliminary results showing that Arnoldi’s method can be used 
instead of the traditional power method to accurately calculate the dominant eigenvalue and 
eigenvector in a Monte Carlo particle transport calculation. Further studies are required to fully 
understand the effect of changing the parameters of Arnoldi’s method (e.g. number of iterations 
per restart, starting vector, spatial discretization). Based on the work of Warsa et al. [20] we can 
expect that Arnoldi’s method will be better able to converge the eigenvector than the power 
method for problems with dominance ratio close to 1. 
 

 
 

Figure 18. Fission source distribution from power method and Arnoldi’s method with SN 
results for comparison. Arnoldi’s method uses 5000 histories per iteration, 5 iterations per 
restart, and 50 active restarts – 2 restarts were discarded. The power method also used 
5000 histories per iteration with 250 active iterations – 10 iterations were discarded. 

 
IV. Development of Monte Carlo-based Response Matrix Method 
 
A. Background  
This section is based on the original proposal for this grant and is included here for 
completeness. The conventional response matrix equations, expressed in terms of FET, may be 
expressed as follows: 
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 (45) 

 
where φ  is the vector of expansion coefficients representing the global solution as an expansion 
in an appropriate basis: 
 

 
1

ˆ ˆ( , , , ) ( , , , )
M

n n
n

r E t a r E tϕ ψ
=

Ω = Ω∑  (46) 

The matrices appearing in Eq. (45) include a surface-to-surface response matrix S S←R ,  a 
volume-to-surface matrix S V←R , a surface-to-volume response matrix V S←R , a volume-to-
volume response matrix V V←R , and a “permutation” matrix H  that simply re-orders incoming 
quantities as outgoing quantities depending on the region being considered. The response 
matrices are readily evaluated by Monte Carlo if the basis functions are orthogonal and the 
lowest order basis function (n=0) mode is flat, such as with Legendre polynomials, because the 
response of the system due to an arbitrary mode nψ  can be estimated with Monte Carlo by using 
superposition of the given mode and the fundamental mode, which guarantees a positive pdf to 
sample from. In essence, the Monte Carlo method is determining the “Green’s function” 
response for a unit input which is either an arbitrary volumetric basis function ˆ( , , , )n r E tψ Ω  for 

S V←R  and V V←R  or an arbitrary surface basis function for V S←R  and S S←R . Since Monte Carlo is 
being used for the determination of the response matrices, the resultant response matrix accounts 
for any complex physics or geometric detail, as long as it can be resolved by the “local” Monte 
Carlo problem.  
 
B. Alternative FET-based response matrix approach 
 
Change in approach. The fission matrix method based on FET that is developed below. The 
original intent was to develop a response matrix approach based on using FET to estimate the 
fission source terms, however this effort was stopped about a year ago as a result of recently 
identified work performed by researchers at Georgia Institute of Technology [22,23]. Basically, 
they have developed a global response matrix method that is based on using orthogonal function 
expansions on the surfaces of internal regions, thus computing exactly the effective “Green’s 
function” noted in the paragraph above, i.e., the region response due to a unit surface basis 
function input. Moreover, they have used Monte Carlo to evaluate the region responses, 
essentially identical to what we were proposing to do with FET as part of this grant. They used 
the methodology developed by us [2,3] to carry out the local response calculations and improved 
on it by using an innovative iteration strategy that does not require the use of volume-to-surface 
and volume-to-volume response matrices, resulting in a huge savings in computational effort and 
complexity. Thus, they have developed and published a key component of the methodology we 
were hoping to develop for the FET-based response matrix portion of this grant. As a result, the 
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decision was made to redirect our efforts towards an alternative response matrix approach rather 
than continue down the path described in the proposal for this grant.  
 
Alternative formulation using the fission matrix. An alternative approach that utilizes FET to 
accelerate fission source convergence is a modification of the well-known fission matrix method. 
The fission matrix method may be described succinctly beginning with the usual transport 
equation in operator form: 

 1ˆ ˆ( , , ) ( , , )r E r E
k

ψ ψΩ = ΩA M  (47) 

where ˆ( , , )r Eψ Ω  is the angular flux, A is the transport-collision operator, and M is the angular 
fission source operator:  

 
0 4

ˆ ˆ ˆ ˆ( , ) ' ' ( , ' , ' )t sr E dE d r E E
π

∞

= Ω ∇+Σ − Ω Σ → Ω →Ω∫ ∫iA  (48) 

 
0 4

1 ˆ( , ) ' ( , ') '
4 fr E dE r E d

π

χ ν
π

∞

= Σ Ω∫ ∫M  (49) 

Now formally invert Eq. (47) for ˆ( , , )r Eψ Ω  and integrate over angle to obtain the scalar flux: 
 

 1
k

φ φ= -1A F  (50) 

where F is defined: 

 
0

( , ) ' ( , ')fr E dE r Eχ ν
∞

= Σ∫F  (51) 

Now define the fission source ( , ) ( , )Q r E r Eφ= F , to obtain 

 11Q Q
k

−= FA  (52) 

 Now define 1−=G FA  and rearrange Eq. (52) to find: 

 kQ Q=G  (53) 

Note the multiplication factor is the largest eigenvalue of the operator G. Now define the fission 
source vector Q  with elements Qi = number of fission neutrons emitted in region i. The discrete 
form of G is the fission matrix G with matrix elements Gij : 



Final Report  Date 
DE-FG07-04ID14607  December 2007 

 41

 ij
fission neutrons emitted in region iG
fission neutrons starting in region j

=  (54) 

The fission matrix has been used to estimate the overall multiplication factor and to accelerate 
fission source convergence. The drawback with the fission matrix is its sensitivity to 
fluctuations, or noise, in the Monte Carlo solution [24]. This can be seen by inspection of Eq. 
(54), where grid refinement to obtain higher resolution will be accompanied by poorer statistics 
as the number of “counts” in the smaller regions will decrease. However, this is the same 
conundrum faced by the histogram tally and motivated our development of FET. Instead of using 
region-wise tallies for the fission neutron emission rates, let us use mode-wise tallies: 

 uv
fission neutrons emitted in mode uG
fission neutrons starting in mode v

=  (55) 

Note that the matrix G is a FET-based response matrix for fission. The use of a FET-based 
fission matrix may improve the statistics because a count anywhere contributes to all the modes. 
One interesting aspect of this formulation of the fission matrix is that the matrix elements Guv 
can be computed readily using the methodology developed for the response functions using FET 
[2]. 
 
No further progress has been made on this alternative fission matrix-based response matrix 
method. Effort by the project participants was focused on the alternative FET methods described 
in Section III.C, namely the kernel density estimator and the Arnoldi method.  
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