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Abstract

This work describes the convergence analysis of a Smolyak-type sparse grid stochastic
collocation method for the approximation of statistical quantities related to the solution
of partial differential equations with random coefficients and forcing terms (input data
of the model). To compute solution statistics, the sparse grid stochastic collocation
method uses approximate solutions, produced here by finite elements, corresponding to
a deterministic set of points in the random input space. This naturally requires solving
uncoupled deterministic problems and, as such, the derived strong error estimates for the
fully discrete solution are used to compare the computational efficiency of the proposed
method with the Monte Carlo method. Numerical examples illustrate the theoretical
results and are used to compare this approach with several others, including the standard
Monte Carlo.

3

mailto:fabio.nobile@polimi.it
mailto:rtempone@scs.fsu.edu
mailto:cgwebst@sandia.gov


Acknowledgments

The first author was partially supported by M.U.R.S.T. Cofin 2005 “Numerical Modeling
for Scientific Computing and Advanced Applications”. The first and second authors were
partially supported by the SANDIA project # 523695. The second author wants to ac-
knowledge the support of the Dahlquist fellowship at the Royal Institute of Technology in
Stockholm, Sweden, and the support of UdelaR in Uruguay. The third author was supported
by the School of Computation Science (SCS) at Florida State University and would like to
thank MOX, Dipartimento di Matematica, Politecnico di Milano, Italy, for hosting a visit to
complete this research. Finally, the third author would like to thank Prof. Max Gunzburger
and Dr. John Burkardt for their insight, guidance and many helpful discussions.

4



Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 On Finite Dimensional Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Collocation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Full tensor product interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Smolyak approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Choice of interpolation abscissas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Analysis of the approximation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Influence of truncation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Application to linear elliptic PDEs with random input data. . . . . . . . . . . 38

6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendix

A Additional Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



Figures

1 For a two-dimensional parameter space (N = 2) and maximum level w = 5,
we plot the full tensor product grid using the Clenshaw-Curtis abscissas (left)
and isotropic Smolyak sparse grids H (5, 2), utilizing the Clenshaw-Curtis
abscissas (middle) and the Gaussian abscissas (right). . . . . . . . . . . . . . . . . . . . 22

2 For a finite dimensional ΓN with N = 5, 11 and 21 we plot the log of the
number of distinct Clenshaw-Curtis collocation points used by the isotropic
Smolyak method and the corresponding isotropic full tensor product method
versus the level w (or the maximum number of points m employed in each
direction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The rate of convergence of the isotropic Smolyak approximation for solving
problem (6.1) with correlation length Lc = 1/64 using both the Gaussian
and Clenshaw-Curtis abscissas. For a finite dimensional probability space
ΓN with N = 5 and N = 11 we plot the L2(D) approximation error in the
expected value in the log-linear scale (left) and log-log scale (right). . . . . . . . 42

4 The convergence of the isotropic Smolyak approximation for solving problem
(6.1) with given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 using both
the Gaussian and Clenshaw-Curtis abscissas. For a finite dimensional prob-
ability space ΓN with N = 5 and N = 11 we plot the L2(D) approximation
error in the expected value versus the number of collocation points. . . . . . . . 43

5 A 11-dimensional comparison of the isotropic Smolyak method, the anisotropic
full tensor product algorithm and Monte Carlo approach for solving problem
(6.1) with correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64. We plot the
L2(D) approximation error in the expected value versus the number of col-
location points (or samples of the Monte Carlo method). . . . . . . . . . . . . . . . . 45

6



Tables

1 The N = 11 components of the multi index p computed by the anisotropic
full tensor product algorithm when solving problem (6.1) with a correlation
length Lc = 1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 The N = 11 components of the multi index p computed by the anisotropic
full tensor product algorithm when solving problem (6.1) with a correlation
length Lc = 1/64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 For N = 11, we compare the number of function evaluations required by
the Anisotropic Full Tensor product method (AF) using Gaussian abscissas,
Isotropic Smolyak (IS) using Clenshaw-Curtis abscissas and the Monte Carlo
(MC) method using random abscissas, to reduce the original error of problem
(6.1), in expectation, by a factor of 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7



Summary

This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method
for the approximation of statistical quantities related to the solution of partial differential
equations with random coefficients and forcing terms (input data of the model). To compute
solution statistics, the sparse grid stochastic collocation method uses approximate solutions,
produced here by finite elements, corresponding to a deterministic set of points in the
random input space. This naturally requires solving uncoupled deterministic problems as
in the Monte Carlo method.

If the number of random variables needed to describe the input data is moderately
large, full tensor product spaces are computationally expensive to use due to the curse of
dimensionality. In this case the sparse grid approach is still expected to be competitive with
the classical Monte Carlo method. Therefore, it is of major practical relevance to understand
in which situations the sparse grid stochastic collocation method is more efficient than Monte
Carlo. This work provides strong error estimates for the fully discrete solution using Lq

norms and analyzes the computational efficiency of the proposed method. In particular, it
demonstrates algebraic convergence with respect to the total number of collocation points.
The derived estimates are then used to compare the method with Monte Carlo, indicating
for which problems the first is more efficient than the latter.

Computational evidence complements the present theory and shows the effectiveness
of the sparse grid stochastic collocation method compared to full tensor and Monte Carlo
approaches.
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Nomenclature

a.s. almost surely

i.i.d. independently identically distributed

FEM finite element method

MC Monte Carlo

meas. measurable

PC polynomial chaos

PDE partial differential equation

SC stochastic collocation
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SPDE stochastic partial differential equation
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1 Introduction

Mathematical modeling and computer simulations are nowadays widely used tools to pre-
dict the behavior of physical and engineering problems. Whenever a particular application
is considered, the mathematical models need to be equipped with input data, such as coef-
ficients, forcing terms, boundary conditions, geometry, etc. However, in many applications,
such input data may be affected by a relatively large amount of uncertainty. This can be
due to an intrinsic variability in the physical system as, for instance, in the mechanical
properties of many bio-materials, polymeric fluids, or composite materials, the action of
wind or seismic vibrations on civil structures, etc.

In other situations, uncertainty may come from our difficulty in characterizing accurately
the physical system under investigation as in the study of groundwater flows, where the
subsurface properties such as porosity and permeability in an aquifer have to be extrapolated
from measurements taken only in few spatial locations.

Such uncertainties can be included in the mathematical model adopting a probabilistic
setting, provided enough information is available for a complete statistical characterization
of the physical system. In this framework, the input data are modeled as random variables,
or more generally, as random fields with a given spatial (or temporal) correlation structure.

Therefore, the goal of the mathematical and computational analysis becomes the pre-
diction of statistical moments of the solution (mean value, variance, covariance, etc.) or
statistics of some given responses of the system (sometimes also called quantities of physical
interest which are real valued functionals of the solution), given the probability distribution
of the input random data. Examples of quantities of interest could be the solution values
in a given region, fluxes across given boundaries, etc.

In order to parametrize the input data for a given PDE, random fields that are either
coefficients or loads can often be expanded as an infinite combination of random variables
by, for instance, the Karhunen-Loève [23] or Polynomial Chaos (PC) expansions [33, 37].
Although such random fields are properly described only by means of an infinite number of
random variables, whenever the realizations are slowly varying in space, with a correlation
length comparable to the size of the domain, only a few terms in the above mentioned expan-
sions are typically needed to describe the random field with sufficient accuracy. Therefore,
in this case, it is reasonable to limit the analysis to just a few random variables in the
expansion (see e.g. [2, 16]).

In this work we focus on partial differential equations whose coefficients and forcing terms
are described by a finite dimensional random vector (finite dimensional noise assumption,
either because the problem itself can be described by a finite number of random variables
or because the input coefficients are modeled as truncated random fields.

The most popular approach to solve mathematical problems in a probabilistic setting is
the Monte Carlo method (see e.g. [15] and references therein). The Monte Carlo method
is easy to implement and allows one to reuse available deterministic codes. Yet, the con-
vergence rate is typically very slow, although with a mild dependence on the number on
sampled random variables.
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In the last few years, other approaches have been proposed, which in certain situations
feature a much faster convergence rate. We mention, among others, the Spectral Galerkin
method [3, 4, 16, 20, 22, 25, 27, 36], Stochastic Collocation [5, 24, 29, 35], perturbation
methods or Neumann expansions [1, 17, 30, 34].

For certain classes of problems, the solution may have a very regular dependence on the
input random variables. For instance, it was shown in [5] and [3] that the solution of a
linear elliptic PDE with diffusivity coefficient and/or forcing term described as truncated
expansions of random fields is analytic in the input random variables. In such situations,
Spectral Galerkin or Stochastic Collocation methods based on orthogonal tensor product
polynomials feature a very fast convergence rate.

In particular, our earlier work [5] proposed a Stochastic Collocation/Finite Element
method based on standard finite element approximations in space and a collocation on
a tensor grid built upon the zeros of orthogonal polynomials with respect to the joint
probability density function of the input random variables. It was shown that for an elliptic
PDE the error converges exponentially fast with respect to the number of points employed
for each random input variable.

The Stochastic Collocation method can be easily implemented and leads naturally to
the solution of uncoupled deterministic problems as in the Monte Carlo method, even in
presence of input data which depend nonlinearly on the driving random variables. It can
also treat efficiently the case of non independent random variables with the introduction
of an auxiliary density and handle for instance cases with lognormal diffusivity coefficient,
which is not bounded in Ω ×D but has bounded realizations. When the number of input
random variables is small, Stochastic Collocation is a very effective numerical tool.

On the other hand, approximations based on tensor product grids suffer from the curse
of dimensionality since the number of collocation points in a tensor grid grows exponentially
fast in the number of input random variables.

If the number of random variables is moderately large, one should rather consider sparse
tensor product spaces as first proposed by Smolyak [28] and further investigated by e.g.
[6, 16, 18, 35], which will be the primary focus of this paper. It is natural to expect
that the use of sparse grids will reduce dramatically the number of collocation points,
while preserving a high level of accuracy and thus being able to successfully compete with
Monte Carlo. Our main purpose is to clarify the limitations of the previous statement and
to understand in which situations the sparse grid stochastic collocation method is more
efficient than Monte Carlo.

Motivated by the above, this work proposes and analyzes a Smolyak-type sparse grid
stochastic collocation method for the approximation of statistical quantities related to the
solution of partial differential equations whose input data are described through a finite num-
ber of random variables. The sparse tensor product grids are built upon either Clenshaw-
Curtis [11] or Gaussian abscissas. After outlining the method, this work provides strong
error estimates for the fully discrete solution and analyzes its computational efficiency. In
particular, it proves algebraic convergence with respect to the total number of collocation
points, or equivalently, the total computational work which is directly proportional to the
number of collocation points. The exponent of such algebraic convergence is connected
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to both the regularity of the solution and the number of input random variables, N , and
essentially deteriorates with N by a 1/ log(N) factor. Then, these error estimates are used
to compare the method with the standard Monte Carlo, indicating for which problems the
first is more efficient than the latter.

Moreover, this work addresses the case where the input random variables come from
suitably truncated expansions of random fields. There it discusses how to relate the number
of points in the sparse grid to the number of random variables retained in the truncated
expansion in order to balance discretization error with truncation error in the input random
fields. Computational evidence complements the present theory and shows the effectiveness
of the sparse grid stochastic collocation method. It also includes a comparison with full
tensor and Monte Carlo methods.

The outline of the work is the following: Section 2 introduces the mathematical problem,
basic notations and states a regularity assumption to be used later in the error analysis.
Section 3 summarizes various collocation techniques and describes the sparse approximation
method under study. It also describes two types of abscissas, Clenshaw Curtis and Gaussian,
that will be employed in the sparse approximation method.

Section 4 is the core of the work. We first develop strong error estimates for the fully
discrete solution using L∞P and L2

P norms for Clenshaw-Curtis and Gaussian abscissas,
respectively (P being the probability measure considered). These norms control the error
in the approximation of expected values of smooth functionals of the solution. Then, in
Section 4.2 these error estimates are used to compare the method with the standard Monte
Carlo, explaining cases where the first is more efficient than the latter.

Sections 5 and 6 focus on applications to linear elliptic PDEs with random input data.
In Section 5 we verify that the assumptions under which our general theory works hold
in this particular case. Then we present in Section 6 some numerical results showing the
effectiveness of the proposed method when compared to the full tensor and Monte Carlo
methods.
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2 Problem setting

We begin by focusing our attention on a differential operator L, linear or nonlinear, on a
domain D ⊂ Rd, which depends on some coefficients a(ω, x) with x ∈ D, ω ∈ Ω, where
(Ω,F , P ) a complete probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-
algebra of events and P : F → [0, 1] is a probability measure. Similarly the forcing term
f = f(ω, x) can be assumed random as well.

Consider the stochastic boundary value problem: find a random function, u : Ω×D → R,
such that P -almost everywhere in Ω, or in other words almost surely (a.s.), the following
equation holds:

L(a)(u) = f in D (2.1)

equipped with suitable boundary conditions. Before introducing some assumptions we de-
note by W (D) a Banach space of functions v : D → R and define, for q ∈ [1,∞], the
stochastic Banach spaces LqP ≡ L

q
P (Ω;W (D)) and L∞P ≡ L∞P (Ω;W (D)) as

LqP =
{
v : Ω→W (D) | v is strongly meas. and

∫
Ω
‖v(ω, ·)‖qW (D)dP (ω) < +∞

}
and

L∞P =
{
v : Ω→W (D) | v is strongly meas. and P − ess sup

ω∈Ω
‖v(ω, ·)‖2W (D) < +∞

}
.

Of particular interest is the space L2
P (Ω;W (D)), consisting of Banach valued functions that

have finite second moments.

We will now make the following assumptions:

A1) the solution to (2.1) has realizations in the Banach space W (D), i.e. u(·, ω) ∈ W (D)
almost surely and ∀ω ∈ Ω

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W ∗(D)

where we denote W ∗(D) to be the dual space of W (D), and C is a constant indepen-
dent of the realization ω ∈ Ω.

A2) the forcing term f ∈ L2
P (Ω;W ∗(D)) is such that the solution u is unique and bounded

in L2
P (Ω;W (D)).

Here we give two example problems that are posed in this setting:

Example 2.1 The linear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(2.2)

with a(ω, ·) uniformly bounded and coercive, i.e.

∃ amin, amax ∈ (0,+∞) such that P (ω ∈ Ω : a(ω, x) ∈ [amin, amax]∀x ∈ D) = 1

and f(ω, ·) square integrable with respect to P , satisfies assumptions A1 and A2 with W (D) =
H1

0 (D) (see [5]).
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Example 2.2 Similarly, for k ∈ N+, the nonlinear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)2k+1 = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(2.3)

with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square integrable with respect to P ,
satisfies assumptions A1 and A2 with W (D) = H1

0 (D) ∩ L2k+2(D).

Remark 2.3 (Goals of the computation) As said in the introduction, the goal of the
mathematical and computational analysis is the prediction of statistical moments of the
solution u to (2.1) (mean value, variance, covariance, etc.) or statistics of some given
quantities of physical interest ψ(u). Examples of quantities of interest could be the average
value of the solution in a given region Dc ⊂ D,

ψ(u) =
1
|Dc|

∫
Dc

udx,

and similarly average fluxes on a given direction n ∈ Rd. In the case of Examples 2.1 and
2.2 these fluxes can be written as

ψ(u) =
1
|Dc|

∫
Dc

a
∂u

∂n
dx.

2.1 On Finite Dimensional Noise

In some applications, the coefficient a and the forcing term f appearing in (2.1) can be
described by a random vector [Y1, . . . , YN ] : Ω→ RN , as in the following examples. In such
cases, we will emphasize such dependence by writing aN and fN .

Example 2.4 (Piecewise constant random fields) Let us consider again problem (2.2)
where the physical domain D is the union of non-overlapping subdomains Di, i = 1, . . . , N .
We consider a diffusion coefficient that is piecewise constant and random on each subdo-
main, i.e.

aN (ω, x) = amin +
N∑
i=1

σi Yi(ω)1Di(x).

Here 1Di is the indicator function of the set Di, σi, amin are positive constants, and the
random variables Yi are nonnegative with unit variance.

In other applications the coefficients and forcing terms in (2.1) may have other type of
spatial variation that is amenable to describe by an expansion. Depending on the decay of
such expansion and the desired accuracy in our computations we may retain just the first
N terms.

Example 2.5 (Karhunen-Loève expansion) We recall that any second order random
field g(ω, x), with continuous covariance function cov[g] : D ×D → R, can be represented as
an infinite sum of random variables, by means, for instance, of a Karhunen-Loève expansion

15



[23]. To this end, introduce the compact and self-adjoint operator Tg : L2(D) → L2(D),
which is defined by

Tgv(·) :=
∫
D

cov[g](x, ·) v(x) dx ∀v ∈ L2(D).

Then, consider the sequence of non-negative decreasing eigenvalues of Tg, {λi}∞i=1, and the
corresponding sequence of orthonormal eigenfunctions, {bi}∞i=1, satisfying

Tgbi = λibi, (bi, bj)L2(D) = δij for i, j ∈ N+.

In addition, define mutually uncorrelated real random variables

Yi(ω) :=
1√
λi

∫
D

(g(ω, x)− E[g](x)) bi(x)dx, i = 1, . . .

with zero mean and unit variance, i.e. E[Yi] = 0 and E[YiYj ] = δij for i, j ∈ N+. The
truncated Karhunen-Loève expansion gN , of the stochastic function g, is defined by

gN (ω, x) := E[g](x) +
N∑
i=1

√
λi bi(x)Yi(ω) ∀N ∈ N+.

Then by Mercer’s theorem (cf [26, p. 245]), it follows that

lim
N→∞

{
sup
D
E
[
(g − gN )2

]}
= lim

N→∞

{
sup
D

( ∞∑
i=N+1

λib
2
i

)}
= 0.

Observe that the N random variables in (2.5), describing the random data, are then weighted
differently due to the decay of the eigen-pairs of the Karhunen-Loève expansion. The decay
of eigenvalues and eigenvectors has been investigated e.g. in the works [16] and [30].

The above examples motivate us to consider problems whose coefficients are described by
finitely many random variables. Thus, we will seek a random field uN : Ω ×D → R, such
that a.s., the following equation holds:

L(aN )(uN ) = fN in D, (2.4)

We assume that equation (2.4) admits a unique solution uN ∈ L2
P (Ω;W (D)). Therefore,

following the same argument as in [5, p.1010], yields that the solution uN of the stochastic
boundary value problem (2.4) can be described by the [Y1, . . . , YN ] random variables, i.e.
uN = uN (ω, x) = uN (Y1(ω), . . . , YN (ω), x).

We underline that the coefficients aN and fN in (2.4) may be an exact representation of
the input data as in Example 2.4 or a suitable truncation of the input data as in Example
2.5. In the latter case, the solution uN will also be an approximation of the exact solution
u in (2.1) and the truncation error u− uN has to be properly estimated (see Section 4.2).

Remark 2.6 (Nonlinear coefficients) In certain cases, one may need to ensure qualita-
tive properties on the coefficients aN and fN and may be worth while to describe them as
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nonlinear functions of Y . For instance, in Example 2.1 one is required to enforce positive-
ness on the coefficient aN (ω, x), say aN (ω, x) ≥ amin for all x ∈ D, a.s. in Ω. Then a better
choice is to expand log(aN − amin). The following standard transformation guarantees that
the diffusivity coefficient is bounded away from zero almost surely

log(aN − amin)(ω, x) = b0(x) +
∑

1≤n≤N

√
λnbn(x)Yn(ω), (2.5)

i.e. one performs a Karhunen-Loève expansion for log(aN−amin), assuming that aN > amin
almost surely. On the other hand, the right hand side of (2.4) can be represented as a
truncated Karhunen-Loève expansion fN (ω, x) = c0(x) +

∑
1≤n≤N

√
µncn(x)Yn(ω).

For this work we denote Γn ≡ Yn(Ω) the image of Yn, where we assume Yn(ω) to be
bounded. Without loss of generality we can assume Γn = [−1, 1]. We also let ΓN =∏N
n=1 Γn and assume that the random variables [Y1, Y2, . . . , YN ] have a joint probability

density function
ρ : ΓN → R+, with ρ ∈ L∞(ΓN ). (2.6)

Thus, the plan is to approximate the function uN = uN (y, x), for any y ∈ ΓN and x ∈ D.
(see [5], [3])

Remark 2.7 (Unbounded Random Variables) By using a similar approach to the work
[5] we can easily deal with unbounded random variables, such as Gaussian or exponential
ones. For the sake of simplicity in the presentation we focus our study on bounded random
variables only.

The convergence properies of the collocation techniques that will be developed in the
next section depend on the regularity that the solution uN has with respect to y. Denote
Γ∗n =

∏N
j=1

j 6=n
Γj , and let y∗n be an arbitrary element of Γ∗n. Here we require the solution to

problem (2.1) to satisfy

Assumption 2.8 (Regularity) For each yn ∈ Γn, there exists τn > 0 such that the func-
tion uN (yn, y∗n, x) as a function of yn, uN : Γn → C0(Γ∗n;W (D)) admits an analytic exten-
sion u(z, y∗n, x), z ∈ C, in the region of the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}. (2.7)

Moreover, ∀z ∈ Σ(Γn; τn),
‖uN (z)‖C0(Γ∗n;W (D)) ≤ λ (2.8)

with λ a constant independent of n.

This assumption is sound in several problems; in particular, it can be verified for the
linear problem that will be analyzed in Section 5. In the more general case, this assumption
should be verified for each particular application, and will have implications on the allowed
regularity of the input data, e.g. coefficients, loads, etc., of the stochastic PDE under study.
See also Remark 4.13 for related results based on less regularity requirements.
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3 Collocation techniques

We seek a numerical approximation to the exact solution of (2.4) in a suitable finite di-
mensional subspace. To describe such a subspace properly, we introduce some standard
approximation subspaces, namely:

• Wh(D) ⊂ W (D) is a standard finite element space of dimension Nh, which contains
continuous piecewise polynomials defined on regular triangulations Th that have a
maximum mesh-spacing parameter h > 0. We suppose that Wh has the following
deterministic approximation property: for a given function ϕ ∈W (D),

min
v∈Wh(D)

‖ϕ− v‖W (D) ≤ C(s;ϕ)hs, (3.1)

where s is a positive integer determined by the smoothness of ϕ and the degree of the
approximating finite element subspace and C(s;ϕ) is independent of h.

Example 3.1 Let D be a convex polygonal domain and W (D) = H1
0 (D). For piece-

wise linear finite element subspaces we have

min
v∈Wh(D)

‖ϕ− v‖H1
0 (D) ≤ c h ‖ϕ‖H2(D).

That is, s = 1 and C(s;ϕ) = c‖ϕ‖H2(D), see for example [7].

We will also assume that there exists a finite element operator πh : W (D)→ Wh(D)
with the optimality condition

‖ϕ− πhϕ‖W (D) ≤ Cπ min
v∈Wh(D)

‖ϕ− v‖W (D), ∀ϕ ∈W (D), (3.2)

where the constant Cπ is independent of the mesh size h. It is worth noticing that
in general the operator πh will depend on the specific problem, as well as on y, i.e.
πh = πh(y).

• Pp(ΓN ) ⊂ L2
ρ(Γ

N ) is the span of tensor product polynomials with degree at most
p = (p1, . . . , pN ) i.e. Pp(ΓN ) =

⊗N
n=1 Ppn(Γn), with

Ppn(Γn) = span(ykn, k = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp(ΓN ) is Np =
∏N
n=1(pn + 1).

Stochastic collocation entails the evaluation of approximate values πhuN (yk) = uNh (yk) ∈
Wh(D), to the solution uN of (2.4) on a suitable set of points yk ∈ ΓN . Then, the fully
discrete solution uNh,p ∈ C0(ΓN ;Wh(D)) is a global approximation (sometimes an interpo-
lation) constructed by linear combinations of the point values. That is

uNh,p(y, ·) =
∑
k∈K

uNh (yk, ·)lpk (y), (3.3)

where, for instance, the functions lpk can be taken as the Lagrange polynomials (see Section
3.1 and 3.2). This formulation can be used to compute the mean value or variance of u,
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as described in [5, Section 2], or to approximate expected values of functionals ψ(u), cf.
Remark 2.3, by

E[ψ(u)] ≈ E[ψ(uNh,p)] ≈
∑
k∈K

ψ(uNh (yk))E[lpk ].

In the next sections we consider different choices of the evaluation points yk and correspond-
ing weights E[lpk ] in the associated quadrature formula.

3.1 Full tensor product interpolation

In this section we briefly recall interpolation based on Lagrange polynomials. We first
introduce an index i ∈ N+, i ≥ 1. Then, for each value of i, let {yi1, . . . , yimi} ⊂ [−1, 1] be a
sequence of abscissas for Lagrange interpolation on [−1, 1].

For u ∈ C0(Γ1;W (D)) and N = 1 we introduce a sequence of one-dimensional Lagrange
interpolation operators U i : C0(Γ1;W (D))→ Vmi(Γ

1;W (D))

U i(u)(y) =
mi∑
j=1

u(yij) l
i
j(y), ∀u ∈ C0(Γ1;W (D)), (3.4)

where lij ∈ Pmi−1(Γ1) are the Lagrange polynomials of degreemi−1, i.e. lij(y) =
∏mi

k=1
k 6=j

(y−yik)

(yij−yik)
,

and

Vm(Γ1;W (D)) =

{
v ∈ C0(Γ1;W (D)) : v(y, x) =

m∑
k=1

ṽk(x)lk(y), {ṽk}mk=1 ∈W (D)

}
.

Formula (3.4) reproduces exactly all polynomials of degree less than mi. Now, in the
multivariate case N > 1, for each u ∈ C0(ΓN ;W (D)) and the multi-index i = (i1, . . . , iN ) ∈
NN

+ we define the full tensor product interpolation formulas

INi u(y) =
(
U i1 ⊗ · · · ⊗U iN

)
(u)(y) =

mi1∑
j1=1

· · ·
miN∑
jN=1

u
(
yi1j1 , . . . , y

iN
jN

) (
li1j1 ⊗ · · · ⊗ l

iN
jN

)
.

(3.5)
Clearly, the above product needs

∏N
n=1min function evaluations. These formulas will also

be used as the building blocks for the Smolyak method, described next.

3.2 Smolyak approximation

Here we follow closely the work [6] and describe the Smolyak isotropic formulas A (w,N).
The Smolyak formulas are just linear combinations of product formulas (3.5) with the
following key properties: only products with a relatively small number of points are used.
With U 0 = 0 and for i ∈ N+ define

∆i := U i −U i−1. (3.6)
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Moreover, given an integer w ∈ N+, hereafter called the level, we define the sets

X(w,N) :=

{
i ∈ NN

+ , i ≥ 1 :
N∑
n=1

(in − 1) ≤ w

}
, (3.7a)

X̃(w,N) :=

{
i ∈ NN

+ , i ≥ 1 :
N∑
n=1

(in − 1) = w

}
, (3.7b)

Y (w,N) :=

{
i ∈ NN

+ , i ≥ 1 : w −N + 1 ≤
N∑
n=1

(in − 1) ≤ w

}
, (3.7c)

and for i ∈ NN
+ we set |i| = i1 + · · ·+ iN . Then the isotropic Smolyak formula is given by

A (w,N) =
∑

i∈X(w,N)

(
∆i1 ⊗ · · · ⊗∆iN

)
. (3.8)

Equivalently, formula (3.8) can be written as (see [32])

A (w,N) =
∑

i∈Y (w,N)

(−1)w+N−|i|
(

N − 1
w +N − |i|

)
·
(
U i1 ⊗ · · · ⊗U iN

)
. (3.9)

To compute A (w,N)(u), one only needs to know function values on the “sparse grid”

H (w,N) =
⋃

i∈Y (w,N)

(
ϑi1 × · · · × ϑiN

)
⊂ [−1, 1]N , (3.10)

where ϑi =
{
yi1, . . . , y

i
mi

}
⊂ [−1, 1] denotes the set of abscissas used by U i. If the sets are

nested, i.e. ϑi ⊂ ϑi+1, then H (w,N) ⊂H (w + 1, N) and

H (w,N) =
⋃

i∈ eX(w,N)

(
ϑi1 × · · · × ϑiN

)
. (3.11)

The Smolyak formula is actually interpolatory whenever nested points are used. This result
has been proved in [6, Proposition 6 on page 277].

By comparing (3.11) and (3.10), we observe that the Smolyak approximation that em-
ploys nested points requires less function evaluations than the corresponding formula with
non nested points. In the next section we introduce two particular sets of abscissas, nested
and non nested, respectively. Also, Figure 1 shows, as an example, the sparse grid H (5, 2)
obtained in those two cases. Note that the Smolyak approximation formula, as presented
in this Section, is isotropic, since all directions are treated equally. This can be seen from
(3.8) observing that if a multi-index i = (i1, i2, . . . , iN ) belongs to the set X(w,N), then
any permutation of i also belongs to X(w,N) and contributes to the construction of the
Smolyak approximation A (w,N).

3.3 Choice of interpolation abscissas

Clenshaw-Curtis abscissas. We first suggest to use Clenshaw-Curtis abscissas (see [11])
in the construction of the Smolyak formula. These abscissas are the extrema of Chebyshev
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polynomials and, for any choice of mi > 1, are given by

yij = − cos
(
π(j − 1)
mi − 1

)
, j = 1, . . . ,mi. (3.12)

In addition, one sets yi1 = 0 if mi = 1 and lets the number of abscissas mi in each level to
grow according to the following formula

m1 = 1 and mi = 2i−1 + 1, for i > 1. (3.13)

With this particular choice, one obtains nested sets of abscissas, i.e., ϑi ⊂ ϑi+1 and thereby
H (w,N) ⊂H (w+ 1, N). It is important to choose m1 = 1 if we are interested in optimal
approximation in relatively large N , because in all other cases the number of points used
by A (w,N) increases too fast with N .

Gaussian abscissas. We also propose to use Gaussian abscissas, i.e. the zeros of the
orthogonal polynomials with respect to some positive weight. However, these Gaussian ab-
scissas are in general not nested. Regardless, as in the Clenshaw-Curtis case, we choose the
number mi of abscissas that are used by U i as in (3.13). See the work [31] for an insightful
comparison of quadrature formulas based on Clenshaw-Curtis and Gaussian abscissas. The
natural choice of the weight should be the probability density function ρ of the random
variables Yi(ω) for all i. Yet, in the general multivariate case, if the random variables Yi are
not independent, the density ρ does not factorize, i.e. ρ(y1, . . . , yn) 6=

∏N
n=1 ρn(yn). To this

end, we first introduce an auxiliary probability density function ρ̂ : ΓN → R+ that can be
seen as the joint probability of N independent random variables, i.e. it factorizes as

ρ̂(y1, . . . , yn) =
N∏
n=1

ρ̂n(yn), ∀y ∈ ΓN , and is such that
∥∥∥∥ρρ̂
∥∥∥∥
L∞(ΓN )

<∞. (3.14)

For each dimension n = 1, . . . , N , let the mn Gaussian abscissas be the roots of the mn

degree polynomial that is ρ̂n-orthogonal to all polynomials of degree mn− 1 on the interval
[−1, 1]. The auxiliary density ρ̂ should be chosen as close as possible to the true density ρ,
so as to have the quotient ρ/ρ̂ not too large. Indeed, such quotient will appear in the final
error estimate (see Section 4.1.2).

Examples of isotropic sparse grids, constructed from the nested Clenshaw-Curtis abscis-
sas and the non-nested Gaussian abscissas are shown in Figure 1. There, we consider a
two-dimensional parameter space and a maximum level w = 5 (sparse grid H (5, 2)). To
see the reduction in function evaluations with respect to full tensor product grids, we also
include a plot of the corresponding Clenshaw-Curtis isotropic full tensor grid having the
same maximum number of points in each direction, namely 2w + 1 = 33. Observe that if
we take m points in each direction, the isotropic full tensor grid will contain mN points
while the analogous isotropic Smolyak grid H (w,N) will contain much less points. Figure
2 shows the total number of points contained in the full tensor grid and in the Smolyak
sparse grid as a function of the level w (or the corresponding maximum number m of points
in each direction), for dimensions N = 5, 11, 21.
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33x33 Clenshaw!Curtis Grid ALPHA = [ 1.000000, 1.000000] 0 <= LEVEL <= 5

Figure 1. For a two-dimensional parameter space (N = 2) and maximum level w = 5,
we plot the full tensor product grid using the Clenshaw-Curtis abscissas (left) and isotropic
Smolyak sparse grids H (5, 2), utilizing the Clenshaw-Curtis abscissas (middle) and the
Gaussian abscissas (right).
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Figure 2. For a finite dimensional ΓN with N = 5, 11 and 21 we plot the log of the number
of distinct Clenshaw-Curtis collocation points used by the isotropic Smolyak method and
the corresponding isotropic full tensor product method versus the level w (or the maximum
number of points m employed in each direction).

22



4 Error analysis

In this section we develop error estimates that will help us compare the efficiency of the
Isotropic Smolyak approximation with other alternatives, for instance the Monte Carlo
method as explained in Section 4.2. Much about this has been claimed in the existing
literature based on particular numerical examples. Our main goal is therefore to understand
in which situations the sparse grid stochastic collocation method is more efficient than Monte
Carlo.

As explained in Section 3 collocation methods can be used to approximate the solution
uN ∈ C0(ΓN ;W (D)) using finitely many function values, each of them computed by finite
elements. Recall that by Assumption 2.8, uN admits an analytic extension. Let the fully
discrete numerical approximation be A (w,N)πhuN . Our aim is to give a priori estimates
for the total error

e = u−A (w,N)πhuN

where the operator A (w,N) is described by (3.8) and πh is the finite element projection
operator described by (3.2). We will investigate the error

‖u−A (w,N)πhuN‖ ≤ ‖u− uN‖︸ ︷︷ ︸
(I)

+ ‖uN − πhuN‖︸ ︷︷ ︸
(II)

+ ‖πhuN −A (w,N)πhuN‖︸ ︷︷ ︸
(III)

(4.1)

evaluated in the norm LqP (Ω;W (D)) with either q = 2 or q = ∞. This yields also control

of the error in the expected value of u, ‖E[e]‖W (D) ≤ E
[
‖e‖W (D)

]
≤ ‖e‖LqP (Ω;W (D)) , and

the error in the approximation of E[ψ(u)], with ψ being a smooth functional of u. In such
a case we have

|E[ψ(u)− ψ(A (w,N)πhuN )]| ≤
(∫ 1

0
‖δeψ(u+ θe)‖

Lq
∗
P (Ω;W ∗(D))

dθ

)
‖e‖LqP (Ω;W (D))

with 1/q + 1/q∗ = 1 and δeψ(u+ θe) denoting the Fréchet derivative of ψ at u+ θe.

The quantity (I) controls the truncation error for the case where the input data aN and
fN are suitable truncations of random fields. This contribution to the total error will be
considered in Section 4.2. The quantity (I) is otherwise zero if the representation of aN
and fN is exact, as in Example 2.4. The second term (II) controls the convergence with
respect to h, i.e. the finite element error, which will be dictated by standard approximability
properties of the finite element space Wh(D), given by (3.1), and the regularity in space of
the solution u (see e.g. [7, 10]). For example, if we let q = 2 we have

‖uN − πhuN‖L2
ρ(ΓN ;W (D)) ≤ hs

(∫
ΓN

(Cπ(y)C(s;u(y)))2ρ(y) dy
)1/2

.

The full tensor product convergence results are given by [5, Theorem 1] and therefore,
we will only concern ourselves with the convergence results when implementing the Smolyak
approximation formula described in Section 3.2. Namely, our primary concern will be to
analyze the Smolyak approximation error

(III) = ‖πhuN −A (w,N)πhuN‖Lqρ(ΓN ;W (D))
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for both the Clenshaw-Curtis and Gaussian versions of the Smolyak formula.

Under the very reasonable assumption that the semi-discrete finite element solution
πhuN admits an analytic extension as described in Assumption 2.8 with the same analyticity
region as for uN , the behavior of the error (III) will be analogous to
‖uN −A (w,N)uN‖Lqρ(ΓN ;W (D)). For this reason in the next sections we will analyze the
latter.

4.1 Analysis of the approximation error

In this work the technique to develop error bounds for multidimensional Smolyak approx-
imation is based on one dimensional results. Therefore, we first address the case N = 1.
Let us recall the best approximation error for a function v : Γ1 → W (D) which admits an
analytic extension in the region Σ(Γ1; τ) = {z ∈ C, dist(z,Γ1) < τ} of the complex plane,
for some τ > 0. We will still denote the extension by v; in this case, τ is smaller than the
distance between Γ1 ⊂ R and the nearest singularity of v(z) in the complex plane. Since we
are considering only the case of bounded random variables, we recall the following result,
whose proof can be found in [5, Lemma 7] and which is an immediate extension of the result
given in [12, Chapter 7, Section 8]:

Lemma 4.1 Given a function v ∈ C0(Γ1;W (D)) which admits an analytic extension in
the region of the complex plane Σ(Γ1; τ) = {z ∈ C, dist(z,Γ1) ≤ τ} for some τ > 0, there
holds

Emi ≡ min
w∈Vmi

‖v − w‖C0(Γ1;W (D)) ≤
2

eσ̂ − 1
e−σ̂ mi max

z∈Σ(Γ1;τ)
‖v(z)‖

W (D)

where 0 < σ̂ = log

(
2τ
|Γ1|

+

√
1 +

4τ2

|Γ1|2

)
.

Remark 4.2 (Approximation with unbounded random variables) A related result
with
weighted norms holds for unbounded random variables whose probability density decays as
the Gaussian density at infinity (see [5]).

In the multidimensional case, the size of the analyticity region will depend, in general, on
the direction n and it will be denoted by τn (see e.g. problem considered in Section 5). The
same holds for the decay coefficient σ̂n. In what follows, we set

σ̂ ≡ min
n
σ̂n. (4.2)

4.1.1 Interpolation estimates for the Clenshaw-Curtis abscissas

In this section we develop L∞ error estimates for the Smolyak interpolant based on Clenshaw-
Curtis abscissas, cf. (3.12) and (3.13), applied to analytic functions u ∈ C0(ΓN ;W (D)) that
satisfy Assumption 2.8. We remind the reader that even though in the global estimate (4.1)
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it is enough to bound the approximation error (III) in the L2
ρ(Γ

N ;W (D)) norm we will
still work with the more stringent L∞(ΓN ;W (D)) norm.

In our notation the norm ‖ · ‖∞,N is shorthand for ‖ · ‖L∞(ΓN ;W (D)) and will be used
henceforth. We also define IN : ΓN → ΓN as the identity operator on an N -dimensional
space. We begin by letting Em be the error of the best approximation to functions u ∈
C0(Γ1;W (D)) by functions w ∈ Vm. Similarly to [6], since the interpolation U i is exact on
the subspace Vmi−1 we can apply the general formula∥∥u−U i(u)

∥∥
∞,1 ≤ Emi−1(u) · (1 + Λmi) (4.3)

where Λm is the Lebesgue constant for our choice (3.12). It is known that

Λm ≤
2
π

log(m− 1) + 1 (4.4)

form ≥ 2, see [13]. Using Lemma 4.1, the best approximation to functions u ∈ C0(Γ1;W (D))
that admit an analytic extension as described by Assumption 2.8 is bounded by:

Emi(u) ≤ Ĉ e−σ̂mi (4.5)

where Ĉ and σ̂ > 0 are constants dependent on the value of τ defined in Lemma 4.1. Hence
(4.3)-(4.5) implies ∥∥(I1 −U i)(u)

∥∥
∞,1 ≤ C log(mi)e−σmi ≤ C ie−σ2i ,∥∥(∆i)(u)

∥∥
∞,1 =

∥∥(U i −U i−1)(u)
∥∥
∞,1 ≤

∥∥(I1 −U i)(u)
∥∥
∞,1 +

∥∥(I1 −U i−1)(u)
∥∥
∞,1

≤ 2C ie−σ2i−1

for all i ∈ N+ with positive constants C and σ = σ̂/2 depending on u but not on i.

The convergence proof will be split in several steps, the main results being given in
Theorems 4.6 and 4.9, which state the convergence rates in terms of the level w and the
total number of collocation points, respectively. We denote by Id the identity operator
applicable to functions which depend on the first d variables y1, . . . , yd. Then the following
result holds:

Lemma 4.3 For functions u ∈ C0(ΓN ;W (D)) satisfying the assumption of Lemma 4.1 the
isotropic Smolyak formula (3.8) based on Clenshaw Curtis abscissas satisfies:

‖(IN −A (w,N)) (u)‖∞,N ≤
N∑
d=1

R(w, d) (4.6)

with

R(w, d) :=
1
2

∑
i∈X̃(w,d)

(2C)d
(

d∏
n=1

in

)
e−σh(i,d) (4.7)

and

h(i, d) =
d∑

n=1

2in−1. (4.8)
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Proof. We start providing and equivalent representation of the isotropic Smolyak formula:

A (w,N) =
∑

i∈X(w,N)

N⊗
n=1

∆in

=
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗
1+w−

PN−1
n=1 (in−1)∑
j=1

∆j

=
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗U 1+w−
PN−1
n=1 (in−1).

Introducing the one-dimensional identity operator I(n)
1 : Γn → Γn, for n = 1, . . . , N , the

error estimate can be computed recursively using the previous representation, namely

IN −A (w,N) = IN −
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗
(
U 1+w−

PN−1
n=1 (in−1) − I(N)

1

)

−
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗ I(N)
1

=
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗
(
I

(N)
1 −U 1+w−

PN−1
n=1 (in−1)

)
+ (IN−1 −A (w,N − 1))⊗ I(N)

1

=
N∑
d=2

[
R̃(w, d)

N⊗
n=d+1

I
(n)
1

]
+
(
I

(1)
1 −A (w, 1)

) N⊗
n=2

I
(n)
1

(4.9)

where, for a general dimension d, we define

R̃(w, d) =
∑

i∈X(w,d−1)

d−1⊗
n=1

∆in ⊗
(
I

(d)
1 −U îd

)

and, for any (i1, . . . , id−1) ∈ X(w, d− 1), we have set îd = 1 + w −
∑d−1

n=1(in − 1). Observe
that with this definition, the d-dimensional vector j = (i1, . . . , id−1, îd) belongs to the set
X̃(w, d), defined in (3.7), and the term R̃(w, d) can now be bounded as follows:

∥∥∥R̃(w, d)(u)
∥∥∥
∞,d
≤

∑
i∈X(w,d−1)

d−1∏
n=1

∥∥(∆in)(u)
∥∥
∞,d

∥∥∥(I(d)
1 −U îd

)
(u)
∥∥∥
∞,d

≤ 1
2

∑
i∈X(w,d−1)

(2C)d
(
d−1∏
n=1

in

)
îd e
−σ(

Pd−1
n=1 2in−1+2îd )

≤ (2C)d

2

∑
i∈X̃(w,d)

(
d∏

n=1

in

)
e−σ h(i,d) =: R(w, d).
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Hence, the Smolyak approximation error satisfies

‖(IN −A (w,N))(u)‖∞,N ≤
N∑
d=2

R(w, d) +
∥∥∥(I(1)

1 −A (w, 1))(u)
∥∥∥
∞,1

.

Observe that the last term in the previous equation can also be bounded by R(w, 1) defined
in (4.7). Indeed, the set X̃(w, 1) contains only the point i1 = 1 + w and∥∥∥(I(1)

1 −A (w, 1)
)

(u)
∥∥∥
∞,1

=
∥∥∥(I(1)

1 −U 1+w
)

(u)
∥∥∥
∞,1

≤ C (1 + w)e−σ 21+w

≤
∑

i1∈X̃(w,1)

C i1 e
−σ 2i1−1

=: R(w, 1)

and this concludes the proof. �

Lemma 4.4 Let δ > 0. Under the assumptions of Lemma 4.3 the following bound holds
for the term R(w, d), d = 1, . . . , N :

R(w, d) ≤ C1(σ, δ)d

2
exp

(
−σd

(
2w/d − δC̃2(σ)w

))
(4.10)

where

C̃2(σ) := 1 +
1

log(2)

√
π

2σ
(4.11)

and

C1(σ, δ) :=
4C
eδσ

exp
(
δσ

{
1

σ log2(2)
+

1
log(2)

√
2σ

+ 2
(

1 +
1

log(2)

√
π

2σ

)})
. (4.12)

Proof. The proof is divided in several steps.

1. Expand the function h(i, d) up to second order around the point i∗ = (1+w/d, . . . , 1+
w/d) on the subspace {x ∈ Rd :, |x − 1| = w}. Observe that i∗ is a constrained
minimizer of h(i, d) and

h(i, d) ≥ d2w/d +
log2(2)

2

d∑
n=1

(in − (1 + w/d))2, for all i ∈ X̃(w, d). (4.13)

2. Combining (4.7) and (4.13) estimate

R(w, d) ≤(2C)d

2
e−σd2w/d

∑
i∈X̃(w,d)

(
d∏

n=1

in

)
e−σ

log2(2)
2

Pd
n=1(in−(1+w/d))2

≤(2C)d

2
e−σd2w/d

(
w+1∑
i=1

i e−σ
log2(2)

2
(i−(1+w/d))2

)d
.

(4.14)
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3. Next, use (A.2) from Corollary A.4 to estimate the term

T1 :=
∑w+1

i=1 i e−σ
log2(2)

2
(i−(1+w/d))2 . We have

T1 ≤ 2
(

1
σ log2(2)

+
1

log(2)
√

2σ

)
+ 2(int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)
. (4.15)

Combine (4.14) and (4.15), arriving at

R(w, d) ≤C1(σ, d, w)e−σd 2w/d (4.16)

with

C1(σ, d, w) ≤ 1
2

(4C)d
{(

1
σ log2(2)

+
1

log(2)
√

2σ

)
+(int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)}d
.

Now let δ > 0 and use the inequality x+ 1 ≤ ex, x ≥ 0, to bound

C1(σ, d, w)

≤ 1
2

(
4C
δσ

)d
exp

(
dδσ

{(
1

σ log2(2)
+

1
log(2)

√
2σ

)
+(int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)}
− d
)

≤ C1(σ, δ)d

2
exp

(
δσ

(
1 +

1
log(2)

√
π

2σ

)
w

)
.

(4.17)

with C1(σ, δ) := 4C
eδσ exp

(
δσ
{

1
σ log2(2)

+ 1
log(2)

√
2σ

+ 2
(

1 + 1
log(2)

√
π
2σ

)})
defined as

in (4.12).

Estimate (4.10) follows from (4.16) and (4.17). The proof is now complete. �

Remark 4.5 (Alternative estimate) Observe that an alternative upper bound for T1 in
(4.15) is

T1 ≤ exp
(
σ log2(2)

(
1 +

w

d

)) (2 + w)2

2
(4.18)

which remains bounded as σ → 0. This does not happen with the bound C1(σ, d), cf. (4.12),
which blows up as σ → 0. As an implication of (4.18), we have

R(w, d) ≤ (C(2 + w)2)d

2
e−σd(2w/d−w

d
log2(2)),

which is an alternative to the estimate (4.10) that has an extra polynomial growth in w but
remains bounded for small values of σ.

Theorem 4.6 For functions u ∈ C0(ΓN ;W (D)) satisfying the assumption of Lemma 4.1.
The isotropic Smolyak formula (3.8) based on Clenshaw Curtis abcissas satisfies:

‖(IN −A (w,N)) (u)‖∞,N

≤ inf
δ∈(0, χ√

π
)
Ĉ(σ, δ,N)×


e−σw(e log(2)−δC̃2(σ)), if 0 ≤ w ≤ N

log(2)

e−σw(Nw 2w/N−δC̃2(σ)), otherwise.

(4.19)
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Here and function Ĉ(σ, δ,N) = C1(σ,δ)
2

1−C1(σ,δ)N

1−C1(σ,δ) . The values of C̃2(σ) and C1(σ, δ) have
been defined in (4.11) and (4.12), respectively.

Proof. From Lemmas 4.3 and 4.4 we obtain the following bound for the approximation
error

‖(IN −A (w,N)) (u)‖∞,N ≤
1
2

N∑
d=1

C1(σ, δ)d e−σd(2w/d−w
d
δC̃2(σ)),

with C1(σ, δ) defined in (4.12). Then,

‖(IN −A (w,N)) (u)‖∞,N ≤
1
2

max
1≤d≤N

e−σw( d
w

2w/d−δC̃2(σ))
N∑
d=1

C1(σ, δ)d,

≤Ĉ(σ, δ,N)eσwδC̃2(σ) max
1≤d≤N

e−σw( d
w

2w/d),

with

Ĉ(σ, δ,N) :=
1
2

N∑
d=1

C1(σ, δ)d

=
C1(σ, δ)

2
1− C1(σ, δ)N

1− C1(σ, δ)
.

(4.20)

To finish the proof we further bound

‖(IN −A (w,N)) (u)‖∞,N ≤Ĉ(σ, δ,N) eσwδC̃2(σ) e−σw(min1≤d≤N
d
w

2w/d)

≤Ĉ(σ, δ,N) eσwδC̃2(σ) e−σw(mins∈[w/N,w]
1
s

2s)

and observe that

min
s∈[w/N,w]

1
s

2s =


e log(2), if 0 ≤ w ≤ N

log(2)
N

w
2w/N , otherwise.

�

Remark 4.7 (Alternative estimate) Following Remark 4.5 we have an alternative to
(4.19) in the estimate

‖(IN −A (w,N)) (u)‖∞,N

≤ C(2 + w)2

2
(C(2 + w)2)N − 1
C(2 + w)2 − 1

×


e−σwχ, if 0 ≤ w ≤ N

log(2)

e−σw(Nw 2w/N−log2(2)), otherwise.

(4.21)

Here we used the notation χ = log(2) (e− log(2)) ≈ 1.4037. The previous estimate can be
used to produce estimates like those in Theorems 4.9 and 4.10. The alternative estimates
have constants which do not blow up as σ → 0 but have the drawback of exhibiting additional
multiplicative powers of log(η). A completely identical discussion applies to the estimates
based on Gaussian abscissas, see Section 4.1.2, and will not be repeated there.
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Now we relate the number of collocation points, η = η(w,N) = #H (w,N), to the level w
of the isotropic Smolyak formula. We state the result in the following lemma:

Lemma 4.8 Using the isotropic Smolyak interpolant described by (3.8) with Clenshaw-
Curtis abscissas, the total number of points required at level w satisfies the following bounds:

N(2w − 1) ≤ η ≤ (2eN)w min{w + 1, 2eN}, (4.22)

Moreover, as a direct consequence of (4.22) we get that:

log(η)
1 + log(2) + log(N)

− 1 ≤ w. (4.23)

Proof. By using formula (3.8) and exploiting the nested structure of the Clenshaw-Curtis
abscissas the number of points η = η(w,N) = #H (w,N) can be counted in the following
way:

η =
∑

i∈X(w,N)

N∏
n=1

r(in), where r(i) :=


1 if i = 1
2 if i = 2
2i−2 if i > 2

. (4.24)

Now notice that for all n = 1, 2, . . . , N the following bound holds:

2in−2 ≤ r(in) ≤ 2in−1. (4.25)

We now produce a lower bound and an upper bound for η.

A lower bound on the number η of points can be obtained considering only the contri-
bution from certain tensor grids. Indeed, for a fixed value of w̃ = 1, . . . , w, let us consider
the N grids with indices in = 1, for n 6= m and im = w̃ + 1, m = 1, . . . , N . Since each of
those N grids has 2w̃−1 points, we have

η ≥
w∑
w̃=1

N 2w̃−1 = N(2w − 1).

On the other hand, to produce an upper bound for η, we recall that |i−1| =
∑N

n=1(in−
1) ≤ w so the following bounds hold:

η =
∑

i∈X(w,N)

N∏
n=1

r(in) ≤
∑

i∈X(w,N)

2|i−1| ≤
w∑
j=0

∑
|i−1|=j

2j

≤
w∑
j=0

2j
(
N − 1 + j

N − 1

)
≤

w∑
j=0

2j
N−1∏
s=1

(
1 +

j

s

)

≤
w∑
j=0

2j exp

(
N−1∑
s=1

j

s

)
≤

w∑
j=0

2j exp (j(1 + log(N)))

≤
w∑
j=0

(2eN)j ≤ min{(w + 1)(2eN)w, (2eN)w+1}

and this finishes the proof. �
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The next Theorem provides an error bound in terms of the total number η of collocation
points. The proof follows directly from the results in Theorem 4.6 (taking δ = (e log(2) −
1)/C̃2(σ)) and Lemma 4.8; it is therefore omitted.

Theorem 4.9 (algebraic convergence) For functions u ∈ C0(ΓN ;W (D)) satisfying the
assumption of Lemma 4.1 the isotropic Smolyak formula (3.8) based on Clenshaw Curtis
abscissas satisfies:

‖(IN −A (w,N)) (u)‖∞,N ≤
C1(σ, δ∗)eσ

|1− C1(σ, δ∗)|
max{1, C1(σ, δ∗)}N η−µ1 ,

with µ1 =
σ

1 + log(2N)
.

(4.26)

Here δ∗ = (e log(2)−1)/C̃2(σ) and the constants C̃2(σ) and C1(σ, δ∗), defined in (4.11) and
(4.12), respectively, do not depend on η.

Observe that the previous result indicates at least algebraic convergence with respect to the
number of collocation points η. Under the same assumptions of the previous theorem and
with a completely similar derivation, for large values of w we have the following sharper
estimate:

Theorem 4.10 (Subexponential convergence) Under the same assumptions of theo-
rem 4.9 and for w > N

log(2) it holds

‖(IN −A (w,N)) (u)‖∞,N ≤
C1(σ, δ∗)

eσδ∗C̃2(σ)

max{1, C1(σ, δ∗)}N

|1− C1(σ, δ∗)|
ηµ3 e

− Nσ

21/N
ηµ2
,

with µ2 =
log(2)

N(1 + log(2N))
and µ3 =

σδ∗C̃2(σ)
1 + log(2N)

.

(4.27)

with constant C1(σ, δ∗) defined in (4.12) and independent of η.

Proof. We start from the result stated in Theorem 4.6 and observe that for w > N/ log(2)
the function

g(w) = σ(N2w/N − wδC̃2(σ))

is increasing in w for all values of δ < log(2)e/C̃2(σ). Hence, combining (4.19) with the
lower bound (4.23) we obtain the desired result. �

The previous theorem indicates at least asymptotic subexponential convergence with
respect to the number of collocation points η. It should be pointed out however that the
large values of w > N/ log(2) under which the bound holds are seldom used in practical
computations. Therefore, from this point of view estimate (4.27) is less useful than (4.26).

Remark 4.11 (Deterioration with respect to the dimension N) Depending on the
distance to the singularities of the solution, related to the parameter τ introduced in Lemma
4.1, the constant C1(σ, δ∗) may be less than 1. In such a case the only dependence of the
error bounds for ‖(IN −A (w,N)) (u)‖∞,N is in the exponent, whose denominator slowly
grows like log(2N).
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Remark 4.12 (Full tensor versus Smolyak) An isotropic full tensor product interpo-
lation converges roughly like C(σ,N) exp(−σp), where p is the order of the polynomial
space. Since the number of collocation points relates to p in this case as η = (1 + p)N

then log(η) = N log(1 + p) ≤ Np and with respect to η the convergence rate can be bounded
as C(σ,N)η−σ/N . The slowdown effect that the dimension N has on the last convergence is
known as the curse of dimensionality and it is the reason for not using isotropic full tensor
interpolantion for large values of N . On the other hand, the isotropic Smolyak approxima-
tion seems to be better suited for this case. Indeed, from the estimate (4.26) we see that the
Smolyak algebraic convergence has the faster exponent O( σ

log(2N)). This is a clear advantage
of the isotropic Smolyak method with respect to the full tensor and justifies our claim that
the use of Smolyak approximation greatly reduces the curse of dimensionality. In Section 6
numerical results will give computational ground to this claim.

Remark 4.13 (Estimates based on bounded mixed derivatives) We can proceed in
a similar way to analyze the approximation error for functions that have a bounded mixed
derivative of order (k, . . . , k). In that case, the one dimensional best approximation error
is ‖u− U i(u)‖ ≤ Cm−ki (1 + Λmi), with C depending on u and k but not on mi, and using
again the recursion (4.9) yields

‖(IN −A (w,N)) (u)‖∞,N ≤
C

|C(1 + 2k)− 1|
(C(1 + 2k))N (w + 1)2N2−kw. (4.28)

Finally, the combination of (4.28) with the counting estimates in Lemma 4.8 yields

‖(IN −A (w,N)) (u)‖∞,N ≤
(C(1 + 2k))N

|1 + 2k − 1/C|

(
1 + log2

(
1 +

η

N

))2N
×

min
{

2kη−
k log(2)

1+log(2N) , η−k
(

1 + log2

(
1 +

η

N

))Nk}
.

This estimate improves the one derived in [6]. Analogous results can be derived for gaussian
abcissas and L2 norms.

4.1.2 Approximation estimates for Gaussian abscissas

Similarly to the previous section, we now develop error estimates for Smolyak approxima-
tion, using Gaussian abscissas cf. Section 3.3, of C0(ΓN ;W (D)) analytic functions described
by Assumption 2.8. As before, we remind the reader that in the global estimate (4.1) we
need to bound the approximation error (III) in the norm L2

ρ(Γ
N ;W (D)). Yet, the Gaussian

abscissas defined in Section 3.3 are constructed for the auxiliary density ρ̂ =
∏N
n=1 ρ̂n, still

yielding control of the desired norm

‖v‖L2
ρ(ΓN ;W (D)) ≤

∥∥∥∥ρρ̂
∥∥∥∥1/2

L∞(ΓN )

‖v‖L2
ρ̂(ΓN ;W (D)), for all v ∈ C0(ΓN ;W (D)).

In what follows we will use the shorthand notation ‖ · ‖ρ̂,N for ‖ · ‖L2
ρ̂(ΓN ;W (D)). We now

quote a useful result from Erdös and Turán [14]:
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Lemma 4.14 For every function u ∈ C0(Γ1;W (D)) the interpolation error with Lagrange
polynomials based on gaussian abscissas satisfies

‖u−U i(u)‖ρ̂,1 ≤ 2

√∫
Γ1

ρ̂(y) dy inf
w∈Vmi

‖u− w‖∞,1. (4.29)

Similarly to Section 4.1.1, the combination of (4.5) with (4.29) yields

∥∥(I1 −U i)(u)
∥∥
ρ̂,1
≤ C̃ e−σ2i ,∥∥(∆i)(u)

∥∥
ρ̂,1

=
∥∥(U i −U i−1)(u)

∥∥
ρ̂,1

≤
∥∥(I1 −U i)(u)

∥∥
ρ̂,1

+
∥∥(I1 −U i−1)(u)

∥∥
ρ̂,1

≤ 2C̃ e−σ2i−1

for all i ∈ N+ with positive constants C̃ = Ĉ
√(∫

Γ1 ρ̂(y)dy
)

and σ = σ̂/2 depending on
u but not on i. We then present the following Lemma and theorem whose proofs follow,
with minor changes, those given in Lemma 4.4 and Theorem 4.9, respectively. For instance,
we apply (A.1) from Corollary A.4 to bound the corresponding T1 sum in the estimate of
R(w, d).

Lemma 4.15 For functions u ∈ C0(ΓN ;W (D)) satisfying the assumption of Lemma 4.1.
The isotropic Smolyak formula (3.8) based on Gaussian abcissas satisfies:

‖(IN −A (w,N)) (u)‖ρ,N

≤
√
‖ρ/ρ̂‖L∞(ΓN )

C̃1(σ)
2

1− C̃1(σ)N

1− C̃1(σ)
×


e−σe log(2)w, if 0 ≤ w ≤ N

log(2)

e−σN2w/N , otherwise.

(4.30)

Here we have

C̃1(σ) := 4C̃
(

1 +
1

log(2)

√
π

2σ

)
. (4.31)

Now we relate the number of collocation points η = η(w,N) = #H (w,N) to the level
w of the Smolyak formula. We state the result in the following lemma:

Lemma 4.16 Using the Smolyak interpolant described by (3.9) with Gaussian abscissas,
the total number of points required at level w satisfies the following bounds:

N(2w + 1) ≤ η ≤ (e 21+log2(1.5)N)w min{(w + 1), e 21+log2(1.5)N} (4.32)

which implies
log(η)

ζ + log(N)
− 1 ≤ w.

with ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1.

33



Proof. By using formula (3.9), where we collocate using the Gaussian abscissas the number
of points η = η(w,N) = #H (w,N), can be counted in the following way:

η =
∑

i∈Y (w,N)

N∏
n=1

r̃(in), where 2i−1 ≤ r̃(i) :=
{

1 if i = 1
2i−1 + 1 if i ≥ 2

. (4.33)

Proceeding in a similar way as for the proof of Lemma 4.8, a lower bound on the number
of points η can be obtained as

η ≥ N
w∑

w̃=w−N+1

(
2w̃ + 1

)
≥ N(2w + 1).

On the other hand, an upper bound on η can be obtained following the same lines as in the
proof of Lemma 4.8 and observing that 2i−1 ≤ r̃(i) ≤ 2(1+ε)(i−1), with ε = log2(1.5) ≈ 0.585.
�

Finally, the next Theorem relates the error bound (4.30) to the number of collocation
points η = η(w,N) = #H (w,N), described by Lemma 4.16.

Theorem 4.17 (algebraic convergence) For functions u ∈ C0(ΓN ;W (D)) satisfying
the assumption of Lemma 4.1 the isotropic Smolyak formula (3.8) based on Gaussian ab-
scissas satisfies:

‖(IN −A (w,N)) (u)‖ρ,N ≤
√
‖ρ/ρ̂‖L∞(ΓN ) e

σ e log(2) C̃1(σ)
max{1, C̃1(σ)}N

|1− C̃1(σ)|
η−µ̃1 ,

µ̃1 :=
σ e log(2)
ζ + log(N)

,

(4.34)

with ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1. The constant C̃1(σ) was defined in (4.31).

Similarly to Section 4.1.1 and with the same assumptions of the previous theorem, for large
values of w we have the following sharper estimate:

Theorem 4.18 (subexponential convergence) If w > N
log(2) then

‖(IN −A (w,N)) (u)‖ρ,N ≤
√
‖ρ/ρ̂‖L∞(ΓN )C̃1(σ)

max{1, C̃1(σ)}N

|1− C̃1(σ)|
e
− Nσ

21/N
ηµ̃2
,

with µ̃2 =
log(2)

N(ζ + log(N))

(4.35)

and ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1.
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4.2 Influence of truncation errors

In this Section we consider the case where the coefficients aN and fN from (2.4) are suitably
truncated random fields. Therefore, the truncation error u−uN is nonzero and contributes
to the total error. Such contribution should be considered as well in the error analysis.
In particular, understanding the relationship of this error with the discretization error al-
lows us to compare the efficiency of isotropic Smolyak method with other computational
alternatives, for instance the Monte Carlo method.

To this end, we make the assumption that the truncation error u− uN decays as

‖u− uN‖L2
P (Ω;W (D)) ≤ ζ(N) (4.36)

for some monotonic decreasing function ζ(N) such that ζ(N)→ 0 as N →∞. For example,
if one truncates the input random fields with a Karhunen-Loève expansion (see [16]), the
function ζ(N) is typically related to the decay of the eigenpairs of their covariance operators.

Now, given a desired computational accuracy to achieve, tol > 0, our aim is to choose
the dimension N = N(tol) and the level w = w(tol) (or equivalently η = η(tol), the number
of collocation points) such that

‖u−A (w,N)(uN )‖L2
P (Ω;W (D)) ≤ ζ(N) + ‖uN −A (w,N)(uN )‖L2

P (Ω;W (D)) ≈ tol.

More precisely, we will impose that both error contributions should be of size tol, i.e.

ζ(N) ≈ tol (4.37)

and
‖uN −A (w,N)(uN )‖L2

P (Ω;W (D)) ≈ tol. (4.38)

Condition (4.37) determines the dimension N(tol), while (4.38) determines the necessary
number of collocation points in the isotropic Smolyak approximation. Then, this number
of collocation points is compared to the number of samples required in the standard Monte
Carlo method to approximate a statistical quantity of interest with accuracy tol. The latter
is O(tol−2).

We detail only the procedure for the choice of Clenshaw-Curtis abscissas, since the
discussion for Gaussian abscissas is identical. To impose condition (4.38), we apply Theorem
4.6, with the choice δ∗ = (e log(2)− 1)/C̃2(σ) and C̃2(σ) as in (4.11), yielding

‖uN −A (w,N)(uN )‖L2
ρ(ΓN ;W (D)) ≤

C1(σ, δ∗)
|1− C1(σ, δ∗)|

max{1, C1(σ, δ∗)}Ne−σw

where the constant C1(σ, δ∗) is defined in (4.12). Now define the constants C = C1(σ,δ∗)
|1−C1(σ,δ∗)|

and F = max{1, C1(σ, δ∗)}. With this notation and using (4.23), we have an upper bound
in terms of the number of collocation points,

‖uN −A (w,N)(uN )‖L2
ρ(ΓN ;W (D)) ≤C F

Ne−σw

≤C FNeσ η−
σ

1+log(2N) ≈ tol.
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Then, given the value of N(tol) we can find

η(tol) ≈
(
CFNeσ

tol

) 1+log(2N)
σ

(4.39)

and compare with the number of samples needed to achieve accuracy tol with Monte Carlo,
which is ηMC ≈ tol−2.

Exponential truncation error. Here we have ζ(N) = θe−γN , with θ and γ positive
constants. Therefore the dimension depends on the required accuracy like

N(tol) =
1
γ

log
(
θ

tol

)
and the number of corresponding collocation points, following (4.39), is

η(tol) ≈
(
CeσF

1
γ

log(θ)
) log(2e/γ)+log(log(θ/tol))

σ
tol
−(1+log(F )/γ)

“
log(2e/γ)+log(log(θ/tol))

σ

”
.

From here we can see roughly that for the exponential truncation error case the isotropic
Smolyak method would be more efficient than Monte Carlo only if(

1 +
log(F )
γ

)
log(2e/γ) + log(log(θ/tol))

σ
< 2.

Observe that for sufficiently stringent accuracy requirements, i.e. tol sufficiently small, the
Monte Carlo method will have a better convergence rate. On the other hand, due to the very
slow growth of the log(log(θ/tol)) term above, these values of tol may be much smaller than
the ones we need in practice. Thus, the range of parameters for which the isotropic Smolyak
approximation gives a better convergence rate than Monte Carlo can still be relevant in may
practical problems with truncated coefficients.

Observe, moreover, that whenever the parameter γ is large, the behavior of the one
dimensional interpolation error varies widely with respect to the different y directions. In
such a case, it is likely that the isotropic Smolyak method uses too many points in the
directions with fastest decay. For such a case, the isotropic Smolyak method may still be
better than Monte Carlo, yet we recommend the use of an anisotropic version of the Smolyak
method to obtain faster convergence. For instance, see [8, 19] where anisotropic Smolyak
formulas have been proposed.

Algebraic truncation error. Here we have ζ(N) = θN−r, with θ and r positive constants.
Therefore the dimension is N(tol) = (tol/θ)−

1
r and we have

tol

F (θ/tol)1/r
≈ Ceση

σ

log(2e)+ 1
r log(θ/tol) .

After denoting t̂ol = tol

F (θ/tol)1/r
≤ tol, the corresponding number of collocation points is

η(tol) ≈
(
Ceσ t̂ol

)− log(2e)+ 1
r log(θ/tol)

σ
, (4.40)
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Observe that even for the case where F = 1 we now have an asymptotically faster growth
of η(tol) than in the exponential truncation case. In fact, for such a case we need to have

log(2e) + 1
r log(θ/tol)
σ

< 2

for the Isotropic Smolyak method to be more efficient than Monte Carlo. If F > 1 then
t̂ol < tol and this makes, as tol gets smaller, the comparison even more favorable to Monte
Carlo, cf. (4.40).

37



5 Application to linear elliptic PDEs with random input
data

In this section we apply the theory developed so far to the particular linear problem
described in Example 2.1. Problem (2.2) can be written in a weak form as: find u ∈
L2
P (Ω;H1

0 (D)) such that∫
D
E[a∇u · ∇v] dx =

∫
D
E[fv] dx ∀ v ∈ L2

P (Ω;H1
0 (D)). (5.1)

A straightforward application of the Lax-Milgram theorem allows one to state the well
posedness of problem (5.1) and yields

‖u(ω)‖H1
0 (D) ≤

CP
amin

‖f(ω, ·)‖L2(D) a.s. and ‖u‖L2
P (Ω;H1

0 (D)) ≤
CP
amin

(∫
D
E[f2] dx

)1/2

,

where CP denotes the constant appearing in the Poincaré inequality: ‖v‖L2(D) ≤ CP ‖∇v‖L2(D),
for all v ∈ H1

0 (D).

Once we have the input random fields described by a finite set of random variables,
i.e. a(ω, x) = aN (Y1(ω), . . . , YN (ω), x), and similarly for f(ω, x), the “finite dimensional”
version of the stochastic variational formulation (5.1) has a “deterministic” equivalent which
is the following: find uN ∈ L2

ρ(Γ
N ;H1

0 (D)) such that∫
ΓN

(aN∇uN ,∇v)L2(D) ρ(y)dy =
∫

ΓN
(fN , v)L2(D) ρ(y)dy, ∀ v ∈ L2

ρ(Γ
N ;H1

0 (D)), (5.2)

where ρ(y) is the joint probability density function defined by (2.6). Observe that in this
work the gradient notation, ∇, always means differentiation with respect to x ∈ D only,
unless otherwise stated. The stochastic boundary value problem (5.1) now becomes a deter-
ministic Dirichlet boundary value problem for an elliptic partial differential equation with
an N−dimensional parameter. Then, it can be shown that problem (5.1) is equivalent to∫

D
aN (y)∇uN (y) · ∇φdx =

∫
D
fN (y)φdx, ∀φ ∈ H1

0 (D), ρ-a.e. in ΓN . (5.3)

For our convenience, we will suppose that the coefficient aN and the forcing term fN admit
a smooth extension on the ρ-zero measure sets. Then, equation (5.3) can be extended a.e.
in ΓN with respect to the Lebesgue measure (instead of the measure ρdy).

It has been proved in [5] that problem (5.3) satisfies the analyticity result stated in
Assumption 2.8. For instance, if we take the diffusivity coefficient as in Example 2.4 and a
deterministic load the size of the analyticity region is given by

τn =
amin
4σn

. (5.4)

On the other hand, if we take the diffusivity coefficient as a truncated expansion like in
Remark 2.6, then the analyticity region Σ(Γn; τn) is given by

τn =
1

4
√
λn‖bn‖L∞(D)

(5.5)
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Observe that, in the latter case, as
√
λn‖bn‖L∞(D) → 0 for a regular enough covariance

function (see [16]) the analyticity region increases as n increases. This fact introduces,
naturally, an anisotropic behavior with respect to the “direction” n. This effect will not
be exploited in the numerical methods proposed in the next sections but is the subject of
ongoing research.

The finite element operator πh can be introduced for this problem by projecting equation
(5.3) onto the subspace Wh(D), for each y ∈ ΓN , i.e. uNh (y) = πhuN (y) satisfies∫

D
aN (y)∇uNh (y) · ∇φh dx =

∫
D
fN (y)φh dx, ∀φh ∈Wh(D), for a.e. y ∈ ΓN . (5.6)

Notice that the finite element functions uNh (y) satisfy the optimality condition (3.2), for
all y ∈ ΓN . Finally, the Smolyak formula (3.8) can be applied to uNh to obtain the fully
discrete solution. The error estimates for the Smolyak approximation, stated in Theorems
4.9-4.10 for Clensaw-Curtis abscissas and Theorems 4.17-4.18 for Gaussian abscissas hold
in this case, with parameter

σ =
1
2

min
n=1,...,N

log

(
2τn
|Γn|

+

√
1 +

4τn2

|Γn|2

)
. (5.7)
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6 Numerical Examples

This section illustrates the convergence of the sparse collocation method for the stochastic
linear elliptic problem in two spatial dimensions, as described in Section 5. The computa-
tional results are in accordance with the convergence rates predicted by the theory. Actually,
we observe a faster convergence than stated in Theorems 4.9 and 4.17, which hints that the
current estimates may be improved.

We will also use this section to compare the convergence of the isotropic Smolyak approx-
imation, described and analyzed in Sections 3.2 and 4.1, respectively, with other ensemble-
based methods such as: the anisotropic adaptive full tensor product method described in
the work [4, Section 9] and the Monte Carlo method. The problem is to solve{

−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,
u(ω, ·) = 0 on Ω× ∂D, (6.1)

with D = [0, d]2 and d = 1. We consider a deterministic load f(ω, x, z) = cos(x) sin(z) and
construct the random diffusion coefficient aN (ω, x) with one-dimensional (layered) spatial
dependence as

log(aN (ω, x)− 0.5) = 1 + Y1(ω)
(√

πL

2

)1/2

+
N∑
n=2

ζn ϕn(x) Yn(ω) (6.2)

where

ζn :=
(√
πL
)1/2 exp

(
−
(
bn2 cπL

)2
8

)
, if n > 1 (6.3)

and

ϕn(x) :=

 sin
(
bn

2
cπx
Lp

)
, if n even,

cos
(
bn

2
cπx
Lp

)
, if n odd.

(6.4)

In this example, the random variables {Yn(ω)}∞n=1 are independent, have zero mean and unit
variance, i.e. E[Yn] = 0 and E[YnYm] = δnm for n,m ∈ N+, and are uniformly distributed in
the interval [−

√
3,
√

3]. Consequently, the auxiliary probability density ρ̂ defined by (3.14)
can be taken equal to the joint probability density function ρ defined by (2.6). Expression
(6.2) represents the truncation of a one-dimensional random field with stationary covariance

cov[ log(aN − 0.5)](x1, x2)
= E

[
(log(a)(x1)− E[log(a)](x1)) ((log(a)(x2)− E[log(a)](x2))

]
= exp

(
−(x1 − x2)2

L2
c

)
.

For x ∈ [0, d], let Lc be a desired physical correlation length for the coefficient a, meaning
that the random variables a(x) and a(y) become essentially uncorrelated for |x− y| >> Lc.
Then, the parameter Lp in (6.4) is Lp = max{d, 2Lc} and the parameter L in (6.2) and
(6.3) is L = Lc/Lp.

The rate of convergence of the isotropic Smolyak method is dictated by the decay coef-
ficient σ defined by (5.7), which in this case can be bounded as

σ ≥ 1
2

log

(
1 +

√
1

24
√
πL

)
. (6.5)
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From (6.5) we notice that larger correlation lengths will have negative effects on the rate of
convergence, i.e. the coefficient σ appearing in the estimates (4.26)-(4.27) and (4.34)-(4.35)
is approaching 1 as Lc becomes large. Hence, the effect of increasing Lc is a deterioration
of the rate of convergence.

Recall from Section 3.3 that the Clenshaw-Curtis abscissas are nested and therefore, in
practice, we exploit this fact and construct the isotropic Smolyak interpolant using formula
(3.8) Hence, the number of points η = η(w,N) = #H (w,N) can be counted as in formula
(4.24). On the other hand, the Gaussian abscissas, which in this case are the roots of the
Legendre polynomials, are not nested and to reduce the number of points necessary to build
the isotropic Smolyak formula one utilizes the variant of (3.8), given by (3.9). Consequently,
we can count the number of points η used by the Smolyak interpolant as in (4.33).

The finite element space for the spatial discretization is the span of continuous functions
that are piecewise polynomials with degree two over a uniform triangulation of D with 4225
unknowns.

Observe that the collocation method only requires the solution of uncoupled determinis-
tic problems over the set of collocation points, even in the presence of a diffusivity coefficient
which depends nonlinearly on the random variables as in (6.2). This is a significant advan-
tage that the collocation method offers compared to the classical Stochastic-Galerkin finite
element method as considered, for instance, in [3, 16, 25, 36]. To study the convergence of
the isotropic Smolyak approximation we consider a problem with a fixed dimension N and
investigate the behavior when the level w in the Smolyak formula is increased linearly.

The computational results for the L2(D) approximation error to the expected value,
E[u], using the isotropic Smolyak interpolant, are shown in Figure 3. Here we consider
the truncated probability space to have dimensions N = 5 and N = 11. To estimate the
computational error in the w-th level we approximate ‖E[ε]‖ ≈ ‖E[A (w,N)πhuN −A (w+
1, N)πhuN ]‖. The results reveal, as expected, that for a small non-degenerate correlation
length, i.e. Lc = 1/64, the error decreases (sub)-exponentially, as the level w increases. We
also observe that the convergence rate is dimension dependent and slightly deteriorates as
N increases.

To investigate the performance of the isotropic Smolyak approximation by varying the
correlation length Lc we also include the cases where Lc = 1/16, Lc = 1/4 and Lc = 1/2 for
both N = 5 and N = 11, seen in Figure 4. As predicted by (6.5), we observe that the larger
correlation lengths do indeed slow down the rate of convergence. Our final interest then,
is to compare our isotropic sparse tensor product method with the Monte Carlo approach
and also, the anisotropic full tensor product method, proposed in [4].

The anisotropic full tensor product algorithm can be described in the following way:
given a tolerance tol the method computes a multi-index p = (p1, p2, . . . , pN ), corresponding
to the order of the approximating polynomial spaces Pp(ΓN ). This adaptive algorithm
increases the tensor polynomial degree with an anisotropic strategy: it increases the order
of approximation in one direction as much as possible before considering the next direction.
Table 1 and Table 2 show the values of components of the 11-dimensional multi-index p
for different values of tol, corresponding to Lc = 1/2 and Lc = 1/64 respectively. These
tables also give insight into the anisotropic behavior of each particular problem. Notice,
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Figure 3. The rate of convergence of the isotropic Smolyak approximation for solving
problem (6.1) with correlation length Lc = 1/64 using both the Gaussian and Clenshaw-
Curtis abscissas. For a finite dimensional probability space ΓN with N = 5 and N = 11 we
plot the L2(D) approximation error in the expected value in the log-linear scale (left) and
log-log scale (right).

in particular, that for the case Lc = 1/64 the algorithm predicts a multi-index p which
is equal in all directions, i.e. an isotropic tensor product space. A convergence plot for
Lc = 1/2 and Lc = 1/64 can be constructed by examining each row of the Table 1 and
Table 2 respectively, and plotting the number of points in the tensor product grid versus
the error in expectation. We estimate the error in expectation by ‖E[ε]‖ ≈ ‖E[uNh,p−uNh,ep]‖,
with p̃ = (p1 + 1, p2 + 1, . . . , pN + 1). This entails an additional computational cost, which
is bounded by the factor exp

(∑N
n=1 1/pn

)
times the work to compute E[uNh,p].

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11
1.0e-04 1 1 1 1 1 1
1.0e-05 2 1 1 1 1 1
1.0e-06 2 2 1 1 1 1
1.0e-07 3 2 2 1 1 1
1.0e-08 4 3 2 1 1 1
1.0e-09 4 4 3 1 1 1
1.0e-10 5 5 3 2 1 1
1.0e-11 5 5 4 2 1 1
1.0e-12 5 6 4 2 1 1

Table 1. The N = 11 components of the multi index p computed by the anisotropic full
tensor product algorithm when solving problem (6.1) with a correlation length Lc = 1/2.

The standard Monte Carlo Finite Element Method is a popular choice for solving
stochastic problems such as (6.1) (see e.g. [4, 9, 21] and the references therein). If the
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Figure 4. The convergence of the isotropic Smolyak approximation for solving problem
(6.1) with given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 using both the Gaussian
and Clenshaw-Curtis abscissas. For a finite dimensional probability space ΓN with N = 5
and N = 11 we plot the L2(D) approximation error in the expected value versus the number
of collocation points.

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11
1.0e-03 1 1 1 1 1 1
1.0e-06 2 2 2 2 2 2
1.0e-09 3 3 3 3 3 3
1.0e-12 4 4 4 4 4 4

Table 2. The N = 11 components of the multi index p computed by the anisotropic full
tensor product algorithm when solving problem (6.1) with a correlation length Lc = 1/64.

aim is to compute a functional of the solution such as the expected value, one would ap-
proximate E[u] numerically by sample averages of iid realizations of the stochastic input
data. Given a number of realizations, M ∈ N+, we compute the sample average as fol-
lows: For each k = 1, . . . ,M , sample iid realizations of a(ωk, ·) and f(ωk, ·), solve problem
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(6.1) and construct finite element approximations uNh (ωk, ·). We note that once we have
fixed ω = ωk, the problem is completely deterministic, and may be solved by standard
methods as in the collocation approach. Finally, approximate E[u] by the sample average:
E[uNh,k;M ](·) := 1

M

∑M
k=1 u

N
h (ωk, ·).

For the cases Lc = 1/2, 1/4, 1/16 and 1/64 we take M = 2i, i = 0, 1, 2, . . . , 11 realizations
and compute the approximation to the error in expectation by ‖E[ε]‖ ≈ ‖E[uNh,k;M ] −
E[A (w + 1, N)πhuN ]‖, where w = 0, 1, . . . , w, with w = 4, so that A (5, N) is a highly
enriched Clenshaw-Curtis isotropic sparse solution.

To study the advantages of utilizing an isotropic sparse tensor product space as opposed
to an anisotropic full tensor product space we show, in Figure 4, the convergence of these
methods when solving problem (6.1), using correlation lengths Lc = 1/2, 1/4, 1/16 and
Lc = 1/64 with N = 11. We also include 5 ensembles of the Monte Carlo method described
previously. Figure 4 reveals that for the isotropic case with Lc = 1/64 the isotropic Smolyak
method obtains a faster rate of convergence than the anisotropic full tensor product method.
This is due to a slower decay of the eigenvalues expansion (6.2) and hence, an almost equal
weighing of all N = 11 random variables. On the contrary, opposite behavior can be
observed for Lc = 1/2. Since, in this case, the rate of decay of the expansion is faster, the
anisotropic full tensor method weighs heavily the important modes and, therefore, achieves
a faster convergence than the isotropic Smolyak method.

In all four cases we observe that the 2 methods out-perform the Monte Carlo method.
We know that the amount of work to reach the accuracy ε in the Monte Carlo approach can
be approximated by ε ≈ O(M−1/2) times the amount of work per sample, where M is the
number of samples. This is only affected by the problem dimension through the eventual
increase of the work per sample. Nevertheless, the convergence rate is quite slow and a high
level of accuracy is only achieved when an large amount of function evaluations are required.
This can been seen from Figure 4 where we include reference lines with slopes −1/2 and
−1, respectively, or in Table 3 where, for N = 11, we compare the work, proportional
to the number of samples, which is the number of collocation points, required by each
method to decrease the original error by a factor of 104, for all four correlation lengths
Lc = 1/2, 1/4, 1/16 and Lc = 1/64.

Lc AF IS MC
1/2 2.5× 102 2.5× 103 5.0× 109

1/4 1.2× 103 4.0× 103 2.0× 109

1/16 2.0× 103 5.0× 102 1.6× 109

1/64 2.0× 105 3.6× 102 1.3× 109

Table 3. For N = 11, we compare the number of function evaluations required by the
Anisotropic Full Tensor product method (AF) using Gaussian abscissas, Isotropic Smolyak
(IS) using Clenshaw-Curtis abscissas and the Monte Carlo (MC) method using random
abscissas, to reduce the original error of problem (6.1), in expectation, by a factor of 104.

44



0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o

g
1
0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o

g
1
0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o

g
1
0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

0 0.5 1 1.5 2 2.5 3 3.5 4
!12

!11

!10

!9

!8

!7

!6

!5

!4

!3

!2

Log
10

(# points)

L
o

g
1
0
(L

2
 e

rr
o

rs
)

Errors vs. # points 

N = 11 & L = 1/16

N = 11 & L = 1/4N = 11 & L = 1/2

N = 11 & L = 1/64

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

lo
g 1

0(
L2

er
ro

r)
lo

g 1
0(

L2
er

ro
r)

log10(# points) log10(# points)

log10(# points)log10(# points)

Monte Carlo

Monte Carlo

Monte Carlo

Monte Carlo

Isotropic Smolyak with Gaussian abscissas (N = 11)

Isotropic Smolyak with Clenshaw-Curtis abscissas (N = 11)

Anisotropic full tensor product with Gaussian abscissas (N = 11)

slope =−1/2
slope =−1

slope =−1/2
slope =−1

slope =−1/2
slope =−1

slope =−1/2
slope =−1

Figure 5. A 11-dimensional comparison of the isotropic Smolyak method, the anisotropic
full tensor product algorithm and Monte Carlo approach for solving problem (6.1) with
correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64. We plot the L2(D) approximation error
in the expected value versus the number of collocation points (or samples of the Monte
Carlo method).
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7 Conclusions

In this work we proposed and analyzed a sparse grid stochastic collocation method for
solving partial differential equations whose coefficients and forcing terms depend on a finite
number of random variables. The sparse grids are constructed from the Smolyak formula,
utilizing either Clenshaw-Curtis or Gaussian abscissas. The method leads to the solution
of uncoupled deterministic problems and, as such, it is simple to implement, allows for the
use of legacy codes and is fully parallelizable like a Monte Carlo method.

This method is an improvement of the stochastic collocation method on tensor product
grids proposed in [5]. The use of sparse grids considered in the present work (as opposed to
full tensor grids), reduces considerably the curse of dimensionality and allows us to treat
effectively problems that depend on a moderately large number of random variables, while
keeping a high level of accuracy.

Upon assumption that the solution depends analytically on each random variable (which
is a reasonable assumption for a certain class of applications, see [3, 5], we derived strong
error estimates for the fully discrete sparse grid stochastic collocation solution and analyzed
its computational efficiency. In particular, the main result is the algebraic convergence with
respect to the total number of collocation points, cf. Theorem 4.9 and Theorem 4.17. The
exponent of such algebraic convergence depends on both the regularity of the solution and
the number of input random variables, N . The exponent essentially deteriorates with N
by a factor of 1/ log(N). The theory is confirmed numerically by the examples presented in
Section 6. We also utilized the error estimates to compare the method with Monte Carlo
in terms of computational work to achieve a given accuracy, indicating for which problems
the first is more efficient than the latter. To this effect, in Section 4.2 we considered a case
where the input random variables come from suitably truncated expansions of random fields
and related the number of collocation points in the sparse grid to the number of random
variables retained in the truncated expansion. We also developed error estimates with less
regularity requirements in Remark 4.13.

The sparse grid method is very effective for problems whose input data depend on a
moderate number of random variables, which “weigh equally” in the solution. For such an
isotropic situation the displayed convergence is faster than standard collocation techniques
built upon full tensor product spaces.

On the other hand, the convergence rate deteriorates when we attempt to solve highly
anisotropic problems, such as those appearing when the input random variables come e.g.
from Karhunen-Loève truncated expansions of “smooth” random fields. In such cases, a full
anisotropic tensor product approximation, as proposed in [4, 5], may still be more effective
for a small or moderate number of random variables.

Future directions of this research will include the development and analysis of an anisotropic
version of the Sparse Grid Stochastic Collocation method, which will combine an optimal
treatment of the anisotropy of the problem while reducing the curse of dimensionality via
the use of sparse grids.
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A Additional Estimates

Here we present auxiliary results that are used in Section 4. Let us recall the definition
for the integer and fractional parts of a non-negative real number x, that satisfy x =
frac {x}+ int {x} , ∀x ∈ R+ with int {x} being the largest natural number that is smaller
or equal than x.

Lemma A.1 Given w ∈ N+, for any α > 0 and 0 ≤ β < w, we have

w∑
i=0

e−α(i−β)2 ≤ 2e−α(min{frac{β},1−frac{β}})2
(

1 +
1
2

√
π

α

)

Proof. Let us write β = int {β}+ frac {β} . Then

w∑
i=0

e−α(i−β)2 =
w−int{β}∑
j=− int{β}

e−α(j−frac{β})2

=
0∑

j=− int{β}

e−α(j−frac{β})2 +
w−int{β}∑

j=1

e−α(j−frac{β})2

=
int{β}∑
j=0

e−α(j+frac{β})2 +
w−int{β}−1∑

j=0

e−α(j+(1−frac{β}))2 .

Finally, estimate

w∑
i=0

e−α(i−β)2 ≤2e−α(min{frac{β},1−frac{β}})2
∞∑
j=0

e−αj
2

≤2e−α(min{frac{β},1−frac{β}})2

1 +
∞∑
j=1

e−αj
2


≤2e−α(min{frac{β},1−frac{β}})2

(
1 +

∫ ∞
0

e−αx
2
dx

)
≤2e−α(min{frac{β},1−frac{β}})2

(
1 +

1
2

√
π

α

)
.

�

Now we state and prove and auxiliary estimate, to be used later on in the proof of
Lemma A.3.

Lemma A.2 If α > 0 we have

∞∑
k=1

k e−αk
2 ≤ 1

α
+

1√
2α
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Proof. Observe first that xe−αx
2 ≤ 1√

2eα
for all x ≥ 0 and that the bound is attained at

x∗ = 1√
2α

. Then, for any integer k0 ≥ x∗ we can estimate

∞∑
k=1

k e−αk
2 ≤ k0√

2eα
+
∫ +∞

k0

xe−αx
2
dx ≤ k0√

2eα
+
e−αk

2
0

2α
.

Finally, choosing k0 = int {x∗}+ 1 = int
{

1/
√

2α
}

+ 1 the desired result follows. �

Lemma A.3 Given w ∈ N+, for any α > 0 and 0 ≤ β < w, we have

w∑
i=1

i e−α(i−β)2 ≤2 e−α(1−frac{β})2
(

1
α

+
1√
2α

)
+ (int {β}+ 1) 2 e−α(min{frac{β},1−frac{β}})2

(
1 +

1
2

√
π

α

)

Proof. Write

w∑
i=0

i e−α(i−β)2 =
w−int{β}∑
j=− int{β}

(j + int {β})e−α(j−frac{β})2

=
w−int{β}∑
j=− int{β}

(j − 1) e−α(j−frac{β})2

+ (int {β}+ 1)
w−int{β}∑
j=− int{β}

e−α(j−frac{β})2

and bound

w∑
i=0

i e−α(i−β)2 ≤
w−int{β}∑

j=1

(j − 1) e−α(j−frac{β})2

+ (int {β}+ 1) 2e−α(min{frac{β},1−frac{β}})2
(

1 +
1
2

√
π

α

)

≤e−α(1−frac{β})2
w−int{β}∑

j=1

(j − 1) e−α(j−1)2

+ (int {β}+ 1) 2e−α(min{frac{β},1−frac{β}})2
(

1 +
1
2

√
π

α

)
Finally, use the auxiliary Lemma A.2 to estimate

w−int{w/d}∑
j=0

j e−αj
2 ≤

∞∑
j=1

j e−αj
2 ≤

(
1
α

+
1√
2α

)
�

We have, as a direct consequence of Lemmas A.1 and A.3 the following estimates:
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Corollary A.4 There holds

w∑
i=0

e−σ
log2(2)

2
(i−w/d)2 ≤ 2

(
1 +

1
log(2)

√
π

2σ

)
(A.1)

and
w∑
i=0

(1 + i) e−σ
log2(2)

2
(i−w/d)2 ≤2

(
1

σ log2(2)
+

1
log(2)

√
2σ

)
+ 2(int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)
.

(A.2)
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