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Abstract 
 

This report describes the Licensing Support Network (LSN) Assistant―a set of tools 
for categorizing e-mail messages and documents, and investigating and correcting 
existing archives of categorized e-mail messages and documents. The two main tools 
in the LSN Assistant are the LSN Archive Assistant (LSNAA) tool for re-
categorizing manually labeled e-mail messages and documents and the LSN Real-
time Assistant (LSNRA) tool for categorizing new e-mail messages and documents. 
This report focuses on the LSNAA tool. 
 
There are two main components of the LSNAA tool. The first is the Sandia 
Categorization Framework, which is responsible for providing categorizations for 
documents in an archive and storing them in an appropriate Categorization Database. 
The second is the actual user interface, which primarily interacts with the 
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Categorization Database, providing a way for finding and correcting categorizations 
errors in the database.  
 
A procedure for applying the LSNAA tool and an example use case of the LSNAA 
tool applied to a set of e-mail messages are provided. Performance results of the 
categorization model designed for this example use case are presented. 
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1.  INTRODUCTION 
 
The Licensing Support Network (LSN) Assistant application is a set of tools for categorizing 
new e-mail and documents, and investigating and correcting existing archives of categorized e-
mail and documents. The two main tools in the LSN Assistant are the LSN Archive Assistant 
(LSNAA) tool for categorizing existing e-mail and documents and the LSN Real-time Assistant 
(LSNRA) tool for categorizing new e-mail and documents. This document describes the LSNAA 
tool; a subsequent report will document the LSNRA tool. 
 
There are two main components of the LSNAA tool. The first is the Sandia Categorization 
Framework, which is responsible for providing categorizations for all the documents in an 
archive and storing them in an appropriate Categorization Database. The second is the actual 
user interface, which primarily interacts with the Categorization Database, providing a way for 
finding and correcting categorizations errors in the database.  
 
1.1. Problem Description 
 
Sandia’s Licensing Assessment and Technical Analysis organization (06853) is responsible for 
developing the LSN for Yucca Mountain as required by the Nuclear Regulatory Commission 
(NRC).  The LSN is a web application designed to capture all licensing-relevant documents, 
including emails and any attachments thereto.   
 
To achieve the LSN objective of capturing all licensing-relevant documents, the Lead Laboratory 
(LL) relies on subject matter experts (SMEs) to first determine whether a document is “relevant” 
or “not-relevant”, then to categorize the relevant ones as either “privileged” or “not privileged”. 
The Department of Energy (DOE) has provided detailed guidance on how to make these 
categorizations (McRae, 2005; Otis, 2003).   
 
The document data set is substantial in size as it includes all incoming and outgoing e-mail 
messages and their attachments by all individuals working in LL activities. Individuals working 
on LL activities are responsible for determining the relevance and categorization of their own 
incoming and outgoing email messages and attachments following the guidelines set by the 
DOE.  However, the individual biases of these email reviews lead to widely inconsistent 
categorization decisions. Therefore, to ensure that all emails and attachments are properly and 
consistently categorized, the LL SMEs perform a final review of each email and attachment. 
 
The LSNAA tool is intended to significantly increase the efficiency of the review and 
categorization process in terms of schedule and cost. The LSNAA tool scans document sets 
taken from archives and generates assessment reports for the SMEs to evaluate. Cognitive 
models, referred to throughout this document as categorizers, representing the categorizations 
made by real SMEs are used to prioritize a review of the document sets. Assessment reports 
generated by the LSNAA tool provide real SMEs with enough “at-a-glance” data to decide to 
examine a selective document set further or forego an in-depth study. The reports include the 
categorizations of documents in reviewed sets according to their relevance, excluded classes, and 
privilege status. The consistency and quality of the evaluation is expected to increase with the 
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use of the LSNAA tool, as the categorizers are tuned to the categorizations provided by the 
SMEs. 
 
1.2 Data Requirements 
 
In order to build an accurate document categorization system for the LSNAA tool, a 
representative dataset of example document categorization must be provided. Listed below are 
the data (document) requirements we used in building categorizers for use in the LSNAA tool.   
 
Coverage – The document set as a whole must be representative of the actual documents that are 
expected to be categorized by the system. In order to be accurate, the system must be trained on 
documents that are similar to those it is expected to categorize. 
 
Accuracy – Each document must have an accurate categorization assigned to it. The categorizer 
can only be as accurate as the example classifications that it is provided. 
 
Quantity – The risk of building an accurate classifier is lowered to an acceptable level if there 
are at least 20,000 documents in each document class. Half of these documents will be used for 
training and half will be withheld for validation. Since the classifier will be as good as the data it 
is trained on, a classifier can still be built from less data, but the more example documents that 
are given, the better the classifier will perform. 
 
Distribution – The relative number of documents in each class must match the relative 
distribution of documents among the class. For example if there are two classes, “relevant” and 
“non-relevant”, and in general 40% of the documents are judged relevant and 60% are non-
relevant then we would want at least 20,000 “relevant” documents and 30,000 “non-relevant” 
documents. 
 
Supplemental Data – It is not required, but some approaches to classification can make use of 
supplemental document sets in order to improve performance. It would probably be the most 
helpful in the case that the requirements for the number of accurate classifications provided 
cannot be met. There are several options for what could be contained in the supplemental data: 
 
• These documents could have classifications that either have not been verified as accurate or 

are known as not being completely accurate. 
• These documents could be ones with classifications that are not as representative of the 

whole of the documents that are expected to be classified by the system. 
• These documents could be ones that are representative of the documents that are expected to 

be classified by the system but do not have classifications assigned to them. 
• If provided, it would be important to distinguish this data from the other training data. 
 
Details – The following are the requirements for the attributes of the data provided: 
  
• A file explaining of the origin and format of the document set along with an explanation of 

each of the classes that can be assigned to a document. 
• For each email-type document, the following information must be provided: 



 

13 

o Subject – The subject field of the email.  
o Date – The date and time that the email was sent. 
o From – The email address of the sender of the email. 
o To – The email addresses of the recipients of the email. (The additional Carbon-copy 

(CC) and blind-carbon-copy (BCC) recipients may also be included.) 
o Text – The actual text of the document  
o Classification(s) – The classification(s) assigned to the document.  

• For each classification for the document the following information must be provided: 
o Classifier – An identifier for the classifier, such as an email address. 
o Class(es) – The class(es) assigned. 
o Date – The date of the classification. 

 
 
1.3 Software Requirements 
 
The goal of the LSNAA is to significantly ease and accelerate the review of documents for 
licensing relevance and categorize relevant ones according to their privilege status based on 
example data provided by the Lead Laboratory. A set of software requirements has been created 
to address the needs of SMEs and the Lead Laboratory. Appendix A presents the complete list of 
software requirements. Note that the list of requirements is for the both the LSN Archive 
Assistant and Real-time Assistant applications, since they are so closely related in scope and 
function. 
 
1.4 Solution Process 
 
For a given set of documents to be reviewed and possibly re-categorized, we have developed the 
following solution process. 
 
1. Assemble a small validated, labeled set of documents from the entire set. 
2. Build a set of potential categorizers using several algorithms and the validated set. 
3. Identifying the highest performing algorithms applied to the validated set. 
4. Build a categorizer from the best performing algorithms. 
5. Tune the categorizer to obtain optimum performance on the validated set. 
6. Categorize all documents in the entire set. 
7. Have SMEs manually review and re-categorize the documents for which the system 

categorizations are ambiguous (i.e., those documents for which the system was unsure of the 
categorizations). 

8. Build new categorizers (as in steps 2-5) using the set of documents validated by the SMEs. 
9. Categorize all documents in the entire set. 
10. Determine if more work is needed to certify the current categorizations as final by assessing 

any discrepancies between the current and previous system categorizations. 
11. Repeat steps 7-10 until satisfied with the results of the system categorizations. 
 
We present in this report an example of this process for the set of e-mail messages from the 
TSPA group at Yucca Mountain associated with Condition Report (CR) 9601. This set of e-mail 
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was identified as potentially being incorrectly categorized by some of the creators and recipients. 
This was the motivation behind the development of the LSNAA tool. 



 

15 

2.  THE LSNAA GRAPHICAL USER INTERFACE 
 
The LSNAA application is a graphical user interface for examining an email archive to find and 
fix incorrect email categorizations. The user interface is designed to make use of automated 
categorizations created using the Sandia Categorization Framework to assist the user in finding 
emails that are likely to be incorrectly categorized. 
 
2.1 Software Requirements 
 
The LSN Assistant system, with its main user interface through the LSNAA, was created to 
conform to a set of requirements that were gathered from the customer and potential users. The 
requirements are listed in Appendix A. 
 
2.2 Interface Design 
 
From a usability perspective, the LSNAA user interface (as seen in Figure 1) is designed to be 
similar to a typical email program such as Microsoft Outlook. The reason for designing the 
layout of the interface in this manner is to make it consistent with the user’s normal work flow so 
that it can be learned quickly. The visual layout of the application follows a three-panel 
approach. It contains a panel for specifying search criteria for email, a panel that displays a list of 
email, and a panel for displaying the content of a selected email.  
 

 
 

Figure 1. The LSNAA Graphical User Interface. 
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Since the tool is focused on categorization, the program presents a view of the data regarding 
three possible categorizations for each email: 
 
• Original – The Original categorization is the categorization provided by the owner of the 

email (the person whose inbox the email belongs to). 
• Review – The Review categorization is the most recent categorization provided by a certified 

LSN email reviewer.  
• System – The System categorization is the most recent categorization provided by the LSN 

Assistant system’s automated categorizer. 
 
It also maintains the Current categorization, which is the Review categorization if it exists, and if 
not it is the Original categorization. Typically, an email will have an Original and System 
categorization, only emails that have been reviewed using the tool have a Review categorization. 
The program is also implemented to handle missing Original and System categorizations. 
 
2.2.1 Search for Information 
 
Because the target usage of the LSNAA is in large email archives, the user interface includes a 
large search panel. The search panel contains many different fields that allow a user to construct 
powerful search criteria in order to find the appropriate emails. In addition to searching standard 
meta-data such as the email owner and the received date, it allows for text searches of the textual 
subject, body, and attachment fields of an email. The search also allows the user to select 
specific categorizations from the Original, System, and Review regarding the status of whether 
or not the categorization exists and if it is marked as LSN Relevant, Privileged, or Federal 
Record. There is also the option to search based on differences between the Original, System, 
and Review categorizations to make it easy to find divergent categorizations. All of the search 
criteria are combined together in the form of a large logical “and” statement; specifying 
additional criteria constrains the search. Providing such a capability allows the user to find and 
review specific emails of interest from a large dataset. 
 
2.2.2 Presentation of Information 
 
After a search is performed, one of the main benefits of the LSNAA is in the email list panel. 
The panel displays some of the meta-data of all email that satisfy the search criteria in a tabular 
format. The email list can be sorted by any of the columns in the tabular format. The table 
includes the typical information to identify an email through the owner name, subject text, 
received date, and an icon indicating the existence of attachments. The real utility of the email 
list comes in the columns displaying the categorization status of each email. Any of the Original, 
Review, and System categorizations can be displayed for an email. To display a categorization, 
three columns are used, one for each category: LSN Relevant, Privileged, and Federal Record. A 
check box in each of these columns indicates whether the categorization has assigned the email 
to each of the categories. When a categorization does not exist, no check box is displayed in any 
of the three columns. 
 
The most useful display for the categorization status is the Combined display that digests the 
three different categorization types into a single display. It uses the check boxes to display the 
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Current categorization (Review if it exists; otherwise Original), similar to the other 
categorizations. However, it also displays a different background color for each cell to draw the 
user’s eye to potentially incorrect categorizations. When the System categorization disagrees 
with the Original categorization for a particular category, a shade of red is displayed in the 
background of the cell to indicate the absolute value of the difference: a darker shade of red 
indicates a larger certainty in the System’s categorization. In a similar fashion, green is used to 
indicate that the System’s categorization agrees with the Original categorization. When the 
System is unsure of the categorization, the background color is set to yellow. In addition to the 
background colorings, each of the columns for the three categories can be sorted according to the 
value of the difference between the Original and System categorizations. This allows a user to 
sort the results of a search to prioritize the review of categorizations with a higher likelihood of 
being incorrect. If a Review exists for an email, then the Review categorization is displayed in 
the checkboxes with a blue background to distinguish that it has already been reviewed.  
 
The email panel displays the content of a single selected email and contains the controls for 
providing a new categorization for an email. The display of the email includes standard fields, 
including the subject, from, date, to, and cc fields. It also includes a list of files that are attached 
to the email, which can be opened using the application. The control for entering a categorization 
allows the user to select check boxes to indicate if an email belongs to each of the LSN Relevant, 
Privileged, and Federal Record categories, plus an optional comment field. There are also short-
cut buttons for filling the review fields from the Original, Review, and System categorizations, if 
they exist. 
 
One of the requirements of the LSNAA is the ability to read and categorize attachments. As part 
of the email processing and automated categorization, this means that the system attempts to 
extract text from attached files in known file types. The status of extraction is displayed in the 
user interface both in the email list and in the email display window. The program displays a 
special icon in the email list and on the email itself in the case when an email has an attachment 
that text could not be extracted from in order to indicate to the user that the system could not use 
that attachment in its automated categorization. This is done to inform users that the system may 
not be using all available information and that a human inspection of these attachments may be 
needed.  
 
In addition to the main search and categorize functionality, the user interface also offers the 
ability to look at statistics regarding the email of a user or the archive as a whole. This includes 
the number of email in each category plus the number (and percentage) of email that have an 
Original, System, Review, or Current categorization. This can be used to monitor the overall 
quality of an email archive with respect to the number of discrepancies between the current 
categorizations and the system categorizations plus the amount of the archive that has been 
reviewed.  
 
2.3 Process Pipeline 
 
The LSNAA represents a front-end for the LSN Assistant system by interacting with an email 
categorization database. This database contains all of the relevant information about an email 
including its content, meta-data, attachment text, and categorizations. Because the front-end user 
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interface just handles the display of information in the database and the entry of new human 
categorizations for existing email, a set of back-end tools is used to populate the rest of the 
information. 
 
This set of back-end tools provides a processing pipeline for getting an existing email archive 
into the database and providing system categorizations. Figure 2 gives a conceptual presentation 
of the different parts of the pipeline and the data that flows between each component. 
 
  

 
 

Figure 2. The LSNAA System. 
 
 
To start the processing pipeline, an existing archive of email must be selected to be imported into 
the database. In the case of the TSPA email review, the existing email data was contained in a 
Lotus Notes database. To begin processing the information, the emails (and attachments) were 
extracted from the Lotus Notes database. Each email was converted to an XML representation 
containing the metadata plus the body of the email. Each attachment was extracted and saved in 
its native format. Once the emails have been converted to this XML format, the Batch Email 
Importer is able to read in the XML files and add them to the new email categorization database. 
This includes processing the email metadata, body, and determining the Original categorization 
of the email (if any). It also attempts to extract text from attachments that have a known set of 
file types (Microsoft Office, PDF, and plain text) and inserts the extracted text into the database. 
After the batch import is complete, all of the necessary information for the review and automated 
categorization of the documents is contained in the database. 
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To provide the System’s recommended categorizations for the email, the Batch Email 
Categorizer is run against the database. This program retrieves the text of each email and its 
attachments and uses its automated categorizer to create a new System categorization for each 
email. These new System recommended categorizations are then recorded in the database along 
with a record of the date of categorization, the version of the software used, and the version of 
the categorizer used. When a new system categorizer is to be created, the Categorizer Builder 
retrieves the emails that have been reviewed in the database along with their text, attachment 
text, and Review categorization and passes them to the machine learning algorithms to build the 
categorizer. 
 
2.4 Database Interactions 
 
From a technical perspective, the LSNAA user interface provides a front-end to a database of 
email and categorizations. It allows a user to search the database for emails of interest, view the 
email with their categorizations, and provide new categorizations when necessary. The 
application supports two ways of connecting to an email archive database: through direct 
connection to an email database or through a connection to an email archive web service, that 
acts as a proxy for the database.  
 
2.4.1 Categorization Used to Prioritize Data 
 
A key advantage of the LSNAA application is the ability to use the categorizations generated 
automatically by the LSN Assistant system to prioritize which emails to review. These System 
categorizations are used in two key ways: in the search for email and in the display of search 
results. 
 
For search, the most recent System categorization for each email can be used as a search 
criterion. When used in conjunction with the other search criteria, this allows a user to find 
emails where the System categorization differs from the Original or Review categorizations 
either in selected categories or in any category. This allows a user to limit their searches to look 
at email where the System believes there is the possibility of an incorrect categorization. 
 
Beyond the search criteria, the System categorization for each email is used in the display of the 
results of an email search. The display includes both the ability to show the System’s 
recommended categorization and the ability to show the discrepancy between the System’s 
categorization and the Original categorization. 
 
In addition, because the email search results allow email to be sorted by any of the columns 
displayed, the emails can be sorted according to their discrepancy. This allows a user to start at 
the top of the list with the email where the System categorization is the most certain in its 
difference from the Original categorization. When there are limited resources available for 
reviewing email, this feature allows a reviewer to focus on areas of the data where the system 
identifies the greatest differences in categorizations. 
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2.4.2 User Decisions and Database Updates 
 
All user actions regarding the categorization of emails are stored in the database. This is done to 
provide a history of all actions regarding an email. The display of Original, System, and Review 
categorizations are a view of the data that is updated when new categorizations are entered into 
the database. The Review categorization is updated when a user enters a new review for an 
email. The System categorization is updated when a new version of the automated categorizer 
runs against the database. This provides a full trace of the entire categorization history for an 
email, including which System recommendations are associated with the different Review 
categorizations. 
 
In addition to providing a review categorization for an email, a user can also mark an email as 
“Evaluated”. This “Evaluated” flag indicates that someone has looked at some aspect of the 
email (usually the subject line), but has not conducted a full review, and has indicated that it does 
not need to be reviewed.  
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3.  THE SANDIA CATEGORIZATION FRAMEWORK 
 
The Sandia Categorization Framework (SCF) is the computation engine used in the LSNAA for 
categorizing e-mail messages. It consists of several machine learning algorithms, data processing 
and transformation methods, and performance evaluation routines for solving two-class (binary) 
categorization problems. The LSNAA uses the SCF in the three tasks of categorizing e-mail 
messages into one of two classes: 
 
1) LSN Relevant or Not LSN Relevant 
2) Federal Record or Not a Federal Record, and  
3) Privileged or Not Privileged. 
 
To complete each of these tasks, a separate categorizer is built from (training) data that is 
manually labeled and then applied to a set of previously unseen (testing) data. A categorizer is a 
model of the characteristics of each document class computed using the terms in the training 
documents as features. Note that majority of work presented in this report was focused on the 
task of categorizing messages as either "LSN Relevant" or "Not LSN Relevant", although 
categorizers for each task listed above were created and tested. 
 
Machine learning has been successfully applied to the problem of categorization of text 
documents across many document domains. However, there are several issues associated with 
these methods that we identify in this section and that anyone using such a system should 
understand. Machine learning methods and models are functions of the training data, and thus the 
performance of a categorizer depends on the reliability of the training data. Specifically, noise or 
contradictions appearing in the training data translate to ambiguity and poor performance in the 
categorizer models. 
 
3.1. Determination of Methods to Include in the Framework 
 
To determine the best methods for categorizing the e-mail, we first applied the standard machine 
learning methods available in the WEKA (Witten and Frank, 2005; WEKA, 2007) machine 
learning software library. This library contains a comprehensive set of the most current machine 
learning algorithms freely available and are is used to benchmark new and existing algorithms in 
new problem domains. The WEKA library is designed for algorithm and/or process pipeline 
design; therefore, many of the algorithms are not well suited for inclusion in production 
software. Thus, we used them only for prototyping algorithms for use in the SCF. The main 
drawbacks of WEKA to date include limited support for sparse data structures (which are crucial 
in text analysis where there may be little overlap in term usage for any given pair or collection of 
documents) and inefficient algorithm implementations (e.g., much of the code is intended for 
research and thus not analyzed and optimized for production). However, the use of WEKA 
provided a quick way to narrow down the set of algorithms to consider for the LSNAA. 
 
3.1.1 Data 
 
The original set of data available for training the categorizers consisted of 9429 e-mail messages 
labeled for each of the three binary classes by the originator of each message. As time was a 



 

22 

limited resource for this project, we chose to use this data set for investigating the utility of 
existing categorization algorithms even though we knew there were errors in the labels in the 
data. 
 
The data was split into two mutually exclusive subsets of approximately equal size: one for 
building the categorizers and one for evaluating the performance of the categorizers. The subsets 
were randomly chosen from a uniform distribution and resulted in a training set of 4713 training 
4716 testing documents. A STANLEY (Bauer et al., 2005) model was built for the training set 
using full documents (no splitting documents). The resulting model consisted of 15358 terms. 
Note that the training set consists of approximately 27.5 times as many negatives as positives 
with 4548 negatives and 165 positives.  
 
3.1.2 Survey of Standard Methods 
 
The methods surveyed in WEKA fall into one of the following categories: Bayesian, function, 
lazy, decision tree, decision rule, and miscellaneous. The Bayesian categorizers use Bayes’ 
formula to model the probability that a given document belongs to a particular class. The lazy 
categorizers consist of methods for clustering the data and using the resulting clusters to 
determining the class label of a document: each cluster is associated with a document class and 
the cluster to which a testing document belongs determines its class label. The function 
categorizers use model regression fits to the features of the training documents in each class to 
determine a function to model the separation of classes. The decision tree and rule categorizers 
recursively partition the documents based on sequences of features either randomly chosen or 
chosen based on how well a feature can partition a subset of the documents into partitions 
containing documents of a single class. The resulting categorizers are either binary trees or a set 
of disjunctive rules that are used to separate documents into classes by following the logic 
represented in the tree or rule set. Finally, the set of miscellaneous categorizers consists of those 
that do not fit into any one of the other categories. Note that some of the methods are hybrid 
methods consisting of one or more methods combined in some specified way (such methods fall 
into the meta-learner category of learners in WEKA and are often referred to as ensemble 
methods).  
 
The methods in WEKA surveyed for this work along with the performance results of each 
categorizer are presented in Appendix A. In Appendix A.1, we list the methods and the specific 
parameters used in building each categorizer; see WEKA (2007) for details on the WEKA 
methods. The results presented in this report are for those categorizers most commonly used in 
text categorization as well as those methods that performed the best in our initial investigations. 
At least 2 categorizers were included from each of the main types of methods available in 
WEKA.  
 
Figure 3 presents one view of the results of the WEKA categorizers trained and tested on the 
data presented in the previous section; see Appendix A.2 for the complete set of results. In the 
figure, the number of false negatives is plotted against the number of false positives for each 
categorizer built to find e-mail messages labeled “LSN Relevant”. Negative and positive labels 
are specified relative to the class of interest in building and applying a categorizer; thus in this 
case false negatives are those messages that are incorrectly labeled as negative (“Not LSN 
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Relevant”) and false positives are those labeled incorrectly as positive (“LSN Relevant”). We see 
from the figure that there is a general trend in the trade-offs associated with the WEKA methods: 
false negatives are reduced at the cost of introducing more false positives. Thus, reducing the 
number of false negatives is equivalent to reducing the number of messages in which we are 
interested that we will miss (false negatives) while increasing the number of messages that will 
be labeled as those of interest (false positives). We address this trade-off more in Section 4, 
where we discuss the optimization of the categorizer used in the LSNAA. 
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Figure 3. Rates of False Categorizations using the WEKA Categorizers. 
 
 
3.2 Description of the Learning Methods 
 
We present here the descriptions of the methods currently available in the SCF. The final set of 
categorizers chosen for the SCF includes several variants of those available in WEKA that 
performed the best on the data presented in the previous section and one method implemented by 
our group for another software library that was not available in WEKA.  
 
The methods in the SCF can be trained on data labeled for two classes and the resulting 
categorizers generate two outputs: a categorization label and a confidence value. The label is 
either positive, negative, or is empty (corresponding to an undecided label). The confidence 
value is a relative measure of the confidence that the categorizer has in the corresponding label 
and is a function of the amount and characteristics of the training data along with the categorizer 
method parameters used to build the categorizer. Thus, confidence values have different meaning 
for each categorizer method. 
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3.2.1 Perceptron 
 
For binary categorization problems where the data has a vector representation (such as the vector 
space model), linear binary categorizers are natural categorization functions to learn. Such 
categorization functions take the form of  
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with a threshold applied of f(x) > 0. Here, x is the data input vector (N elements), w is the so-
called weight vector (N elements), and b is a bias term. This function represents a decision space 
separated by the hyperplane w with offset b. The confidence value output by a linear binary 
classifier is the absolute value of f(x). This means that inputs that are further away from the 
decision hyperplane will have a higher confidence value. 
 
The Perceptron algorithm (Rosenblatt, 1958; Mitchell, 1997) is a well-known algorithm for 
learning a binary categorization function. Although the algorithm has well understood limitations 
(Minsky and Papert, 1969), such as requiring for convergence that the data be linearly separable, 
in practice the Perceptron algorithm can work well for document categorization. This is because 
the large number of features in the vector representation of documents makes it more likely that 
the documents will be linearly separable or nearly linearly separable (Joachims, 1997). In 
addition, the “kernel trick” can be applied Perceptron algorithm in order to handle data that is not 
linearly separable and even be applied to data that is not in a vector representation (Shaw-Taylor 
and Cristianini, 2004). 
 
We make use of a variation of the Perceptron algorithm that includes the ability for the algorithm 
to enforce a predetermined margin on the data. Enforcing a margin will typically result in a 
better fit hyperplane and can be viewed as an easy way to obtain some of the beneficial 
separation properties of the computationally more expensive methods employing a Support 
Vector Machine (see Burges (1998) for a descriptions of those methods). Having separate 
parameters for the positive and negative margins allows the algorithm to place the decision 
boundary in different locations within the margin, which is useful in dealing with data where 
there is a large discrepancy between the number of positive and negative examples (which is the 
case for the LSN data). 
 
3.2.2 Random Decision Tree 
 
Tree-based methods (Breiman, et al., 1984; Quinlan, 1993) partition the feature space of the 
input data and fit a simple categorization model within each partition. A decision tree is created 
by splitting the training data associated with each node according to a function of a single 
feature. At each leaf node of the tree, the training data is split using the feature which produces 
the best partitioning with respect to some error function. A restriction in most tree-based 
methods is that each feature can be used for splitting only once along each path from the root 
node to a leaf node. Construction of the decision tree is complete when each leaf node is a pure 
node, i.e., the node only contains data from a single category. 
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Random decision trees are decision trees that choose the feature on which to split the training 
data at each node from a random sample of the full set of features available. Thus, each node is 
split based on the best partitioning with respect to a random subset of features and not the entire 
feature set. This reduces the amount of computation required for building the decision tree, but in 
general introduces more error into the categorization model. For this reason, random decision 
trees are often used in ensembles (see Section 3.3.2 for more on random forests, which are 
ensembles of random decision trees). 
 
The random decision tree method in the SCF is based on the CART (Breiman, et al., 1984) 
decision tree method, a tree-based method which recursively partitions the feature space into 
binary partitions using the metric of information gain (Quinlan, 1986) for determining which 
feature (and the particular value of that feature) to split each node on. The random subsets of 
features are chosen from a uniform distribution of the available features at each set (i.e., those 
features not used to split any of its parent nodes). 
 
One general drawback of decision trees used for categorization is that the resulting models tend 
to overfit the training data. That is, the models are highly specific to the training data and exhibit 
poor performance when used to categorize new data. To remedy this, tree-based methods often 
prune the resulting decision trees, a process of collapsing nodes based on some pruning criteria 
(see Breiman et al. (1984) for details.). Currently, the decision tree methods in the SCF do not 
employ pruning to address overfitting, as suggested in Banfield et al. (2007). 
The confidence value output by decision trees in the SCF is either –1, +1, or 0, corresponding to 
a negative, positive, or undecided label. Undecided labels occur often when there are too few 
features in the training data on which to split tree nodes. For large collections of textual data, this 
is often not an issue since the features are often functions of the terms occurring in the data.  
 
3.2.3 Naïve Bayes 
 
The naïve Bayes classifier is one of the most straightforward and easy to implement categorizers 
(Barber, 2005; Eibe and Bouckaert, 2006; Eyherandy, et al., 2003; McCallum and Nigam, 1998; 
Rennie, 2001; Shen and Jiang, 2003). Naïve Bayes classifiers compute a class likelihood 
probability for each sample presented. The class likelihood probability is a product of the class 
prior and all feature value/class conditional probabilities estimated from the training data. 
(Actually for a specific sample, described by n features, for which the features take on the values 
0 and 1 only, those feature/class conditional probabilities that match these values are used in the 
class likelihood estimates; for more details see Appendix E). The class with the maximum 
likelihood is returned as the class value for the sample presented. It will be most straightforward 
to describe the binary feature case (i.e., each feature is either present or not present with respect 
to a particular sample) here, so the following discussion will be restricted to the binary naïve 
Bayes classifier. 
 
The binary naïve Bayes classifier relies upon strong independence assumptions, which can be 
wrong (i.e., naïve). In this classifier, each feature/class pair is assumed to be independent from 
every other feature/class pair. This assumption allows the probability of a feature obtaining a 
particular value given a specific class to be estimated very simply by the frequency of occurrence 
of that feature value over all training data at hand for the same class. None of the other features 
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or any of the other classes needs to be considered for this specific feature/class pair. Implicit in 
the assumption that all feature/class pairs are independent is the assumption that all classes are 
also independent. This second assumption allows class prior probabilities to be estimated directly 
from the frequency of occurrence of each class in the training data. Given these two quantities 
(class prior and feature/class conditional probabilities), we can uses Bayes theorem to estimate 
the class/feature conditional probability to within a constant (which is the feature probability). 
Note that the feature probability is constant across all classes (i.e., independent of class) and thus 
we can compare class/feature conditional probabilities to one another which cancels out the 
feature probabilities. The class likelihood is estimated by multiplying together each of the 
class/feature conditional probabilities for a specific class and specific feature values. 
 
The naïve Bayes classifier has the advantage that it is easy to train and efficient to use in 
classification tasks. The class prior and feature/class conditional probabilities can be estimated in 
one pass through the training data. In the binary naïve Bayes classifier, feature/class conditionals 
are estimated for the existence of the feature (i.e., the feature is present, and thus the value is 1). 
The feature/class conditional for the absences of the feature is just 1 minus the feature/class 
conditional for the existence of the feature. The class likelihoods are computed as a product of 
the class/feature conditionals (i.e., for a particular sample, if the feature is present, use the 
feature/class conditional corresponding to the existence of the feature otherwise use thee 
feature/class conditional corresponding to the absence of the feature). 
 
Because the naïve Bayes classifier uses products of conditional probabilities, one disadvantage is 
that a 0 probability will cause the entire product to be 0 as well. One way to address this problem 
is to ensure that each conditional probability is greater than or equal to 0 (usually, a small 
positive value is used). Because the values of the class likelihoods can be very near 0 or 1, it can 
be problematic to define a confidence value for the classification produced by the naïve Bayes 
classifier. Computing log-likelihood instead of raw likelihood can help somewhat in these cases, 
especially when there are many features (for more detail, see Appendix E). The confidence 
returned by the binary naïve Bayes classifier is the 1 divided by the quantity 1 plus the distance 
from 0 in log-likelihood space for the classification. Note that the logarithm of probabilities will 
always be less than or equal to 0, thus we use the negative of the logarithm for distance. 
 
Another concern with the naïve Bayes classifier is that it can be too naïve in some cases, but 
given its learning and classification speed, it is a good candidate for inclusion in an ensemble 
learner. 
 
3.2.4 Fuzzy ARTMAP 
 
The Fuzzy ARTMAP neural network classifier operates by slicing the feature space up into 
rectangles (actually in the n–dimensional feature space these are hyper-rectangles), and then it 
assigns a single class (label) to each rectangle (Carpenter, et al., 1992). During classification, a 
sample is given the class (label) of the closest matching rectangle. Note that these rectangles do 
not need to be independent of one-another, and in fact, two particular rectangles can partially 
overlap or one can be a proper subset of the other (however, it will never be the case that two 
different rectangles cover the exact same feature space). Each rectangle and all samples which 
are most closely matching to it (both inside the rectangle and immediately outside the rectangle) 
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are assigned the same (single) class (label) during classification. This section contains a brief 
algorithmic description of the Fuzzy ARTMAP neural network classifier (for a more detailed 
description, see Appendix F. 
 
Even though the methodology of Fuzzy ARTMAP sounds simplistic it does support universal 
function approximation (Verzi, et al., 2003; and Verzi, 2003) as do other neural network 
classifiers (Cybenko, 1989; Hartman, et al., 1990; Hornik, et al., 1990; Park and Sandberg, 
1991). Classifiers that support universal function approximation have the capacity to represent 
many families of interesting functions. Most of the proofs supporting universal function 
approximation cover the family of continuous functions (or partially continuous functions with 
specific characteristics). The Fuzzy ART and Fuzzy ARTMAP neural networks support 
universal approximation of measurable functions (which is a slightly larger family than 
continuous functions). 
 
The Fuzzy ARTMAP neural network classifier is composed of two Fuzzy ART neural networks 
(one each on the left and right) connected through a map field (Carpenter, et al., 1991). Each 
Fuzzy ART neural network operates in an unsupervised fashion to form minimum sized 
rectangles containing all data that define the clusters (mathematically the rectangle is the 
minimum sized n–dimensional hyper-rectangle containing all training samples belonging to the 
cluster). The map field is used to ensure that each cluster on the left is connected (or linked or 
associated) with only one cluster on the right. Clusters on the left consist of rectangles covering a 
portion of the domain, and clusters on the right represent patterns of classes (labels). In most 
cases of classification with the Fuzzy ARTMAP, there will be a single right-side cluster for each 
class (label), and this will be true here (in SCF) as well. In this way, (fully) supervised learning 
can be achieved using Fuzzy ARTMAP, and classes will be partitioned independent from one 
another (meaning that each left-side cluster will be linked to a single class, and all samples 
belonging to this cluster will be given the same class label during classification).   
 
Fuzzy ARTMAP is an on-line learner, which is different from many of other classification 
techniques (see Verzi (2003) for a more detailed description of the differences between on-line 
and off-line learners). As an on-line learner, Fuzzy ARTMAP considers only a single training 
instance at a time. An on-line learner does not know when it is done training, it only knows about 
the “current” training instance (and class). Even though it is an on-line learner, Fuzzy ARTMAP 
is trained using batch training (as are all of the other SCF classifiers). Thus, an external trainer 
will run Fuzzy ARTMAP through the entire training set several times until it stabilizes. Each 
pass through the training data is called an epoch, and stabilization is achieved when no weights 
are changed during an epoch of training. When Fuzzy ARTMAP is allowed to fully stabilize, it 
will create enough left-side rectangles so that each training sample is correctly classified 
(assuming that the training data is self-consistent). Binary-valued Fuzzy ARTMAP is guaranteed 
to stabilize in n epochs for n–dimensional feature space data (Georgiopoulos, et al., 1994). 
 
As an on-line learner, Fuzzy ARTMAP more closely models biological learning situations 
(Grossberg, 1980; Carpenter, et al., 1992; Carpenter and Grossberg, 2003), but because of this, it 
can perform less well than other classifiers that are allowed to consider all of the training data 
and associated features including various statistical relationships. On-line learners are sensitive 
to the order of training data (even when they are trained with batch training). This means that 
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Fuzzy ARTMAP is a good candidate for inclusion in an ensemble (especially using different 
orderings of the training data). 
 
In general, Fuzzy ARTMAP is fast to train and classify samples. However, with very large 
feature spaces (i.e., many feature dimensions), both the training and classification speed of Fuzzy 
ARTMAP can decrease significantly. Thus, Fuzzy ARTMAP is a good candidate for ensemble 
methods that use only a portion of the feature space for each of their constituents. A major 
advantage of Fuzzy ARTMAP is that it serves as a biologically inspired model of human (visual) 
category formation. In general, Fuzzy ARTMAP does not require any parameter tuning, but for 
optimal results some parameters might need to be adjusted. 
 
A  Fuzzy ARTMAP neural network classifier might over-fit the training data when it is allowed 
to fully stabilize (i.e., using batch training). However, Fuzzy ARTMAP can also be operated in 
fully on-line mode (e.g., trained on-line, too) in which case it never stops learning and it can 
under-fit the data or even lose track of previously learned classifications (when long-term 
memory is allowed to decay). In the SCF, we train Fuzzy ARTMAP using batch training either 
by itself or in ensembles. 
 
The confidence value for a Fuzzy ARTMAP classification can be computed several different 
ways. For the SCF, confidence is calculated as  
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Exact boundaries between classes can be very difficult to characterize in Fuzzy ARTMAP. 
 
3.2.5 Scaled Categorizers 
 
The confidence value output by the different methods presented in this section can differ in 
several orders of magnitude. This makes comparing or combining of the resulting categorizers 
problematic. To address this issue, a scaled categorizer is included in the SCF. A scaled 
categorizer is simply a categorizer whose confidence values are mapped to the range [–1, +1], 
with negative (positive) values corresponding to negative (positive) labels. An exact value of 0 
corresponds to an undecided label. Since we are mostly concerned with binary categorization 
(i.e., the output classification is one of two labels) this scaling is reasonable. A value of 1 means 
that we are perfectly confident that the classification is correct, at a value of -1 we are perfectly 
confident that the classification is incorrect, that is, it should be the other class (of the two 
classes), and at a value of 0 we are not confident in either class as a correct classification. Note 
that at the boundary between the two classes, the scale would be 0. With multi-class 
categorization, we could use a scaling factor for each class or some reasonable approximation. 
 
Perceptron categorizers are scaled by the maximum distance from linear separator over all the 
training data. Decision trees need no scaling as their confidence values are already mapped to  
[–1, +1]. Naïve Bayes categorizers produce confidence values that are already scaled between 0 
and 1, thus this value need only be multiplied by the class value (either -1 or 1). And the output 
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from Fuzzy ARTMAP categorizers is also normalized between 0 and 1, thus it need only be 
scaled by the class value, being either -1 or 1 for the binary categorization in SCF. 
 
 
3.3 Description of the Ensemble Learning Methods 
 
We present here the ensemble methods currently available in the SCF. Categorization ensembles 
(also known as committees or meta-learners) are collections of different categorizers used to 
perform task. The output of the ensemble categorizer is a weighted combination of the individual 
categorizers. Categorization ensemble methods differ from one another in the individual 
categorizers used in the ensemble, how they use the training data to build each individual 
categorizer, and how the individual categorizers are weighted to produce a final categorization 
label. The results of the survey presented in Section 3.1.2 indicate that the majority of ensemble 
methods (i.e., meta-learners) performed well in labeling a high number of true positives (finding 
messages of interest) and a low number of false negatives (reducing the number of messages of 
interest incorrectly labeled). Thus, we included several ensemble methods in the SCF that 
performed well in the initial investigation as well as a new method developed to address the 
specific problem for which the LSNAA was developed. 
 
3.3.1 Weighted Ensembles 
 
The most basic ensemble method in the SCF consists of a collection of categorizers and is called 
a weighted ensemble method. Associated with each categorizer is a weight for scaling its 
confidence output score. For each message to be labeled, the ensemble output is a sum of the 
outputs of each individual categorizer, scaled by its corresponding weight.  
 
The default weighting scheme is 1/N for an ensemble of N categorizers, giving equal weight to 
each categorizer. Equal weighting ensembles can be biased by categorizers with possible 
confidence values that are orders of magnitude greater than those possible for all other 
categorizers in the ensemble. Thus, scaled categorizers should be used with equal weighting 
ensembles. When scaled categorizers and equal weighting is used, the resulting categorizer is 
equivalent to the standard majority voting ensemble method (Sebastiani, 2002). 
 
Another weighting scheme implemented uses training set error performance to weight the 
ensemble members. The goal of this weighting scheme is to incorporate more of the 
characteristics of the categorizers with fewer errors into the final ensemble categorizer. 
 
The categorizer used in the LSNAA is a weighted ensemble of several different categorizers, 
including ensemble categorizers. See Section 4 for more details on the particular ensemble used, 
the weights associated with each individual categorizer, and the rationale behind these choices. 
 
3.3.2 Random Forests 
 
The random forest ensemble method (Breiman, 2001) in the SCF produces an ensemble of 
random decision trees with equal weighting. The number of individual random tree categorizers 
and the number of random features to use in training each individual categorizer can be 
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specified. The random forests categorizers created in our study of the WEKA categorizers 
performed well in labeling a high percentage of true positives and relatively few false negatives. 
Other research groups have also found that random forest categorizers perform well for the 
related problem of categorization of spam in e-mail messages (Koprinska, 2007). 
 
3.3.3 Balanced Learners 
 
A new ensemble method developed for solving the problem for which the LSNAA was 
developed is called a balanced learner ensemble method. This method was developed to address 
the highly skewed distribution of classes in the e-mail data. Recall that the ratio of negative to 
positive instances in the training data used for the WEKA study was nearly 30 to 1 and thus 
presented a challenge for categorizers to label all of the positives correctly.  
 
The balanced learner ensemble method is based on the ensemble method presented in (Gao et al., 
2007). In that work, the class with more instances is randomly partitioned such that each 
partition is approximately equal in size to the class with fewer instances in the training data. The 
result is a collection of training sets where each set contains all of the instances of the minority 
class and a random sample (with no duplicates across the entire set) of those of the majority 
class. That method is available in the SCF but not implemented in the LSNAA. Our balanced 
learner differs from the work of Gao, et al. as follows: 1) the majority class is sampled with 
replacement; 2) skewed distributions in the classes in the balanced training sets are allowed (e.g., 
in order to approximate the original distribution but with less skew); and 3) more than 

⎡ ⎤nnNk /)( −=  individual categorizers are allowed in the ensemble, where N is the total 
number of training instances and n is the number of training instances in the minority class. 
 
The number of individual categorizers, the number of random samples taken from the instances 
of the majority class for the training set of each individual categorizer (the default is the number 
of instances in the minority class), and the weight associated with each individual categorizer 
(the default is an equal weighting scheme) can be set for each balanced learner ensemble 
categorizer. 
 
In all of our testing, the balanced learner ensembles of categorizers from the SCF improved the 
performance of those individual categorizers. We believe that this performance gain is problem 
dependent and a result of the highly skewed class distribution of the data for this problem. There 
is much more research to be done in understanding the extent of problems for which this method 
is most applicable and how best to choose the method parameters for particular problems and 
data. 
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4. USING THE SCF FOR CATEGORIZING LSN E-MAIL MESSAGES 
 
The development and evaluation of several SCF individual categorizers and ensemble 
categorizers applied to two collections of e-mail data is discussed in this section. Also, the data 
used  for the performance evaluations, the strategies for tuning and optimizing the categorizers, 
and the results of the evaluation are described. Specifically, the data was divided into two 
collections: Case 1 (messages sent before October 2006) and Case 2 (messages sent after 
October 2006).  
 
There are many performance metrics used by researchers in the machine learning community for 
evaluating categorizer methods; see Sebastiani (2002) for a recent survey. In this report, we 
present the raw output (in Appendix B) in terms of positive categorizations ("LSN Relevant", 
"Federal Record", "Privileged") and negative categorizations ("Not LSN Relevant", "Not a 
Federal Record", "Not Privileged") correctly and incorrectly labeled along with accuracy, 
precision, and recall, precision-recall curves (used originally for evaluating performance of 
information retrieval systems but now often used for categorizer evaluation), and a metric 
specifically design to highlight performance with respect to the goals of the LSNAA (relatively 
high number of true positives and low number of false negatives simultaneously). These are the 
tools we used in determining the "best" categorizers to be used in the LSNAA. 
 
As each categorizer method contains user-specified several parameters, performance of the 
resulting categorizers are directly dependent on the choices for these parameters. However, it is 
often not clear what the best parameter choices are for a given training set, and the performance 
of the categorizer on the testing data may differ from that of the performance on the training data 
for a given set of parameter values. Thus, tuning and optimization of the categorizers must be 
performed on a given training data set prior to use. The SCF categorizer used in the LSNAA is 
an ensemble categorizer, and the choice of weighting for this ensemble is presented in this 
section. Validation of the categorizer used in the LSNAA is also presented. 
 
The solution process described in Section 1.4 includes iterate over the steps of building, testing, 
and applying categorizers to data until an acceptable categorizer has been determined. For the 
problem and data which motivated the development of the LSNAA, it was determined that two 
iterations of these steps were adequate (as assessed by SMEs associated with the problem and 
data). The following sections describe these two iterations in detail. 
 
4.1 First Review Categorization and Performance Evaluation 
 
4.1.1 Validation Data 
 
A subset of 1766 e-mail messages from those used for the WEKA study and described in Section 
3.1.1 was chosen for optimizing and evaluating the performance of the SCF categorizers. These 
messages were then certified by a group of SMEs trained on the process and procedures for 
labeling the messages with respect to the three categorizations listed at the beginning of Section 
3. Each of the messages was certified by at least two experts. 
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The numbers of messages for each of the three types of labels are as follows: 
• Number of LSN Relevant documents: 83 (5%) 
• Number of Federal Record documents: 1564 (89%) 
• Number of Privileged documents: 291 (16%) 
 
Thus, the class distribution for each type is highly skewed, but in different directions for the 
“LSN Relevant”/“Privileged” messages and those labeled as a “Federal Record”. Note that this is 
automatically adjusted for in the balanced learner ensemble methods, since for each categorizer 
the minority and majority classes are first identified and then the training data samples are 
chosen. 
 
Note that only e-mail messages from Case 2 were validated by SMEs in the first review, and thus 
are the only messages used in training and assessing performance of the categorizers. 
 
4.1.2 Parameter Identification for Individual Categorizers in the LSNAA 
 
Categorizer-specific parameters for individual categorizers were identified by starting with 
defaults values discussed in the machine learning community and then tuned by means of a 
simple local search in parameter space around those initial values. This process helped us assess 
the robustness of these methods and defaults values (by identifying correlated parameters and 
approximating sensitivity of the parameters near the default values). We emphasize that this 
process was not a rigorous numerical optimization of the categorizer parameters for the given 
training data. Such a process would require more time and effort than was available and would 
not necessarily produce an optimal categorizer for all testing data to be labeled since the 
relationship between the training and testing data is unknown. 
 
Figure 4 presents the precision-recall curves of several of the categorizers used in the LSNAA. 
Precision is defined as the percentage of true positives in the testing set that were categorized 
correctly: 
 

 FPTP 
TPprecision
+

=   

  
and recall is defined as the percentage of the testing set categorized as positives that were true 
positives: 
 

 FNTP 
TPrecall
+

=   

  
where TP denotes true positives (positive data categorized as positive), FP denotes false positives 
(positive data categorized as negative), and FN denotes false negatives (negative data 
categorized as positive). Precision-recall curve plots are typically used to compare categorizers 
with respect to the tradeoff of precision and recall. With many categorizers, however, it is 
difficult to compare performance, as can be seen in Figure 4. 
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Figure 4. Precision-Recall Curves of Several SCF Categorizers. 

 
We used the precision-recall curves of the several different categorizers parameterized in several 
ways to determine the set of categorizers to be used in the ensemble categorizer for the LSNAA. 
Appendix D.1 presents the results of the parameter tuning for the perceptron, balanced 
perceptron, random forest, balanced random forest, naïve Bayes, and balanced naïve Bayes 
categorizers. Below are the categorizers that were chosen for the initial review based on our 
desire to create an ensemble categorizer with both high recall and high precision, with high recall 
taking precedence: 
 
• Perceptron Categorizer 

Note: Many iterations used for greater accuracy, higher margin of positive instances results 
in a categorizer which labels positive that are clearly different than the negatives. 

• Parameters:  
o Maximum iterations = 5000 
o Margin of positive instances = 100 
o Margin of negative instances = 1 

 

• Balanced Perceptron Categorizer 
Note: Fewer iterations and smaller margins between classes result in less accurate individual 
categorizers but the balancing of training data uses these weak approximations to create a 
more robust categorizer for determining true positives.  
Parameters:  

o Number of individual categorizers = 10 
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o Majority instances = 2.5 (times the number of minority instances) 
o Maximum iterations = 100 
o Margin of positive instances = 50 
o Margin of negative instances = 10 

 

• Balanced Random Forest Categorizer 1 
Note: A large ensemble of random decision trees trained on slightly skewed training data 
samples removes a lot of the noise in the features characterizing the positives and negatives.  
Parameters:  

o Number of individual categorizers = 200 
o Majority instances = 1.5 (times the number of minority instances) 
o Number of random features used per tree node = 100 

 
• Balanced Random Forest Categorizer 2 

Note: The fewer ensemble members trained on data that better reflects the skewed class 
distribution of the data results in a more robust categorizer when the training and testing data 
is very different.  
Parameters:  

o Number of individual categorizers = 10 
o Majority instances = 2.5 (times the number of minority instances) 
o Number of random features used per tree node = 100 

 
• Naïve Bayes Categorizer 

Parameters:  
o Minimum feature probability = 0.00001 

  
4.1.3 Weight Identification for the Ensemble Categorizer in the LSNAA 
 
An ensemble of categorizers was chosen for the LSNAA based on the performance of the 
individual categorizers presented in the previous section. We chose to include categorizers that 
performed well in either labeling a high number of true positives or a low number of false 
negatives, or both. In this way, categorizers would be included in the final ensemble that could 
collectively perform well with respect to the given tasks, and the contribution of each individual 
categorizer could be controlled using the ensemble weights. The particular weights for the 
ensemble members were chosen using the same process for individual categorizer parameter 
identification discussed in the previous section; specifically, an ensemble categorizer with high 
recall and high precision was determined to be the best categorizer. 
 
Appendix B.2 presents a sample of the results of the simple weighting local search around the 
equal weights of 1 for each ensemble member except for the naïve Bayes categorizer. Due to the 
amount of time required to build and test the naïve Bayes categorizer, the weight was determined 
once the other weights had been chosen. 
 
Figure 4 also shows the precision-recall curves of several of the ensembles using different 
weighting schemes. Note that the ensemble categorizers in general perform as well or better than 
the individual categorizers, as is expected. 
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The weights used for the categorizer in the LSNAA for the first review were as follows: 
• Perceptron = 2.5 
• BalancedPerceptron = 1.5 
• BalancedRandomForest1= 5.0 
• BalancedRandomForest2= 2.5 
• NaiveBayes = 2.5 

 
4.1.4 Performance Assessment 
 
The validation of the SCF ensemble categorizer used in the LSNAA was performed in two steps. 
The first step consisted of 10-fold cross validation, and the second of a 100-fold random 
validation.  
 
Table 1. Results of 10-Fold Cross Validation for the Ensemble Categorizer in the LSNAA. 

 
LSNRelevant : Training      

 TP TN FP FN Accuracy Precision Recall 
Average 39.960 762.970 91.030 5.040 0.893 0.311 0.888
STD 2.291 20.689 20.689 2.291 0.022 0.040 0.051
        
LSNRelevant : Testing      

 TP TN FP FN Accuracy Precision Recall 
Average 31.230 733.590 110.490 10.790 0.863 0.225 0.745
STD 4.381 28.552 25.162 3.862 0.026 0.039 0.079
        
Privileged : Training      

 TP TN FP FN Accuracy Precision Recall 
Average 130.500 689.070 69.930 9.500 0.912 0.653 0.932
STD 2.684 10.460 10.460 2.684 0.012 0.036 0.019
        
Privileged : Testing      

 TP TN FP FN Accuracy Precision Recall 
Average 123.630 638.240 102.810 21.420 0.860 0.548 0.853
STD 7.534 20.302 14.649 4.473 0.015 0.040 0.028
        
FederalRecord : Training      

 TP TN FP FN Accuracy Precision Recall 
Average 800.960 58.920 36.080 3.040 0.956 0.957 0.996
STD 1.608 6.297 6.297 1.608 0.007 0.007 0.002
        
FederalRecord : Testing      

 TP TN FP FN Accuracy Precision Recall 
Average 778.160 27.230 74.550 6.160 0.909 0.913 0.992
STD 18.679 4.627 8.543 2.557 0.009 0.009 0.003
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Cross validation is the process of splitting the validated data into equal-size, randomly chosen 
subsets (folds), and testing on each subset while training on the combination of the other subsets. 
Thus, in 10-fold cross validation, the validated data is split into 10 subsets, and there are ten sets 
of results, which are averaged to evaluate the overall performance. This process of validation is 
an attempt to remove the bias of a particular split used in training and testing the data. Table 1 
presents the average and standard deviation of the cross validation results across 10 folds for the 
ensemble described in the previous section. 
 
Random validation is similar to cross validation except that the folds consist of approximately 
equally-sized random splits of the data into training and testing data. Thus, in 100-fold random 
validation, the validated data is randomly split 100 times, and there are 100 sets of results, which 
are averaged to evaluate the overall performance. This process of validation is also an attempt to 
remove the bias of a particular split used in training and testing the data, but allows for 
replacement of the training data. Table 2 presents the average and standard deviation of the 
random fold validation results across 100 folds for the ensemble described in the previous 
section. 
 

Table 2. Results of 100-Fold Random Validation for the Ensemble Categorizer in the 
LSNAA. 

LSNRelevant : Training  
 TP TN FP FN Accuracy Precision Recall 

Average 67.500 1414.900 106.100 1.500 0.932 0.389 0.978
STD 1.269 5.065 5.065 1.269 0.003 0.011 0.018

   
LSNRelevant : Testing  

 TP TN FP FN Accuracy Precision Recall 
Average 6.500 153.300 15.000 1.800 0.905 0.315 0.802
STD 1.958 4.001 4.830 1.229 0.024 0.107 0.130

   
Privileged : Training  

 TP TN FP FN Accuracy Precision Recall 
Average 254.300 1294.100 36.900 4.700 0.974 0.874 0.982
STD 2.869 5.877 5.877 2.869 0.005 0.018 0.011

   
Privileged : Testing  

 TP TN FP FN Accuracy Precision Recall 
Average 24.100 133.500 14.000 5.000 0.892 0.633 0.831
STD 2.998 3.923 2.867 2.449 0.024 0.067 0.074

   
FederalRecord : Training  

 TP TN FP FN Accuracy Precision Recall 
Average 1404.400 126.100 57.900 1.600 0.963 0.960 0.999
STD 1.350 3.510 3.510 1.350 0.003 0.002 0.001

   
FederalRecord : Testing  

 TP TN FP FN Accuracy Precision Recall 
Average 154.700 6.200 14.000 1.700 0.911 0.917 0.989
STD 5.165 2.201 4.899 1.252 0.025 0.029 0.008
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4.2 Second Review Categorization and Performance Evaluation 
 
The final ensemble categorizer from the first review was applied to the two collections of e-mail 
messages, and then the SMEs validated a new subset from both of the Case 1 and Case 2 
collections. 
 
4.2.1 Validation Data 
 
A subset of 34151 e-mail messages was chosen for optimizing and evaluating the performance of 
the SCF categorizers in the second review. These messages were again certified by a group of 
SMEs trained on the process and procedures for labeling the messages with respect to the three 
categorizations listed at the beginning of Section 3. Each of the messages was certified by at 
least two experts. 
 
The numbers of messages for each of the three types of labels are as follows: 
• Number of LSN Relevant documents: 7582 (22%) 
• Number of Federal Record documents: 32891 (96%) 
• Number of Privileged documents: 3140 (9%) 
 
Note the class distribution for each type is skewed as in the first review. However, the amount of 
skew is different. Specifically, there is significantly less skew in the distribution of "LSN 
Relevant" and "Not LSN Relevant" messages. These differences highlight the need for iterating 
through the steps of the solution process of determining an effective categorizer. As the set of 
validated data changes, the categorizers should be updated to reflect this new information. 
 
4.2.2 Parameter Identification for Individual Categorizers in the LSNAA 
 
The same process for identifying effective parameters for the individual categorizers was then 
applied to the validation data. The only difference was that the set of parameters searched were 
not centered at the defaults suggested by the algorithm developers. The parameters were centered 
around those determined to be the best parameters during the first review. 
 
Appendix D.2 presents the results of the parameter identification studies for the second review. 
Note that the individual categorizers used were slightly different than those during the parameter 
identification study of the first review; they reflect the set of categorizers used in the final 
ensemble categorizer of the first review. 
 
Figure 5 presents a plot of the false negatives by the false positives for the categorizers created 
during the parameter identification study. This type of plot is useful in determining rough bounds 
on the performance of the individual categorizers being used. For example, Figure 5 illustrates 
the trend of the categorizers and a (disconnected) lower bound of the tradeoffs between the two 
types of false categorizations that should be expected using the set of parameters identified. 
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Figure 5. False Categorizations of the Individual Categorizers: Second Review, Test Data. 
 
 
The individual categorizer parameters chosen for the second review are as follows: 
 
• Perceptron Categorizer 

Note: Many iterations used for greater accuracy, higher margin of positive instances results 
in a categorizer which labels positive that are clearly different than the negatives. 

• Parameters:  
o Maximum iterations = 3000 
o Margin of positive instances = 150 
o Margin of negative instances = 1 

 

• Balanced Perceptron Categorizer 
Note: Fewer iterations and smaller margins between classes result in less accurate individual 
categorizers but the balancing of training data uses these weak approximations to create a 
more robust categorizer for determining true positives.  
Parameters:  

o Number of individual categorizers = 5 
o Majority instances = 2.0 (times the number of minority instances) 
o Maximum iterations = 500 
o Margin of positive instances = 1000 
o Margin of negative instances = 5 
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• Balanced Random Forest Categorizer 1 
Note: A large ensemble of random decision trees trained on slightly skewed training data 
samples removes a lot of the noise in the features characterizing the positives and negatives.  
Parameters:  

o Number of individual categorizers = 100 
o Majority instances = 1.0 (times the number of minority instances) 
o Number of random features used per tree node = 200 

 
• Balanced Random Forest Categorizer 2 

Note: The fewer ensemble members trained on data that better reflects the skewed class 
distribution of the data results in a more robust categorizer when the training and testing data 
is very different.  
Parameters:  

o Number of individual categorizers = 10 
o Majority instances = 3.0 (times the number of minority instances) 
o Number of random features used per tree node = 50 

 
• Naïve Bayes Categorizer 

Parameters:  
o Minimum feature probability = 0.00001 

 
4.2.3 Weight Identification for the Ensemble Categorizer in the LSNAA 
 
The SCF code base was refactored between the first and second reviews to facilitate more 
efficient identification of the ensemble weights given the individual categorizers. Specifically, 
each individual categorizer was built and tested once, and then different combinations of 
ensemble weights were tested. This allows for a more thorough search of potential ensemble 
weights. Recall that although it is possible to perform a rigorous global optimization of the 
ensemble weights, this is not advised due to problems with overfitting of the testing data. Unless 
there is a guarantee that there will be no differences between the testing data used to create a 
categorizer and the data to which the categorizer will eventually be applied (i.e., statistically 
significant differences in the attributes of the e-mail messages), global optimization is not 
recommended.  
 
For this problem, an exhaustive search of all combinations of ensemble weights in the interval of 
[0,5] in steps of 0.25 was performed. A plot of the false negatives by the false positives is shown 
in Figure 6. Note that the general trend of the individual categorizers appearing in Figure 5 also 
appears here in Figure 6 for the ensemble categorizers. 
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Figure 6. False Categorizations of the Ensemble Categorizers: Second Review, Test Data. 
 
 
Since the search for weights was performed on a discrete grid, further investigation into the 
choice of ensemble weights was performed around those set of ensemble weights with the best 
performance.  The weights used for the categorizer in the LSNAA for the second review were as 
follows: 
• Perceptron = 2.0 
• BalancedPerceptron = 4.0 
• BalancedRandomForest1= 3.0 
• BalancedRandomForest2= 1.25 
• NaiveBayes = -1.0 

 
These weights were chosen to reduce the false positive rate as the primary goal and the false 
negative rate as the secondary goal. Note that the ensemble weight for the naïve Bayes 
categorizer was not part of the initial study and was only determined by further investigation. 
The negative weight for the naïve Bayes categorizer was unexpected, as this indicates the use of 
the categorizer in the opposite way it was trained. We suspect that this behavior acts to balance 
the other categorizers in the ensemble. However, testing on more general sets of data would need 
to be performed to verify this claim. 
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4.2.4 Performance Assessment 
 
Validation of the ensemble categorizer used in the second review was performed in the same 
manner as in the first review, and comparable results were found. 
 
To assess the performance beyond the validation tests, the SMEs were presented with the results 
of the categorizations for the set of validated data. Figures 7 and 8 present the results of the 
categorizations for the Case 1 and Case 2 collections, respectively, as they were presented to the 
SMEs. The top plot in each figure shows a histogram of all the categorizations for the validated 
data. The bottom two plots in the figures show histograms of the false positives and false 
negatives for each validated data set. Note that in both figures the false categorizations are 
clustered around zero (0), indicating that the ensemble categorizer has no clear indication of the 
correct categorization. As the goal of LSNAA is to generate a prioritized list of likely candidates 
for a particular categorizations (as opposed to a list of categorizations that will be used for 
decision making directly), these results are very promising. The outcome if that SMEs or users 
need focus most of their effort on where the categorizer is most confused (near 0). This result is 
to be expected as a system categorizer should be identifying those parts of the data that are the 
most ambiguous in terms of categorization, which is what is happening in this case with the false 
categorizations clustered around zero. 
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Figure 7. False Categorizations of the Ensemble Categorizers: Second Review, Case 1 
Data. 
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Figure 8. False Categorizations of the Ensemble Categorizers: Second Review, Case 2 
Data. 
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5.  FUTURE DIRECTIONS 
 
In this section, ideas that have been identified for exploration in future versions of the LSN 
Assistant set of tools are presented.  
 
5.1. Data Processing 
 
E-mail messages often lack formal grammatical structure, contain sentences that are not fully 
formed, and contain many spelling errors. Such document characteristics present challenges for 
analyzing collections of documents. Below are several ideas that have shown promise for several 
text analysis projects in the machine learning research community. 
 
5.1.1 Latent Semantic Analysis 
 
Deerwester, et al. (1990) developed Latent Semantic Analysis (LSA) to help improve 
information retrieval systems by statistically correlating terms and documents, removing "noise", 
and reducing the dimension of features used to characterize each document of collections of 
unstructured text documents. We performed a preliminary investigation into using LSA to create 
the vector version of the document for the LSNAA; however, we found that it tended to reduce 
categorization performance at the various dimensions tested. One challenge in employing LSA is 
choosing how much feature dimension reduction and/or noise reduction should be performed for 
effective analysis (e.g. categorization for our problem). Choices are often based on heuristics and 
can be dramatically different for various data sets and algorithms. Thus, work on developing 
recommendations for the task of e-mail categorization or more generally, for automatically 
tuning the parameters for a given problem and data set should be explored to facilitate use of 
LSA in automatic categorizations systems. It may also be worthwhile investigating using the 
vectors generated from LSA as additional features rather than as a reduced set of features for this 
problem. 
 
5.1.2 Natural Language Processing 
 
Currently, the features used to characterize documents for use with the SCF categorizers are 
based on terms appearing in the documents. More sophisticated statistical natural language 
processing (NLP) techniques exist (Manning and Schütz, 1999) for extracting richer sets of 
features from documents than simply the list of terms appearing in a document. Specifically, 
several methods for noun phrase (i.e., named entity) extraction have been developed, and the 
extracted phrases could be used as more discriminating document features than individual terms 
alone. Along the same lines, language modeling using n-grams (sequences or windows of n 
consecutive terms) may also help to determine richer feature sets for use in creating categorizers. 
Other NLP techniques that should be explored include noun and verb phrase detection (i.e. 
chunking) and part of speech detection. 
 
5.1.3 Feature Extraction and Selection 
 
There are several other existing methods for generating features for documents than those 
currently used in the SCF (via STANLEY). Other methods that have been used in categorization 
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research include term extraction (e.g., LSA or term clustering) and term selection (e.g., based on 
document frequency, random selection, information theoretic metrics, etc.). The goal of these 
methods is to produce a reduced feature set to facilitate both computational efficiency and 
identification of the most important discriminating features of individual documents. One 
downside to most of these approaches is that the reduced space does not preserve the sparsity 
patterns of the original document term features. It is not clear what the impact of discarding such 
information has on the overall performance of categorizers. Thus, such methods should be 
studies more in the context of e-mail categorization particularly. See Sebastiani (2002) for more 
details of such approaches. 
 
5.2. Categorization 
 
Further work can also be done on the categorization algorithms themselves, particularly in 
utilizing more of the data through semi-supervised learning and automating more of the 
development process by automatically tuning categorization parameters and ensemble weights. 
 
5.2.1 Semi-Supervised Learning 
 
Algorithms for creating categorizers typically benefit from having access to large sets of training 
data. That is, the more data a categorizer is trained on, the more likely it will correctly categorize 
a typical document example. However, the creation and maintenance of large sets of training 
data is constrained by the time availability of SMEs associated with the problem and data of 
interest. Methods of semi-supervised learning (Chapelle, et al., 2006) overcome this constraint 
by combining relatively small sets of validated training data and statistical techniques to increase 
the size of data used to train categorizers. This approach has shown promise for general data 
categorization, and may prove helpful for the problem of e-mail categorization. 
 
5.2.2 Automatic Categorization Parameter and Ensemble Weight Tuning 
 
One of the most time consuming steps in the current solution process from Section 1.4 is the 
building and testing of categorizers. Specifically, the tuning of the individual categorizer 
parameters and the weights used in the ensemble categorizer are labor-intensive, manual 
processes. Although some automation has been developed for creating and a large number of 
categorizers and sets of ensemble weights, the current approach requires detailed knowledge of 
the categorizers. Automated methods of determining such parameters and weights for a given 
problem and/or data set include ridge regression, lasso regression, and global direct search 
(Hastie, et al., 2001). Such methods would allow for generation of more optimal categorizers and 
could generate useful statistics for analyzing the performance of the categorizers (including 
robustness/sensitivity and feasibility statistics). 
 
Another potential benefit of incorporating automatic parameter and weight tuning into the SCF is 
support for performance tuning based on a complicated set of metrics. For example, in the 
application presented in this report, the goal was to generate categorizers biased toward the 
highest number of true positives and the least number of false negatives. By incorporating 
automatic methods for parameter and weight tuning, it should be straightforward to handle such 
metrics. 
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5.3 The LSN Real-Time Assistant 
 
Although this report focuses on the LSNAA, the SCF and most of the other framework for 
processing data, testing categorizers, and applying categorizers to e-mail messages will be used 
in the LSN Real-Time Assistant (LSNRA) tool. However, the process of data processing, and 
categorizer creation and testing for the LSNRA includes a different set of requirements. 
Specifically, the issues of automation of all solution steps, efficient data and categorizer 
updating, and combining categorization rules with categorizations must all be addressed.  
 
Scheduling of updates during system low-usage times, combined with online learning algorithms 
should facilitate efficient data and categorizer updates. Online learning algorithms create a 
categorizer in a single pass of the data, and thus facilitate addition of new (or updated) data more 
readily than batch learning algorithms, which must have access to all of the training data in order 
to build a categorizer. Currently, with the exception of the Perceptron categorizer, the SCF is 
comprised of batch learning methods. Those batch methods would have to load all existing data 
each time the training data is update and a categorizer is built, whereas the online learning 
methods need only update the existing categorizer using any previously unused training data. 
 
Using a set of  pre-defined categorization rules may help improve the performance of the SCF 
categorizers. Specifically, rules based on specific keywords (e.g., "DRAFT" "Calendar Request", 
"Training Requirement", etc.) may help identify specific categorizations of automatically 
generated e-mail messages or messages that are use only according to a particular institutional 
policy.  
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6.  CONCLUSIONS 
 
The Licensing Support Network (LSN) Assistant is a system for categorizing e-mail messages 
and documents and investigating and correcting existing document archives. The two main tools 
in the LSN Assistant, the LSN Archive Assistant (LSNAA) tool for categorizing existing e-mail 
and documents and the LSN Real-time Assistant (LSNRA) tool for categorizing, were 
introduced, with the details of the LSNAA provided. The Sandia Categorization Framework 
(SCF), the categorizer engine behind the LSN Assistant tools was described in detail as well. 
 
The design and implementation of the LSNAA database, system architecture, and graphical user 
interfaced (GUI) were described. This process was aimed at both satisfying the system 
requirements (Appendix A) and the addressing the suggestions of the SMEs and customers as the 
system tools were developed and deployed. Note that the LSN Assistant tools should be regarded 
as works in progress, with development active on the system architecture, the SCF, and the LSN 
Assistant application GUIs. 
 
The problem of categorization of text documents in general and e-mail messages in particular is 
an active area of research, and the processes and results presented in this report were specifically 
designed and tuned for the particular problem and data associated with LSN e-mail messages. As 
noted throughout this report, the particular instances of categorizers used in the LSNAA are 
dependent on the training data, and thus are not useful for solving general text categorization 
problems. However, the steps and recommendations for processing data and creating, tuning, and 
testing categorizers presented in this report are applicable to solving text categorization problems 
in general. The specific examples and categorizers described in this report should serve to 
demonstrate choices made along the entire process and the implications of those choices with 
respect to performance and output of a categorizer. 
 
As in most research associated with machine learning and the problem of data categorization, 
quantifying the confidence in the categorizers created is crucial in determining the general 
usefulness and applicability of the categorizers. The importance of the parameter and ensemble 
weight tuning, along with the categorizer validation (Section 4) presented in this report should 
not be underestimated. The use of categorizers for decision making is problematic due to the 
dependence on the particular data used for training. We have shown that using the methods 
presented in this report, a prioritization of categorizations and identification of regions of 
categorization ambiguity (Section 4.2.4) can be used to assist in challenging and complex large-
scale decision making processes. 
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APPENDIX A.  LSNAA SOFTWARE REQUIREMENTS 
 
The list of requirements is taken from (Basilico and Verzi, 2006); the specific requirement 
numbers used in that document have been preserved here. 
 
A.1  Input and Output Requirements  
 
The LSN Assistant will be data-driven as directed by the user. Textual and visual outputs will be 
used as appropriate to display requested results. 
 
A.1.1 Input 
 
R3.2.1 – The archive tool shall allow the user to select the input documents. 
  
R3.2.2 – Both the archive and the real-time tools shall allow the user to accept, reject, or modify 
a classification. 
 
R3.2.3 – The system shall be able to accept files of the following formats: Plain Text (.txt), 
Microsoft Word Document (.doc), Portable Document Format (.pdf) (OCR only), and Microsoft 
PowerPoint Presentation (.ppt). 
 
R3.2.4 – The archive tool shall be able to access documents and emails stored in a database. 
 
R3.2.5 – The archive tool shall be able to access existing classifications for a document. 
 
R3.2.6 – The system shall be able to accept email files in Lotus Notes and Microsoft Outlook 
formats, including the body text of the email and attachments that contain text in supported file 
types. 
 
A.1.2 Output 
 
R3.2.7 – Both the archive and real-time tools shall archive classifications so that they can be 
reviewed at a later date. 
 
R3.2.8 – Both the archive and real-time tools shall provide a method for tracing the history of 
each document’s classifications. 
 
R3.2.9 – The archive tool shall output changed classifications so that they can be synchronized 
with the existing LSN support system. 
 
A.2 Data Requirements 
 
The LSN Assistant will store and process data to support the user’s classification tasks. (Note: 
these data requirements do not include the external interfacing databases; see Appendix A.5.) 
 
R3.3.1 – The archive tool shall allow the user to store and retrieve generated text reports. 
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A.3 Functional Requirements 
 
R3.4.1 – The system shall classify a document based on available text. 
 
R3.4.2 – The system’s classification shall include the categorization of a document as relevant or 
non-relevant. 
 
R3.4.3 – The system’s classification shall include the categorization of a document as privileged 
or non-privileged, based on the training document sets provided. 
 
R3.4.4 – For documents that are determined to be privileged, the system shall further determine 
the applicable privilege type, based on the training document sets provided. 
 
R3.4.5 – The archive tool shall be able to display previous user-provided classifications of a 
document, including the original classification. 
 
R3.4.6 – The archive tool shall be able to display the degree of discrepancy between the last 
archived user-provided classification and the recommended classification provided by the 
system, when there is a discrepancy between the two. 
 
R3.4.7 – The archive tool shall allow for the user to provide a manual classification. 
 
R3.4.8 – The archive tool shall generate text reports to detail, at a minimum, the time of review, 
the user conducting the review, the software and classifier versions, and the documents reviewed 
with relevant document header information, any previous classification, the recommended and 
chosen classification, and an explanation of how the classification was determined.  
 
R3.4.9 – The archive tool shall allow the user to select the documents to be reviewed by 
specifying a date range. 
 
R3.4.10 – The archive tool shall allow the user to select the documents to be reviewed by 
specifying the author/sender. 
 
R3.4.11 – The archive tool shall allow the user to select the documents to be reviewed by 
specifying the author/sender’s organization, if the organization information is available. 
 
R3.4.12 – Both the archive and real-time tools shall indicate to the user if an email has an 
attachment from which the system cannot extract text. 
 
R3.4.13 – The real-time tool shall review a document and recommend a classification. Users will 
then provide their own classification, which may or may not agree with the recommendation. 
 
R3.4.14 – The system shall be capable of updating the classifier being used, subject to the 
customer’s change control process. 
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R3.4.15 – The archive tool shall be able to display summary statistics about the document set to 
the user such as the total number of documents, the total number documents flagged has being a 
potential discrepancy, the number of documents in each category (relevant/non-relevant and 
privilege type), and the number of documents flagged as being a potential discrepancy in each 
category. 
 
A.4 Performance Requirements 
 
R3.5.1 – The system shall be able to generate the correct classification for a document at least 
90% of the time for a designated set of example document classifications that are withheld from 
the building of the classifier. 
  
R3.5.2 – The system shall be able to classify an average of at least 10 emails per second on the 
designated example data. 
 
A.5 Systems and Communication Requirements 
 
The LSN Assistant will interface with a variety of databases. Sandia organization 06783 will 
provide this access. 
 
R3.6.1 – The archive tool shall be able to access the required email and document databases of 
archived documents to achieve the functional requirements through ODBC connections.  
 
R3.6.2 – The real-time tool shall be able to interface with the existing network to perform 
classification in real-time. 
 
R3.6.3 – The real-time tool shall be accessible as an integral part of the workspace for real-time 
classification. 
  
A.6 System Security Requirements 
 
No system security requirements (e.g., data classification, protection levels, access control, etc.) 
exist for the LSN Assistant. The LSN Assistant will rely on the security protection afforded by 
the host PC system. 
 
A.7 Back up and Recovery Requirements 
 
No continuity of operations is required in the event of a system failure. The LSN Assistant will 
rely on the back up operation of the host PC system for file back up. 
  
A.8 Operating Environment Requirements 
 
R3.9.1 – Both the archive and real-time tools shall operate on a PC with a minimum of 1GHz 
processor, 512 MB RAM, 1 GB free disk space, and 1024x768 screen resolution running a 
supported operating system with the ability to access the external databases referenced in 3.6 
Systems and Communication Requirements 
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R3.9.2 – Both the archive and real-time tools shall operate under Windows XP. 
 
R3.9.3 – Both the archive and real-time tools shall operate under Windows 2000. 
 
A.9 Scalability and Reusability Requirements 
 
The software shall be designed in a modular fashion to encourage reusability and extensibility 
wherever possible. This will be assessed during the design review. 
 
R3.10.1 – The system design shall support a mechanism for adding support for accessing 
documents in new databases. 
 
R3.10.2 – The system design shall support a mechanism for adding support for new document 
types. 
 
A.10 Usability Requirements 
 
The primary users of the LSN Assistant are the analysts in Sandia’s Licensing Assessment and 
Technical Evaluation organization. These users are familiar with PC-based applications such as 
Microsoft Office and database search engines. Prototypes of the graphical user interface will be 
iterated upon early in the requirements and design phase based on user feedback. These 
prototype interfaces will evolve to the end product’s graphical user interface design. 
 
R3.11.1 – Microsoft Windows interface guidelines shall be used as a basis for the graphical 
interface design to ensure visual and functional consistency with other Windows-based 
applications. 
 
R3.11.2 – The archive tool shall provide a user-validated graphical user interface for managing 
the classification of archived documents. 
 
R3.11.3 – The real-time tool shall provide a user-validated graphical user interface that allows 
users to classify email in real-time. 
 
R3.11.4 – A user’s manual shall be developed for the real-time classification tool. 
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APPENDIX B.  PREPARATION AND USE OF SCF CATEGORIZERS 
WITH THE LSNAA 

 
The preparation and use of a categorizer in the context of the LSNAA is presented in this 
appendix. The steps performed in preparing the data for building a categorizer and for using the 
categorizer with a database designed to the specifications described in Section 2.4 are presented 
in Table 3. Detailed descriptions of these steps are presented in the individual sections of this 
appendix. The scripts listed in Table 3 are Windows PowerShell 1.0 scripts. These scripts 
reference SCF classes and methods as well as those available in the standard PowerShell 
environment. 
 

Table 3. Steps for Preparation and Use of SCF Categorizers with the LSNAA. 
  

Step Description Script(s) 
1 Preparing data for use in the SCF PrepareDataForCategorizer.ps1 

SplitDocumentVectorDataSet.ps1 
3 Determining individual categorizer 

parameters  
ManualCategorizerOptimization.ps1 

4 Building the SCF ensemble categorizer BuildCategorizer_X.X.X.X.ps1 
5 Validating the ensemble categorizer 

performance 
CrossValidation.ps1 

6 Updating the database categorizations UpdateCategorizationsFromReviews.ps1 
 
 
B.1 Preparing Data for Use in the SCF 
 
Extracting the data from a database 
 
The data to be used for training and testing the categorizer is extracted from the database and 
either used directly or stored in one or more files for subsequent processing. The determination 
should be made based on whether the extracted data should be stored for further processing or if 
the categorization building process will need to be performed more than once. The script denoted 
in Table 3 for this step contains code required for either type of processing. 
 
In some cases, the data will need to be split into several files to facilitate the processing. The 
available RAM on the machine that will be preparing the data for use in the SCF will determine 
the maximum size of the data. There are no fixed rules for determine the number of files (i.e., 
partitions) the data will need to be split into.  
 
As an example of the split requirements, we processed data from the BSC and Lead Lab (LL) e-
mail database at two points. The machine used had 1Gb of RAM (approximately 460 Mb 
available for applications). At the first point, we processed 8 Mb of data (1766 e-mail messages) 
and did not need to split the data for processing. However, in the second step, we had 575 Mb of 
data (34,151 e-mail messages), and we had to split this data into 172 partitions of 200 e-mail 
messages each. Note that with a split of this data with 100 e-mail messages per split, we were not 
able to process the data.  
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Splitting each message into its own partitioning is not recommended, as this will dramatically 
increase the amount of time in processing the data. Users should always try to find the fewest 
number of partitions that will work for their data on their machines in order to maximize 
performance. 
  
Building a model of the data for use in the SCF 
 
The STANLEY text analysis library (Bauer, et al., 2005) is used for creating the data model. The 
data model is a vector space model of the data using term frequency for the local weighting and a 
log-entropy weighting for the global weighting. For all work documented in this report, the 
default settings of STANLEY were used with the exception that the data chunk size was set to 47 
(see the STANLEY API documentation for more details). 
 
Transforming the data for use in the SCF 
 
Once the STANLEY data model has been created, it is applied to all of the data to be used in the 
SCF. We note that this step and the previous one are independent to allow for data models to be 
created from one set of data and applied to another. In our work , we created data models from 
validated data only, i.e., data that was manually validated for correctness by one or more human 
reviewers. 
 
Splitting the validated data into sets for training and testing categorizers 
 
Categorizers are built from one set of data and used to predict data class membership for other 
sets of data. Therefore, to validate the performance of categorizers in such a use case, testing 
must be performed on data that is not used to train those categorizers. Otherwise, the categorizer 
will be biased to perform well on the testing data, and the validation results will not be useful in 
evaluating categorizer performance. To accommodate this, the validated data is split into testing 
and training data sets. Most often this split partitions the data into equal-size partitions, but other 
splits are accommodated in the scripts. 

 
B.2 Determining individual categorizer parameters  
 
A set of parameters for the individual categorizers (i.e., the members of the ensemble 
categorizer) must be determined. Rigorous global optimization of the parameter space is costly 
and can lead to overfitting the training data, thus increasing the potential for reduced 
performance of applying the data models to testing data characteristically different that the 
training data. Thus, optimization over a discrete set of set of potentially useful parameters is 
recommended for determining individual categorizer parameters to be used. For this process, 
several values for each parameter of a given categorizer method are chosen and all combinations 
of these values across the full set of parameters are used to build an instance of a categorizer. 
The script denoted in Table 3 for this step provides the general framework for performing this 
process.  
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For this work, categorizers built using each of the methods and demonstrating the best 
performance on a set of testing data were used as members of the ensemble categorizer. In cases 
where categorizers with the same overall performance but characteristically difference types of 
behavior (e.g., one that finds a high percentage of the true positives versus one that finds a low 
percentage of false negatives), we opted to include instances of both categorizers in the 
ensemble. 
 
 
B.3 Building the SCF categorizer 
 
As a benchmark for evaluating performance of the ensemble categorizer and to provide data for 
optimizing the ensemble weights, an ensemble categorizer is built from the individual 
categorizers identified in the previous section. The ensemble weights (i.e., the relative 
contribution of each categorizer to the overall behavior of the ensemble categorizer) are initially 
set to 1.0, denoting equal contribution from each categorizer. However, these weights are 
adjustable to reflect any linear combination of contributions. 
 
Within the SCF, a test of an ensemble categorizer consists of a test of each of the individual 
categorizers where the output is combined using the ensemble weights. Thus for a given set of 
test data, the individual categorizers need only be applied once, and the results saved. From that 
point, determination of the ensemble weights through more rigorous optimization can be made at 
a relatively low cost compared to building the model. A general approach to such an 
optimization of the weights can be challenging due to the competing objectives of increasing the 
number of true positive categorizations while reducing the number of false negative 
categorizations of the testing data. Often there is not a single set of weights that can be 
determined to be the best, and users must manually analyze the results of the optimization 
process to determine the set of ensemble weights to use. 
 
 
B.4 Validating the categorizer performance 
 
Once the parameters of the individual categorizers, the set of categorizers to be included in the 
ensemble categorizers, and the ensemble weights have been determined, it is recommended to 
assess the performance and robustness of the resulting ensemble categorizer. This process of 
validating the categorizer consists of breaking a set of validated data (i.e., data with 
categorizations manually checked by one or more human reviewers) into partitions, building 
several ensemble categorizers using subsets of the data, and testing each of the resulting 
ensemble categorizers with the remainder of the data not used in training the categorizer. The 
statistics of the results of these tests can be used to access the performance and robustness of the 
ensemble categorizers. 
 
In the SCF, there are two types of categorizer validation that are supported: K-fold cross 
validation and random split validation. K-fold cross validation produces K folds (partitions) of 
the validated data with approximately equal size folds. Each fold is used as a testing set for a 
categorizer built using all other data as the training set. The testing output is averaged across the 
folds. The standard deviation of the test results from the different folds reflects how robust the 
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ensemble performance over a range of different data sets. Random split validation produces N 
splits of the data, each with approximately equal size folds. The percentage of data points in each  
set is chosen randomly from a Gaussian distribution. As N increases, this leads to an average of 
equal sized splits with very small standard deviation. For each split, one set is used to train a 
categorizer, and the other is used for testing that categorizer. The testing output is averaged 
across the splits.  
  
 
B.5 Updating the database categorizations 
 
Once the ensemble categorizer has been created and its performance validated, the final step is to 
apply the categorizer to a set of e-mail messages residing in an in an email categorization 
database (see Section 2.3). 
 
Connecting to the database, loading of the ensemble categorizers, retrieving of the e-mail 
message data, categorizing the data, and posting of the new categorizations to the database are 
facilitated using the script denoted in Table 3 for this step. The script accommodates connecting 
to different servers (one at a time) and generates categorizations for all records in the database 
(i.e., there is currently no option to categorize subsets of records using the SCF). Each set of 
categorizations is created and posted to the database is archived and tagged with both a user-
defined categorizer name and internal version number, so that each categorization can be 
retrieved and used independently. Note that the LSN Archive Assistant uses the most recent 
categorizations available in each database by default. 
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APPENDIX C.  RESULTS OF THE WEKA CATEGORIZERS 
 
C.1 The Parameters used to Build the WEKA Categorizers 
 
Table 4 presents the parameters used to build the WEKA categorizers used in determining the 
LSNAA algorithms. Each categorizer name is a short description of the algorithm, and 
algorithms tested more than once with different parameters are listed with different numbers. The 
parameters shown here are those specified in WEKA 3.5.5. 
 

Table 4. Parameters used to Build the WEKA Categorizers. 
 
Categorizer Algorithm Name Type Parameters 
Alternating Decision Tree 1 Decision Tree ADTree -B 10 -E 0 
Alternating Decision Tree 2 Decision Tree ADTree -B 10 -E -1 
Alternating Decision Tree 3 Decision Tree ADTree -B 10 -E -2 
Alternating Decision Tree 4 Decision Tree ADTree -B 10 -E -3 
Alternating Decision Tree 5 Decision Tree ADTree -B 20 -E 0 
Alternating Decision Tree 6 Decision Tree ADTree -B 30 -E 0 
Alternating Decision Tree 7 Decision Tree ADTree -B 40 -E 0 
Alternating Decision Tree 8 Decision Tree ADTree -B 50 -E 0 
Bagging 1 Meta-learner Bagging -P 10 -S 1 -I 10 -W 

weka.classifiers.misc.VFI -- -B 0.6 
Bagging 2 Meta-learner Bagging -P 100 -S 1 -I 10 -W 

weka.classifiers.misc.VFI -- -B 0.6 
Bagging 3 Meta-learner Bagging -P 80 -S 1 -I 30 -W 

weka.classifiers.misc.VFI -- -B 0.01 
Bayes Network Learning Algorithm Bayesian BayesNet -D -Q bayes.net.search.local.K2 

-- -P 1 -S BAYES -E 
bayes.net.estimate.SimpleEstimator -- -A 
0.5 

Best-First Decision Tree 1 Decision Tree BFTree -S 1 -M 2 -N 5 -G -R -C 1.0 -P 
UNPRUNED 

Best-First Decision Tree 2 Decision Tree BFTree -S 1 -M 2 -N 5 -R -C 1.0 -P 
UNPRUNED 

Dagging 1 Meta-learner Dagging -F 10 -S 1 -W 
weka.classifiers.functions.SMO -- -C 1.0 -L 
0.0010 -P  

Dagging 2 Meta-learner Dagging -F 10 -S 1 -W 
weka.classifiers.misc.VFI -- -B 0.6 

Decision Stump Decision Tree DecisionStump 
Decision Table Decision Rule DecisionTable -X 1 -S 

"weka.attributeSelection.BestFirst -D 1 -N 
5" 

Grading Meta-learner Grading -X 10 -M 
"weka.classifiers.rules.ZeroR " -S 1 -B 
"weka.classifiers.trees.RandomTree -K 20 -
M 1.0 -S 1" (times 4) 

HyperPipes Miscellaneous HyperPipes 
Nearest Neighbor 1 Lazy IB1 
Nearest Neighbor 2 Lazy IBk -K 10 -W 0 -A "weka.core.LinearNN -A 

weka.core.EuclideanDistance" 
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Categorizer Algorithm Name Type Parameters 
Nearest Neighbor 3 Lazy IBk -K 5 -W 0 -A "weka.core.LinearNN -A 

weka.core.EuclideanDistance" 
C4.5 Decision Tree 1 Decision Tree J48 -C 0.25 -B -M 2 
C4.5 Decision Tree 2 Decision Tree J48 -C 0.25 -M 2 
C4.5 Decision Tree 3 Decision Tree J48 -C 0.25 -M 2 -A 
C4.5 Decision Tree 4 Decision Tree J48 -U -M 2 
Ripper 1 Decision Rule JRip -F 3 -N 2.0 -O 2 -S 1 
Ripper 2 Decision Rule JRip -F 3 -N 2.0 -O 2 -S 1 -E 
Ripper 3 Decision Rule JRip -F 3 -N 2.0 -O 2 -S 1 -P 
Ripper 4 Decision Rule JRip -F 3 -N 2.0 -O 5 -S 1 
Logistic Model Decision Tree Decision Tree LMT -I -1 -M 15 -W 0.0 
Multinomial Logistic Regression 1 Function Logistic -R 1.0E-8 -M -1 
Multinomial Logistic Regression 2 Function Logistic -R 1.0E-8 -M -1 
Boosting + Wagging Meta-learner MultiBoostAB -C 5 -S 1 -I 10 -W 

weka.classifiers.misc.VFI -- -B 0.1 -Q -P 
100 

Naïve Bayes Bayesian NaiveBayes 
Naïve Bayes Decision Tree Decision Tree NBTree 
Nearest Neighbor with Generalization Decision Rule NNge -G 5 -I 5 
1R 1 Decision Rule OneR -B 1 
1R 2 Decision Rule OneR -B 2 
1R 3 Decision Rule OneR -B 3 
1R 4 Decision Rule OneR -B 5 
Partial C4.5 Decision Tree Rules 1 Decision Rule PART -B -M 2 -C 0.25 -Q 1 
Partial C4.5 Decision Tree Rules 2 Decision Rule PART -M 2 -C 0.5 -Q 1 
Partial C4.5 Decision Tree Rules 3 Decision Rule PART -R -M 2 -N 3 -Q 1 
Partial C4.5 Decision Tree Rules 4 Decision Rule PART -U -M 2 -C 0.25 -Q 1 
Random Committee Meta-learner RandomCommittee -S 1 -I 10 -W 

weka.classifiers.trees.RandomTree -- -K 1 
-M 1.0 -S 1 

Random Forest 1 Decision Tree RandomForest -I 10 -K 0 –S 1 
Random Forest 2 Decision Tree RandomForest -I 10 -K 10 -S 1 
Random Forest 3 Decision Tree RandomForest -I 10 -K 20 -S 1 
Random Subspace Meta-learner RandomSubSpace -P 0.5 -S 1 -I 10 -W 

weka.classifiers.bayes.NaiveBayes -- 
Random Decision Tree 1 Decision Tree RandomTree -K 1 -M 1.0 -S 1 
Random Decision Tree 2 Decision Tree RandomTree -K 10 -M 1.0 -S 1 
Random Decision Tree 3 Decision Tree RandomTree -K 20 -M 1.0 -S 1 
Random Decision Tree 4 Decision Tree RandomTree -K 25 -M 1.0 -S 1 
Random Decision Tree 5 Decision Tree RandomTree -K 30 -M 1.0 -S 1 
Random Decision Tree 6 Decision Tree RandomTree -K 50 -M 1.0 -S 1 
Radial Basis Function Network Function RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 

0.1 
Reduced Error Pruning Tree 1 Decision Tree REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1 
Reduced Error Pruning Tree 2 Decision Tree REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1 -P 
Reduced Error Pruning Tree 3 Decision Tree REPTree -M 2 -V 0.0010 -N 3 -S 1 -L 10 -P 
Ripple Down Rule Learner 1 Decision Rule Ridor -F 3 -S 1 -N 2.0 
Ripple Down Rule Learner 2 Decision Rule Ridor -F 3 -S 1 -N 2.0 -A 
Regression Decision Tree with Pruning Decision Tree SimpleCart -S 1 -M 2.0 -N 5 -U -C 1.0 
Support Vector Classifier Function SMO -C 1.0 -L 0.0010 -P 1.0E-12 -N 0 -V -

1 -W 1 -K  
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Categorizer Algorithm Name Type Parameters 
Stacking Meta-learner Stacking -X 10 -M 

"weka.classifiers.rules.ZeroR " -S 1 -B 
"weka.classifiers.bayes.NaiveBayes " -B 
"weka.classifiers.misc.VFI -B 0.01" -B 
"weka.classifiers.misc.HyperPipes " 

Voted Feature Intervals 1 Miscellaneous VFI -B 0.01 
Voted Feature Intervals 2 Miscellaneous VFI -B 0.1 
Voted Feature Intervals 3 Miscellaneous VFI -B 0.2 
Voted Feature Intervals 4 Miscellaneous VFI -B 0.6 
Voted Feature Intervals 5 Miscellaneous VFI -B 0.9 
Voted Feature Intervals 6 Miscellaneous VFI -C -B 0.6 
Voted Ensemble Meta-learner Vote -B "weka.classifiers.misc.VFI -B 0.1" -

B "weka.classifiers.misc.HyperPipes " -B 
"DecisionStump " -B "RandomTree -K 1 -M 
1.0 -S 1" -B "NNge -G 5 -I 5" -B 
"NaiveBayes " -B "ZeroR " -R AVG 

Voted Perceptron Meta-learner VotedPerceptron -I 1 -E 1.0 -S 1 -M 10000 
0R Decision Rule ZeroR 

 
C.2 The Results of the WEKA Categorizers 
 
Table 5 presents the results of the WEKA categorizers built using the parameters in Table 4. In 
binary categorization, the classes are labeled positive and negative, and thus we report here the 
numbers of true negatives (TN), false negatives (FN), true positives (TP), and false positives 
(FP) for each categorizer. We also report three standard measures for evaluating the performance 
of each category: accuracy (percent correct over both classes), precision (the percentage of 
positives marked correctly), and recall (the percentage of positives marked positive by the 
categorizer). Note there are 4548 positives and 165 negatives in this training set. 
 

Table 5. Results of the WEKA Categorizers. 
 

Categorizer Algorithm Name TN FN TP FP Accuracy Precision Recall
Alternating Decision Tree 1 4511 151 14 37 96.01 0.27 0.08
Alternating Decision Tree 2 4524 157 8 24 96.16 0.25 0.05
Alternating Decision Tree 3 4524 157 8 24 96.16 0.25 0.05
Alternating Decision Tree 4 4548 165 0 0 96.50 0.00 0.00
Alternating Decision Tree 5 4508 136 29 40 96.27 0.42 0.18
Alternating Decision Tree 6 4512 132 33 36 96.44 0.48 0.20
Alternating Decision Tree 7 4509 131 34 39 96.39 0.47 0.21
Alternating Decision Tree 8 4508 130 35 40 96.39 0.47 0.21
Bagging 1 4333 144 21 215 92.38 0.09 0.13
Bagging 2 3018 46 119 1530 66.56 0.07 0.72
Bagging 3 2475 33 132 2073 55.32 0.06 0.80
Bayes Network Learning Algorithm 4403 105 60 145 94.70 0.29 0.36
Best-First Decision Tree 1 4447 124 41 101 95.23 0.29 0.25
Best-First Decision Tree 2 4526 139 26 22 96.58 0.54 0.16
Dagging 1 4548 152 13 0 96.77 1.00 0.08
Dagging 2 4196 133 32 352 89.71 0.08 0.19
Decision Stump 4548 165 0 0 96.50 0.00 0.00
Decision Table 4520 148 17 28 96.27 0.38 0.10
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Categorizer Algorithm Name TN FN TP FP Accuracy Precision Recall
Grading 4521 130 35 27 96.67 0.56 0.21
HyperPipes 3567 86 79 981 77.36 0.07 0.48
Nearest Neighbor 1 4475 100 65 73 96.33 0.47 0.39
Nearest Neighbor 2 4531 134 31 17 96.80 0.65 0.19
Nearest Neighbor 3 4522 130 35 26 96.69 0.57 0.21
C4.5 Decision Tree 1 4451 128 37 97 95.23 0.28 0.22
C4.5 Decision Tree 2 4451 128 37 97 95.23 0.28 0.22
C4.5 Decision Tree 3 4451 128 37 97 95.23 0.28 0.22
C4.5 Decision Tree 4 4447 128 37 101 95.14 0.27 0.22
Ripper 1 4502 144 21 46 95.97 0.31 0.13
Ripper 2 4502 145 20 46 95.95 0.30 0.12
Ripper 3 4520 131 34 28 96.41 0.55 0.21
Ripper 4 4504 144 21 44 96.01 0.32 0.13
Logistic Model Decision Tree 4535 148 17 13 96.58 0.57 0.10
Multinomial Logistic Regression 1 4451 118 47 97 95.44 0.33 0.28
Multinomial Logistic Regression 2 4451 118 47 97 95.44 0.33 0.28
Boosting + Wagging 2733 39 126 1815 60.66 0.06 0.76
Naïve Bayes 4341 93 72 207 93.63 0.26 0.44
Naïve Bayes Decision Tree 4521 137 28 27 96.52 0.51 0.17
Nearest Neighbor with Generalization 4545 148 17 3 96.80 0.85 0.10
1R 1 4397 160 5 151 93.40 0.03 0.03
1R 2 4524 160 5 24 96.10 0.17 0.03
1R 3 4521 156 9 27 96.12 0.25 0.05
1R 4 4533 161 4 15 96.27 0.21 0.02
Partial C4.5 Decision Tree Rules 1 4454 127 38 94 95.31 0.29 0.23
Partial C4.5 Decision Tree Rules 2 4454 127 38 94 95.31 0.29 0.23
Partial C4.5 Decision Tree Rules 3 4508 145 20 40 96.07 0.33 0.12
Partial C4.5 Decision Tree Rules 4 4454 124 41 94 95.37 0.30 0.25
Random Committee 4541 140 25 7 96.88 0.78 0.15
Random Forest 1 4536 131 34 12 96.97 0.74 0.21
Random Forest 2 4539 134 31 9 96.97 0.78 0.19
Random Forest 3 4538 137 28 10 96.88 0.74 0.17
Random Subspace 4439 103 62 109 95.50 0.36 0.38
Random Decision Tree 1 4433 131 34 115 94.78 0.23 0.21
Random Decision Tree 2 4421 123 42 127 94.70 0.25 0.25
Random Decision Tree 3 4463 125 40 85 95.54 0.32 0.24
Random Decision Tree 4 4487 121 44 61 96.14 0.42 0.27
Random Decision Tree 5 4458 124 41 90 95.46 0.31 0.25
Random Decision Tree 6 4452 126 39 96 95.29 0.29 0.24
Radial Basis Function Network 4548 165 0 0 96.50 0.00 0.00
Reduced Error Pruning Tree 1 4548 165 0 0 96.50 0.00 0.00
Reduced Error Pruning Tree 2 4448 124 41 100 95.25 0.29 0.25
Reduced Error Pruning Tree 3 4473 132 33 75 95.61 0.31 0.20
Ripple Down Rule Learner 1 4538 154 11 10 96.52 0.52 0.07
Ripple Down Rule Learner 2 4427 114 51 121 95.01 0.30 0.31
Regression Decision Tree with Pruning 4526 139 26 22 96.58 0.54 0.16
Support Vector Classifier 4538 138 27 10 96.86 0.73 0.16
Stacking 4548 165 0 0 96.50 0.00 0.00
Voted Feature Intervals 1 2244 24 141 2304 50.60 0.06 0.85
Voted Feature Intervals 2 2325 26 139 2223 52.28 0.06 0.84
Voted Feature Intervals 3 2415 30 135 2133 54.11 0.06 0.82
Voted Feature Intervals 4 2731 39 126 1817 60.62 0.06 0.76
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Categorizer Algorithm Name TN FN TP FP Accuracy Precision Recall
Voted Feature Intervals 5 2953 48 117 1595 65.14 0.07 0.71
Voted Feature Intervals 6 2227 24 141 2321 50.24 0.06 0.85
Voted Ensemble 4547 150 15 1 96.80 0.94 0.09
Voted Perceptron 4538 144 21 10 96.73 0.68 0.13
0R 4548 165 0 0 96.50 0.00 0.00
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APPENDIX D.  RESULTS OF THE CATEGORIZERS IN THE LSNAA 
 
D.1 Individual Categorizers: First Review 
 
Table 6 presents the results of the Perceptron Categorizer, where P1 denotes the maximum 
number of iterations, P2 denotes the margin of positive instances, and P3 denotes the margin of 
negative instances. 
 

Table 6. Perceptron Categorizer Results: First Review. 
 

P1 P2 P3 TN FN TP FP Accuracy Precision Recall
100 1 1 15 831 6 31 0.958 0.714 0.326 
100 1 10 12 835 2 34 0.959 0.857 0.261 
100 1 50 9 835 2 37 0.956 0.818 0.196 
100 1 100 5 835 2 41 0.951 0.714 0.109 
100 10 1 21 808 29 25 0.939 0.420 0.457 
100 10 10 15 831 6 31 0.958 0.714 0.326 
100 10 50 12 835 2 34 0.959 0.857 0.261 
100 10 100 6 835 2 40 0.952 0.750 0.130 
100 50 1 32 775 62 14 0.914 0.340 0.696 
100 50 10 24 812 25 22 0.947 0.490 0.522 
100 50 50 14 832 5 32 0.958 0.737 0.304 
100 50 100 6 835 2 40 0.952 0.750 0.130 
100 100 1 38 710 127 8 0.847 0.230 0.826 
100 100 10 30 783 54 16 0.921 0.357 0.652 
100 100 50 14 829 8 32 0.955 0.636 0.304 
100 100 100 6 835 2 40 0.952 0.750 0.130 
500 1 1 15 831 6 31 0.958 0.714 0.326 
500 1 10 12 834 3 34 0.958 0.800 0.261 
500 1 50 10 835 2 36 0.957 0.833 0.217 
500 1 100 8 835 2 38 0.955 0.800 0.174 
500 10 1 23 808 29 23 0.941 0.442 0.500 
500 10 10 15 830 7 31 0.957 0.682 0.326 
500 10 50 12 835 2 34 0.959 0.857 0.261 
500 10 100 12 835 2 34 0.959 0.857 0.261 
500 50 1 32 776 61 14 0.915 0.344 0.696 
500 50 10 23 808 29 23 0.941 0.442 0.500 
500 50 50 15 831 6 31 0.958 0.714 0.326 
500 50 100 13 831 6 33 0.956 0.684 0.283 
500 100 1 34 762 75 12 0.901 0.312 0.739 
500 100 10 30 790 47 16 0.929 0.390 0.652 
500 100 50 18 827 10 28 0.957 0.643 0.391 
500 100 100 15 831 6 31 0.958 0.714 0.326 

1000 1 1 15 831 6 31 0.958 0.714 0.326 
1000 1 10 12 834 3 34 0.958 0.800 0.261 
1000 1 50 8 835 2 38 0.955 0.800 0.174 
1000 1 100 8 835 2 38 0.955 0.800 0.174 
1000 10 1 23 808 29 23 0.941 0.442 0.500 
1000 10 10 15 830 7 31 0.957 0.682 0.326 
1000 10 50 12 834 3 34 0.958 0.800 0.261 
1000 10 100 12 835 2 34 0.959 0.857 0.261 
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P1 P2 P3 TN FN TP FP Accuracy Precision Recall
1000 50 1 32 774 63 14 0.913 0.337 0.696 
1000 50 10 25 807 30 21 0.942 0.455 0.543 
1000 50 50 15 830 7 31 0.957 0.682 0.326 
1000 50 100 14 831 6 32 0.957 0.700 0.304 
1000 100 1 32 768 69 14 0.906 0.317 0.696 
1000 100 10 30 793 44 16 0.932 0.405 0.652 
1000 100 50 17 827 10 29 0.956 0.630 0.370 
1000 100 100 15 831 6 31 0.958 0.714 0.326 
5000 1 1 15 831 6 31 0.958 0.714 0.326 
5000 1 10 12 834 3 34 0.958 0.800 0.261 
5000 1 50 8 835 2 38 0.955 0.800 0.174 
5000 1 100 7 835 2 39 0.954 0.778 0.152 
5000 10 1 23 808 29 23 0.941 0.442 0.500 
5000 10 10 15 830 7 31 0.957 0.682 0.326 
5000 10 50 12 834 3 34 0.958 0.800 0.261 
5000 10 100 12 835 2 34 0.959 0.857 0.261 
5000 50 1 32 774 63 14 0.913 0.337 0.696 
5000 50 10 25 807 30 21 0.942 0.455 0.543 
5000 50 50 15 829 8 31 0.956 0.652 0.326 
5000 50 100 14 830 7 32 0.956 0.667 0.304 
5000 100 1 32 768 69 14 0.906 0.317 0.696 
5000 100 10 29 796 41 17 0.934 0.414 0.630 
5000 100 50 17 826 11 29 0.955 0.607 0.370 
5000 100 100 15 829 8 31 0.956 0.652 0.326 

 
 
Table 7 presents the results of the Balanced Perceptron Categorizer, where P1 denotes the 
maximum number of iterations, P2 denotes the margin of positive instances, P3 denotes the 
margin of negative instances, P4 denotes the number of balanced learners, and P5 denotes the 
majority class percentage used to train each learner. 
 

Table 7. Balanced Perceptron Categorizer Results: First Review. 
 

P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
100 50 1 1 1.50 45 148 689 1 0.219 0.061 0.978
100 50 1 1 2.00 43 222 615 3 0.300 0.065 0.935
100 50 1 1 2.50 43 202 635 3 0.277 0.063 0.935
100 50 1 5 1.50 45 120 717 1 0.187 0.059 0.978
100 50 1 5 2.00 44 179 658 2 0.253 0.063 0.957
100 50 1 5 2.50 43 210 627 3 0.287 0.064 0.935
100 50 1 10 1.50 45 132 705 1 0.200 0.060 0.978
100 50 1 10 2.00 44 169 668 2 0.241 0.062 0.957
100 50 1 10 2.50 43 226 611 3 0.305 0.066 0.935
100 50 10 1 1.50 44 258 579 2 0.342 0.071 0.957
100 50 10 1 2.00 42 359 478 4 0.454 0.081 0.913
100 50 10 1 2.50 43 404 433 3 0.506 0.090 0.935
100 50 10 5 1.50 43 304 533 3 0.393 0.075 0.935
100 50 10 5 2.00 42 397 440 4 0.497 0.087 0.913
100 50 10 5 2.50 42 436 401 4 0.541 0.095 0.913
100 50 10 10 1.50 43 312 525 3 0.402 0.076 0.935
100 50 10 10 2.00 42 379 458 4 0.477 0.084 0.913
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
100 50 10 10 2.50 42 439 398 4 0.545 0.095 0.913
100 100 1 1 1.50 46 96 741 0 0.161 0.058 1.000
100 100 1 1 2.00 44 119 718 2 0.185 0.058 0.957
100 100 1 1 2.50 43 170 667 3 0.241 0.061 0.935
100 100 1 5 1.50 46 83 754 0 0.146 0.058 1.000
100 100 1 5 2.00 45 121 716 1 0.188 0.059 0.978
100 100 1 5 2.50 43 142 695 3 0.210 0.058 0.935
100 100 1 10 1.50 46 87 750 0 0.151 0.058 1.000
100 100 1 10 2.00 45 116 721 1 0.182 0.059 0.978
100 100 1 10 2.50 43 141 696 3 0.208 0.058 0.935
100 100 10 1 1.50 45 152 685 1 0.223 0.062 0.978
100 100 10 1 2.00 43 196 641 3 0.271 0.063 0.935
100 100 10 1 2.50 42 239 598 4 0.318 0.066 0.913
100 100 10 5 1.50 45 167 670 1 0.240 0.063 0.978
100 100 10 5 2.00 43 201 636 3 0.276 0.063 0.935
100 100 10 5 2.50 42 241 596 4 0.320 0.066 0.913
100 100 10 10 1.50 44 156 681 2 0.227 0.061 0.957
100 100 10 10 2.00 43 197 640 3 0.272 0.063 0.935
100 100 10 10 2.50 42 252 585 4 0.333 0.067 0.913
500 50 1 1 1.50 45 113 724 1 0.179 0.059 0.978
500 50 1 1 2.00 45 129 708 1 0.197 0.060 0.978
500 50 1 1 2.50 42 201 636 4 0.275 0.062 0.913
500 50 1 5 1.50 45 103 734 1 0.168 0.058 0.978
500 50 1 5 2.00 45 141 696 1 0.211 0.061 0.978
500 50 1 5 2.50 42 212 625 4 0.288 0.063 0.913
500 50 1 10 1.50 45 117 720 1 0.183 0.059 0.978
500 50 1 10 2.00 45 141 696 1 0.211 0.061 0.978
500 50 1 10 2.50 42 211 626 4 0.287 0.063 0.913
500 50 10 1 1.50 43 253 584 3 0.335 0.069 0.935
500 50 10 1 2.00 43 351 486 3 0.446 0.081 0.935
500 50 10 1 2.50 42 412 425 4 0.514 0.090 0.913
500 50 10 5 1.50 43 267 570 3 0.351 0.070 0.935
500 50 10 5 2.00 43 324 513 3 0.416 0.077 0.935
500 50 10 5 2.50 42 409 428 4 0.511 0.089 0.913
500 50 10 10 1.50 43 259 578 3 0.342 0.069 0.935
500 50 10 10 2.00 43 331 506 3 0.424 0.078 0.935
500 50 10 10 2.50 42 408 429 4 0.510 0.089 0.913
500 100 1 1 1.50 45 89 748 1 0.152 0.057 0.978
500 100 1 1 2.00 45 115 722 1 0.181 0.059 0.978
500 100 1 1 2.50 44 167 670 2 0.239 0.062 0.957
500 100 1 5 1.50 45 96 741 1 0.160 0.057 0.978
500 100 1 5 2.00 45 112 725 1 0.178 0.058 0.978
500 100 1 5 2.50 45 142 695 1 0.212 0.061 0.978
500 100 1 10 1.50 45 94 743 1 0.157 0.057 0.978
500 100 1 10 2.00 45 112 725 1 0.178 0.058 0.978
500 100 1 10 2.50 44 146 691 2 0.215 0.060 0.957
500 100 10 1 1.50 45 168 669 1 0.241 0.063 0.978
500 100 10 1 2.00 45 189 648 1 0.265 0.065 0.978
500 100 10 1 2.50 43 260 577 3 0.343 0.069 0.935
500 100 10 5 1.50 45 164 673 1 0.237 0.063 0.978
500 100 10 5 2.00 43 203 634 3 0.279 0.064 0.935
500 100 10 5 2.50 43 226 611 3 0.305 0.066 0.935
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
500 100 10 10 1.50 45 162 675 1 0.234 0.063 0.978
500 100 10 10 2.00 44 197 640 2 0.273 0.064 0.957
500 100 10 10 2.50 43 245 592 3 0.326 0.068 0.935

1000 50 1 1 1.50 45 116 721 1 0.182 0.059 0.978
1000 50 1 1 2.00 45 128 709 1 0.196 0.060 0.978
1000 50 1 1 2.50 43 192 645 3 0.266 0.063 0.935
1000 50 1 5 1.50 45 112 725 1 0.178 0.058 0.978
1000 50 1 5 2.00 45 140 697 1 0.210 0.061 0.978
1000 50 1 5 2.50 42 205 632 4 0.280 0.062 0.913
1000 50 1 10 1.50 45 111 726 1 0.177 0.058 0.978
1000 50 1 10 2.00 45 135 702 1 0.204 0.060 0.978
1000 50 1 10 2.50 43 195 642 3 0.270 0.063 0.935
1000 50 10 1 1.50 43 260 577 3 0.343 0.069 0.935
1000 50 10 1 2.00 43 318 519 3 0.409 0.077 0.935
1000 50 10 1 2.50 42 377 460 4 0.475 0.084 0.913
1000 50 10 5 1.50 43 262 575 3 0.345 0.070 0.935
1000 50 10 5 2.00 43 319 518 3 0.410 0.077 0.935
1000 50 10 5 2.50 42 384 453 4 0.482 0.085 0.913
1000 50 10 10 1.50 43 270 567 3 0.354 0.070 0.935
1000 50 10 10 2.00 43 333 504 3 0.426 0.079 0.935
1000 50 10 10 2.50 42 383 454 4 0.481 0.085 0.913
1000 100 1 1 1.50 45 105 732 1 0.170 0.058 0.978
1000 100 1 1 2.00 45 108 729 1 0.173 0.058 0.978
1000 100 1 1 2.50 43 163 674 3 0.233 0.060 0.935
1000 100 1 5 1.50 45 99 738 1 0.163 0.057 0.978
1000 100 1 5 2.00 45 113 724 1 0.179 0.059 0.978
1000 100 1 5 2.50 43 179 658 3 0.251 0.061 0.935
1000 100 1 10 1.50 45 98 739 1 0.162 0.057 0.978
1000 100 1 10 2.00 45 114 723 1 0.180 0.059 0.978
1000 100 1 10 2.50 43 172 665 3 0.243 0.061 0.935
1000 100 10 1 1.50 45 149 688 1 0.220 0.061 0.978
1000 100 10 1 2.00 43 192 645 3 0.266 0.063 0.935
1000 100 10 1 2.50 42 274 563 4 0.358 0.069 0.913
1000 100 10 5 1.50 45 159 678 1 0.231 0.062 0.978
1000 100 10 5 2.00 44 194 643 2 0.270 0.064 0.957
1000 100 10 5 2.50 42 258 579 4 0.340 0.068 0.913
1000 100 10 10 1.50 45 160 677 1 0.232 0.062 0.978
1000 100 10 10 2.00 44 204 633 2 0.281 0.065 0.957
1000 100 10 10 2.50 42 277 560 4 0.361 0.070 0.913
5000 50 1 1 1.50 45 108 729 1 0.173 0.058 0.978
5000 50 1 1 2.00 45 128 709 1 0.196 0.060 0.978
5000 50 1 1 2.50 42 208 629 4 0.283 0.063 0.913
5000 50 1 5 1.50 45 113 724 1 0.179 0.059 0.978
5000 50 1 5 2.00 45 144 693 1 0.214 0.061 0.978
5000 50 1 5 2.50 43 191 646 3 0.265 0.062 0.935
5000 50 1 10 1.50 45 120 717 1 0.187 0.059 0.978
5000 50 1 10 2.00 45 138 699 1 0.207 0.060 0.978
5000 50 1 10 2.50 43 195 642 3 0.270 0.063 0.935
5000 50 10 1 1.50 43 265 572 3 0.349 0.070 0.935
5000 50 10 1 2.00 43 348 489 3 0.443 0.081 0.935
5000 50 10 1 2.50 42 360 477 4 0.455 0.081 0.913
5000 50 10 5 1.50 43 262 575 3 0.345 0.070 0.935
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
5000 50 10 5 2.00 43 321 516 3 0.412 0.077 0.935
5000 50 10 5 2.50 42 406 431 4 0.507 0.089 0.913
5000 50 10 10 1.50 43 268 569 3 0.352 0.070 0.935
5000 50 10 10 2.00 43 329 508 3 0.421 0.078 0.935
5000 50 10 10 2.50 42 391 446 4 0.490 0.086 0.913
5000 100 1 1 1.50 46 97 740 0 0.162 0.059 1.000
5000 100 1 1 2.00 45 107 730 1 0.172 0.058 0.978
5000 100 1 1 2.50 43 195 642 3 0.270 0.063 0.935
5000 100 1 5 1.50 45 98 739 1 0.162 0.057 0.978
5000 100 1 5 2.00 45 115 722 1 0.181 0.059 0.978
5000 100 1 5 2.50 43 172 665 3 0.243 0.061 0.935
5000 100 1 10 1.50 45 97 740 1 0.161 0.057 0.978
5000 100 1 10 2.00 45 115 722 1 0.181 0.059 0.978
5000 100 1 10 2.50 43 177 660 3 0.249 0.061 0.935
5000 100 10 1 1.50 45 160 677 1 0.232 0.062 0.978
5000 100 10 1 2.00 44 196 641 2 0.272 0.064 0.957
5000 100 10 1 2.50 42 250 587 4 0.331 0.067 0.913
5000 100 10 5 1.50 45 162 675 1 0.234 0.063 0.978
5000 100 10 5 2.00 43 209 628 3 0.285 0.064 0.935
5000 100 10 5 2.50 42 248 589 4 0.328 0.067 0.913
5000 100 10 10 1.50 45 160 677 1 0.232 0.062 0.978
5000 100 10 10 2.00 44 202 635 2 0.279 0.065 0.957
5000 100 10 10 2.50 42 259 578 4 0.341 0.068 0.913

 
 
Table 8 presents the results of the Balanced Random Forest Categorizer, where P1 denotes the 
number of random trees, P2 denotes the number of random attributes, and P3 denotes the majority 
class percentage used to train each tree. 
 

Table 8. Balanced Random Forest Categorizer Results: First Review. 
 

P1 P2 P3 TN FN TP FP Accuracy Precision Recall 
10 25 1.50 23 741 96 23 0.865 0.193 0.500
10 25 2.00 21 768 69 25 0.894 0.233 0.457
10 25 2.50 25 788 49 21 0.921 0.338 0.543
10 50 1.50 26 759 78 20 0.889 0.250 0.565
10 50 2.00 23 765 72 23 0.892 0.242 0.500
10 50 2.50 21 796 41 25 0.925 0.339 0.457
10 100 1.50 26 728 109 20 0.854 0.193 0.565
10 100 2.00 23 745 92 23 0.870 0.200 0.500
10 100 2.50 23 763 74 23 0.890 0.237 0.500
10 200 1.50 26 749 88 20 0.878 0.228 0.565
10 200 2.00 25 750 87 21 0.878 0.223 0.543
10 200 2.50 18 777 60 28 0.900 0.231 0.391
25 25 1.50 24 749 88 22 0.875 0.214 0.522
25 25 2.00 23 759 78 23 0.886 0.228 0.500
25 25 2.50 20 805 32 26 0.934 0.385 0.435
25 50 1.50 27 755 82 19 0.886 0.248 0.587
25 50 2.00 22 739 98 24 0.862 0.183 0.478
25 50 2.50 19 807 30 27 0.935 0.388 0.413
25 100 1.50 30 736 101 16 0.867 0.229 0.652
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P1 P2 P3 TN FN TP FP Accuracy Precision Recall 
25 100 2.00 25 753 84 21 0.881 0.229 0.543
25 100 2.50 20 787 50 26 0.914 0.286 0.435
25 200 1.50 31 716 121 15 0.846 0.204 0.674
25 200 2.00 24 773 64 22 0.903 0.273 0.522
25 200 2.50 21 785 52 25 0.913 0.288 0.457
50 25 1.50 24 736 101 22 0.861 0.192 0.522
50 25 2.00 23 774 63 23 0.903 0.267 0.500
50 25 2.50 25 784 53 21 0.916 0.321 0.543
50 50 1.50 25 743 94 21 0.870 0.210 0.543
50 50 2.00 25 759 78 21 0.888 0.243 0.543
50 50 2.50 21 791 46 25 0.920 0.313 0.457
50 100 1.50 27 733 104 19 0.861 0.206 0.587
50 100 2.00 26 759 78 20 0.889 0.250 0.565
50 100 2.50 23 781 56 23 0.911 0.291 0.500
50 200 1.50 30 728 109 16 0.858 0.216 0.652
50 200 2.00 26 754 83 20 0.883 0.239 0.565
50 200 2.50 20 776 61 26 0.901 0.247 0.435

100 25 1.50 26 735 102 20 0.862 0.203 0.565
100 25 2.00 23 772 65 23 0.900 0.261 0.500
100 25 2.50 21 798 39 25 0.928 0.350 0.457
100 50 1.50 26 736 101 20 0.863 0.205 0.565
100 50 2.00 25 757 80 21 0.886 0.238 0.543
100 50 2.50 22 796 41 24 0.926 0.349 0.478
100 100 1.50 28 726 111 18 0.854 0.201 0.609
100 100 2.00 26 761 76 20 0.891 0.255 0.565
100 100 2.50 20 782 55 26 0.908 0.267 0.435
100 200 1.50 29 722 115 17 0.851 0.201 0.630
100 200 2.00 26 756 81 20 0.886 0.243 0.565
100 200 2.50 25 789 48 21 0.922 0.342 0.543
200 25 1.50 27 736 101 19 0.864 0.211 0.587
200 25 2.00 27 761 76 19 0.892 0.262 0.587
200 25 2.50 22 790 47 24 0.920 0.319 0.478
200 50 1.50 26 738 99 20 0.865 0.208 0.565
200 50 2.00 22 770 67 24 0.897 0.247 0.478
200 50 2.50 22 788 49 24 0.917 0.310 0.478
200 100 1.50 29 730 107 17 0.860 0.213 0.630
200 100 2.00 24 755 82 22 0.882 0.226 0.522
200 100 2.50 21 784 53 25 0.912 0.284 0.457
200 200 1.50 29 725 112 17 0.854 0.206 0.630
200 200 2.00 25 758 79 21 0.887 0.240 0.543
200 200 2.50 23 785 52 23 0.915 0.307 0.500
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Table 9 presents the results of the Random Forest Categorizer, where P1 denotes the number of 
random trees and P2 denotes the number of random attributes. 
 

Table 9. Random Forest Categorizer Results: First Review. 
 

P1 P2 TN FN TP FP Accuracy Precision Recall 
10 25 9 835 2 37 0.956 0.818 0.196
10 50 9 835 2 37 0.956 0.818 0.196
10 100 10 834 3 36 0.956 0.769 0.217
10 200 10 834 3 36 0.956 0.769 0.217
25 25 10 834 3 36 0.956 0.769 0.217
25 50 10 834 3 36 0.956 0.769 0.217
25 100 12 834 3 34 0.958 0.800 0.261
25 200 9 832 5 37 0.952 0.643 0.196
50 25 9 834 3 37 0.955 0.750 0.196
50 50 11 834 3 35 0.957 0.786 0.239
50 100 10 834 3 36 0.956 0.769 0.217
50 200 10 835 2 36 0.957 0.833 0.217

100 25 8 835 2 38 0.955 0.800 0.174
100 50 10 834 3 36 0.956 0.769 0.217
100 100 11 834 3 35 0.957 0.786 0.239
100 200 9 835 2 37 0.956 0.818 0.196
200 25 9 834 3 37 0.955 0.750 0.196
200 50 10 834 3 36 0.956 0.769 0.217
200 100 11 834 3 35 0.957 0.786 0.239
200 200 9 834 3 37 0.955 0.750 0.196

 
 
Table 10 presents the results of the Naive Bayes Categorizer, where P1 denotes the minimum 
value to be regarded as equal to zero. 
 

Table 10. Naïve Bayes Categorizer Results: First Review. 
 

P1 TN FN TP FP Accuracy Precision Recall 
0.001 39 652 185 7 0.783 0.174 0.848
0.002 39 618 219 7 0.744 0.151 0.848
0.005 41 567 270 5 0.689 0.132 0.891
0.010 43 521 316 3 0.639 0.120 0.935

 
 
D.2 Ensemble Categorizers: First Review 
 
Table 11 presents the top 200 results (sorted by recall) of the Ensemble Categorizer, where Wi 
denotes ensemble weight of the ith individual categorizer. The individual categorizers (along with 
the specific categorizer parameters used) used in the ensemble are presented in Section 4.1.2. 
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Table 11. Ensemble Categorizer Results: First Review. 
 
W1 W2 W3 W4 TP TN FP FN Accuracy Precision Recall 
0.5 5 5 1.5 42 643 194 4 0.775764 0.177966 0.913043

1 5 5 2.5 42 642 195 4 0.774632 0.177215 0.913043
1 5 2.5 2.5 42 639 198 4 0.771234 0.175 0.913043
1 5 3 2.5 42 639 198 4 0.771234 0.175 0.913043
1 3 5 2.5 42 638 199 4 0.770102 0.174274 0.913043

0.5 5 3 1.5 42 637 200 4 0.768969 0.173554 0.913043
1 2 5 2.5 42 637 200 4 0.768969 0.173554 0.913043
1 2.5 5 2.5 42 637 200 4 0.768969 0.173554 0.913043
1 5 2 2.5 42 637 200 4 0.768969 0.173554 0.913043

0.5 5 2.5 1.5 42 636 201 4 0.767837 0.17284 0.913043
1 1.5 5 2.5 42 636 201 4 0.767837 0.17284 0.913043

0.5 3 5 1.5 42 635 202 4 0.766704 0.172131 0.913043
1 3 3 2.5 42 635 202 4 0.766704 0.172131 0.913043
1 5 1.5 2.5 42 635 202 4 0.766704 0.172131 0.913043

0.5 5 2 1.5 42 634 203 4 0.765572 0.171429 0.913043
1 1 5 2.5 42 634 203 4 0.765572 0.171429 0.913043
1 2.5 3 2.5 42 634 203 4 0.765572 0.171429 0.913043
1 3 2.5 2.5 42 634 203 4 0.765572 0.171429 0.913043
1 5 0.5 2.5 42 634 203 4 0.765572 0.171429 0.913043
1 5 1 2.5 42 634 203 4 0.765572 0.171429 0.913043

0.5 2.5 5 1.5 42 633 204 4 0.764439 0.170732 0.913043
1 0.5 5 2.5 42 632 205 4 0.763307 0.17004 0.913043
1 2 3 2.5 42 632 205 4 0.763307 0.17004 0.913043
1 2.5 2 2.5 42 632 205 4 0.763307 0.17004 0.913043
1 2.5 2.5 2.5 42 632 205 4 0.763307 0.17004 0.913043
1 3 1 2.5 42 632 205 4 0.763307 0.17004 0.913043
1 3 1.5 2.5 42 632 205 4 0.763307 0.17004 0.913043
1 3 2 2.5 42 632 205 4 0.763307 0.17004 0.913043
2 5 5 5 42 632 205 4 0.763307 0.17004 0.913043

0.5 2 5 1.5 42 631 206 4 0.762174 0.169355 0.913043
1 1.5 1.5 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 1.5 2 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 1.5 2.5 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 1.5 3 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 2 1.5 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 2 2 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 2 2.5 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 2.5 1 2.5 42 631 206 4 0.762174 0.169355 0.913043
1 2.5 1.5 2.5 42 631 206 4 0.762174 0.169355 0.913043
2 2.5 5 5 42 631 206 4 0.762174 0.169355 0.913043
2 3 3 5 42 631 206 4 0.762174 0.169355 0.913043
2 3 5 5 42 631 206 4 0.762174 0.169355 0.913043
2 5 2 5 42 631 206 4 0.762174 0.169355 0.913043
2 5 2.5 5 42 631 206 4 0.762174 0.169355 0.913043
2 5 3 5 42 631 206 4 0.762174 0.169355 0.913043

0.5 3 3 1.5 42 630 207 4 0.761042 0.168675 0.913043
1 1 3 2.5 42 630 207 4 0.761042 0.168675 0.913043
1 2 1 2.5 42 630 207 4 0.761042 0.168675 0.913043
1 3 0.5 2.5 42 630 207 4 0.761042 0.168675 0.913043
2 5 1.5 5 42 630 207 4 0.761042 0.168675 0.913043
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W1 W2 W3 W4 TP TN FP FN Accuracy Precision Recall 
0.5 1.5 5 1.5 42 629 208 4 0.759909 0.168 0.913043
0.5 5 1.5 1.5 42 629 208 4 0.759909 0.168 0.913043

1 1 2.5 2.5 42 629 208 4 0.759909 0.168 0.913043
1 2 0.5 2.5 42 629 208 4 0.759909 0.168 0.913043
1 2.5 0.5 2.5 42 629 208 4 0.759909 0.168 0.913043
2 2 5 5 42 629 208 4 0.759909 0.168 0.913043
2 2.5 3 5 42 629 208 4 0.759909 0.168 0.913043
2 3 2.5 5 42 629 208 4 0.759909 0.168 0.913043
2 5 0.5 5 42 629 208 4 0.759909 0.168 0.913043
2 5 1 5 42 629 208 4 0.759909 0.168 0.913043

0.5 1 5 1.5 42 628 209 4 0.758777 0.167331 0.913043
1 0.5 3 2.5 42 628 209 4 0.758777 0.167331 0.913043
1 1 2 2.5 42 628 209 4 0.758777 0.167331 0.913043
1 1.5 1 2.5 42 628 209 4 0.758777 0.167331 0.913043
2 1.5 5 5 42 628 209 4 0.758777 0.167331 0.913043
2 3 2 5 42 628 209 4 0.758777 0.167331 0.913043
1 0.5 2.5 2.5 42 627 210 4 0.757644 0.166667 0.913043
1 1.5 0.5 2.5 42 627 210 4 0.757644 0.166667 0.913043
2 1 5 5 42 627 210 4 0.757644 0.166667 0.913043
2 2.5 1.5 5 42 627 210 4 0.757644 0.166667 0.913043
2 2.5 2 5 42 627 210 4 0.757644 0.166667 0.913043
2 2.5 2.5 5 42 627 210 4 0.757644 0.166667 0.913043
2 3 0.5 5 42 627 210 4 0.757644 0.166667 0.913043
2 3 1 5 42 627 210 4 0.757644 0.166667 0.913043
2 3 1.5 5 42 627 210 4 0.757644 0.166667 0.913043
1 0.5 2 2.5 42 626 211 4 0.756512 0.166008 0.913043
1 1 1.5 2.5 42 626 211 4 0.756512 0.166008 0.913043
2 0.5 5 5 42 626 211 4 0.756512 0.166008 0.913043
2 2 3 5 42 626 211 4 0.756512 0.166008 0.913043
2 2.5 1 5 42 626 211 4 0.756512 0.166008 0.913043

0.5 2.5 3 1.5 42 625 212 4 0.755379 0.165354 0.913043
0.5 3 2.5 1.5 42 625 212 4 0.755379 0.165354 0.913043
0.5 5 1 1.5 42 625 212 4 0.755379 0.165354 0.913043

2 2 2.5 5 42 625 212 4 0.755379 0.165354 0.913043
2 2.5 0.5 5 42 625 212 4 0.755379 0.165354 0.913043

0.5 2 3 1.5 42 624 213 4 0.754247 0.164706 0.913043
0.5 2.5 2.5 1.5 42 624 213 4 0.754247 0.164706 0.913043
0.5 3 2 1.5 42 624 213 4 0.754247 0.164706 0.913043
0.5 5 0.5 1.5 42 624 213 4 0.754247 0.164706 0.913043

1 0.5 1 2.5 42 624 213 4 0.754247 0.164706 0.913043
1 0.5 1.5 2.5 42 624 213 4 0.754247 0.164706 0.913043
1 1 0.5 2.5 42 624 213 4 0.754247 0.164706 0.913043
1 1 1 2.5 42 624 213 4 0.754247 0.164706 0.913043
1 5 5 3 42 624 213 4 0.754247 0.164706 0.913043
2 1 1.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 1 2 5 42 624 213 4 0.754247 0.164706 0.913043
2 1 2.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 1 3 5 42 624 213 4 0.754247 0.164706 0.913043
2 1.5 0.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 1.5 1 5 42 624 213 4 0.754247 0.164706 0.913043
2 1.5 1.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 1.5 2 5 42 624 213 4 0.754247 0.164706 0.913043
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W1 W2 W3 W4 TP TN FP FN Accuracy Precision Recall 
2 1.5 2.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 1.5 3 5 42 624 213 4 0.754247 0.164706 0.913043
2 2 0.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 2 1 5 42 624 213 4 0.754247 0.164706 0.913043
2 2 1.5 5 42 624 213 4 0.754247 0.164706 0.913043
2 2 2 5 42 624 213 4 0.754247 0.164706 0.913043

0.5 0.5 5 1.5 42 623 214 4 0.753114 0.164063 0.913043
1 0.5 0.5 2.5 42 623 214 4 0.753114 0.164063 0.913043
2 0.5 1 5 42 623 214 4 0.753114 0.164063 0.913043
2 0.5 1.5 5 42 623 214 4 0.753114 0.164063 0.913043
2 0.5 2 5 42 623 214 4 0.753114 0.164063 0.913043
2 0.5 2.5 5 42 623 214 4 0.753114 0.164063 0.913043
2 0.5 3 5 42 623 214 4 0.753114 0.164063 0.913043
2 1 0.5 5 42 623 214 4 0.753114 0.164063 0.913043
2 1 1 5 42 623 214 4 0.753114 0.164063 0.913043

0.5 2 2.5 1.5 42 622 215 4 0.751982 0.163424 0.913043
0.5 1.5 3 1.5 42 621 216 4 0.750849 0.162791 0.913043
0.5 3 1.5 1.5 42 621 216 4 0.750849 0.162791 0.913043

2 0.5 0.5 5 42 621 216 4 0.750849 0.162791 0.913043
0.5 2.5 2 1.5 42 619 218 4 0.748584 0.161538 0.913043
0.5 3 1 1.5 42 619 218 4 0.748584 0.161538 0.913043
0.5 2 2 1.5 42 618 219 4 0.747452 0.16092 0.913043
0.5 2.5 1.5 1.5 42 618 219 4 0.747452 0.16092 0.913043

1 5 2.5 3 42 618 219 4 0.747452 0.16092 0.913043
1 5 3 3 42 618 219 4 0.747452 0.16092 0.913043

0.5 1 3 1.5 42 617 220 4 0.746319 0.160305 0.913043
0.5 3 0.5 1.5 42 617 220 4 0.746319 0.160305 0.913043
0.5 1.5 2.5 1.5 42 616 221 4 0.745187 0.159696 0.913043
0.5 2.5 1 1.5 42 616 221 4 0.745187 0.159696 0.913043

1 2.5 5 3 42 616 221 4 0.745187 0.159696 0.913043
1 3 5 3 42 616 221 4 0.745187 0.159696 0.913043
1 5 2 3 42 616 221 4 0.745187 0.159696 0.913043

0.5 0.5 3 1.5 42 614 223 4 0.742922 0.158491 0.913043
0.5 1 2.5 1.5 42 614 223 4 0.742922 0.158491 0.913043
0.5 2 1.5 1.5 42 614 223 4 0.742922 0.158491 0.913043
0.5 2.5 0.5 1.5 42 614 223 4 0.742922 0.158491 0.913043

1 2 5 3 42 614 223 4 0.742922 0.158491 0.913043
1 5 1 3 42 614 223 4 0.742922 0.158491 0.913043
1 5 1.5 3 42 614 223 4 0.742922 0.158491 0.913043

0.5 0.5 2.5 1.5 42 613 224 4 0.741789 0.157895 0.913043
0.5 2 1 1.5 42 613 224 4 0.741789 0.157895 0.913043

1 0.5 5 3 42 613 224 4 0.741789 0.157895 0.913043
1 1 5 3 42 613 224 4 0.741789 0.157895 0.913043
1 1.5 5 3 42 613 224 4 0.741789 0.157895 0.913043

0.5 1 2 1.5 42 612 225 4 0.740657 0.157303 0.913043
0.5 1.5 1.5 1.5 42 612 225 4 0.740657 0.157303 0.913043
0.5 1.5 2 1.5 42 612 225 4 0.740657 0.157303 0.913043

1 2.5 3 3 42 612 225 4 0.740657 0.157303 0.913043
1 3 2.5 3 42 612 225 4 0.740657 0.157303 0.913043
1 3 3 3 42 612 225 4 0.740657 0.157303 0.913043
1 5 0.5 3 42 612 225 4 0.740657 0.157303 0.913043

0.5 0.5 2 1.5 42 611 226 4 0.739524 0.156716 0.913043
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W1 W2 W3 W4 TP TN FP FN Accuracy Precision Recall 
0.5 1 1.5 1.5 42 611 226 4 0.739524 0.156716 0.913043
0.5 1.5 1 1.5 42 611 226 4 0.739524 0.156716 0.913043

1 1.5 3 3 42 611 226 4 0.739524 0.156716 0.913043
1 2 3 3 42 611 226 4 0.739524 0.156716 0.913043
1 2.5 2.5 3 42 611 226 4 0.739524 0.156716 0.913043
1 3 2 3 42 611 226 4 0.739524 0.156716 0.913043

0.5 2 0.5 1.5 42 610 227 4 0.738392 0.156134 0.913043
0.5 5 5 2 42 610 227 4 0.738392 0.156134 0.913043

1 2 2.5 3 42 610 227 4 0.738392 0.156134 0.913043
1 2.5 2 3 42 610 227 4 0.738392 0.156134 0.913043

0.5 0.5 1.5 1.5 42 609 228 4 0.737259 0.155556 0.913043
0.5 1.5 0.5 1.5 42 609 228 4 0.737259 0.155556 0.913043

1 1 3 3 42 609 228 4 0.737259 0.155556 0.913043
1 3 1 3 42 609 228 4 0.737259 0.155556 0.913043
1 3 1.5 3 42 609 228 4 0.737259 0.155556 0.913043

0.5 1 1 1.5 42 608 229 4 0.736127 0.154982 0.913043
1 1.5 2 3 42 608 229 4 0.736127 0.154982 0.913043
1 1.5 2.5 3 42 608 229 4 0.736127 0.154982 0.913043
1 2 1.5 3 42 608 229 4 0.736127 0.154982 0.913043
1 2 2 3 42 608 229 4 0.736127 0.154982 0.913043
1 2.5 1 3 42 608 229 4 0.736127 0.154982 0.913043
1 2.5 1.5 3 42 608 229 4 0.736127 0.154982 0.913043
1 3 0.5 3 42 608 229 4 0.736127 0.154982 0.913043

0.5 0.5 1 1.5 42 607 230 4 0.734994 0.154412 0.913043
0.5 1 0.5 1.5 42 607 230 4 0.734994 0.154412 0.913043

1 0.5 2.5 3 42 607 230 4 0.734994 0.154412 0.913043
1 0.5 3 3 42 607 230 4 0.734994 0.154412 0.913043
1 1 2 3 42 607 230 4 0.734994 0.154412 0.913043
1 1 2.5 3 42 607 230 4 0.734994 0.154412 0.913043
1 1.5 1.5 3 42 607 230 4 0.734994 0.154412 0.913043
1 2 1 3 42 607 230 4 0.734994 0.154412 0.913043
1 2.5 0.5 3 42 607 230 4 0.734994 0.154412 0.913043
1 0.5 2 3 42 605 232 4 0.732729 0.153285 0.913043
1 1 1.5 3 42 605 232 4 0.732729 0.153285 0.913043
1 1.5 1 3 42 605 232 4 0.732729 0.153285 0.913043
1 2 0.5 3 42 605 232 4 0.732729 0.153285 0.913043

0.5 0.5 0.5 1.5 42 604 233 4 0.731597 0.152727 0.913043
1 0.5 1.5 3 42 604 233 4 0.731597 0.152727 0.913043
1 1 1 3 42 604 233 4 0.731597 0.152727 0.913043
1 1.5 0.5 3 42 604 233 4 0.731597 0.152727 0.913043
1 0.5 1 3 42 603 234 4 0.730464 0.152174 0.913043
1 1 0.5 3 42 603 234 4 0.730464 0.152174 0.913043

1.5 5 5 5 42 603 234 4 0.730464 0.152174 0.913043
1 0.5 0.5 3 42 602 235 4 0.729332 0.151625 0.913043

1.5 2 5 5 42 601 236 4 0.728199 0.151079 0.913043
1.5 2.5 5 5 42 601 236 4 0.728199 0.151079 0.913043
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D.3 Individual Categorizers: Second Review 
 
Table 12 presents the results of the Perceptron Categorizer, where P1 denotes the maximum 
number of iterations, P2 denotes the margin of positive instances, and P3 denotes the margin of 
negative instances. 
 

Table 12. Perceptron Categorizer Results: Second Review. 
 

P1 P2 P3 TN FN TP FP Accuracy Precision Recall
100 1 1 1201 12168 1154 2553 0.78 0.51 0.32 
100 1 10 707 12794 528 3047 0.79 0.57 0.19 
100 1 50 537 13028 294 3217 0.79 0.65 0.14 
100 1 100 290 13218 104 3464 0.79 0.74 0.08 
100 10 1 2295 10358 2964 1459 0.74 0.44 0.61 
100 10 10 1753 11610 1712 2001 0.78 0.51 0.47 
100 10 50 712 12873 449 3042 0.80 0.61 0.19 
100 10 100 372 13162 160 3382 0.79 0.70 0.10 
100 50 1 3089 8075 5247 665 0.65 0.37 0.82 
100 50 10 2708 9541 3781 1046 0.72 0.42 0.72 
100 50 50 1483 12115 1207 2271 0.80 0.55 0.40 
100 50 100 776 12905 417 2978 0.80 0.65 0.21 

3000 50 0 1329 12196 1126 2425 0.79 0.54 0.35 
3000 50 1 1324 12194 1128 2430 0.79 0.54 0.35 
3000 50 10 1155 12397 925 2599 0.79 0.56 0.31 
3000 100 0 1493 12049 1273 2261 0.79 0.54 0.40 
3000 100 1 1472 12084 1238 2282 0.79 0.54 0.39 
3000 100 10 1383 12241 1081 2371 0.80 0.56 0.37 
3000 150 0 1582 12044 1278 2172 0.80 0.55 0.42 
3000 150 1 1579 12043 1279 2175 0.80 0.55 0.42 
3000 150 10 1515 12146 1176 2239 0.80 0.56 0.40 
5000 50 0 1377 12196 1126 2377 0.79 0.55 0.37 
5000 50 1 1362 12214 1108 2392 0.80 0.55 0.36 
5000 50 10 1153 12494 828 2601 0.80 0.58 0.31 
5000 100 0 1424 12177 1145 2330 0.80 0.55 0.38 
5000 100 1 1410 12200 1122 2344 0.80 0.56 0.38 
5000 100 10 1319 12310 1012 2435 0.80 0.57 0.35 
5000 150 0 1506 12189 1133 2248 0.80 0.57 0.40 
5000 150 1 1498 12194 1128 2256 0.80 0.57 0.40 
5000 150 10 1405 12302 1020 2349 0.80 0.58 0.37 
7000 50 0 1409 12190 1132 2345 0.80 0.55 0.38 
7000 50 1 1406 12210 1112 2348 0.80 0.56 0.37 
7000 50 10 1248 12404 918 2506 0.80 0.58 0.33 
7000 100 0 1438 12179 1143 2316 0.80 0.56 0.38 
7000 100 1 1438 12177 1145 2316 0.80 0.56 0.38 
7000 100 10 1339 12312 1010 2415 0.80 0.57 0.36 
7000 150 0 1528 12150 1172 2226 0.80 0.57 0.41 
7000 150 1 1520 12157 1165 2234 0.80 0.57 0.40 
7000 150 10 1456 12281 1041 2298 0.80 0.58 0.39 
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Table 13 presents the results of the Balanced Perceptron Categorizer, where P1 denotes the 
maximum number of iterations, P2 denotes the margin of positive instances, P3 denotes the 
margin of negative instances, P4 denotes the number of balanced learners, and P5 denotes the 
majority class percentage used to train each learner. 
 

Table 13. Balanced Perceptron Categorizer Results: Second Review. 
 

P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
50 25 5 5 2.0 10 13313 9 3744 0.78 0.53 0.00
50 25 5 5 2.5 6 13313 9 3748 0.78 0.40 0.00
50 25 5 5 3.0 5 13317 5 3749 0.78 0.50 0.00
50 25 5 10 2.0 9 13314 8 3745 0.78 0.53 0.00
50 25 5 10 2.5 9 13316 6 3745 0.78 0.60 0.00
50 25 5 10 3.0 6 13316 6 3748 0.78 0.50 0.00
50 25 5 15 2.0 8 13315 7 3746 0.78 0.53 0.00
50 25 5 15 2.5 6 13316 6 3748 0.78 0.50 0.00
50 25 5 15 3.0 6 13317 5 3748 0.78 0.55 0.00
50 25 10 5 2.0 3 13317 5 3751 0.78 0.38 0.00
50 25 10 5 2.5 5 13317 5 3749 0.78 0.50 0.00
50 25 10 5 3.0 2 13317 5 3752 0.78 0.29 0.00
50 25 10 10 2.0 4 13317 5 3750 0.78 0.44 0.00
50 25 10 10 2.5 3 13318 4 3751 0.78 0.43 0.00
50 25 10 10 3.0 4 13317 5 3750 0.78 0.44 0.00
50 25 10 15 2.0 4 13317 5 3750 0.78 0.44 0.00
50 25 10 15 2.5 5 13318 4 3749 0.78 0.56 0.00
50 25 10 15 3.0 4 13318 4 3750 0.78 0.50 0.00
50 25 15 5 2.0 3 13318 4 3751 0.78 0.43 0.00
50 25 15 5 2.5 3 13321 1 3751 0.78 0.75 0.00
50 25 15 5 3.0 3 13319 3 3751 0.78 0.50 0.00
50 25 15 10 2.0 3 13318 4 3751 0.78 0.43 0.00
50 25 15 10 2.5 3 13318 4 3751 0.78 0.43 0.00
50 25 15 10 3.0 1 13320 2 3753 0.78 0.33 0.00
50 25 15 15 2.0 3 13317 5 3751 0.78 0.38 0.00
50 25 15 15 2.5 2 13321 1 3752 0.78 0.67 0.00
50 25 15 15 3.0 2 13319 3 3752 0.78 0.40 0.00
50 50 5 5 2.0 35 13304 18 3719 0.78 0.66 0.01
50 50 5 5 2.5 30 13308 14 3724 0.78 0.68 0.01
50 50 5 5 3.0 24 13310 12 3730 0.78 0.67 0.01
50 50 5 10 2.0 43 13301 21 3711 0.78 0.67 0.01
50 50 5 10 2.5 29 13308 14 3725 0.78 0.67 0.01
50 50 5 10 3.0 30 13307 15 3724 0.78 0.67 0.01
50 50 5 15 2.0 38 13303 19 3716 0.78 0.67 0.01
50 50 5 15 2.5 24 13307 15 3730 0.78 0.62 0.01
50 50 5 15 3.0 24 13307 15 3730 0.78 0.62 0.01
50 50 10 5 2.0 33 13307 15 3721 0.78 0.69 0.01
50 50 10 5 2.5 21 13311 11 3733 0.78 0.66 0.01
50 50 10 5 3.0 21 13311 11 3733 0.78 0.66 0.01
50 50 10 10 2.0 28 13308 14 3726 0.78 0.67 0.01
50 50 10 10 2.5 21 13311 11 3733 0.78 0.66 0.01
50 50 10 10 3.0 21 13310 12 3733 0.78 0.64 0.01
50 50 10 15 2.0 28 13307 15 3726 0.78 0.65 0.01
50 50 10 15 2.5 20 13310 12 3734 0.78 0.63 0.01
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
50 50 10 15 3.0 20 13311 11 3734 0.78 0.65 0.01
50 50 15 5 2.0 25 13310 12 3729 0.78 0.68 0.01
50 50 15 5 2.5 17 13315 7 3737 0.78 0.71 0.00
50 50 15 5 3.0 16 13317 5 3738 0.78 0.76 0.00
50 50 15 10 2.0 22 13311 11 3732 0.78 0.67 0.01
50 50 15 10 2.5 17 13314 8 3737 0.78 0.68 0.00
50 50 15 10 3.0 18 13312 10 3736 0.78 0.64 0.00
50 50 15 15 2.0 22 13310 12 3732 0.78 0.65 0.01
50 50 15 15 2.5 18 13315 7 3736 0.78 0.72 0.00
50 50 15 15 3.0 20 13314 8 3734 0.78 0.71 0.01
50 100 5 5 2.0 101 13286 36 3653 0.78 0.74 0.03
50 100 5 5 2.5 79 13298 24 3675 0.78 0.77 0.02
50 100 5 5 3.0 69 13298 24 3685 0.78 0.74 0.02
50 100 5 10 2.0 102 13284 38 3652 0.78 0.73 0.03
50 100 5 10 2.5 72 13299 23 3682 0.78 0.76 0.02
50 100 5 10 3.0 68 13299 23 3686 0.78 0.75 0.02
50 100 5 15 2.0 100 13282 40 3654 0.78 0.71 0.03
50 100 5 15 2.5 76 13297 25 3678 0.78 0.75 0.02
50 100 5 15 3.0 76 13296 26 3678 0.78 0.75 0.02
50 100 10 5 2.0 91 13291 31 3663 0.78 0.75 0.02
50 100 10 5 2.5 69 13298 24 3685 0.78 0.74 0.02
50 100 10 5 3.0 61 13301 21 3693 0.78 0.74 0.02
50 100 10 10 2.0 89 13291 31 3665 0.78 0.74 0.02
50 100 10 10 2.5 63 13299 23 3691 0.78 0.73 0.02
50 100 10 10 3.0 65 13301 21 3689 0.78 0.76 0.02
50 100 10 15 2.0 89 13292 30 3665 0.78 0.75 0.02
50 100 10 15 2.5 68 13299 23 3686 0.78 0.75 0.02
50 100 10 15 3.0 63 13300 22 3691 0.78 0.74 0.02
50 100 15 5 2.0 76 13297 25 3678 0.78 0.75 0.02
50 100 15 5 2.5 60 13301 21 3694 0.78 0.74 0.02
50 100 15 5 3.0 51 13303 19 3703 0.78 0.73 0.01
50 100 15 10 2.0 87 13296 26 3667 0.78 0.77 0.02
50 100 15 10 2.5 56 13302 20 3698 0.78 0.74 0.01
50 100 15 10 3.0 58 13302 20 3696 0.78 0.74 0.02
50 100 15 15 2.0 75 13297 25 3679 0.78 0.75 0.02
50 100 15 15 2.5 55 13301 21 3699 0.78 0.72 0.01
50 100 15 15 3.0 54 13302 20 3700 0.78 0.73 0.01

100 25 5 5 2.0 28 13306 16 3726 0.78 0.64 0.01
100 25 5 5 2.5 19 13306 16 3735 0.78 0.54 0.01
100 25 5 5 3.0 25 13309 13 3729 0.78 0.66 0.01
100 25 5 10 2.0 23 13308 14 3731 0.78 0.62 0.01
100 25 5 10 2.5 17 13309 13 3737 0.78 0.57 0.00
100 25 5 10 3.0 19 13308 14 3735 0.78 0.58 0.01
100 25 5 15 2.0 29 13306 16 3725 0.78 0.64 0.01
100 25 5 15 2.5 21 13309 13 3733 0.78 0.62 0.01
100 25 5 15 3.0 23 13309 13 3731 0.78 0.64 0.01
100 25 10 5 2.0 21 13311 11 3733 0.78 0.66 0.01
100 25 10 5 2.5 16 13312 10 3738 0.78 0.62 0.00
100 25 10 5 3.0 15 13315 7 3739 0.78 0.68 0.00
100 25 10 10 2.0 20 13310 12 3734 0.78 0.63 0.01
100 25 10 10 2.5 15 13311 11 3739 0.78 0.58 0.00
100 25 10 10 3.0 15 13313 9 3739 0.78 0.63 0.00
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
100 25 10 15 2.0 21 13310 12 3733 0.78 0.64 0.01
100 25 10 15 2.5 14 13312 10 3740 0.78 0.58 0.00
100 25 10 15 3.0 15 13314 8 3739 0.78 0.65 0.00
100 25 15 5 2.0 12 13313 9 3742 0.78 0.57 0.00
100 25 15 5 2.5 7 13314 8 3747 0.78 0.47 0.00
100 25 15 5 3.0 8 13315 7 3746 0.78 0.53 0.00
100 25 15 10 2.0 20 13311 11 3734 0.78 0.65 0.01
100 25 15 10 2.5 9 13315 7 3745 0.78 0.56 0.00
100 25 15 10 3.0 9 13314 8 3745 0.78 0.53 0.00
100 25 15 15 2.0 14 13312 10 3740 0.78 0.58 0.00
100 25 15 15 2.5 11 13313 9 3743 0.78 0.55 0.00
100 25 15 15 3.0 9 13313 9 3745 0.78 0.50 0.00
100 50 5 5 2.0 73 13295 27 3681 0.78 0.73 0.02
100 50 5 5 2.5 58 13297 25 3696 0.78 0.70 0.02
100 50 5 5 3.0 48 13300 22 3706 0.78 0.69 0.01
100 50 5 10 2.0 73 13294 28 3681 0.78 0.72 0.02
100 50 5 10 2.5 51 13298 24 3703 0.78 0.68 0.01
100 50 5 10 3.0 54 13298 24 3700 0.78 0.69 0.01
100 50 5 15 2.0 65 13297 25 3689 0.78 0.72 0.02
100 50 5 15 2.5 54 13298 24 3700 0.78 0.69 0.01
100 50 5 15 3.0 48 13299 23 3706 0.78 0.68 0.01
100 50 10 5 2.0 61 13298 24 3693 0.78 0.72 0.02
100 50 10 5 2.5 47 13302 20 3707 0.78 0.70 0.01
100 50 10 5 3.0 42 13306 16 3712 0.78 0.72 0.01
100 50 10 10 2.0 56 13300 22 3698 0.78 0.72 0.01
100 50 10 10 2.5 49 13300 22 3705 0.78 0.69 0.01
100 50 10 10 3.0 39 13304 18 3715 0.78 0.68 0.01
100 50 10 15 2.0 55 13296 26 3699 0.78 0.68 0.01
100 50 10 15 2.5 46 13302 20 3708 0.78 0.70 0.01
100 50 10 15 3.0 44 13299 23 3710 0.78 0.66 0.01
100 50 15 5 2.0 46 13301 21 3708 0.78 0.69 0.01
100 50 15 5 2.5 38 13303 19 3716 0.78 0.67 0.01
100 50 15 5 3.0 35 13307 15 3719 0.78 0.70 0.01
100 50 15 10 2.0 50 13301 21 3704 0.78 0.70 0.01
100 50 15 10 2.5 35 13307 15 3719 0.78 0.70 0.01
100 50 15 10 3.0 37 13303 19 3717 0.78 0.66 0.01
100 50 15 15 2.0 49 13301 21 3705 0.78 0.70 0.01
100 50 15 15 2.5 36 13304 18 3718 0.78 0.67 0.01
100 50 15 15 3.0 36 13304 18 3718 0.78 0.67 0.01
100 100 5 5 2.0 125 13281 41 3629 0.79 0.75 0.03
100 100 5 5 2.5 98 13289 33 3656 0.78 0.75 0.03
100 100 5 5 3.0 98 13292 30 3656 0.78 0.77 0.03
100 100 5 10 2.0 132 13278 44 3622 0.79 0.75 0.04
100 100 5 10 2.5 102 13285 37 3652 0.78 0.73 0.03
100 100 5 10 3.0 99 13291 31 3655 0.78 0.76 0.03
100 100 5 15 2.0 129 13277 45 3625 0.79 0.74 0.03
100 100 5 15 2.5 101 13287 35 3653 0.78 0.74 0.03
100 100 5 15 3.0 100 13291 31 3654 0.78 0.76 0.03
100 100 10 5 2.0 115 13278 44 3639 0.78 0.72 0.03
100 100 10 5 2.5 90 13289 33 3664 0.78 0.73 0.02
100 100 10 5 3.0 98 13292 30 3656 0.78 0.77 0.03
100 100 10 10 2.0 115 13282 40 3639 0.78 0.74 0.03
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
100 100 10 10 2.5 87 13291 31 3667 0.78 0.74 0.02
100 100 10 10 3.0 92 13293 29 3662 0.78 0.76 0.02
100 100 10 15 2.0 120 13282 40 3634 0.78 0.75 0.03
100 100 10 15 2.5 93 13291 31 3661 0.78 0.75 0.02
100 100 10 15 3.0 94 13292 30 3660 0.78 0.76 0.03
100 100 15 5 2.0 110 13284 38 3644 0.78 0.74 0.03
100 100 15 5 2.5 88 13294 28 3666 0.78 0.76 0.02
100 100 15 5 3.0 82 13296 26 3672 0.78 0.76 0.02
100 100 15 10 2.0 110 13285 37 3644 0.78 0.75 0.03
100 100 15 10 2.5 88 13293 29 3666 0.78 0.75 0.02
100 100 15 10 3.0 81 13295 27 3673 0.78 0.75 0.02
100 100 15 15 2.0 110 13284 38 3644 0.78 0.74 0.03
100 100 15 15 2.5 87 13293 29 3667 0.78 0.75 0.02
100 100 15 15 3.0 85 13293 29 3669 0.78 0.75 0.02
200 25 5 5 2.0 50 13297 25 3704 0.78 0.67 0.01
200 25 5 5 2.5 40 13298 24 3714 0.78 0.63 0.01
200 25 5 5 3.0 45 13298 24 3709 0.78 0.65 0.01
200 25 5 10 2.0 55 13296 26 3699 0.78 0.68 0.01
200 25 5 10 2.5 43 13300 22 3711 0.78 0.66 0.01
200 25 5 10 3.0 43 13298 24 3711 0.78 0.64 0.01
200 25 5 15 2.0 48 13296 26 3706 0.78 0.65 0.01
200 25 5 15 2.5 39 13297 25 3715 0.78 0.61 0.01
200 25 5 15 3.0 42 13298 24 3712 0.78 0.64 0.01
200 25 10 5 2.0 39 13300 22 3715 0.78 0.64 0.01
200 25 10 5 2.5 36 13300 22 3718 0.78 0.62 0.01
200 25 10 5 3.0 34 13302 20 3720 0.78 0.63 0.01
200 25 10 10 2.0 42 13302 20 3712 0.78 0.68 0.01
200 25 10 10 2.5 33 13303 19 3721 0.78 0.63 0.01
200 25 10 10 3.0 32 13302 20 3722 0.78 0.62 0.01
200 25 10 15 2.0 41 13300 22 3713 0.78 0.65 0.01
200 25 10 15 2.5 37 13304 18 3717 0.78 0.67 0.01
200 25 10 15 3.0 34 13304 18 3720 0.78 0.65 0.01
200 25 15 5 2.0 39 13303 19 3715 0.78 0.67 0.01
200 25 15 5 2.5 32 13305 17 3722 0.78 0.65 0.01
200 25 15 5 3.0 34 13307 15 3720 0.78 0.69 0.01
200 25 15 10 2.0 35 13303 19 3719 0.78 0.65 0.01
200 25 15 10 2.5 26 13305 17 3728 0.78 0.60 0.01
200 25 15 10 3.0 31 13306 16 3723 0.78 0.66 0.01
200 25 15 15 2.0 35 13302 20 3719 0.78 0.64 0.01
200 25 15 15 2.5 31 13306 16 3723 0.78 0.66 0.01
200 25 15 15 3.0 32 13305 17 3722 0.78 0.65 0.01
200 50 5 5 2.0 101 13283 39 3653 0.78 0.72 0.03
200 50 5 5 2.5 82 13286 36 3672 0.78 0.69 0.02
200 50 5 5 3.0 79 13289 33 3675 0.78 0.71 0.02
200 50 5 10 2.0 107 13281 41 3647 0.78 0.72 0.03
200 50 5 10 2.5 87 13289 33 3667 0.78 0.73 0.02
200 50 5 10 3.0 84 13289 33 3670 0.78 0.72 0.02
200 50 5 15 2.0 101 13282 40 3653 0.78 0.72 0.03
200 50 5 15 2.5 85 13290 32 3669 0.78 0.73 0.02
200 50 5 15 3.0 76 13289 33 3678 0.78 0.70 0.02
200 50 10 5 2.0 86 13284 38 3668 0.78 0.69 0.02
200 50 10 5 2.5 76 13295 27 3678 0.78 0.74 0.02
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P1 P2 P3 P4 P5 TN FN TP FP Accuracy Precision Recall 
200 50 10 5 3.0 71 13293 29 3683 0.78 0.71 0.02
200 50 10 10 2.0 81 13289 33 3673 0.78 0.71 0.02
200 50 10 10 2.5 67 13294 28 3687 0.78 0.71 0.02
200 50 10 10 3.0 66 13293 29 3688 0.78 0.69 0.02
200 50 10 15 2.0 84 13289 33 3670 0.78 0.72 0.02
200 50 10 15 2.5 70 13292 30 3684 0.78 0.70 0.02
200 50 10 15 3.0 71 13293 29 3683 0.78 0.71 0.02
200 50 15 5 2.0 79 13293 29 3675 0.78 0.73 0.02
200 50 15 5 2.5 53 13295 27 3701 0.78 0.66 0.01
200 50 15 5 3.0 61 13298 24 3693 0.78 0.72 0.02
200 50 15 10 2.0 78 13292 30 3676 0.78 0.72 0.02
200 50 15 10 2.5 60 13297 25 3694 0.78 0.71 0.02
200 50 15 10 3.0 60 13301 21 3694 0.78 0.74 0.02
200 50 15 15 2.0 81 13293 29 3673 0.78 0.74 0.02
200 50 15 15 2.5 59 13295 27 3695 0.78 0.69 0.02
200 50 15 15 3.0 62 13294 28 3692 0.78 0.69 0.02
200 100 5 5 2.0 172 13257 65 3582 0.79 0.73 0.05
200 100 5 5 2.5 129 13280 42 3625 0.79 0.75 0.03
200 100 5 5 3.0 118 13279 43 3636 0.78 0.73 0.03
200 100 5 10 2.0 178 13266 56 3576 0.79 0.76 0.05
200 100 5 10 2.5 122 13282 40 3632 0.78 0.75 0.03
200 100 5 10 3.0 121 13282 40 3633 0.78 0.75 0.03
200 100 5 15 2.0 171 13266 56 3583 0.79 0.75 0.05
200 100 5 15 2.5 119 13282 40 3635 0.78 0.75 0.03
200 100 5 15 3.0 115 13285 37 3639 0.78 0.76 0.03
200 100 10 5 2.0 150 13268 54 3604 0.79 0.74 0.04
200 100 10 5 2.5 120 13282 40 3634 0.78 0.75 0.03
200 100 10 5 3.0 116 13282 40 3638 0.78 0.74 0.03
200 100 10 10 2.0 161 13270 52 3593 0.79 0.76 0.04
200 100 10 10 2.5 107 13286 36 3647 0.78 0.75 0.03
200 100 10 10 3.0 109 13287 35 3645 0.78 0.76 0.03
200 100 10 15 2.0 154 13268 54 3600 0.79 0.74 0.04
200 100 10 15 2.5 114 13283 39 3640 0.78 0.75 0.03
200 100 10 15 3.0 111 13287 35 3643 0.78 0.76 0.03
200 100 15 5 2.0 149 13271 51 3605 0.79 0.75 0.04
200 100 15 5 2.5 109 13289 33 3645 0.78 0.77 0.03
200 100 15 5 3.0 109 13286 36 3645 0.78 0.75 0.03
200 100 15 10 2.0 144 13277 45 3610 0.79 0.76 0.04
200 100 15 10 2.5 105 13290 32 3649 0.78 0.77 0.03
200 100 15 10 3.0 102 13287 35 3652 0.78 0.74 0.03
200 100 15 15 2.0 128 13275 47 3626 0.78 0.73 0.03
200 100 15 15 2.5 111 13289 33 3643 0.78 0.77 0.03
200 100 15 15 3.0 104 13289 33 3650 0.78 0.76 0.03
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Table 14 presents the results of the Balanced Random Forest 1 Categorizer, where P1 denotes 
the number of random trees, P2 denotes the number of random attributes, and P3 denotes the 
majority class percentage used to train each tree. 
 

Table 14. Balanced Random Forest 1 Categorizer Results: Second Review. 
 

P1 P2 P3 TN FN TP FP Accuracy Precision Recall 
100 50 1.0 3010 9261 4061 744 0.72 0.43 0.80
100 50 1.5 2356 11152 2170 1398 0.79 0.52 0.63
100 50 2.0 1755 12069 1253 1999 0.81 0.58 0.47
100 100 1.0 3043 9319 4003 711 0.72 0.43 0.81
100 100 1.5 2333 11272 2050 1421 0.80 0.53 0.62
100 100 2.0 1924 12030 1292 1830 0.82 0.60 0.51
100 200 1.0 3083 9262 4060 671 0.72 0.43 0.82
100 200 1.5 2387 11177 2145 1367 0.79 0.53 0.64
100 200 2.0 1987 11954 1368 1767 0.82 0.59 0.53
200 50 1.0 2975 9375 3947 779 0.72 0.43 0.79
200 50 1.5 2308 11214 2108 1446 0.79 0.52 0.61
200 50 2.0 1781 12104 1218 1973 0.81 0.59 0.47
200 100 1.0 3074 9348 3974 680 0.73 0.44 0.82
200 100 1.5 2341 11280 2042 1413 0.80 0.53 0.62
200 100 2.0 1906 12030 1292 1848 0.82 0.60 0.51
200 200 1.0 3098 9329 3993 656 0.73 0.44 0.83
200 200 1.5 2373 11186 2136 1381 0.79 0.53 0.63
200 200 2.0 2028 11951 1371 1726 0.82 0.60 0.54
300 50 1.0 2972 9343 3979 782 0.72 0.43 0.79
300 50 1.5 2318 11216 2106 1436 0.79 0.52 0.62
300 50 2.0 1762 12127 1195 1992 0.81 0.60 0.47
300 100 1.0 3051 9301 4021 703 0.72 0.43 0.81
300 100 1.5 2329 11248 2074 1425 0.80 0.53 0.62
300 100 2.0 1880 12049 1273 1874 0.82 0.60 0.50

 
 
Table 15 presents the results of the Balanced Random Forest 1 Categorizer, where P1 denotes 
the number of random trees, P2 denotes the number of random attributes, and P3 denotes the 
majority class percentage used to train each tree. 
 

Table 15. Balanced Random Forest 2 Categorizer Results: Second Review. 
 

P1 P2 P3 TN FN TP FP Accuracy Precision Recall 
5 50 2.0 1689 11983 1339 2065 0.80 0.56 0.45
5 50 2.5 1351 12341 981 2403 0.80 0.58 0.36
5 50 3.0 944 12822 500 2810 0.81 0.65 0.25
5 100 2.0 1842 11840 1482 1912 0.80 0.55 0.49
5 100 2.5 1396 12368 954 2358 0.81 0.59 0.37
5 100 3.0 1227 12667 655 2527 0.81 0.65 0.33
5 200 2.0 1958 11786 1536 1796 0.80 0.56 0.52
5 200 2.5 1560 12174 1148 2194 0.80 0.58 0.42
5 200 3.0 1406 12549 773 2348 0.82 0.65 0.37

10 50 2.0 1726 12069 1253 2028 0.81 0.58 0.46
10 50 2.5 1245 12573 749 2509 0.81 0.62 0.33
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P1 P2 P3 TN FN TP FP Accuracy Precision Recall 
10 50 3.0 978 12858 464 2776 0.81 0.68 0.26
10 100 2.0 1807 11989 1333 1947 0.81 0.58 0.48
10 100 2.5 1534 12384 938 2220 0.82 0.62 0.41
10 100 3.0 1210 12723 599 2544 0.82 0.67 0.32
10 200 2.0 1911 11905 1417 1843 0.81 0.57 0.51
10 200 2.5 1611 12312 1010 2143 0.82 0.61 0.43
10 200 3.0 1437 12611 711 2317 0.82 0.67 0.38
20 50 2.0 1746 12004 1318 2008 0.81 0.57 0.47
20 50 2.5 1247 12558 764 2507 0.81 0.62 0.33
20 50 3.0 1082 12816 506 2672 0.81 0.68 0.29
20 100 2.0 1853 11959 1363 1901 0.81 0.58 0.49
20 100 2.5 1478 12402 920 2276 0.81 0.62 0.39
20 100 3.0 1274 12726 596 2480 0.82 0.68 0.34
20 200 2.0 1966 11958 1364 1788 0.82 0.59 0.52
20 200 2.5 1624 12296 1026 2130 0.82 0.61 0.43
20 200 3.0 1429 12621 701 2325 0.82 0.67 0.38

 
 
Table 16 presents the results of the Naive Bayes Categorizer, where P1 denotes the minimum 
value to be regarded as equal to zero. 
 

Table 16. Naïve Bayes Categorizer Results: Second Review. 
 

P1 TN FN TP FP Accuracy Precision Recall 
0.000100 1519 11751 1571 2235 0.78 0.49 0.40
0.000010 1515 11791 1531 2239 0.78 0.50 0.40
0.000001 1505 11829 1493 2249 0.78 0.50 0.40
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APPENDIX E.  THE NAÏVE BAYES CLASSIFIER 
 
E.1 Detailed Description 
 
Independence among the features describing a domain (of interest) dominates the theory of 
model formation in naïve Bayes classifiers (Barber, 2005; Eibe and Bouckaert, 2006; Eyherandy, 
et al., 2003; McCallum and Nigam, 1998; Rennie, 2001; Shen and Jiang, 2003). Examples in a 
domain are described by their feature values 
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In English, this says that the a posteriori probability of class c  given the feature values 

),,,( 21 nfff K  is the a priori probability of class c  times the likelihood of ),,,( 21 nfff K  given 
class c  divided by the evidence for ),,,( 21 nfff K . Note that the denominator is independent of 
the classes, and so when a comparison is needed (between two or more classes) this value can be 
ignored (since it will be the same for all classes). The prior probability for class c  is estimated as 
the frequency of class c  over the total number of training samples. Since all features are 
assumed to be independent from one another (this is the naïve assumption), then the likelihood is 
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where k is the probability of the feature values. 
 
There are two potential problems with using naïve Bayes classifiers. First, it is possible for the 
likelihood for a particular feature given a specific class to be exactly zero (i.e., 

0)|( === cCfFp ii ). In this case, the likelihood product would also be zero. This problem can 
be dealt with by ensuring that none of the feature/class likelihood estimates is allowed to be 
exactly zero (i.e., icCfFp ii ∀>≥== ,0)|( ε  for some small constant ε ). A second problem is 
that the product of feature likelihoods can very rapidly approach zero (or become so small that it 
is zero to the precision that a computer can maintain). One method to address this second issue is 
to use the logarithm of the maximum likelihood (Barber, 2005). The naïve Bayes with log-
likelihood classifier is then 
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Benefits of the naïve Bayes classifier include that it does not require a large amount of data to 
train, and training can be accomplished in a very short amount of time. 
 
Determining a confidence value for naïve Bayes classification can be problematic since the 
likelihood values can approach 0 and/or 1 very fast (especially when there are many features, 
i.e., when n  is large). The current confidence value that we are using for the naïve Bayes 
classifier is 
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With this confidence value, the farther a sample’s classification is from “perfect” the larger the 
denominator will be in the confidence value (approaching 0), meaning less confidence in the 
classification.  Note that this confidence measure will vary between 0 and 1, inclusively. 
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APPENDIX F.  FUZZY ARTMAP NETWORK 
 
The Fuzzy ARTMAP neural network is composed of two Fuzzy ART neural networks connected 
through a map field module (Carpenter, et al., 1992). Each Fuzzy ART network performs 
unsupervised learning, and the map field links (or associates) a left-side Fuzzy ART category 
template (hyper-rectangle) with a right-side Fuzzy ART template (see Figure 9). The map field 
associating the Fuzzy ART modules facilitates supervised learning. 
 
F.1 Fuzzy ART Unsupervised Learning Algorithm 
 
For a given training sample, the Fuzzy ART learning algorithm has three stages (Carpenter, et 
al., 1991). First, the input is complement coded. Then the best matching F2 node is found for the 
complement coded input data. Note that the F2 node thus found might be the uncommitted node, 
and initially, a Fuzzy ART neural network architecture ha s only the single uncommitted node 
available for learning. Finally, the best matching F2 node is allowed to learn the new data point. 

 
Figure 9. Fuzzy ARTMAP Architecture. 

 
The mathematical formula used by Fuzzy ART to find the best matching category template 
during cluster formation is 
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The parameter, α, called the choice parameter, is usually a small positive quantity, ∧  is the 
element-wise vector min operator, and |·| is the L1-norm of a vector.  The best matching F2 node, 
J, from the choice competition must satisfy the vigilance criterion 
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The vigilance parameter, ρ, is a user-supplied input between zero and one. Note that at least one 
F2 node, the uncommitted node, will always satisfy the vigilance criterion. The maximum choice 
F2 template satisfying the vigilance criterion is allowed to learn the input vector, a condition 
called resonance. Ties between F2 nodes with the same choice value are broken by assigning an 
index to all committed F2 nodes, and choosing the node with the lowest index value in a tie. 
Initially all template weights are set to one, and learning proceeds as follows 
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where β is the learning parameter. In most learning cases, including SCF, β = 1, which is a 
special case called fast learning. 
 
F.2 Fuzzy ARTMAP Supervised Learning Algorithm 
 
The Fuzzy ARTMAP neural network is composed of two Fuzzy ART networks (left and right) 
connected through a map field. The left-side network is given domain data (n-dimensional 
feature data), and the right-side network is given the label associated with the domain data. In 
classification, each left-side cluster (hyper-rectangle) formed is linked with only one right-side 
label cluster facilitating for supervised learning.   
 
Initially, the Fuzzy ARTMAP map field weights are set to 1 (this is a temporary state that 
indicates that all possible link associations are available). When an association is learned in the 
map field (between a left-side cluster, J, and right-side cluster, K), the map field weights are set 
as 
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At this point, the link between J (left) and K (right) is fixed, and thus left-side cluster, J, will 
only attempt to learn training data associated with label K. The Fuzzy ARTMAP neural network 
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ensures a many to one mapping between left and right side Fuzzy ART templates through the use 
of match tracking and lateral reset (Carpenter, et al., 1992). 
 
The vigilance parameter for the left-side Fuzzy ART network is initially set to zero, but during 
learning, it is allowed to increase as necessary to facilitate the lateral reset mechanism. After 
learning occurs (for each training sample), this vigilance value is returned to its initial state. The 
right-side vigilance parameter is usually set to one to facilitate crisp classification (i.e., no 
clustering of labels). There is also a vigilance parameter in the map field which is also set to one 
for crisp classification. These parameters need not be tuned any further for nominal Fuzzy 
ARTMAP operation. 
 
The confidence value for Fuzzy ARTMAP categorization in SCF is computed as a normalized, 
inverted distance from the F2 template centroid. A Fuzzy ARTMAP F2 template contains a 
vector which represents a hyper-rectangle in the n-dimensional feature space 
 

),,,,,,,(),,,( 2121221 nnnj qqqpppwwww KKK == . 
 
The first half of the template vector represents the lower left corner of the hyper-rectangle, (p1, 
p2, …, pn), and the complement of the second half, (1-q1, 1-q2, …, 1-qn) represents the upper 
right corner. Therefore the template centroid can be computed as 
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Given the input sample, x, and winning F2 node, wj, the confidence is computed as 
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1
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Where d(cj, x) is the distance from x to the template centroid. Note that the distance measure 
could be either Euclidean or the L1-norm (used in Fuzzy ART). In the SCF, we used the 
Euclidean distance measure for computing Fuzzy ARTMAP confidence. Note that the 
confidence value varies between 0 and 1, inclusive, and a value closer to 0 indicates less 
confidence in the categorization. 
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