

High Performance Secure Database Access
Technologies for HEP Grids

Phase I Final Documentation

DOE Grant No. DE-FG02-05ER84369

SBIR Phase I
Scientific/Technical Document

 April 17, 2006
Matthew Vranicar
John Weicher

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNT Digital Library

https://core.ac.uk/display/71317613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

SBIR Rights Notice

These SBIR data are furnished with SBIR rights under U.S. Deparment of Energy Grant
No. DE-FG02-05ER84369. For a period of 4 years after acceptance of all items to be
delivered under this grant, the Government agrees to use these data for Government
purposes only, and they shall not be disclosed outside the Government (including
disclosure for procurement purposes) during such period without permission of the
grantee, except that, subject to the foregoing use and disclosure prohibitions, such data
may be disclosed for use by support contractors. After the aforesaid 4-year period, the
Government has a royalty-free license to use, and to authorize others to use on its behalf,
these data for Government purposes, but is relieved of all disclosure prohibitions and
assumes no liability for unauthorized use of these data by third parties. This Notice shall
be affixed to any reproductions of these data in whole or in part.

2006, PIOCON Technologies, Inc. 2

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

Summary

The Large Hadron Collider (LHC) at the CERN Laboratory will become the largest scientific instrument in
the world when it starts operations in 2007. Large Scale Analysis Computer Systems (computational grids)
are required to extract rare signals of new physics from petabytes of LHC detector data. In addition to file-
based event data, LHC data processing applications require access to large amounts of data in relational
databases: detector conditions, calibrations, etc. U.S. high energy physicists demand efficient performance
of grid computing applications in LHC physics research where world-wide remote participation is vital to
their success. To empower physicists with data-intensive analysis capabilities a whole hyperinfrastructure
of distributed databases cross-cuts a multi-tier hierarchy of computational grids (Figure 1). The crosscutting
allows separation of concerns across both the global environment of a federation of computational grids
and the local environment of a physicist’s computer used for analysis [1].

Very few efforts are on-going in the area of database and grid integration research. Most of these are
outside of the U.S. and rely on traditional approaches to secure database access via an extraneous security
layer separate from the database system core [2], preventing efficient data transfers. Our findings are shared
by the Database Access and Integration Services Working Group of the Global Grid Forum [3]: “Research
and development activities relating to the Grid have generally focused on applications where data is stored
in files. However, in many scientific and commercial domains, database management systems have a
central role in data storage, access, organization, authorization, etc, for numerous applications.”

There is a clear opportunity for a technological breakthrough, requiring innovative steps to provide high-
performance secure database access technologies for grid computing. We believe that an innovative
database architecture where the secure authorization is pushed into the database engine will eliminate
inefficient data transfer bottlenecks. Furthermore, traditionally separated database and security layers
provide an extra vulnerability, leaving a weak clear-text password authorization as the only protection on
the database core systems. Due to the legacy limitations of the systems’ security models, the allowed
passwords often can not even comply with the DOE password guideline requirements. We see an
opportunity for the tight integration of the secure authorization layer with the database server engine
resulting in both improved performance and improved security.

Phase I has focused on the development of a proof-of-concept prototype using Argonne National
Laboratory’s (ANL) Argonne Tandem-Linac Accelerator System (ATLAS) project as a test scenario. By
developing a grid-security enabled version of the ATLAS project’s current relation database solution,
MySQL, PIOCON Technologies aims to offer a more efficient solution to secure database access.

Workload Orchestration

OSG WLCG NorduGrid

File Transport Production DB

Non-LHC Sites ATLAS Sites

Production DB

Sites

Sites

Cluster

Head Node Edge Services

Worker Node Worker Node Worker Node

Monitoring DB

CMS Sites

RFT Database

PanDA DB

Conditions DB

Meta-data DB

RLS Database

RLS Database RLS Database

Large Scale Distributed
Computations
Management

System

World-Wide Federation of
Computational

Grids

Workload Orchestration

OSG WLCG NorduGrid

File Transport Production DB

Non-LHC Sites ATLAS Sites

Production DB

Sites

Sites

Cluster

Head Node Edge Services

Worker Node Worker Node Worker Node

Monitoring DB

CMS Sites

RFT Database

PanDA DB

Conditions DB

Meta-data DB

RLS Database

RLS Database RLS Database

Large Scale Distributed
Computations
Management

System

World-Wide Federation of
Computational

Grids

Figure 1. A hyperinfrastructure of distributed database services cross-cutting through a Large Scale Analysis Computer

System of a federation of the computational grids.

2006, PIOCON Technologies, Inc. 3

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

I. Relevant Background

The ATLAS project relies on the resources of the Open Science Grid (OSG) for its complex data-analysis
needs. In order for an entity to operate within the OSG, as well as be authorized to operate as a service on
OSG, it must have a certified identity as a grid member. In the OSG, identities of both users and services
are maintained and verified through the use of X.509 certificates, digitally signed using standard public-key
cryptography techniques. To produce a grid-security aware application prototype, such functionality must
be incorporated. Fortunately, through its inclusion of OpenSSL, an open-source implementation of Secure
Sockets Layer (SSL), MySQL already has built in support for connections and communication established
using these required technologies; this feature needs only to be enabled upon the building of the
application.

Additional complications are present however, due to the very nature of grid operations. Rarely do typical
grid activities involve only two parties communicating in one-to-one isolation. More commonly there is a
need for the delegation of a user or service’s rights or credentials to secondary services elsewhere within
the grid, which may be called upon to handle a sub-component of a requested task. Such a delegation is
handled through the use of a “proxy certificate”. As its name implies, it is a temporary certificate derived
from a permanent certificate, and digitally signed by the user or service on whose behalf it will be used. A
proxy certificate may also have embedded within it additional information, such as additional security
policy details, restrictions on where and how it may be used, etc.

The OSG infrastructure and its participating services are implemented using the Globus Toolkit, which is
the de facto standard grid-framework API, and one which expectedly supports the use of proxy certificates.
Unfortunately, the format of an OSG/Globus-compliant proxy certificate is different from that of the
industry standardized X.509 proxy certificate, which the latest releases of OpenSSL and likewise MySQL
already support. Therefore, in order to effectively grid-security enable MySQL, the primary goal of this
project became the modification or extension of the MySQL application so that its certificate handling
functionality could properly recognize and process Globus-style proxy certificates.

2006, PIOCON Technologies, Inc. 4

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

II. Component Details

MySQL

MySQL is a freely available open-source relational database application currently in use by the ATLAS
project for the storage of calibrations and conditions data relevant to accelerator experiments. The data
stored within this database is required when performing grid-based analysis. As with all grid operations,
access to this service must be handled via a secure connection and secure authorization.

The MySQL application is structured such that if a connection between a client and server via a secure
method is required, such a connection is managed through the “Vio”, or “Virtual IO” module of the
application. The Vio package serves to provide the rest of the application with a single interface to what
may be a varied set of underlying connection infrastructures (sockets, named-pipes, etc.), depending on the
platform on which MySQL is running. It is by routines found in this module through which an SSL
connection is initiated and established. This process of secure connection negotiation is referred to as the
“SSL Handshake”.

OpenSSL

OpenSSL is an open-source toolkit which fully implements the Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) protocols for secure authorization and communication between two parties. The
OpenSSL toolkit is a somewhat extensive package and is actually a collection of libraries, all of which are
needed for an SSL framework to function. There are of course routines to handle SSL-specific
transactions. Additionally, there is a library for the specific handling of X.509 certificates, which SSL
relies upon, and which are defined by a rather large technical standard. Even further, there is a library
which handles the encoding and decoding of arbitrary binary objects using Abstract Syntax Notation
(ASN.1), yet another standard on which X.509 certificates and their subcomponents are structured.

 A significant amount of time during the early portions of the project was spent on first mapping out the
process and sequence of events that occur during the SSL handshake; we needed to determine how and
where in the course of the handshake process our modifications would be required. This became a rather
involved process because we were not initially experienced in SSL from a development standpoint, but also
because of the size and complexity of the OpenSSL toolkit, as previously mentioned. Of course we would
not need to fully understand in detail the inner workings of all these components to complete our project,
and so were content to take much of them as is. However, teasing out what fit into this category, and then
understanding as much as possible those aspects which could not simply be left “black-boxed”, turned out
to be unexpectedly time consuming.

Both during and after completion of examining the SSL handshake process, it was apparent that despite the
logical symmetry between the actions of a client and server during this process, our focus would for the
most part only need to be on the server side of the transaction. This is due to one simple observation: it is
a client that is going to be presenting their identity via a proxy certificate, not a server. A server on a grid
merely provides a service (in our case a database), and therefore never delegates its rights or credentials,
and so never uses proxy certificates. Therefore, for our purposes only the server routines needed to be
modified so that they could properly recognize and process a client’s proxy certificate. A client needs only
to be able to process a server’s standard X.509 certificate.

The SSL Handshake

In a simplified description, the SSL handshake begins with a client connecting to a server and
requesting the server’s certificate. The client then attempts to verify the server’s certificate (thereby
its identity) by building a “certificate chain” for that server’s certificate. After verification of the
server certificate, which requires several steps itself, the server then has the opportunity to request
the client’s certificate, and do the same. Mutual authentication is not required by the SSL protocol,

2006, PIOCON Technologies, Inc. 5

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

but by default is enabled and performed by the implementation used by MySQL. This characteristic
is fortunate, as mutual authentication is also required between hosts and services operating within
the OSG. If mutual authentication is successful, identities of both parties have been verified, the
connection is retained and communication can continue. If not, the connection is dropped (Figure
2).

C
LI

E
N

T

S
E

R
V

E
R

Establish Connection

Request Server Certificate

Server Certificate

O.K.

DROP

OR

X

Request Client Certificate

Client Certificate

O.K.

DROP

OR

X

V
er

ify

V
er

ify

Figure 2: The SSL handshake process.

 X.509 Certificates and Public Key Cryptography

To understand how certificate verification occurs, brief descriptions of what an X.509 certificate is
and the role played by public-key cryptography are useful. Public-key cryptography is one of any
number of cryptographic schemes that unlike earlier schemes do not rely on a single
encryption/decryption key, but instead rely on a pair of keys. This pair of keys is two prime
numbers that are generated using mathematical operations such that data encrypted with one number
can only be decrypted with the other, and vice versa. Therefore, a party can publish one key (their
“Public Key”) with which any other party wanting to send a secure message can use to encrypt, and
by keeping their second key (the “Private Key”) secure, the recipient of such a message can
guarantee that only they have the ability to decrypt and read the message (Figure 3).

Figure 3: Public key pairs and usage.

The strength of public key cryptographic systems lies with the fact that the numbers generated and
used as keys are extremely large. They are so large that a third party attempting to intercept a
communication by taking a recipient’s public key and attempting to derive the matching private key
would find the numerical factorization necessary computationally infeasible.

An X.509 certificate is data that an entity can present which in effect says, “This is who I am
claiming to be, and here is my public key.” What makes this information reliable and trustable is
that included with this identity information is the information for a third party, a Certificate
Authority. This Authority is a higher level entity who issued the certificate, and the included

2006, PIOCON Technologies, Inc. 6

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

information contains their digital signature. This signature is a hash of the original certificate
information that has been encrypted with the Authority’s private key. This is effective because a
recipient of a certificate can look at the signature of the authority who signed it, and if the authority
is trusted by the recipient, the signature can be decrypted with their public key (which is publicly
known). If the decrypted information is identical to original certificate information itself, the
recipient is guaranteed that the trusted authority did in fact vouch for the presented certificate, and
can in turn trust the presenter.

Verifying a Certificate: Building Certificate Trust Chains

At the core of the SSL certificate verification process is the requirement that an entity be able to
build a “trust chain” for a certificate that it is presented. If this can’t be accomplished, the certificate
is rejected. All X.509 certificates must be signed by a Certificate Authority. Furthermore, even
Certificate Authorities have their own certificates signed by even higher authorities. This system
creates a hierarchy of identity validation. The central concept is that for every certificate an entity
will accept, they must be able to trace the hierarchy of signatures upwards until one is encountered
of a Certificate Authority that the entity already “knows” and trusts (Figure 4). This is accomplished
by maintaining a local cache of certificates of higher authorities that are known to be trusted, which
can be used for comparisons. Therefore, while mildly burdensome in actual execution, the SSL
handshake is conceptually straightforward; two parties exchange certificates, both attempting to
trace issuer signatures and certificates until one matches a certificate of a trusted authority contained
in their local repository. If such matches are found, both parties have established trust.

Figure 4: Certificate Trust Chain and process flow.

It is during this process of certificate chain building that errors are encountered when using Globus-
style proxy certificates. The X.509 standard defines various properties and entries (referred to as
“extensions”) that must be defined for all valid X.509 certificates. There are also specific additional
constraints which are defined for both proxy certificates and certificates authorities (in this case, any
entity that takes on the responsibility of signing other certificates). While the overall structure and
encoding process of Globus-style proxy certificates follow the guidelines laid out by the X.509
standard, some of these additional constraints and extensions differ. Because of these differences,
Globus-style proxy certificates are rejected by the default OpenSSL verification procedures.

Aspect Oriented Programming

While not utilized until later iterations of the project, Aspect Oriented Programming (AOP) is a crucial
technology and technique used in our prototype. AOP is a programming paradigm that allows for the
modularization and encapsulation of cross-cutting concerns within an application or package. An example
of such a concern would be the tasks of outputting debugging information, or event logging tasks within an
application. An application likely has a consistent strategy for such tasks which “cuts across” modules

2006, PIOCON Technologies, Inc. 7

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

which themselves might be vastly different. An implementation of an AOP language tries to encapsulate
these types of concerns through the introduction of a new Class-like construct called an “aspect”. An
aspect can alter the behavior of base code (the non-aspect part of a program) by applying “advice”
(additional behavior) over a quantification of “join points” (points in the structure or execution of a
program), called a “pointcut” (a logical description of a set of join points) [4].

As MySQL is an application written in the C programming language, we chose to use the implementation
of AOP, AspectC++, an open-source AOP compiler. With respect to the overall production pipeline, the
AspectC++ compiler acts as an additional preprocessing automatic code-generation step, which takes un-
compiled source code and inserts or “weaves” in advice code that we have defined (Figure 5). This weaved
code can then be compiled using existing build methods and will have all our defined modifications
incorporated.

In regards to Phase 1, our interest in AOP is not derived from the need to address truly cross-cutting
concerns. However, it is extremely valuable from the perspective of being able to modularize our
modifications away from the native MySQL and Globus source code. Whether preparing pre-built binaries
of our finished product, or looking to supply a “patch” that a separate individual can easily apply to their
own copy of the MySQL source code, AOP is a very efficient solution for introducing our modifications
within requiring manual changes to any existing application source code.

cbk.c

grid.ah

vio.c

Globus
GSI
code

MySQL
database

server
code

Auto-generated
grid-enabled

MySQL
database

server
code

DASH grid
security

aspects code

tls.c

OpenSSL
Transport

Level
Security

code

cbk.ccbk.c

grid.ah

vio.c

Globus
GSI
code

MySQL
database

server
code

Auto-generated
grid-enabled

MySQL
database

server
code

DASH grid
security

aspects code

tls.ctls.c

OpenSSL
Transport

Level
Security

code

Figure 5: Aspect Oriented Programming compilation process.

2006, PIOCON Technologies, Inc. 8

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

III. Product Development Phases

Foundational Testing

We began the project by first ensuring that we could assemble the necessary components of the standard
MySQL application, build them successfully and run the application on our development server. Before
attempting any actual modifications to the application source-code we needed to make sure that there were
no platform incompatibilities, or other preventable errors that might arise. As the end result of this project
was a Grid-compatible application, this also meant performing our installation and configuration of the
application so that it would include the support for SSL, as this is the mechanism through which OSG
applications and services exchange and verify certificates between a client and a host.

In its conventionally available state, MySQL already includes support for SSL and X.509 certificates,
through its inclusion of OpenSSL. Enabling support of SSL only required that we supply additional
parameters to the installation and build utilities provided with the application. However, our aim was to
produce a stable implementation of our product that was likely to be run on a variety of different Unix-
based platforms. Because of this, we had to assume that end users might attempt to build our application
source with various different versions of the OpenSSL libraries. Specifically, instead of using the
OpenSSL libraries that are distributed with MySQL itself, some users may instead rely on the libraries that
are distributed with the Globus Toolkit, the API that is used to build the majority of OSG applications, and
the one that we ourselves would be incorporating. Therefore, it was prudent to perform multiple initial
builds of MySQL, each using a different distribution of the OpenSSL libraries.

In total, we performed the following four initial builds of MySQL using different OpenSSL library
distributions:

1) MySQL source with included OpenSSL libraries (v5.0.10-beta)
2) MySQL source with latest stable release OpenSSL libraries from http://www.openssl.org (v

0.9.8)
3) MySQL source with OpenSSL libraries included with the latest release of the Globus Toolkit

4 (GTK4.0.0)
4) MySQL source with OpenSSL libraries included with the current release of the OSG Service

Suite installer (OSG v0.2.1, via Virtual Data Toolkit)

These four different builds gave us an acceptable sampling of the different distributions of the OpenSSL
libraries that might be used by OSG sites and users who chose to build or use our product. As is implied by
the above listing, it is during this stage that we secured the latest release of the Globus Toolkit (version 4).
Initially we needed the OpenSSL libraries packaged with it; however we also needed its other components
almost immediately thereafter, to begin our actual development.

As mentioned earlier in this document, we would eventually rely on Aspect Oriented Programming for the
application of our modifications, while keeping our additions modularized. However, for our initial
attempts, we decided not to concern ourselves with avoiding direct changes to the existing MySQL
application code. Our foremost goal was to confirm, through any implementation, that we could
successfully extend MySQL’s existing functionality to support Globus proxy certificates. In our final
product this would of course be unacceptable, as we do not want to have to convince the developers of
MySQL to incorporate our changes into their application. Furthermore, this would be a very unacceptable
approach from the standpoint of protecting our work and investment in the development of the product.
However, for our initial attempts, concerns over implementation and packaging were overlooked.

Testing Native Support for SSL Authentication
When connections between a MySQL client and host must be handled securely, MySQL provides for the

2006, PIOCON Technologies, Inc. 9

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

ability to specify the “subject” that a connecting client’s certificate must contain in order to connect using a
specific account. The subject field of an X.509 certificate is an entry in the certificate that contains the
unique, distinguished name of the individual to whom the certificate belongs (Figure 6).

Figure 6: X.509 certificate structure.

One of our first tasks was to verify that this mechanism was working properly before proceeding with any
modifications to MySQL. An account was created within MySQL for a user who could log in through the
use of an X.509 certificate, in place of a standard username and password combination. The account
specified the subject of one of our own personal certificates. This process involved creating a test database,
and specifying the appropriate account access rights, through MySQL “GRANT” statements. While
logged in via the root account, the following statements were issued to accomplish this:

> CREATE DATABASE gridTest;
> GRANT * ON gridTest.* TO john REQUIRE SUBJECT \
 “/DC=org/DC=doegrids/OU=People/CN=John C. Weicher 733602”
> FLUSH PRIVILEGES;

Once these tasks were completed, the process of then logging in via a standard X.509 certificate could be
performed successfully by passing additional certificate-related command-line information to both the
client and server applications regarding their respective certificates.

Client:
 > client/mysql \

 --ssl-cert=<path to user cert>/usercert.pem \
 --ssl-key=<path to user key>/usercert.pem \
 --ssl-capath=/etc/grid-security/certificates \
 --user=john \
 --host=209.249.63.202

Server:
 > sql/mysqld \

 --basedir=<path to install dir> \
 --datadir=<path to install dir>/data \
 --ssl-capath=<path to CA dir> \
 --ssl-cert=<path to host cert>/hostcert.pem \
 --ssl-key=<path to host key>/hostkey.pem \
 --skip-innodb \
 -L <path to install dir>/sql/share/english/

The SSL handshake occurred without errors, and access was allowed via the requested MySQL account.

2006, PIOCON Technologies, Inc. 10

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

After verifying a successfully connection, we then created an additional account for a user to log in via a
proxy certificate. We granted access rights in much the same fashion this time using the “issuer” field to
restrict access:

> GRANT * ON gridTest.* TO johnproxy REQUIRE ISSUER \
“/DC=org/DC=doegrids/OU=People/CN=John C. Weicher 733602”

When starting the MySQL client, a proxy certificate file was used in place of the original certificate when
specifying startup parameters. However, upon testing access for this account, proxy certificates were
rejected and caused errors. This was expected and led us to our first attempt at modifying the application
code to deal with the problem.

3.1 Using the Globus Callback Functions

Our first attempt at providing support for proxy certificates was to address an important component of SSL
certificate verification, the use of callbacks. The OpenSSL implementation allows for the specification of
“callback functions”; user-defined functions which are called at various points during the verification
process of a certificate, which handle errors and through which additional steps of verification that might be
required by a specific application can occur. Furthermore, because these callback operations occur both
during and after the standard verification operations handled by OpenSSL, they can even serve to override
or change verification decisions made by OpenSSL. As all OSG applications developed with the Globus
Toolkit rely on SSL for the negotiation of secure connections, the Toolkit already contains its own callback
functions that can be used in place of the native OpenSSL callbacks, to handle and if appropriate override,
the proxy-related errors that occur during the handshake process. Our hopes were that by simply
designating the use of the Globus callbacks and rebuilding the application source, our goal would be
reached. This initial attempt involved modifying only a small number of actual lines of code.

3.1.1 Code Modifications

 The following documented modifications were made to the MySQL Vio module code:

viosslfactories.c +18 #include “globus_gsi_callback.h”

 +363 SSL_CTX_set_cert_verify_callback(ptr->ssl_context,
globus_gsi_callback_X509_verify_cert, NULL);

 -370
+370

SSL_CTX_set_verify(ptr->ssl_context, verify, vio_verify_callback);
SSL_CTX_set_verify(ptr->ssl_context, verify, grid_verify_callback);

viossl.c +25 #include “globus_gsi_callback.h”

 +90 EVP_set_pw_prompt("Enter GRID pass phrase:");

 -91
+91

if (SSL_CTX_use_certificate_file(ctx,cert_file,SSL_FILETYPE_PEM) <= 0)
if (SSL_CTX_use_certificate_chain_file(ctx,cert_file) <= 0)

 +282 globus_gsi_callback_data_t callback_data;

 +310 if (globus_gsi_callback_data_init(&callback_data) != GLOBUS_SUCCESS)
{
 DBUG_PRINT("error", ("globus_gsi_callback_data_init failure"));
 DBUG_RETURN(1);
}
SSL_set_app_data((SSL*) vio->ssl_arg, &callback_data);

2006, PIOCON Technologies, Inc. 11

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

As seen above, a few other minor changes were also made in addition to the callback function substitutions.
Specifically, the file containing the proxy certificate information to be used by a client contains data not
only for the proxy certificate itself, but also for the standard certificate from which it is derived; it in effect
contains a short certificate chain. Therefore, the appropriate routine must be used to load the entire chain
of certificates, and not simply the proxy certificate. Furthermore, the Globus callbacks require some
additional data structures that needed to be created and initialized, which are required by some internal
functionality of the callbacks.

3.1.2 Results

Despite our hopes, this initial attempt did not yield the results that we were ultimately aiming for, though
some progress was made. The application was rebuilt successfully after the inclusion of the Globus
callback functions. When starting the new client and server, we supplied the client application with a proxy
certificate file instead of a standard X.509 certificate. During the SSL handshake process, the proxy
certificate was this time accepted and access into the application was granted. However, after examining
our debugging output, it was apparent that the process had problems. While at first it appeared that the
Globus callback functions were properly intercepting and overriding the error generated by the OpenSSL
routines due to the use of an unsupported proxy certificate, allowing the process to continue, further
examination of debugging information showed that in actuality, it proved to be the case that the entire trust
chain for the client’s certificate was not being built, and that in fact no certificates were being verified at
all. Furthermore, after subsequent attempts at authenticating via a proxy certificate, it was also seen that
regardless of correctness, there appeared to be no mechanism operating that checked for expired
certificates.

There appeared to be several aspects of this attempt that we would need to examine more fully. At this
point we decided that our next attempt would focus on verification of the correct loading of a certificate
chain, enabling expiration-date checking for all certificates, as well as the implementation of additional
debugging output, so that we could verify what in fact was occurring during the certificate chain
construction. This would be a necessary step in confirming that proper verification was indeed proceeding.

3.2 Wrapping the Globus Callbacks – Extended Debugging Output, Expiration Date Check

To address the issues encountered during our first attempt, we decided not to modify any existing
functions, but to instead create additional methods, which would “wrap” the Globus callback functions, and
extend their functionality. These functions would pass execution through to the Globus callbacks, while
also executing any additional operations, such as increased debugging output or expiration date
verification. This was also a desirable approach because while we were still manually modifying small
pieces of MySQL source code, something we would later want to move away from entirely, we would not
be altering source code from any of the Globus routines.

There are two primary callback functions that are used by the OpenSSL process, and for which the Globus
team created their own wrappers. These callback functions initiate and direct the actual certificate
verification process while performing some specific operations themselves, as well as handle major errors;
respectively, they are globus_gsi_callback_X509_verify_cert() and
globus_gsi_callback_handshake_callback(). Our approach was to in turn wrap these
functions to provide our own extended functionality.

Our first wrapper function mysql_grid_handshake_callback(), consists of operations to print
the subject and issuer of the certificate for which the callback was executed, then pass execution on to the
Globus function, and return its result. Because this callback is called at least once for every certificate
processed (in the case of successful verification), and perhaps additional times (in the case of errors), this
extended functionality would allow us to verify whether or not the entire certificate chain was being
assembled and checked for a proxy certificate. This output information is missing by default from both the
MySQL and Globus debugging information.

2006, PIOCON Technologies, Inc. 12

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

Our second wrapper function, mysql_grid_X509_verify_cert(), is used to wrap the functionality
of the callback that is used at the beginning of the verification process for a certificate chain. Because of
this, it is an ideal point in the process in which to implement our additional check for the expiration date of
a clients certificate.

3.2.1 Code Modifications

The following is the content of our two Globus callback wrapper functions:

static int mysql_grid_handshake_callback(int ok, X509_STORE_CTX *ctx){
 char buf[256];
 X509 * curr_cert; X509 * cert;
 int err, i;
 time_t ptime;
 X509_EXTENSION * ext;
 ASN1_OBJECT * obj;
 globus_result_t result;
 globus_gsi_cert_utils_cert_type_t cert_type;

#if GRID_DEBUG
 printf(">> Entering mysql_grid_handshake_callback()\n");
#endif
 curr_cert = X509_STORE_CTX_get_current_cert(ctx);
#if GRID_DEBUG
 X509_NAME_oneline(X509_get_subject_name(curr_cert), buf, sizeof(buf));
 printf("Cert Subject Name: %s\n", buf);
 X509_NAME_oneline(X509_get_issuer_name(curr_cert), buf, sizeof(buf));
 printf("Cert Issuer Name: %s\n", buf);
#endif
 ok = globus_gsi_callback_handshake_callback(ok, ctx);
#if GRID_DEBUG
 printf("<< Exiting mysql_grid_handshake_callback() [ok = %d (returnval), ctx = %p]\n",
ok, ctx);
#endif
 return(ok);
}

static int mysql_grid_X509_verify_cert(X509_STORE_CTX * ctx, void * args){
 int result, i;
 time_t ptime;
 X509 * curr_cert;

#if GRID_DEBUG
 printf(">> Entering mysql_grid_X509_verify_cert() [ctx = %p, args = %p]\n", ctx, args);
#endif
 result = globus_gsi_callback_X509_verify_cert(ctx, args);
 curr_cert = X509_STORE_CTX_get_current_cert(ctx);
 ptime = time(NULL);
 i = X509_cmp_time(X509_get_notBefore(curr_cert), &ptime);
 if(i == 0){
 ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD;
 ctx->current_cert = curr_cert;
 result = 0;
 goto exit;
 }
 if(i > 0){
 ctx->error = X509_V_ERR_CERT_NOT_YET_VALID;
 ctx->current_cert = curr_cert;
 result = 0;
 goto exit;
 }
 i = X509_cmp_time(X509_get_notAfter(curr_cert), &ptime);
 if(i == 0){
 ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD;
 ctx->current_cert = curr_cert;
 result = 0;

2006, PIOCON Technologies, Inc. 13

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

 goto exit;
 }
 if(i < 0){
 ctx->error = X509_V_ERR_CERT_HAS_EXPIRED;
 ctx->current_cert = curr_cert;
 result = 0;
 goto exit;
 }
 exit:
#if GRID_DEBUG
 printf("<< Exiting mysql_grid_X509_verify_cert() [ctx = %p, args = %p, result = %d
(returnval)]\n", ctx, args, result);
#endif
 return(result);
}

3.3 Custom Certificate Loading Routine

After creating and implementing our wrapper functions to provide expiration date checking and more
robust debugging information, we performed another build. At this point, we were not expecting to
actually produce a solution to our final goal, as our wrapper functions did not implement any new
functionality that would remedy whatever errors were occurring. The expiration date checking was simply
extended functionality beyond what was already not working correctly. However, the additional debugging
output proved invaluable, as it immediately indicated that there were significant problems regarding the
loading of the proxy certificate file and its chain. This in turn prompted us to again do some further
examination with the GDB debugger. Upon doing so, we realized that the client’s proxy certificate was not
being correctly loaded at all. Because of this fact, it became mandatory that we no longer rely on the
OpenSSL native routines for loading certificate information.

Our next iteration’s focus would be to implement our own certificate loading routines using the Globus
libraries for use by the client portion of the application. The Globus libraries contain routines necessary to
correctly access and load the components of their proxy certificate format, and so could be used to properly
parse the proxy certificate file and load the individual components of a certificate and its chain (if present).

3.3.1 Code Modifications

Our certificate loading routine (show here as part of an Aspect, covered later) is as follows:

SSL_CTX ** ctxRef;
 const char ** cert_fileRef; const char ** key_fileRef;
 int * load_typeRef; int * resRef; int load_type; int i;
 SSL_CTX * ctx;
 const char * cert_file; const char * key_file;
 globus_gsi_cred_handle_attrs_t handle_attrs=NULL;
 globus_gsi_cred_handle_t handle=NULL;
 int result=0; int num=0; int numFlipped=0;
 STACK_OF(X509) *sktmp=NULL; STACK_OF(X509) *sktmpFlipped=NULL;
 X509 *x=NULL; X509 *xTest=NULL;
 ctxRef = (SSL_CTX **)tjp->arg(0);
 cert_fileRef = (const char **)tjp->arg(1);
 key_fileRef = (const char **)tjp->arg(2);
 load_typeRef = (int *)tjp->arg(3);
 resRef = (int *)tjp->result();

 ctx = *ctxRef;
 cert_file = *cert_fileRef;
 key_file = *key_fileRef;
 load_type = *load_typeRef;

 EVP_set_pw_prompt("Enter GRID pass phrase:");

 if(cert_file==NULL){

2006, PIOCON Technologies, Inc. 14

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

 result = -1;
 goto exit;
 }
 if(key_file != NULL){
 printf("ASPECT: Loading certificate using standard routines.\n");
 result = vio_set_cert_stuff(ctx, cert_file, key_file);
 goto exit;
 }

 result = globus_gsi_cred_handle_init(&handle, NULL);
 if(result != GLOBUS_SUCCESS){
 result = -1;
 goto exit;
 }
 result = globus_gsi_cred_read_proxy(handle, cert_file);
 if(result != GLOBUS_SUCCESS){
 result = -1;
 goto exit;
 }
 result = SSL_CTX_use_certificate(ctx, handle->cert);
 if(!result){
 result = -1;
 goto exit;
 }
 sktmp = sk_X509_dup(handle->cert_chain);
 if(sktmp == NULL){
 result = -1;
 goto exit;
 }
 sktmpFlipped = sk_X509_new_null();
 if(sktmpFlipped == NULL){
 result = -1;
 goto exit;
 }

 num = sk_X509_num(sktmp);
 for(;;){
 if(num==0) break;
 x = sk_X509_value(sktmp, num-1);
 result = sk_X509_push(sktmpFlipped, x);
 if(!result){
 result = -1;
 goto exit;
 }
 num--;
 }

 if(ctx->extra_certs != NULL){
 sk_X509_pop_free(ctx->extra_certs, X509_free);
 ctx->extra_certs = NULL;
 }

 num=sk_X509_num(sktmpFlipped);
 for(;;){
 if(num==0) break;
 x = sk_X509_value(sktmpFlipped, num-1);
 if(!SSL_CTX_add_extra_chain_cert(ctx, x)){
 X509_free(x);
 result = -1;
 goto exit;
 }
 num--;
 }

 if(result = SSL_CTX_use_PrivateKey(ctx, handle->key) <= 0){
 result = -1;
 goto exit;
 }

 if (!SSL_CTX_check_private_key(ctx))
 {

2006, PIOCON Technologies, Inc. 15

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

 result = -1;
 goto exit;
 }

 exit:
 /* It's all just pointers, and all the certs need to
 be kept around... so no for now? */
 if(handle_attrs!=NULL){
 if(globus_gsi_cred_handle_attrs_destroy(handle_attrs) != GLOBUS_SUCCESS) ;
 }

 if(result == -1)
 printf("Error: Unable to load user certificate and key.\n");
 *resRef = result;
}

3.3.2 Results

The replacement of the native OpenSSL certificate loading routine with another that used Globus
functionality proved to be the most important component of our modifications, and the one that ultimately
secured the results we were looking for in our proof of concept. After rebuilding the application, the SSL
handshake process occurred as we had hoped. Using the extended debugging information we confirmed
that the MySQL client application could now correctly identify a proxy certificate file, and use our Globus-
based loading procedures in place of the native OpenSSL procedures when necessary.

With the proxy certificate sent by the client now being properly loaded, the server no longer rejected it as
being improperly formatted. The Globus callback wrapper functions intercepted any errors and allowed the
process to continue if an error was due to OpenSSL’s inability to recognize attributes of the proxy
certificate, and handled the appropriate verification themselves. Additionally, we ran multiple test
connections using various expired and un-expired certificates of both the proxy and standard variety, and
confirmed that our expiration date checking mechanism was also functioning properly. Certificates with
validity periods that had expired were properly rejected.

3.4 Aspects

The result of the previous iteration proved to be a working, albeit unrefined, implementation of our project
goal. Our next step was to address any other design and implementation concerns, specifically the
modularization of our code modifications away from the native MySQL source code. To do this we set out
to translate our code into aspects, which through AOP translation operations could then be weaved into the
application source at compile time, eliminating the need to manually alter any MySQL source code
directly.

In practice, aspects are implemented as C++ style objects, and themselves can contain multiple “advice”
definitions, which are similar to object methods in function but with a differing syntax. This syntax,
interpretable by the aspect pre-compiler, identifies an advice block not as a standard object method (which
aspects can in fact contain; they are like any other C++ object), but as a block of code to be inserted in the
manner dictated by the advice declaration.

2006, PIOCON Technologies, Inc. 16

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

Advice definitions have the following general form:

advice { call | execution }(<reg. expression>)
 [&& within(<reg. expression>)] :

 { before | after | around }()
 {

 . . . Advice Body . . .

 }

As the definition above describes, an advice definition contains at least two components. The first
component dictates whether the advice will be applied against a single-line function call or against the
execution internal to a function call (after it has been called). The function to which the advice should be
applied is described by a type of regular expression. Given the preceding context, the second component of
an advice definition dictates whether the advice application should occur before, after, or all together in
place of that context. An optional middle component allows for the further limiting of an advice’s
application, by defining another function within which the context must be located in order for the advice
to be applied.

4.1.1 Technical Details

 Our implementation utilized only one aspect object, which itself contained numerous advice
definitions that were sufficient in applying all our desired modifications. As a precaution a handful of
operations were handled in functions located external to, but referenced by the aspect object, for reasons of
scope. Our components are listed below, with brief descriptions of their purpose.

 4.1.1.1 External Functions

static int mysql_grid_handshake_callback(…)
• This function is used as a wrapper to the Globus handshake callback, which itself

replaces the native OpenSSL callback. Our extension serves to supply additional
debugging output about the certificate currently being processed, and then passes control
to the Globus callback.

static int mysql_grid_X509_verify_cert(…)

• This function is used as a wrapper to the native OpenSSL certificate verification process
callback function. Our extension serves to first allow verification to proceed as normal,
and in the case of successful verification, enforce expiration date checking of the relevant
certificate, which by default is disabled by OpenSSL.

static void grid_set_callback_data(…)

• This function serves to perform creation, initialization and verification of a data structure
which is required by the Globus callback routines in order to verify proxy certificates,
and which must be inserted into an existing SSL data structure.

4.1.1.2 Advice Definitions

advice call(“% %SSL_CTX_set_verify(…)”) &&
 within(“% %new_VioSSLAcceptorFD(…)”) :
 around()

• This advice block serves to take the place of an existing call to MySQL’s
SSL_CTX_set_verify() call. This advice sets various options for the SSL session that
otherwise would not be set. It also configures the session to use our callback wrapper

2006, PIOCON Technologies, Inc. 17

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

functions in place of the native callbacks. This advice affects the behavior of the MySQL
server application.

advice call(“% %vio_set_cert_Stuff(…)”) &&
 within(“% %new_VioSSLConnectorFD(…)”) :
 around()

• This advice block serves to take the place of an existing call to MySQL’s
vio_set_cert_stuff(), which is the default certificate-loading function. Our replacement
leverages the Globus libraries to properly load a certificate file if it contains a proxy,
otherwise control is passed onto the default MySQL call. This advice affects the
behavior of the client application.

advice call(“% %SSL_set_accept_state(…)”) &&
 within(“% sslaccept(…)”) :
 around()

• This advice block serves to intercept an existing function call which sets configuration
parameters for the server, in order to call our grid_set_callback_data() function after the
configuration function has performed it’s operations. This advice affects the behavior of
the server application.

advice execution(“% sslconnect(…)”) :
 before()

• This advice block simply stores a global reference to an internal MySQL data structure
that is required later for hostname verification, but which becomes unavailable during the
handshake process for reasons of scope. This advice affects the behavior of the client.

advice call(“% SSL_do_handshake(…)”) &&
 within(“% sslconnect(…)”) :
 around()

• This advice block serves to implement verification between the hostname presented in a
server’s certificate, and the server hostname as obtained through the TCP/IP connection
data, to ensure they match. This operation guards against a server posing as another by
using a stolen certificate. This feature is optional, but if included during a build, this
advice affects the behavior of the client.

advice execution(“% sslaccept(…)”) :
 around()

• This advice block serves to intercept the main SSL handshake function of the server, in
order to surround it with the activation and deactivation calls required by the various
Globus modules used for proxy certificate verification. This advice affects the behavior
of the server.

2006, PIOCON Technologies, Inc. 18

High Performance Database Access for HEP Grids Grant # DE-FG02-05ER84369

2006, PIOCON Technologies, Inc. 19

References
[1] A. Vaniachine, D. Malon, M. Vranicar “Advanced Technologies for Distributed Database Services
Hyperinfrastructure”, preprint ANL-HEP-CP-04-107, submitted for publication in Proceedings of the
Meeting of the Division of Particles and Fields of the American Physical Society (DPF2004) Riverside,
CA, August 26-31, 2004
[2] P. Watson, “Databases and the Grid” in Grid Computing: Making The Global Infrastructure a reality, F.
Berman, A.J.G. Hey, and G. Fox (eds.) Wiley, 2003
[3] http://www.gridforum.org/6_DATA/dais.htm
[4] O. Spinczyk, D. Lohmann, M. Urban, “Aspect C++: an AOP Extension for C++”, in Software
Developer’s Journal, pages 68-76, 05/2005. http://www.aspectc.org/Publications.6.0.html

http://www.gridforum.org/6_DATA/dais.htm
http://www.aspectc.org/Publications.6.0.html

