

Status Report on SHARP Coupling Framework

ANL-AFCI-215

Nuclear Engineering Division
Mathematics and Computer Science Division

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNT Digital Library

https://core.ac.uk/display/71317373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available
on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

 U.S. Department of Energy

	 	 Office	of	Scientific	and	Technical	Information

 P.O. Box 62

 Oak Ridge, TN 37831-0062

 phone (865) 576-8401

 fax (865) 576-5728

 reports@adonis.osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

Government	nor	any	agency	thereof,	nor	UChicago	Argonne,	LLC,	nor	any	of	their	employees	or	officers,	makes	any	warranty,	express	

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product,	or	process	disclosed,	or	represents	that	its	use	would	not	infringe	privately	owned	rights.	Reference	herein	to	any	specific	

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply

its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of

document	authors	expressed	herein	do	not	necessarily	state	or	reflect	those	of	the	United	States	Government	or	any	agency	thereof,	

Argonne National Laboratory, or UChicago Argonne, LLC.

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne,
see www.anl.gov.

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Status Report on SHARP Coupling Framework

ANL-AFCI-215

by
C. Rabiti, M. A. Smith, W. Yang, G. Palmiotti
Nuclear Engineering Division

A. Caceres, A. Siegel, T. J. Tautges, J. Lottes, P. Fischer, D. Kaushik
Mathematics and Computer Science Division

September 30, 2007

work sponsored by

U. S. Department of Energy,
Office of Nuclear Energy, Science and Technology

Status Report on SHARP Coupling Framework

A. Caceres, A. Siegel, T. J. Tautges, J. Lottes, P. Fischer, D. Kaushik
Mathematics and Computer Science Division

C. Rabiti, M. A. Smith, W. Yang, G. Palmiotti
Nuclear Engineering Division

September 2007

Abstract

This report presents the software engineering effort under way at
ANL towards a comprehensive integrated computational framework
(SHARP) for high fidelity simulations of sodium cooled fast reactors.
The primary objective of this framework is to provide accurate and
flexible analysis tools to nuclear reactor designers by simulating mul-
tiphysics phenomena happening in complex reactor geometries. Ide-
ally, the coupling among different physics modules (such as neutron-
ics, thermal-hydraulics, and structural mechanics) needs to be tight to
preserve the accuracy achieved in each module. However, fast reactor
cores in steady state mode represent a special case where weak cou-
pling between neutronics and thermal-hydraulics is usually adequate.
Our framework design allows for both options. Another requirement
for SHARP framework has been to implement various coupling algo-
rithms that are parallel and scalable to large scale since nuclear reactor
core simulations are among the most memory and computationally in-
tensive, requiring the use of leadership-class petascale platforms.

This report details our progress toward achieving these goals. Specif-
ically, we demonstrate coupling independently developed parallel codes
in a manner that does not compromise performance or portability,
while minimizing the impact on individual developers. This year, our
focus has been on developing a lightweight and loosely coupled frame-
work targeted at UNIC (our neutronics code) and Nek (our thermal
hydraulics code). However, the framework design is not limited to just
using these two codes.

Results reported in the AFCI series of technical memoranda frequently
are preliminary in nature and subject to revision. Consequently, they should
not be quoted or referenced without the author’s permission

Contents

1 Introduction 3

2 Problem Statement 4
2.1 Governing equations . 5

3 Design of Coupling Framework 7
3.1 The ITAPS Mesh Interface 7
3.2 Requirements . 8
3.3 Spatial Domain Coupling . 9

3.3.1 Basic requirement: driver & library 10
3.3.2 Standalone physics code 10
3.3.3 Standalone physics code + services 10
3.3.4 Coupled physics code 11

4 Coupling Theory 13
4.1 Data Flow . 13
4.2 Data Volume . 15

5 Implementation 15
5.1 Module API . 16
5.2 Common conversion changes 16
5.3 Configuration and build system 17
5.4 Data exchange details . 17

6 Mesh Generation 18
6.1 ABTR Mesh . 20
6.2 Wire-Wrap Fuel Pin Bundle 21
6.3 Summary . 22

7 Conclusions 22

2

1 Introduction

The SHARP project (Simulation-based High-efficiency Advanced Reactor
Prototyping) at Argonne National Laboratory is a multi-divisional collabo-
rative effort to develop a modern set of design and analysis tools for liquid
metal cooled fast reactors. Ultimately, this suite of codes is envisioned to
replace, piecemeal, existing legacy tools that were first designed over twenty
years ago and have since served as the standard for fast reactor design and
analysis. SHARP includes a strategy to allow newly built codes to coexist
with and couple to legacy codes as part of an incremental “phasing in” that
allows uninterrupted productivity by the reactor design team end users.

In this report we report on our early efforts to develop an improved
modeling capability specifically for the reactor core. Conceptually, the phys-
ical phenomena, though coupled, can be decomposed roughly along tradi-
tional mono-disciplinary lines: heat transfer, neutron transport, and struc-
tural/fuel behavior. In each area (to varying degrees) the legacy codes are
considerably simplified compared to what one finds in companion fields –
this is true e.g. in terms of supported dimensionality, spatial/temporal res-
olution, numerical methods, physical models, and sophistication of software
design. In terms of the physics, traditionally some degree of tuning and
calibration has been used to “validate” the codes, which then has enabled
predictions for states in some sense “close to” this validation baseline. Dras-
tically improved models offer the hope of both more accurate predictions (to
reduce uncertainty margins, e.g. “hot channel factors”) as well as something
closer to virtual prototyping – viz. predictive simulations for regimes much
further from an experimental reference.

Given the complexity and unique requirements of the SHARP software,
considerable up-front work must be done to ensure that the individual mod-
eling efforts are unified to meet the physics/engineering goals of the project
from the perspective of the end user. This includes allowing the end user to
select combinations of physics models based on the specific design problem –
e.g. low resolution, fast turnaround single-physics studies for early scoping
using sub-channel models; localized Direct Numerical Simulations (DNS)
or Large Eddy Simulations (LES) to study isolated physical effects; full
core Reynolds Averaged Navier-Stokes (RANS) for late-stage design stud-
ies; tightly coupled modules for fast transients; Monte Carlo calculations to
establish benchmark baselines; deterministic second order calculations for
homogenized whole core power profiles, etc.

Assembling a coupled physics capability from existing physics modules,
while preserving the ability of those modules to operate (and be developed)

3

in standalone fashion, requires a careful design of the over all coupling frame-
work. This framework must balance simplicity of adding new physics mod-
ules and support for commonly needed functionality (e.g. parallel IO), on
one side, with efficiency and minimization of dependencies between modules
on the other. Striking the right balance in this spectrum has motivated
our decision not to use integrated frameworks developed in other DOE pro-
grams, e. g. the Common Component Architecture (CCA) or the Model
Coupling Toolkit (MCT). However, we have chosen to use technology de-
veloped in the SciDAC program, particularly from the ITAPS and TOPS
projects, precisely because they enable and simplify the “loose” coupling
approach described above. The reliance on this design approach will be-
come more evident in later years of the project, but has also guided the
preliminary work done this year and described in this report.

In this report we present the initial design of the SHARP framework in
the context of the simpler sub-problem of a coupled reactor core simulation.
The intent is to illustrate the framework design, its interaction with the
development of the individual physics modules, and how ancillary services
such as unit testing, pre- and post-processing, and parallel coupling are
provided by the framework in a loosely coupled and flexible manner.

2 Problem Statement

The design of the SHARP framework includes specifications for the “hooks”
(placeholders) for both the individual physics modules and computational
tools that comprise the entire code system. Additionally, SHARP contains
particular implementations of these physics modules that are critical to
meeting our physics/engineering goals in the early phase of the project. It
is understood that alternative codes and/or enhancements to these existing
codes will be continuously required throughout the evolution of the project.
Defining and refining the rules that will accommodate these alternate im-
plementations is a key focus of the early part of the project.

To study specific steady state and slowly transient phenomena, we follow
a loosely coupled design philosophy that emphasizes the independence of the
individual modules while retaining the ability to couple them in a variety
of configurations (or to run modules in standalone mode). Abstractly, the
framework includes the following physics components: heat transfer, neu-
tron transport, depletion, and fuel/structural materials. Additionally, there
is a complementary collection of utility modules for cross section process-
ing, material properties, mesh generation, visualization, solution transfer

4

between meshes, load balancing, parallel i/o, and unit/integral testing.

2.1 Governing equations

Assuming suitable boundary conditions are applied, the coupled reactor core
neutronics-thermal/neutronics equations can be written as a single coupled
system:

ḟ = Lf + Nf (1)

where ˙ denotes time differentiation, L(f) denotes the linear part of the
operator, N(f) the nonlinear part, and

f =

ψ
T
ρ
~u

 (2)

In (2), ψ is the angular neutron flux, T the medium temperature, ρ the
medium density and ~u is the coolant velocity. The temperature and density
can further be divided into coolant and fuel regions, denoted by T = Tc∪Tf

and ρ = ρc ∪ ρf . The angular flux ψ is then obtained from the linear
transport equation:

[
1
v

∂

∂t
+ Ω̂ · ∇+ σρ,T (~r,E)

]
ψ(~r, Ω̂, E, t) =

qex(~r, Ω̂, E, t)

+
∫
dE′

∫
dΩ′σs(~r,E′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′, t)

+
χ(E)
4π

∫
dE′νfσ(~r,E′)

∫
dΩ′ψ(~r, Ω̂′, E′, t).

(3)

In (3), v is the scalar neutron speed, E the neutron energy, ~r = (x, y, z) the
spatial coordinate, t the time, Ω̂ = (θ, φ) the direction of neutron travel,
qex an external neutron source, σρ,T the total interaction cross section, σs

the scattering cross section, χ the fission spectrum, and νf the number of
neutrons emitted per fission.

The subscripts on σρ,T are explicitly included to denote the dependence
of cross sections on both the fuel and coolant temperature and density, which

5

is the principle source of (non-linear) coupling between different physics
modules.

With a solution to (3) the volumetric heat generation rate q′′′ can be
estimated by:

q′′′(~r, t) =
∫
dE′σ(E′)W (E′)

∫
dΩ′ψ(~r, Ω̂′, E′, t) (4)

The heat equation for both fluid and fuel can then be solved with q′′′ as a
source (of course ~u = 0 in fuel region):

ρCp

(
∂

∂t
+ ~u · ∇

)
T (~r, t) = ∇ · κT∇T (~r, t) + q′′′(~r, t) + f (5)

The fluid velocity ~u in (4) is obtained from the Navier-Stokes equation.
For simplicity, we write the Boussinesq approximation of the equation where
density changes are considered negligible except in the buoyancy term (in
general an equation of state is needed to close the system):

∂~u

∂t
+ ~u · ∇~u = − 1

ρ0
∇p+∇ · νT∇~u+

ρ′

ρ0
gk̂ (6)

∇ · ρ0~u = 0 (7)

Equation (6) is non-linearly coupled to the heat equation through the
temperature dependence of the dynamic viscosity ν, denoted explicitly by
νT .

The details of the discrete formulations of above equations are reported
in companion papers [1][2] and are not essential to understanding the inter-
module coupling problem. When the physics is split into separate compo-
nents, these couplings take the form of specific data values that are interpo-
lated from source to target meshes and sent between the modules through
well defined interfaces.

SHARP currently includes the following specific implementations of physics
modules to solve the above equations:

Nek : a spectral element code that solves the 3-D incompressible (Boussi-
nesq) time-dependent Navier-Stokes equation with conjugate heat transfer
on unstructured higher-order quadrilateral meshes [5]. Nek is written pri-
marily in Fortran77 using MPI for distributed memory systems and has
recently showed good scalability to 30,000 processors on BG/L.

UNIC : an unstructured deterministic neutron transport code that incor-
porates parallel even parity, sweeping, and ray tracing algorithms flexibly

6

within the same code. UNIC has recently been parallelized using PETSc
(which itself uses MPI) and is currently running benchmarks on moderate-
sized clusters as a precursor to larger scalable runs on Cray XT/4 and IBM
Blue Gene systems.

Separating physics modules into distinct components and implementing
coupling as interactions between these components imposes a number of
requirements on the overall design of the SHARP framework. This design
will have a strong influence on the degree and frequency with which these
interactions can occur during a given simulation. The design of the SHARP
framework is discussed in general terms next, followed by descriptions of
specific use cases.

3 Design of Coupling Framework

We start with a collection of physics codes which are currently developed
and run in standalone mode. To assemble pieces of these codes into a cou-
pled physics code, we first separate each physics module into a driver and
library, with the bulk of modeling located in the library and the driver con-
taining code specific to a particular use case. Coupling between physics
modules is implemented by passing data through a common mesh repre-
sentation, accessed through a common Application Programming Interface
(API). This approach preserves flexibility in a number of key aspects, while
also providing a common focal point for the coupling activities.

The mesh API is an important part of this design, since it acts as the
communication mechanism between physics modules. As described below,
it also provides access to various mesh services needed for high-performance
reactor simulation. The ITAPS mesh interface, which is used for this API,
is described next.

3.1 The ITAPS Mesh Interface

The Interoperable Tools for Advanced Petascale Simulations (ITAPS) center
is a collaboration between several universities and DOE laboratories funded
by the DOE Scientific Discovery for Advanced Computing (SciDAC) pro-
gram. The primary objective of the ITAPS center is to simplify the use
of multiple mesh and discretization strategies within a single simulation
on petascale computers. This is accomplished through the development of
common functional interfaces to geometry, mesh, and other simulation data.
Although eventually all the ITAPS interfaces will be used, in this report only

7

the ITAPS mesh interface is described. The implementation of this interface
we are using is MOAB [4].

The data model defined in ITAPS mesh interface consists of four basic
data types:

Entity: The basic topological entities in a mesh, i.e. the vertices, triangles,
tetrahedra, etc.

Entity Set: Arbitrary groupings of entities and other sets. Sets can have
parent/child relations with other sets.

Interface: The object through which mesh functionality is accessed and
which “owns” the mesh and its associated data.

Tag: A piece of application-defined data assigned to Entities, Entity Sets,
or to the Interface itself.

This data model, although quite simple, is able to represent most data in a
typical PDE-based simulation. For example, combinations of sets and tags
can be used to represent processor partitions in a mesh, groupings of mesh
representing the geometric topology on which the mesh was generated, and
boundary condition groupings of mesh. It has also been shown to allow
efficient storage of and access to mesh data.

The MOAB library [6] is an implementation of the ITAPS mesh interface
interface. MOAB provides memory- and CPU time-efficient storage and ac-
cess to mesh data using array-based storage of much of these data. MOAB
provides element types encountered in most finite element codes (includ-
ing quadratic elements) as well as polygons and polyhedra. Tools included
with MOAB provide parallel partitioning, parallel IO, and commonly used
functions like finding the outer skin of a contiguous mesh.

3.2 Requirements

There are several process-based requirements which guide the design of
SHARP for various reasons:

• Minimally intrusive: A variety of codes and code modules have already
been developed for use in reactor simulation, each with tens or even
hundreds of man-years invested in their development and qualification.
It is infeasible to expect that these applications be entirely re-written
to fit into a new code coupling framework. Therefore, the process of
attaching a new code or physics module to the framework must be
minimally intrusive to the original code.

8

• Compatibility with standalone development: There are many simula-
tion methods which, while not developed originally for that purpose,
are well suited to reactor simulation [5]. The coupling framework must
be compatible with standalone development of physics modules, to be
able to get updates to these modules as they are developed.

• Utility services: New physics modules are being developed which could
take advantage of various advanced techniques like adaptive mesh re-
finement if components implementing these techniques could be in-
corporated easily. The coupling framework must also include utility
services like these, along with a mechanism to add other services as
they become available.

• Integrated multi-physics: Finally, there is a need to integrate physics
modules of various types to perform coupled simulation for some prob-
lems. The coupling framework should be designed to minimize the
effort required to incorporate additional physics modules and couple
them to other modules in the framework. The framework must also
be designed to enable such coupling to be computationally efficient;
that is, the framework itself must not impose a large overhead on the
basic computations required for coupling.

3.3 Spatial Domain Coupling

There is a wide spectrum of possibilities in how to couple various types of
physics modules together. In a loosely coupled system, each physics might be
solved on an entirely different spatial discretization, with exchange of data
only at the beginning of each timestep or iteration. Closely coupled systems
can use related or identical grids, and can even be formulated implicitly with
the other physics and solved in the same solution step. However, a common
element in all these formulations is the spatial domain or discretization(s)
on which the physics are solved. The SHARP framework design couples
physics together and with other services through the spatial discretization
or mesh.

The mesh can be accessed using the Interface object described in 3.1.
This domain can be presented using the ITAPS data model as an entity set;
if multiple meshes are used for loosely coupled systems, these are presented
simply as multiple entity sets within the same Interface object. The de-
pendent variables computed by each physics module can be written to the
grid as tags, either at the end of each call to the module or throughout the
course of that module’s execution. Hence the mesh acts as a communication

9

mechanism between physics modules through those tags. If multiple grids
are used, other utility modules are used to map data between those grids.

A graphical depiction of this framework is shown in Figure 1. The mesh
Interface, implemented using MOAB, acts as the focal point for interactions
between physics modules and with various other services. Various types of
codes can be constructed on this framework, as described below.

3.3.1 Basic requirement: driver & library

A basic requirement we use to accomplish this coupling approach is to sep-
arate each module into a driver code and a library, where the driver sets up
the calculation assuming standalone operation, then calls functions in the
library to compute the actual physics. The standalone driver implements
its own IO, communication, and other functionality otherwise found in the
framework of the coupled code. The libraries of physics capabilities are
shown in Figure 1 as libPhys1 and libPhys2.

3.3.2 Standalone physics code

Assuming the separation into driver and library, a physics code can be built
and developed as a standalone code, as shown for driver1 in Figure 1. Im-
provements to most physics capabilities are likely to occur in the library
rather than in the driver, and thus are available to other use cases which
rely on the library. This approach requires the additional effort to define
functional interfaces to new capabilities as they are added to the library.
However this effort is low, given that these interfaces do not change fre-
quently.

Given this structure, new developments in the physics module do not
prevent coupled solutions based on that module from running as before
(because the interfaces to previous capabilities do not change). Coupled so-
lutions can take advantage of new capabilities simply by using the interfaces
defined for those functions.

3.3.3 Standalone physics code + services

Using a common mesh API gives a code access to other mesh services also
using that API. For example, mesh services based on the ITAPS mesh inter-
face include mesh partitioning [8], adaptive mesh refinement [9], and mesh
smoothing [7]. Using the MOAB implementation of this mesh API provides
a mesh representation which is highly memory- and cpu time-efficient as
well [4]. For codes which do not already have a significant investment and

10

which are early in the development cycle, using this mesh representation
speeds development of the physics capability. This approach also enables
the physics module to use advanced computational techniques like adap-
tive mesh refinement that they would otherwise not have time to develop
themselves.

This use case is depicted in Figure 1 as the combination of driver2,
libPhys2, and the core mesh API and services. In this case, the physics
module can couple either directly to MOAB, for efficiency, or through the
Mesh API, to preserve the option of using a different implementation of the
Mesh API.

3.3.4 Coupled physics code

The degree of coupling used for a given coupled code depends not only on
what is appropriate numerically, but also what kinds of physics modules,
solution strategies, and grids are available for that code. For example, re-
quiring two physics modules to solve on the same grids restricts the choice of
available implementations of each module to those which use the chosen grid
type or those which can be changed to use that grid type in the available
time. In some cases this approach will over-constrain the problem, due to
resource constraints or simply because the required physics modules are not
available. Therefore, we choose to preserve as much flexibility as possible,
by designing the system to allow both loose and tight coupling, on the same
grid or different ones.

If different grids are used, there will be a need to pass solution data
from one grid to another. This process can be accomplished using a “data
coupler” tool, which is simply another tool implemented on top of the mesh
API. In our approach, we require both meshes be accessed through the
same Interface object, and likely in the same implementation (in our case,
MOAB). This is desirable from the standpoint of computational efficiency.
This preserves the option of implementing the data coupler inside MOAB,
allowing it to operate on data in its native representation (rather than in-
directly through a Mesh API) for greater efficiency. The only additional
requirement for this approach is that MOAB be able to represent grids used
by the various physics modules. This is our motivation for choosing MOAB,
which is general enough to do this.

Figure 1 depicts a coupled driver incorporating all of these design ele-
ments. In this code, libPhys1 retains its native data representation, using a

11

Figure 1: Interrelationship among the components of MOAB

12

mesh adapter to pass a subset of its data through the Mesh API for coupling
purposes. libPhys2 uses MOAB as its native representation, for efficiency,
and therefore does not need an adapter. The code system uses common
services available through the Mesh API, including a data coupler to couple
data from libPhys1 and libPhys2. The overall solution process and passing
data between physics modules is coordinated by the coupled driver. In the
future, it may be desirable to separate some of this coordination logic into
an additional library, for use in multiple, separate coupled codes.

4 Coupling Theory

4.1 Data Flow

Given appropriate discretizations of (3) on mesh Ωn and (4) on mesh Ωth,
regardless of the numerical procedure used within each solver and the details
of the coupler, the following is an abstract description of the algorithmic
structure for the coupled steady state problem:

Step 1 : Start with initial guess for macroscopic cross section Σ, ρc, ρf , Tc, Tf

Step 2 : Solve (3) and (4) to get φ and q′′′ on Ωn, respectively

Step 3 : Map q′′′ on Ωn to q′′′ on Ωth

Step 4 : Solve (6) to get ν and α on Ωth

Step 5 : Solve (4) and (7) for Tf , Tc, and ρc on Ωth, using q′′′ on Ωth as
source term

Step 6 : Map Tf , Tc and ρc from Ωth to Ωn, and use them to compute Σ
on Ωn

Figure 2 shows how this algorithm is realized in terms of the different
modular components of the code. Note that each module individually, in-
cluding the mesh component, is partitioned across a distributed memory
parallel machine in a way that in general is completely arbitrary and con-
figurable by the user (or automated by load balancing software with user
suggestions). Also notice that this description is valid for steady state prob-
lems as well as slowly evolving physics (e.g. burnup). When studying faster
transients, the architecture will in general need to allow a tighter degree of
coupling to achieve both good performance and adequate time accuracy.

13

Figure 2: Depiction of the individual modules of SHARP and their
interrelationships. Ωn denotes the UNIC mesh, Ωth the Nek mesh
and R is a linear restriction (coarsening) operator that represents
entities on homogenized regions of the mesh.

14

4.2 Data Volume

As shown in Figure 2, we need to exchange data proportional to the size of
the coarser of the meshes used by the neutronics module (UNIC) and the
thermal hydraulics module (Nek). In practice, the neutronics mesh is usually
much coarser than thermal hydraulics mesh. We expect to use between one
million (subassembly level) to fifty million (full core level) mesh vertices in
UNIC while Nek will use roughly ten times that amount. The number of
degrees of freedom (DOF) in UNIC is proportional to the product of number
of energy groups (GN), mesh vertices (SN), and angular moments (AN =
n(n+1)

2 where n is the Pn order). So the ratio of DOF to data exchanged
is GN × AN . Since we ultimately expect to use a large number (O[10,000])
of energy groups and high angular order (P̃15), the data exchanged is quite
minimal relative to the DOF employed in the neutronics problem. Though
the cross sections used in UNIC depend on temperature and density, these
variations in the steady state case are also expected to be small. Therefore,
the coupling between UNIC and Nek is expected in general to be weak with
a relatively small amount of data exchange (as compared to the DOF each
computation). We are currently beginning detailed coupling performance
studies to test this hypothesis.

5 Implementation

In our implementation, all modules are compiled into a single executable,
SHARP, which then runs as a single MPI process. The top-level execu-
tion flow is controlled by the SHARP driver, which successively calls the
individual modules’ API functions, as described in section 3.

At the moment we have successfully coupled two physics modules, Nek
and UNIC, and are running small (32 processor) test problems on the Jazz
cluster at ANL. The current implementation departs from the specification
outlined in section 3 in that the physics modules are not currently copying
their data into the ITAPS mesh interface; instead, the data is copied (via
a module API function) into placeholder arrays created by the driver. This
is a temporary measure taken in order to explore physics coupling while
portions of the framework (mainly coupling computations on MOAB) are
being put in place.

15

5.1 Module API

The current API for bot Nek and UNIC consists mainly of the following
high level c-callable functions (phys below stands for either nek or unic):

phys init Module initialization: allocate storage, set up MPI communi-
cator, read in input files, etc.

phys solve Compute our part of the solution to the problem.

phys export Write the solution from the module’s internal data structures
to memory allocated by the driver (stand-in for MOAB/ITAPS)

phys import Read in the part of the solution that is calculated by the other
modules. For example: if phys is Nek, the thermal-hydraulics module,
read in the heat generation computed by the neutronics module.

phys write data Write our data to disk, in our native format.

phys finalize Clean-up: close files, compute diagnostics, etc.

When data needs to be transferred between two modules, the SHARP
driver calls their import/export functions with pointers to memory allocated
by the driver; as the two modules use different meshes (and define their data
on these meshes in different ways), the driver must call a (parallel) mapping
function between export and import steps. This is discussed in section 5.4.

5.2 Common conversion changes

Converting a standalone application to expose an API as described in section
5.1 is for the most part a simple question of refactoring code or creating
a wrapper layer. New code is in principle only needed to implement the
import and export functions. This approach has a negligible impact on the
performance of the standalone application.

One key aspect of the refactoring is that data declarations in the entry
point of the standalone application phys (its main function) must be moved
to the phys init function.

Another required change is the switch from using MPI’s global communi-
cator (which is sufficient for most standalone codes) to a new communicator
specific to the module. This is necessary in the coupled case if, for example,
we wish to run a module on only a subset of the processors that SHARP
has available.

16

A consequence of our decision to combine modules into a single exe-
cutable is the possibility of name clashes. These are resolved by renaming
symbols at the object-file level using the (extremely portable) GNU objcopy
utility.

Other issues are anticipated to appear as new modules are added, how-
ever we believe most codes can be relatively easily adapted to work with our
framework, without losing performance or the ability to exist as standalone
programs.

5.3 Configuration and build system

We have in place a custom configuration/build system which tries to accom-
modate different modules’ existing build systems, should they exist. The
main design requirement behind it is to have the possibility that, after a
module has been added to the SHARP source tree, it is always possible to
automatically create a source distribution of the standalone application. To
the SHARP user, our system looks much like the “./configure; make”
standard.

5.4 Data exchange details

We now describe in detail the data that the driver must map between UNIC
and Nek. Physically, UNIC takes temperature T and provides the volumetric
heat generation rate q′′′, and vice-versa for Nek. Computationally, the data
is represented as follows:

UNIC: Uses a linear hex mesh (other element types are possible in UNIC
but not currently supported by the coupler); this mesh is referred
to as Ωn in 4.1. q′′′ is given per-element. UNIC partitions Ωn into
sets of elements called blocks. As input, UNIC expects the average
T inside each block, which it then uses to compute cross-sections.
All communications between the driver and UNIC occurs on the root
processor (this is a feature of UNIC which is expected to eventually
change).

Nek: Uses hex spectral elements of order N , where N is generally between
4 and 10; this mesh is referred to as Ωth in 4.1. Each element has
N × N × N grid points, on which are defined all fields (including
q′′′, T and x, y, z coordinate fields). Thus, to specify a physical
field in Nek its value must be given at each grid point. To evaluate
a field at an arbitrary point in space, one needs to determine what

17

element that point lies in and then perform a weighted sum of all
the gridpoints belonging to that element. Finding the weights for
a given point requires inverting the coordinate fields numerically to
obtain the point’s parametric coordinates. Elements are partitioned
among processors and communication with the driver occurs on every
processor.

Given this, one simple prescription for interpolating data between meshes
is: for each Nek gridpoint, set its q′′′ value to that of the UNIC element it
lies in; to interpolate from Nek to UNIC, integrate T over each UNIC block
by evaluating T on the Nek mesh at every UNIC node and do weighted sum
using the known UNIC element volumes. Thus, our interpolation method
requires computing the following interpolation maps:

• For each UNIC vertex we need to know inside which Nek element it
lies and its parametric coordinates within that element.

• For each Nek grid point we need to know inside which UNIC element
it lies.

Part of Nek is a library, findpt, that, given a distributed list of points
and distributed Nek-like mesh, will compute the location in the mesh of
each point (meaning, what element it’s in, its parametric coordinates within
that element, and which processor owns the element). At the beginning of a
coupled simulation, we compute and store in parallel the interpolation maps
using findpt. During the course of a simulation, the map is used to efficiently
interpolate data between Nek and Unic. For steady state calculations, the
cost in both memory and time of interpolation (including computation of the
maps) is negligible. Findpt is known to scale, like Nek, to tens of thousands
of processors.

We expect to refine these interpolation methods in the future, as we need
to properly address the issue of energy conservation, in particular for the
case of q′′′ interpolation.

Figures 3 and 4 illustrate our interpolation method in two views of one
coupled steady-state simulation of a single pin with sodium channel.

6 Mesh Generation

An important part of supporting reactor simulation is generating input for
the various analysis codes. For the codes being developed in SHARP, the

18

Figure 3: T mapped from Nek to UNIC blocks, single pin. The
range of values differs due to block-averaging. Vertical axis has
been scaled by a factor of 0.05.

Figure 4: q′′′ mapped from UNIC to Nek, horizontal cross-section
through the middle of a single pin with sodium. In the case of
Nek, inner nodes are rendered (order of spectral elements is 4).

19

input consists of finite element meshes of various types. During this initial
phase of our GNEP work we explored the use of the CUBIT mesh generation
toolkit from Sandia National Labs [10] for this purpose. Two models were
developed, supporting neutronics and fluid flow computations; these efforts
are described below.

6.1 ABTR Mesh

The Advanced Breeder Test Reactor (ABTR) is an important focus of the
overall reactor simulation part of GNEP. This model consists of hexagon-
shaped assemblies of various types (inner and outer fuel, control, reflector,
and shield), each assembly consisting of a hexagonal lattice of pins inside a
hexagonal duct wall. For a more detailed description of this reactor design,
see [11].

Because of the relatively straightforward layout of simple hex-shaped
primitives, a geometric model for this core was developed inside CUBIT
(more complex geometric models would normally be developed in a CAD
tool like Pro/Engineer). The geometric model is shown in Figure 5 for a
60-degree section of the core. Generating this model with CUBIT was a
very memory-intensive process, requiring almost all of the 4GB of RAM on
a 64-bit workstation even without the use of graphics. Generating a mesh
for this model required over 5GB of memory, even for a moderately-sized
mesh of several million elements. Other problems encountered in this effort
include:

• Problems generating relatively coarse meshes for hexagonal-shaped an-
nular surfaces, resulting in a great deal of interactive effort to tune the
geometric model to avoid these problems.

• The inability to mesh a collection of stacked hexagonal prism-shaped
volumes, when the meshing schemes have been specified as e.g. sweep-
ing surface “A” to “B” but surface “B” is meshed first. This forced the
generation of the mesh for each reference assembly type (fuel, control,
etc.), before the assembly was copied and moved in the hexagonal lat-
tice of assemblies. This generation method was sufficient for this core
only because of the separation of assemblies by a thin sodium region.

After struggling with these problems, it was decided to use CUBIT only
for surface mesh generation. A standalone tool was used to sweep this sur-
face mesh into the third dimension. The surface mesh generated by CUBIT
in this process is shown in Figure ??. While this process was sufficient

20

for this problem, it depended on the mesh sweep being a pure translation.
Clearly, this approach will not be sufficient for more complicated reactor
models.

Figure 5: The ABTR core model developed in CUBIT. This model
contains 5744 distinct 3D volumes and almost 50,000 surfaces.

6.2 Wire-Wrap Fuel Pin Bundle

An important part of the SHARP reactor simulation effort is modeling
sodium flow through a lattice of wire-wrapped fuel pins. Preliminary simu-
lations of this problem have already yielded a better understanding of fluid

21

and heat transfer in these assemblies [1]. The geometric model used in [1]
modeled the wire-fuel pin interface using a fillet, to facilitate mesh gener-
ation. A key question is whether that fillet strongly affected the results.
Furthermore, we now need to extend these simulations to the full 217-pin
assemblies, possibly including geometric detail in the inlet and outlet regions
which may affect the flow. Therefore, we also attempted to develop models
for this problem in CUBIT.

The geometry and surface mesh developed for a 7-pin hexagonal lattice
of wire-wrapped fuel pins is shown in Figure 6. Neighboring pins have mesh
which is inclined in opposite directions. This makes it impossible to rotate
the mesh going down one pin while having it conform to the mesh in a
neighboring pin. As an alternative, we explored the generation of a mesh
where the interfaces between neighboring pins was non-conformal, that is,
where the mesh did not match between the regions. This mismatch can be
accounted for in the fluid flow solution, at some cost in terms of accuracy
and solution time. The 3-dimensional mesh for this problem is shown in
Figure 7.

We generated this geometry entirely inside CUBIT, but with some dif-
ficulty associated with the helical sweep. Again, despite the geometry be-
ing a relatively simple sweep and rotate, CUBIT’s meshing algorithms had
difficulty generating good-quality mesh for these models, and forced the de-
composition of the model axially. This indicates to us the need for more
model-specific mesh generation methods and tools. We believe that the
component-based framework developed for SHARP, shown in Figure 1, will
facilitate the development of these tools.

6.3 Summary

Although not insurmountable, these problems and the general difficulty of
using CUBIT for these models indicate the need for a different approach
to this problem, at least for fast reactor core models. This will be part of
future efforts on the SHARP project.

7 Conclusions

We have demonstrated a simple lightweight software architecture for coupled
steady state and slow transients calculations in a fast reactor core. The ar-
chitecture implements parallel coupling of physics modules (UNIC and Nek)
and places a high degree of emphasis on their autonomy via a weak coupling

22

Figure 6: 7 pin wire-wrapped fuel pin lattice, showing surface mesh
and without sodium.

strategy. This approach allows for different mesh representations and pre-
scribes relatively non-restrictive rules for incorporating legacy components.
While the basic concepts of the framework are general, we outlined some
specific aspects of the reactor core modeling problem that mitigate against
potential performance problems associated with this technique.

This year we have implemented the framework using the initial imple-
mentations for physics and utility modules, and carried out a simple coupling
benchmark. In a subsequent years, we expect to demonstrate the flexibility

23

Figure 7: 7 pin wire-wrapped fuel pin lattice, with sodium region
shown.

of the framework by incorporating alternative implementations of the same
physics. Additionally, the performance and scalability of the various cou-
pling algorithms on the petascale platforms (at ANL and ORNL) will be
studied in detail.

24

References

[1] P. Fischer, J. Lottes, A. Siegel, G. Palmiotti, “Large Eddy Simulation
of Wire Wrapped Fuel Pins” Joint International Topical Meeting on
Mathematics & Computation and
Supercomputing in Nuclear Applications, Monterey, CA, April, (2007).

[2] G. Palmiotti, M. Smith, C. Rabiti, M. Leclere, D. Kaushik, A. Siegel,
B. Smith, E. E. Lewis, “UNIC: Ultimate Neutronic Investigation
Code” Joint International Topical Meeting on Mathematics & Com-
putation and
Supercomputing in Nuclear Applications, Monterey, CA, April, (2007).

[3] “Spallation Neutron Source: The next-generation
neutron-scattering facility in the United States,”
http://www.sns.gov/documentation/sns brochure.pdf (2002).

[4] R. Meyers et. al, “SNL Implementation of the TSTT Mesh Interface,”
Proceedings of 8th International conference on numerical grid genera-
tion in computational field simulations, Honolulu, HA, June 2-6, 2002.

[5] P. Fischer, G.W. Kruse, and F. Loth, “Spectral Element Methods for
Transitional Flows in Complex Geometries,” J. Sci. Comput., 17, pp.
81-98 (2002).

[6] “MOAB, a Mesh-Oriented datABase”
http://cubit.sandia.gov/MOAB/

[7] M. Brewer et. al, “The Mesquite Mesh Quality Improvement Toolkit,”
Proceedings of 12th International Meshing Roundtable, Santa Fe, NM,
September 14-17 2003, pp. 239-250

[8] K. Devine et. al, “Zoltan Data Management Services for Parallel Dy-
namic Applications,” Computing in Science and Engineering, 4, pp.
90-97 (2002)

[9] K. Devine et. al, “Zoltan Data Management Services for Parallel Dy-
namic Applications,” Computing in Science and Engineering, 4, pp.
90-97 (2002)

[10] T. D. Blacker et al., “CUBIT mesh generation environ-
ment, Vol. 1: User’s manual”, SAND94-1100, Sandia Na-
tional Laboratories, Albuquerque, New Mexico, May 1994,
http://cubit.sandia.gov/release/doc-public/Cubit UG-4.0.pdf

25

[11] Y. I. Chang and P. J. Finck and C. Grandy, “Advanced Burner Test
Reactor Preconceptual Design Report”, ANL-ABR-1 (ANL-AFCI-
173), Argonne National Laboratory, Argonne, IL (2006)

26

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Nuclear Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439-4842

www.anl.gov

