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Abstract

The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions

using the fifth- and ninth-order weighted essentially non-oscillatory shock-capturing method with

uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions

and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF6 shock

tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities

are shown to be in very good agreement with the corrected experimental planar laser-induced

fluorescence images at selected times before reshock of the evolving interface. Analytical, semi-

analytical and phenomenological linear and nonlinear, impulsive, perturbation and potential flow

models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The

simulation amplitudes are shown to be in very good agreement with the experimental data and

with the predictions of linear amplitude growth models for small times and with those of nonlinear

amplitude growth models at later times up to the time at which the driver-based expansion in

the experiment (but not present in the simulations or models) expands the layer before reshock.

The qualitative and quantitative differences between the fifth- and ninth-order simulation results

are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn

[Phys. Fluids 9, 1106 (1997)] nonlinear Padé model is shown to be in best overall agreement

with the simulation amplitudes before reshock. The sensitivity of the amplitude growth model

predictions to the initial growth rate from linear instability theory, the post-shock Atwood number

and amplitude, and the velocity jump due to the passage of the shock through the interface is

also investigated numerically. In Part II [Phys. Fluids (2006)], a comprehensive investigation of

mixing induced by the reshocked single-mode Richtmyer-Meshkov instability is performed using

the present simulation data to assess and quantify the effects of reshock and other waves on the

mixing dynamics, including the post-reshock growth, circulation deposition, mixing profiles and

fractions, baroclinic circulation deposition, energy spectra and statistics.

PACS numbers: 47.20.-k, 47.20.Ma, 47.20.Cq, 47.15.ki, 47.40.Nm, 47.40.-x, 47.11.Bc, 47.11.-j
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I. INTRODUCTION

The Richtmyer-Meshkov instability occurs when perturbations on the interface separat-

ing two different fluids grow following the passage of a shock and eventually develop complex

spatial structure. The instability derives its name from the linear instability analysis and

numerical work of Richtmyer,1 who considered the instability generated by a shock impul-

sively accelerating a sinusoidally-perturbed interface. The predictions of Richtmyer were

subsequently confirmed in shock tube experiments performed by Meshkov.2 This instability

is of great fundamental interest in fluid dynamics,3,4 as well as of interest to inertial confine-

ment fusion,5–8 supersonic combustion9 and supernovae dynamics.10–14 One of the challenges

in understanding the Richtmyer-Meshkov instability is the accurate modeling of the growth

of the mixing layer in the nonlinear phase and following reshock, as well as predicting the

statistical properties and dynamics of turbulent mixing induced by this instability.

In the present work, the evolution of the classical Richtmyer-Meshkov instability in a

model of the air (seeded with acetone) and sulfur hexafluoride (SF6) Mach 1.21 experi-

ment of Collins and Jacobs15 is investigated in two-dimensional planar geometry using the

weighted essentially non-oscillatory (WENO) method (see Sec. II A for the equations solved

and a brief description of the numerical method). As the shock passes through the ma-

terial interface separating the air and acetone mixture [referred to as air(acetone) in the

sequel] and the denser sulfur hexafluoride gas, the misalignment of the pressure and den-

sity gradients causes a deposition of vorticity through the baroclinic production mechanism.

The vorticity evolution equation (shown here for three dimensions and in the absence of

molecular dissipation terms)

dω

dt
=

∇ρ×∇p

ρ2
+ ω ·∇u− ω ∇ · u (1)

describes the dynamics of vorticity generation, where d/dt = ∂/∂t+ u ·∇ is the convective

derivative, ω = ∇ × u is the vorticity, u is the velocity, ρ is the density and p is the

pressure. The first term on the right side is the baroclinic production term, and constitutes

the principal mechanism of vorticity generation by the Richtmyer-Meshkov instability. In

particular, this term is large when a shock passes through the interface and when waves

interact with the interface. The second term on the right side is the vortex-stretching term

(which is zero in the present two-dimensional investigation, as the vorticity and velocity

fields are orthogonal). This term enhances dissipation, resulting in more diffuse and smaller
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scale structures in three-dimensional turbulence. The third term on the right side is the

compression term, and does not contribute significantly to the vorticity evolution. Following

the passage of the shock, the perturbed interface is set in motion along the direction of shock

propagation, a reflected shock returns back into the air(acetone) gas, and a transmitted shock

enters the SF6 gas. The vorticity baroclinically deposited on the interface by the shock drives

the evolution of the instability, with spikes of the heavier fluid (SF6) penetrating the lighter

fluid [air(acetone)] and bubbles of the lighter fluid “rising” in the heavier fluid. At late

times, the vorticity coalesces into strong cores, causing the mushroom roll-ups characteristic

of the Richtmyer-Meshkov instability. When the fluids are miscible, molecular mixing occurs

between these interpenetrating fluids, generating a mixing layer and a topologically-complex

interface. In the present investigation, explicit molecular mixing is not modeled; instead,

numerical diffusion across the interface models the ‘mixing’ process.

Additional vorticity deposition and enhanced mixing occur in the configuration considered

here, in which the transmitted shock from the initial shock-interface interaction reflects

elastically from the end wall of the shock tube test section and interacts with the evolving

layer. This second interaction (referred to as reshock) deposits vorticity of opposite sign so

that bubbles transform into spikes and vice versa in a process called inversion. The inversion

induces the formation of additional complex structure, with more disorganized small-scale

flow features observed at late times. Following reshock, the interface changes its direction

of motion and moves away from the end wall of the test section: a transmitted shock enters

the air(acetone) and a reflected rarefaction returns into the SF6. The rarefaction wave is

reflected from the end wall of the test section and interacts with the evolving interface, again

resulting in the formation of additional complex, small-scale structures.

Throughout the instability evolution, both prior to and following reshock, additional

vortex-accelerated secondary baroclinic vorticity is deposited on the interface3,16, where the

vorticity is generated by the misalignment between the density gradient and the centripetal

acceleration of the cores ∇p × ∇ρ ∼ −ρdu/dt × ∇ρ. This secondary instability further

enhances the development of a complex interface topology (with increasing length in two

dimensions and surface area in three dimensions), eventually resulting in a mixing layer

that becomes turbulent at sufficiently large Reynolds numbers.17 The reshocked single-mode

Richtmyer-Meshkov instability is considered in the present work to investigate two phases

of the instability development and their coupling: the linear and nonlinear phases prior to
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reshock (Part I), and the post-reshock and late-time (quasi)-decay phases (Part II).

To our knowledge, the present work is the first comprehensive application of the WENO

method to the study of the classical reshocked Richtmyer-Meshkov instability. The vast

majority of numerical simulations and experiments on single- and multi-mode Richtmyer-

Meshkov instabilities to date have considered the flow evolution initiated by only a single

shock-interface interaction. Mikaelian18 performed arbitrary Lagrangian-Eulerian simula-

tions of gas configurations consisting of three layers, 1/2/1, with fluid 1 representing semi-

infinite air layers and fluid 2 representing a finite-thickness freon, SF6, or helium layer,

having perturbations either on the upstream or downstream side. The shock Mach num-

ber was 1.5. These simulations investigated freeze-out, interface coupling and feedthrough.

Sadot et al.19 found very good agreement between the amplitude growth from their single-

mode reshocked Richtmyer-Meshkov instability experiment and numerical simulation data

prior to the arrival of the rarefaction wave from the end wall. As in the case of experiments,

the quantitative data obtained from these simulations was mainly limited to the consid-

eration of perturbation amplitude growth. Numerical studies of the single-mode impulsive

Richtmyer-Meshkov instability experiment with reshock of Jacobs, Jones and Niederhaus20,21

were performed by Kotelnikov and Zabusky22 and Kotelnikov, Ray and Zabusky23 using the

vortex-in-cell method and the contour advection semi-Lagrangian method (n.b., the Jacobs

et al.24 and Rightley et al.25 Mach 1.2 experiment with reshock was also simulated using

a Godunov method23). Kremeyer et al.26 used a fifth-order WENO method to simulate

the Richtmyer-Meshkov instability in a shock tube containing gases with different initial

transverse density profiles to investigate shock splitting and, in particular, the role of shock

bowing and vorticity dynamics. Top-hat shaped perturbations, including those shaped as

a notch, were considered instead of a sinusoidal perturbation considered in classical inves-

tigations of this instability. Zhang et al.27 simulated the interactions between planar Mach

1.095 and 1.2 shocks and an SF6 gas cylinder using the fifth- and seventh-order WENO

method, and qualitatively and quantitatively studied the mechanisms of baroclinic vorticity

and circulation generation. All of the above simulations were two-dimensional.

This paper is organized as follows. The equations solved and a summary of the WENO

method are presented in Sec. IIA. The initial conditions and computational domain adapted

from the Mach 1.21 experiment of Collins and Jacobs15 are specified in Sec. IIB. Simulations

of the reshocked single-mode Richtmyer-Meshkov instability using the fifth- and ninth-order
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WENO method are presented and discussed in Sec. IIC. The density evolution is compared

to the corrected experimental PLIF images of Collins and Jacobs before and after reshock in

Sec. IID. A review of the principal linear and nonlinear models for single-mode perturbation

amplitude growth is presented in Sec. III, including the most widely used impulsive, pertur-

bation and potential flow models. The simulation amplitudes before reshock are compared

to the experimental data and to the model predictions in Sec. IV. Finally, the sensitivity

of the amplitude growth model predictions to the parameters entering into the models (the

initial linear growth rate, the post-shock Atwood number, the post-shock amplitude and the

velocity jump due to the passage of the shock through the interface) is explored by self-

consistently comparing the predictions using numerically and experimentally determined

values of these parameters. A summary of the results and conclusions are given in Sec. V.

In Part II, a comprehensive investigation of the dynamics of the mixing process induced

by the reshocked Richtmyer-Meshkov instability, and more generally by complex hydro-

dynamic shock-driven flows, is presented. The methods used are adapted from classical

investigations of turbulence and turbulent mixing, and synthesize high-resolution numerical

simulation data, theoretical models for instability growth, and available experimental data.

The reshock process is qualitatively described using simulated density Schlieren images and

other fields. The post-reshock simulation amplitudes are compared to the predictions of

several models for the growth of a reshocked interface. The time-evolution of various mixing

quantities is investigated, including mole fraction profiles, production fractions, mixing frac-

tions, energy spectra and statistics. The effects of reshock on these quantities is explored.

Finally, the effects of the reflected rarefaction and other waves following reshock on the flow

is considered. This investigation suggests that a variety of quantities should be considered

to more completely characterize the mixing layer dynamics.

The key new contributions to better understanding the physics of the two-dimensional

reshocked Richtmyer-Meshkov instability presented in Parts I and II are: (1) the first com-

prehensive simulation of the Richtmyer-Meshkov instability with reshock using the fifth-

and ninth-order WENO method; (2) a comprehensive survey of a wide range of amplitude

growth models and a summary of their derivations and phenomenology to investigate the

nonlinear phase of this instability; (3) direct qualitative and quantitative comparisons of

simulation data to experimental data (thus providing an element of validation of the numer-

ical methods as used here) and discussing the differences between the fifth- and ninth-order
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WENO results; (4) a comprehensive application of all of the amplitude growth models to one

experimental and simulation dataset (also with the bubble and spike amplitudes obtained

separately by performing an unperturbed simulation); (5) a sensitivity study to emphasize

that small differences in the amplitude model parameters can affect the model predictions;

(6) a detailed qualitative examination of the reshock process, including consideration of

the simulated density Schlierens and baroclinic vorticity production fields to examine the

structure internal to the roll-up and of the post-reshock flow; (7) a comparison of the simula-

tion data to the predictions of three existing post-reshock growth models; (8) computation,

discussion and interpretation of a wide range of quantities that have been used to charac-

terize other mixing layers (not considered in previous work applied to this instability); (9) a

comparison of many of the above quantities just after and before reshock, to quantitatively

assess the effects of reshock, and; (10) a novel investigation of the role of wave-interface

interactions on the above quantities by comparing them for reflecting and outflow boundary

conditions at the end wall.

II. HIGH-RESOLUTION SIMULATIONS OF TWO-DIMENSIONAL

RESHOCKED SINGLE-MODE RICHTMYER-MESHKOV INSTABILITY

In this section, weighted essentially non-oscillatory (WENO) shock-capturing simulations

of two-dimensional reshocked single-mode Richtmyer-Meshkov instability are described.

The WENO method is a modern high-resolution reconstruction-evolution shock-capturing

method28,29 used for the simulation of compressible turbulent flows. As the numerical al-

gorithm is based on the discretization of the Euler equations, the truncation errors can be

regarded as an implicit nonlinear high-order numerical dissipation, i.e., no explicit artifi-

cial viscosity or filtering to suppress Gibbs oscillations is required. As the non-dissipative

compressible fluid dynamics equations are formally ill-posed,30 this numerical dissipation

regularizes the numerical scheme and renders the method stable. Formally higher-order

numerical flux reconstructions are less dissipative than lower-order reconstructions. It is

important to appreciate that flows with shocks cannot be modeled using direct numeri-

cal simulation (DNS), and are therefore presently modeled using numerically dissipative

shock-capturing schemes, monotone-integrated large-eddy simulations31 (MILES) or implicit

large-eddy simulations32 (ILES). It is also important to appreciate that two-dimensional sim-
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ulations can achieve much higher resolutions than can be obtained in three dimensions using

the same computational resources.

A. Equations solved and the WENO method

The characteristics-based weighted essentially non-oscillatory (WENO) scheme in the

conservative finite-difference formulation33,34 is used in the present investigation. The Euler

equations are augmented by the equation for mass fraction conservation of the second gas

(SF6) in order to track the interface and mixing: in two dimensions

∂

∂t



ρ

ρ u

ρ v

ρ e

ρm


+

∂

∂x



ρ u

ρ u2 + p

ρ u v

(ρ e+ p)u

ρmu


+

∂

∂y



ρ v

ρ u v

ρ v2 + p

(ρ e+ p) v

ρmv


= 0 , (2)

where ρ is the density, u = (u, v) is the velocity, p is the pressure, e = (u2 + v2)/2 + U is

the total (kinetic plus internal) energy per unit mass, U = p/(γ − 1) is the internal energy,

p = ρRT is the ideal gamma law gas pressure (R is the universal gas constant) and m is the

mass fraction (here of SF6). In the present simulations, a single-gamma is used as multiple

gammas create non-physical pressure oscillations near the material interfaces (which are

non-trivial to mitigate) in conservative shock-capturing schemes for the multi-component

fluid equations.35–38 The fifth- and ninth-order simulations were identical in every respect

except for the reconstruction order.

A conservative finite-difference formulation for hyperbolic conservation laws requires con-

sistent high-order numerical fluxes at the cell boundaries in order to construct the flux

difference across the uniformly-spaced cells. For the Euler equations, the eigensystem of

fluxes is obtained from the Jacobian of the Roe-averaged fluxes in each spatial dimension.

Lax-Friedrichs flux-splitting is used to split the original fluxes into their positive and nega-

tive components (with an introduction of additional artificial dissipation in order to obtain

smoother fluxes33). The resulting positive and negative flux components are then projected

in the characteristic fields using the left eigenvectors to form the positive and negative char-

acteristic variables at each cell center. Then, WENO polynomial reconstruction is used to

reconstruct the fluxes at the cell boundaries with high-order of accuracy: a weighted convex
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combination of all possible rth degree piecewise-polynomial approximations (e.g., r = 3 for

fifth-order and r = 5 for ninth-order) of the characteristic variables using the neighboring

cell-centered values is constructed and evaluated at the boundaries of a given cell. For a given

order of reconstruction, there are r possible rth-degree piecewise-polynomials available, with

smoothness properties depending on the smoothness of the underlying solution. The essen-

tial element of WENO reconstruction is an adaptive nonlinear assignment of the weights

given to those r polynomials: the weight is designed such that a polynomial of degree 2r−1

is formed for the locally-smooth regions of the solution and an essentially non-oscillatory

lower rth-degree polynomial (i.e., upwinding) is used otherwise to avoid Gibbs oscillations

when approximating solution discontinuities. The weights of the r choices of possible sten-

cils around a given cell center are computed utilizing the properly scaled local gradient and

curvature of the data via a divided difference. Hence, relatively smaller (or close to zero)

weights are assigned to polynomials approximating the discontinuous data and nearly equal

weights are assigned to polynomials approximating the smooth data. The high-order recon-

structed positive and negative characteristic variables are summed and then projected back

to physical space via the right eigenvectors, forming a high-order numerical flux at the cell

boundaries. The formal spatial order of accuracy of the scheme is 2r − 1 in smooth flow

regions. As for all other numerical methods, the actual computational accuracy diminishes

to at best first-order near the shock. Although the global order of the solution is reduced to

first near a shock, the high-order reconstruction yields an efficient high-resolution algorithm,

which is essential to long-time, multi-scale simulations of complex shock-induced flows. In

the present study, the semi-discrete equations are evolved in time using the third-order total

variation diminishing (TVD) Runge-Kutta scheme.39

The WENO code used here provides a framework for the multi-dimensional numerical

simulation of the fully-nonlinear evolution of hydrodynamic instabilities and late-time mix-

ing generated by single- and multi-mode Richtmyer-Meshkov, Rayleigh-Taylor and Kelvin-

Helmholtz instabilities. The nonlinear system of hyperbolic partial differential equations

can be solved in one, two or three spatial dimensions. Although fifth- and ninth-order flux

reconstructions are used presently, other odd orders of WENO polynomial reconstruction

can be specified, including third-, seventh- and eleventh-order.
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B. Description of the Mach 1.21 experiment of Collins and Jacobs

The initial conditions for the present simulations were adapted from the Mach 1.21 shock

tube experiment of Collins and Jacobs.15 This experiment was selected for comparison of the

numerical results to the high-resolution corrected density planar laser-induced fluorescence

(PLIF) images showing the evolution of the instability and to the measured perturbation

amplitude prior to reshock. The experiment was performed in a vertical shock tube using

a novel technique to generate a membraneless perturbed interface. The shock tube had

a square test section with cross-section 8.9 cm × 8.9 cm and length 75 cm. The driver

section had a diameter of 10.2 cm and length 100 cm (with a mixture of 50% air and 50%

N2), and the driven section has a cross-section of 8.9 cm × 8.9 cm and length of 261 cm

(n.b., these dimensions are specified more accurately than originally reported by Collins and

Jacobs.15). The shock was generated through the rupture of a diaphragm and propagated

into a mixture of 75% air and 25% acetone by volume at standard room temperature and

pressure. The shock then refracted at the perturbed interface separating the air(acetone)

mixture and the denser sulfur hexafluoride (SF6) gas, giving rise to the growth and evolution

of the Richtmyer-Meshkov instability.

The membraneless interface was generated as follows.40 The shock tube contained hori-

zontal slots on the two opposite walls. The gases entered the shock tube from the opposite

ends, flowed toward each other, and exited through the two slots, resulting in a fine, ini-

tially diffuse interface separating the air(acetone) and SF6. A sinusoidal perturbation was

then generated by gently oscillating the vertical shock tube horizontally using an eccentric

stepper motor at a prescribed frequency to establish a standing wave. The initial diffuse

interface was estimated to be ≈ 0.5 cm wide using the maximum slope determined by the

measurement of the acetone concentration. PLIF was used to visualize the instability evo-

lution using a mixture of the fluorescent acetone with air. The PLIF images were corrected

for non-uniform laser illumination and Beer’s law attenuation. A set of experiments was

conducted for shocks with Mach numbers 1.21 ± 0.02, and images were captured up to 11

ms following the initial shock-interface interaction. The evolution of the instability, with

spikes of heavier fluid penetrating the lighter fluid and bubbles of lighter fluid “rising” in

the heavier fluid, was investigated. The reshock phase when the transmitted shock reflected

from the end wall of the test section and interacted with the evolving interface was also
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described. Concurrent with the arrival of the reflected shock, a reflected rarefaction wave

also interacted with the interface. This initial rarefaction wave (referred to as the driver-

based expansion wave in the sequel) was created by the rupture of the membrane generating

the initial shock; this wave was subsequently reflected from the end (top) wall of the shock

tube, and then interacted with the interface. This interaction with the reflected rarefaction

formed additional complex structure on the evolving interface.

C. Description of the simulations

In the present simulations, only the shock tube test section is considered, so that the

driver-based expansion wave is not captured numerically. Furthermore, the effects of grav-

ity and the horizontal motion of the shock tube are neglected. The upstream conditions

were matched in order to specify a single value of the adiabatic exponent, γ = 1.24815,

corresponding to the air(acetone) mixture. The thermodynamic properties of air(acetone)

vapor and SF6, including differences between the single-gamma simulations and the condi-

tions that would be obtained if two gammas were used are given in Table I (where some

quantities were obtained using one-dimensional shock refraction theory). Reshock occurs

≈ 0.25 ms earlier in the present simulations than would occur in two-gamma simulations.

To match the shock tube test section dimensions, the computational domain had (x, y)

dimension [0, Lx] × [0, Ly] with Lx = 78 cm, Ly = 8.9 cm, and centerline of the per-

turbed initial interface located at x = 3 cm. The shock is initiated at x = 1 cm using the

Rankine-Hugoniot conditions corresponding to a Ma = 1.21 shock in the air(acetone). The

simulations had a grid resolution ∆x = ∆y = 0.0232 cm corresponding to 256 points per

initial perturbation wave length. A CFL number of 0.45 was used.

As in the experiment, the sinusoidal interfacial perturbation in the simulations η(y) =

a0 sin (ky) had amplitude a0 = 0.2 cm (slightly larger than the mean value 0.183 cm reported

in the experiment) to better match the post-shock amplitude, perturbation wave length

λ = 5.93333 cm, and diffuse interface width δ = 0.5 cm. Thus, ka0 = 0.21 � 1, where

k = 2 π/λ is the perturbation wave number, so that the initial growth is linear.

The boundary conditions were: (1) inflow at the entrance of the test section in the stream-

wise (x) direction; (2) reflecting at the end wall of the test section in the streamwise direction,

and; (3) symmetry in the spanwise ( y) direction corresponding to the cross-section of the test
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section. Any turbulent boundary layers on the side walls or other molecular viscous/diffusive

effects present in the experiment are not captured in these inviscid simulations.

In the current investigation, where the computed fluid dynamic fields remain unchanged

over large regions of the domain until late times, a novel adaptive domain algorithm au-

tomatically enlarged the domain size along the shock propagation direction, when changes

from the constant state were detected. This allowed the simulation to begin with a smaller

domain of length Lx = 9.3472 cm, corresponding to a streamwise resolution of Nx = 407.

When the algorithm detected changes in a designated quantity (such as density in the present

case), as the shock or disturbances arrived near the downstream shortened domain boundary,

the domain size was enlarged by 3 cm until the end of the domain was reached at Lx = 78

cm, corresponding to a final resolution of Nx = 3372.

D. Qualitative comparison of density evolution to experimental PLIF images

Corrected PLIF density images from the Collins and Jacobs Mach 1.21 shock tube exper-

iment are compared to the simulation density fields in Fig. 1 at selected times (2.5, 3, 4 and

5 ms) before reshock : the experimental images are shown in the middle row and the fields

from the ninth- and fifth-order simulation are shown in the top and bottom row, respec-

tively (n.b., the simulation fields are rotated 90
◦

counterclockwise in Figs. 1–3 to facilitate

comparison with the experimental images). The PLIF images are shown in false color, with

red and blue corresponding to the lowest and highest fluorescent intensity, respectively. The

temporal sequence of images was obtained from an ensemble of highly reproducible shock

tube experiments. In general, the numerical and experimental images are in very good qual-

itative agreement. By 5 ms, a well-formed mushroom roll-up forms with entrainment of the

air(acetone) into the vortex core. Small differences in the width of the mushroom ‘stem’ and

the width of the ‘cap’ can be observed between the experiment and the simulations. The

experimental images show more pronounced structure inside the vortex roll-ups, and the

roll-ups in the simulations are more spatially compact than those in the experiment. The

ninth-order simulation captures more of the roll-up structure observed in the experiment at

late times than does the fifth-order simulation.

The comparison of the experimental PLIF images to the simulation densities is continued

in Fig. 2 at times just before and following reshock (6, 6.58 and 6.88 ms). The ninth-order
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simulation captures the secondary instability within the roll-ups at 6 ms. The simulation

densities at 6.58 and 6.88 ms exhibit the wave structure developing at the interface as the

transmitted shock enters the air(acetone) gas and the reflected rarefaction returns into the

SF6. A progressively larger time delay reaching ≈ 1 ms develops by 6.88 ms as the sim-

ulations lag in time behind the PLIF density images. This time delay can be explained

by the arrival of the driver-based expansion wave in the experiment (which decelerates the

evolving interface), as well as by the difference in the interface velocity between the simu-

lation and experiment. The rarefaction also causes the formation of small-scale structures

on the interface that are amplified during reshock. The experimental image shows increased

mixing and fragmentation of large structures at 7.781 ms: this results from the excitation

of fluctuations in the third spatial dimension caused by the driver-based expansion wave

present in the experiment and subsequently amplified by reshock (which is not captured

in the simulations), as well as of other excitation mechanisms that may be present. The

simulations show that more complex, finer and disordered structures form following reshock.

In addition, the ninth-order simulation shows the appearance of small-scale roll-ups on the

fluid interface that are not present in the experimental and fifth-order simulation images.

This may be due to molecular dissipation effects present in the experiment, and to the nu-

merical dissipation in the fifth-order simulation that is significantly larger than that in the

ninth-order simulation. Note that the PLIF images in Figs. 1 and 2 exhibit boundary layer

effects on the left side wall that are not present in the simulations.

A close-up of the roll-ups, including a comparison of the internal structure from the

fifth- and ninth-order simulations is shown in Fig. 3 at 4, 5, 6 and 6.38 ms. The large-

scale features are similar between the simulations. The ninth-order simulation densities

exhibit sharper roll-ups and include more complex internal corrugated structure than the

fifth-order densities. The additional structure within the roll-up has been attributed to

the vortex-accelerated secondary baroclinic circulation,16 which causes vorticity of opposite

sign to appear inside the core, contributing to additional mixing and to fragmentation.

Such structures have also been observed in the recently reported late-time, single-mode

Richtmyer-Meshkov instability experiments of Jacobs and Krivets.41 See Part II for further

discussion of the structure in the roll-up, including the effects of reshock.

The qualitative comparison above shows that it is possible to achieve very good agree-

ment between a two-dimensional, high-resolution shock-capturing simulation with high-order
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WENO flux reconstruction and experimental density PLIF images before reshock when three-

dimensional effects are not significant. In addition, the comparison of the densities from the

fifth- and ninth-order simulations at 5 and 6 ms demonstrates that higher-order reconstruc-

tion better captures secondary instabilities on the interface and within the vortex cores. The

roll-ups in the ninth-order simulation appear tighter and sharper, and with more fine-scale

structure. The numerical simulation fields also display the shock focusing during the reshock

process (see Part II for a more detailed examination of this process).

Following reshock, the experiment and simulations exhibit distinctively different flow

structures due to the absence of the driver-based expansion wave and the increased impor-

tance of three-dimensional effects (including vortex stretching and associated mechanisms)

that are not accounted for in the present simulations. This results in the formation and per-

sistence of large-scale structures in the simulations, consistent with the inverse cascade of

kinetic energy from small scales to larger scales in two-dimensional turbulence experiments

and simulations, and explains the much larger simulation amplitudes following reshock com-

pared to the experimental data points (further discussed in Part II). The experiments are

affected by molecular diffusion and dissipation mechanisms which are not explicitly modeled

by the equations solved numerically, i.e., the simulations contain implicit numerical diffu-

sion and dissipation that may not be comparable to the molecular values in the physical

experiment. The comparison of the fifth- and ninth-order simulations shows that as the

order is increased, finer and more complex asymmetric structures appear, consistent with

a reduced level of numerical dissipation. The sensitivity of the results to third-, fifth- and

ninth-order spatial flux reconstruction, to grid resolution corresponding to 128, 256 and 512

points per initial perturbation wave length, and to numerical dissipation are systematically

and self-consistently examined elsewhere.

III. LINEAR AND NONLINEAR PERTURBATION AMPLITUDE GROWTH

MODELS

The prediction of the Richtmyer-Meshkov instability growth in the weakly-nonlinear,

nonlinear and turbulent regimes is of contemporary interest.3,4 An overview of the principal

perturbation amplitude growth models categorized according to their underlying physical

assumptions on the flow is presented in this section. It is implicitly assumed in these
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models that molecular dissipation and diffusion effects, surface tension, and other effects are

negligible (extensions of some of the models to include such effects have been developed,

but are not discussed here). While each of these models has limitations and a restricted

domain of applicability, they represent an effort to better understand fundamental aspects

of Richtmyer-Meshkov instability growth into the nonlinear regime.

The definitions of the bubble and spike amplitudes ab(t) and as(t), and the mixing layer

width h(t) are illustrated in Fig. 4. The contour shows the canonical early-time evolution

of the interface induced by the Richtmyer-Meshkov instability from a sinusoidal initial per-

turbation. The spikes penetrate into the lighter fluid and roll up, while bubbles “rise” into

the heavier fluid. The solid horizontal line shows the location of the shocked, unperturbed

interface used as a reference for the determination of the bubble and spike amplitudes from

the simulation data. The distance from the unperturbed interface to the bubble tip is the

bubble amplitude ab, while the distance from the unperturbed interface to the spike tip is

the spike amplitude as. The numerical determination of these amplitudes is discussed in

Sec. IVA. The mixing layer width is the sum of the bubble and spike amplitudes

h(t) = ab(t) + as(t) . (3)

The mixing layer amplitude predicted by the models presented in this section is the average

of the bubble and spike amplitude

a(t) =
ab(t) + as(t)

2
, (4)

i.e., one-half the mixing layer width. The corresponding mixing layer width and amplitude

growth rates are dh/dt = dab/dt + das/dt and da/dt = (dab/dt+ das/dt)/2, respectively.

Each of the models for da/dt considered below can be integrated analytically to obtain a(t).

The corresponding bubble and spike (tip) velocities used in Sec. IVC are vb(t) = dab/dt and

vs(t) = das/dt, respectively.

For the model summary given below, it is useful to define the key quantities appearing

in the models: k = 2π/λ is the wave number of the initial perturbation (where λ is the

initial perturbation wave length), a−0 is the pre-shock initial perturbation amplitude, a+
0 is

the post-shock initial perturbation amplitude, A− =
(
ρ−1 − ρ−2

)
/
(
ρ−1 + ρ−2

)
is the pre-shock

Atwood number, A+ =
(
ρ+

1 − ρ+
2

)
/
(
ρ+

1 + ρ+
2

)
is the post-shock Atwood number, and ∆u is

the velocity jump at the interface following shock refraction. In some of the definitions of
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the models, the scalings

τ = k v0 t , v0 = k∆uA+ a+
0 (5)

are used, where v0 is the Richtmyer velocity.

A. Impulsive models

Impulsive models based on representing the shock as an instantaneous δ-function accelera-

tion are briefly reviewed and summarized here. Impulsive models for the Richtmyer-Meshkov

instability were developed by adapting existing models for the Rayleigh-Taylor instability

(subject to a constant acceleration) to the case of an impulsive acceleration. These models

predict a linear growth in time of the perturbation amplitude that captures the early stages

of the instability evolution before nonlinear saturation effects become dominant.

1. The Richtmyer model

The first impulsive model proposed for the growth of a single-mode perturbation is due

to Richtmyer.1 Richtmyer modified earlier work42 on the growth of a small single-mode

perturbation with amplitude a(t) and wave number k when a dense fluid is accelerated

continuously into a lighter fluid [the Rayleigh-Taylor instability described by d2a/dt2 = gAk

with A = (ρ1 − ρ2)/(ρ1 + ρ2) the Atwood number], by replacing the constant gravitational

acceleration g with an impulsive acceleration ∆uδ(t):

da

dt
= k∆uA+ a+

0 ≡ v0 . (6)

Integrating gives

a(t) =
(
1 + k∆uA+ t

)
a+

0 . (7)

2. The Meyer-Blewett model

Meyer and Blewett43 performed two-dimensional Lagrangian simulations of the single-

mode Richtmyer-Meshkov instability and computed growth rates corresponding to a shock

propagating from a light to a heavy gas and vice versa. Good agreement with the Richtmyer

formula, Eq. (6), was obtained for the light-to-heavy case; however, better agreement in the
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heavy-to-light case than that given by Eq. (6) was obtained by averaging the pre- and

post-shock amplitudes,
da

dt
= k∆uA+ a+

0 + a−0
2

. (8)

Integrating gives

a(t) = a+
0 + k∆uA+ a+

0 + a−0
2

t . (9)

3. The Fraley model

Fraley44 presented an analytic solution to the linearized perturbation equations in the

case of a reflected shock wave. The complete set of linearized, compressible perturbation

equations was first solved numerically by Richtmyer.1 Fraley reconsidered the perturbation

equations for a single-mode initial perturbation and solved them using Laplace transform

techniques in the time domain. For weak shocks the solution is given by (see Ref. 4)

da

dt
= k∆u a−0

[
A− + ε

F (c, A−)

γ1

]
, (10)

where ε = 1 − p−/p+ is the shock strength, F (c, A−) ≡{
(c−1)2

2
− 1+A−

1−A− − c+ 1
c

[
(1+A−)

2

1−A− + (1− A−) c2
]}

1−A−
c+1

, c ≡
√

(1 + A−) γ2/ (1− A−) γ1,

and γ1 and γ2 are the adiabatic exponents of the ideal gases to the left and right of the

interface, respectively. Integrating Eq. (10) gives

a(t) = a+
0 + k∆u

[
A− + ε

F (c, A−)

γ1

]
t a−0 . (11)

The Fraley solution was first recognized by Mikaelian45 as the most accurate solution for

the initial perturbation growth.

4. The Vandenboomgaerde-Mügler-Gauthier model

Vandenboomgaerde, Mügler and Gauthier46 modified the Richtmyer model by replac-

ing the impulsive acceleration, post-shock Atwood number and post-shock amplitude with

linearly time-varying values from pre- to post-shock quantities, obtaining

da

dt
= k∆u

[
A+ a+

0 + A− a−0
2

−
(A+ − A−)

(
a+

0 − a−0
)

6

]
. (12)
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In applications of this formula, the second term on the right is typically very small compared

to the first term and is neglected. Integrating Eq. (12) gives

a(t) = a−0 + k∆u

[
A+ a+

0 + A− a−0
2

−
(A+ − A−)

(
a+

0 − a−0
)

6

]
t . (13)

5. The Mikaelian model for diffuse interfaces

Mikaelian47 extended the work of Duff, Harlow and Hirt48 for diffuse interfaces in the

Rayleigh-Taylor instability to the Richtmyer-Meshkov instability, obtaining

da

dt
=
k∆uA+

ψ+
a+

0 , (14)

where ψ+ is the growth reduction factor (in general, a function of a and A+) satisfying

the eigenvalue equation d
dx

(
ρdf

dx

)
=

(
ρ− ψ+

k A+∆u
df
dx

)
k2f . This equation was solved assuming

a density profile of the form ρ(x) = ρ [1 + A+ tanh (x/δ)] or ρ(x) = ρ [1 + A+ erf (x/δ)],

where ρ = (ρ1 + ρ2)/2, so that the change in density occurs over a diffuse interface width δ.

Integrating Eq. (14) gives

a(t) =

(
1 +

k∆uA+

ψ+
t

)
a+

0 . (15)

B. Perturbation models

Models based on the asymptotic expansion of the linear perturbation equations are briefly

reviewed here. These models generate asymptotic series with limited radii of convergence:

the convergence can be improved using Padé approximants.

1. The Zhang-Sohn model

Zhang and Sohn49 developed a model for the growth of a two-dimensional Richtmyer-

Meshkov unstable interface from early to late times in the case of a reflected shock (light-

to-heavy transition). The dynamics of the interface are modeled using the linear, com-

pressible flow equations for early times and using the nonlinear, incompressible flow equa-

tions for later times. Let y = η(x, t) denote the initial perturbation and let φr(x, y, t)

denote the velocity potentials of the inviscid, irrotational fluids r = 1 and 2. The poten-

tials satisfy the Laplace equation ∇2φr = 0 with interfacial kinematic boundary condition
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∂η
∂t

∣∣∣∣
y=η

= ∂φr

∂x
∂η
∂x

∣∣∣∣
y=η

−∂φr

∂y

∣∣∣∣
y=η

, together with the Bernoulli equation ρ1

(
∂φ1/∂t− |∇φ1|2/2

)
=

ρ2

(
∂φ2/∂t− |∇φ2|2/2

)
, where ∇ = (∂/∂x, ∂/∂y). The initial conditions are η(x, 0) =

a+
0 cos (kx) and dη/dt|t=0 = a+

0 σ cos (kx) , where σ ≡ kA+∆u = v0/a
+
0 .

Substituting the perturbation expansions η(x, t) =
∑∞

n=1 η
(n)(x, t) and

φr(x, y, t) =
∑∞

n=0 φ
(n)
r (x, y, t) into the equations, collecting terms of

the same order and solving the ordinary differential equations in time

yields η(1)(x, t) = a+
0 (1 + σt) cos (kx), η(2)(x, t) = 1

2
k

(
σa+

0

)2
A+ t2 cos (2kx)

and η(3)(x, t) = − 1
24
k2

(
a+

0

)3
σ

{[
4 (A+)

2
+ 1

]
σ2t3 + 3σt2 + 6t

}
cos (kx) +

1
8
k2

(
a+

0

)3
σ

{[
4 (A+)

2 − 1
]
σ2t3 − 3σt2

}
cos (3kx) to third-order. The series approxi-

mation can be evaluated at the spike and bubble tip locations (x = 0 and at x = π/k,

respectively) to yield the amplitude a(t) = [η(0, t)− η(π/k, t)]/2. This formulation gives an

independent series for the spike and for the bubble, which can be used to evaluate separate

bubble and spike amplitude models. The amplitude growth is given by

da

dt
=

{
1− k2 v0 a

+
0 t+

[(
A+

)2 − 1

2

]
(k v0 t)

2

}
v0 , (16)

where v0 is the Richtmyer velocity. Integrating gives

a(t) = a+
0 +

{
1− k2 v0 a

+
0

2
t+

1

3

[(
A+

)2 − 1

2

]
(k v0 t)

2

}
v0 t . (17)

Unfortunately, the range of validity of this finite Taylor series approximation is limited.

Hence, Padé approximations (see the discussion of the Vandenboomgaerde et al. model

below) are used to extend the approximation into the nonlinear regime:

da

dt
=

v0

1 + k2 v0 a
+
0 t+ max

[
0,

(
k a+

0

)2− (A+)2+ 1
2

]
(k v0 t)

2
. (18)

Integrating Eq. (18) gives

a(t) = a+
0 +

2

k

√
4 max

[
0,

(
k a+

0

)2− (A+)2+ 1
2

]
−

(
k a+

0

)2

(19)

× tan−1

k a+
0 + 2 max

[
0,

(
k a+

0

)2− (A+)
2
+ 1

2

]
k v0 t√

4 max
[
0,

(
k a+

0

)2− (A+)2+ 1
2

]
−

(
k a+

0

)2

.
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The choice of the Padé approximant P 0
2 for

(
ka+

0

)2 ≥ (A+)
2 − 1/2 and P 0

1 for
(
ka+

0

)2 ≤

(A+)
2 − 1/2 matches the experimental late-time growth. Note that v0 in Eq. (18) can be

replaced by vlin(t),
49 the numerically-determined linear growth rate obtained by solving the

full set of compressible perturbation equations.1 In this case, Eq. (18) must be integrated

numerically to obtain a(t). The Zhang-Sohn model does not predict the generally accepted

1/t growth at late times.

2. The Vandenboomgaerde-Gauthier-Mügler model

Vandenboomgaerde, Gauthier and Mügler50 proposed a simplified version of the Zhang-

Sohn perturbation expansion. First, choose σ ≡ k∆u
2

(
A+ + A−

1−∆u/ushock

)
such that a−0 σ gives

the right side of Eq. (12), where ushock is the shock velocity. Noting that an accurate per-

turbation series can be obtained by retaining only the secular terms (i.e., the terms with the

largest unbounded part), only the largest power from each term of the Zhang-Sohn solution is

retained to third-order: η(1)(x, t) = a+
0 (1 + σt) cos (kx), η(2)(x, t) = 1

2

(
a+

0 σt
)2
kA+ cos (2kx)

and η(3)(x, t) = −1
8

(
ka+

0

)2
(σt)3

{
1
3

[
4 (A+)

2
+ 1

]
cos (kx)−

[
4(A+)

2 − 1
]
cos (3kx)

}
. Such

an approximation is usually valid for large times, and the first two terms of this series are

identical to the Zhang-Sohn series, so that very good agreement is expected between the

predictions of this model and the Zhang-Sohn model at small times. An advantage of this

perturbation method is that higher order terms can be easily computed.

As only the high-order terms in the series are retained, the determination of the coef-

ficients shifts from integrating in time to solving an algebraic system. The growth rate is

given by the 2Nth-degree polynomial

da

dt
= a+

0 σ
N∑
n=0

(2n+ 1)
(
k a+

0 σ t
)2n

P2n+1(A
+) , (20)

where P2n+1 are the series approximation in A+ (not shown). Integrating gives

a(t) = a+
0 +

1

k

N∑
n=0

(
k a+

0 σ t
)2n+1

P2n+1(A
+) , (21)

where N = 4 and 5 correspond to the ninth- and eleventh-degree cases, respectively. The

P 4
6 Padé approximant to da/dt is

da

dt
=

∑4
p=0Ap(k a

+
0 σ t)

p∑6
q=0Bq(k a

+
0 σ t)

q
, (22)
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where the Padé coefficients {Ap} and {Bq} are not given here.

3. The Matsuoka-Nishihara-Fukuda model

Matsuoka, Nishihara and Fukuda51 proposed a new formulation of the Zhang-

Sohn kinematic boundary condition to account for interface stretching: this bound-

ary condition was replaced by u · n = [(ρ1∇φ1 + ρ2∇φ2) · n]/(ρ1 + ρ2) and u · s =

[(ρ1∇φ1 + ρ2∇φ2) · s]/(ρ1 + ρ2) evaluated on the interface, where u ≡ (ρ1u1+ρ2u2)/(ρ1+ρ2)

is the density-weighted mean velocity, n is the unit normal vector to the interface, and s is

the unit tangent vector to the interface. The perturbation expansion yields different expan-

sions for the bubble and spike amplitude. When the first three terms are considered, the

bubble and spike velocities are given by

∂ab,s
∂τ

=

[
∓

(
A+

)2 ± 1

2

]
τ 2 (23)

+
[
∓2

(
A+

)2
k a+

0 + A+ ± k a+
0

]
τ

+

[
∓2

(
A+

)2 ± 3

2

](
k a+

0

)2
+
k a+

0 A
+

2
∓ 1 ,

where τ is the rescaled time [Eq. (5)] and the upper (+ or −) and lower (− or +) sign in ±

or ∓ denotes the bubble and spike, respectively. The asymptotic series can be improved by

considering P 0
2 Padé approximants:

∂ab,s
∂τ

=
f 3
±{

f±
[
(A+)2 − 1

2

]
+ g2

±
}
τ 2 − f± g± τ + f 2

±
, (24)

where f± ≡ ∓
[
2 (A+)

2 − 3/2
](
ka+

0

)2
+ A+ka+

0 /2∓ 1 and g± ≡ ∓2 (A+)
2
ka+

0 + A+ ± ka+
0 .

Integrating gives

ab,s(τ) = ab,s(0) +
f 2
±√

f±
[
(A+)2 − 1

2

]
+ g2

±

(25)

× tan−1

2
{
f±

[
(A+)

2 − 1
2

]
+ g2

±

}
τ − f± g±√

f±
[
(A+)2 − 1

2

]
+ g2

±

 .

4. The Sadot et al. model

The empirical Sadot et al.52 model for the Richtmyer-Meshkov instability is based on fits

to experimental data and on asymptotic growth laws. This model was extensively tested
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against experimental data and appears to be valid over Ma = 1.3–3.5 in air and SF6.

The model provides a single formula that captures the initial linear growth, and the later

nonlinear growth of the bubble and spike,

dab,s
dt

=
(1 + k v0 t) v0

1 + (1± A+) k v0 t+ 1±A+

1+A+

(k v0 t)
2

2πC

(26)

[the upper (+) and lower (−) sign in ± denotes the bubble and spike, respectively] where

C = 1/(3π) for A+ ≥ 0.5. In the limit A+ → 0, C = 1/(2π). Integrating Eq. (26) gives

ab,s(t) = ab,s(0) +
2− 2πC (1 + A+)

k
√

2
πC

1±A+

1+A+ − (1± A+)2
tan−1

 1± A+ + 1±A+

1+A+
k v0 t
πC√

2
πC

1±A+

1+A+ − (1± A+)2

 (27)

+
π C

k

1 + A+

1± A+
ln

[
1 +

(
1± A+

)
k v0 t+

1± A+

1 + A+

(k v0 t)
2

2πC

]
.

This model is consistent with 1/t asymptotic growth at late times.

C. Potential flow models

Potential flow models describe the amplitude evolution of the instability through the late-

time, nonlinear regime by the bubble and spike velocity evolution. Layzer53 developed the

first potential flow model to describe the Rayleigh-Taylor instability, which was subsequently

extended to the Richtmyer-Meshkov instability by others. These models predict that the

bubble velocity in a Richtmyer-Meshkov instability approaches zero asymptotically.

1. The Goncharov model

Goncharov54 extended the two-dimensional Layzer model to the A+ 6= 1 case using a

parabolic expansion η(t) = h(t) + ξ(t)x2 near the bubble and spike tips and initial pertur-

bations φ1(x, y, t) = a1(t) cos (kx) ek[y−h(t)] and φ2(x, y, t) = b1(t) cos (kx) e−k[y−h(t)] + b2(t)y.

This ansatz requires the solution of five ordinary differential equations for the functions

a1(t), b1(t), b2(t), h(t) and ξ(t). The asymptotic bubble velocity for the Richtmyer-Meshkov

instability is obtained by taking the t→∞ limit of the result:

vb(t) =
3 + A+

3 (1 + A+) k t
. (28)

22



2. The Sohn models

Sohn55 also extended the Layzer model to fluids with arbitrary density ratios. The

approach differs from that of Goncharov in the use of a simpler form for the initial potentials,

φ1(x, y, t) = −a(t) cos (kx) ek y and φ2(x, y, t) = a(t) cos (kx) e−k y, leading to a simplified

system requiring the solution of three ordinary differential equations for the functions a(t),

h(t) and ξ(t). The Richtmyer-Meshkov asymptotic bubble velocity is given by

vb(t) =
2

(2 + A+) k t
. (29)

The ratio of Eq. (28) and Eq. (29), (3 + A+)(2 + A+)/[6 (1 + A+)] quantifies the difference

between the Sohn and Goncharov models. In the present case with A+ = 0.6274 (see Table

II) the ratio indicates that the predictions are within 3% of one another.

Sohn56 also extended the Zufiria model57,58 to arbitrary Atwood numbers. In the Zu-

firia model, originally developed to model bubbles of different size, the velocity potential is

obtained by approximating the bubble as a point source. The bubble velocity is

vb(t) =

[
3 + A+

3 (1 + A+)
− 1

q
+

2A+

3 (1 + A+) q2

]
1

k t
, (30)

where q = q(A+) is the root of the cubic polynomial (3− A+) q3 − (21 + 9A+) q2 +

(3 + 15A+) q − 4A+ = 0 . Comparing the Zufiria model [Eq. (30)] with the Goncharov

model [Eq. (28)] shows that the Zufiria model contains two additional terms, resulting in a

predicted asymptotic velocity ≈ 14% smaller for the present value A+ = 0.6274.

3. The Mikaelian model for the bubble amplitude

Mikaelian59 obtained an analytic expression for the transition of the bubble ampli-

tude from the linear to the nonlinear regime by combining the Richtmyer initial growth

[Eq. (6)] with the Goncharov late-time bubble growth for arbitrary Atwood numbers [Eq.

(28)]. Mikaelian used a technique attributed by Layzer53 to Fermi for combining the initial

and asymptotic bubble velocities. However, unlike the Fermi model, in which the transi-

tion between the linear and asymptotic velocity occurs when the two velocities are equal,

Mikaelian proposed a transition between these velocities at an earlier time corresponding

to ab = 1/(3k), resulting in decreasing the bubble amplitude in accord with numerical and
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experimental observations. For times t < t∗ ≡
[
1/

(
3ka+

0

)
− 1

]
/(kA+∆u), the amplitude is

given by Eq. (6), so that ab(t
∗) = 1/(3k). The bubble amplitude is given by

ab(t) =
1

3 k

{
1 +

3 + A+

1 + A+
ln

[
1 +

3 k v0 (1 + A+)

3 + A+
(t− t∗)

]}
(31)

for times t > t∗, so that vb agrees with Eq. (28) in the limit of large times.

IV. COMPARISON OF SIMULATION AMPLITUDES TO EXPERIMENTAL

DATA AND TO MODEL PREDICTIONS

In this section, the perturbation amplitude growth obtained from the fifth- and ninth-

order simulations is compared to the experimental data of Collins and Jacobs15 and to the

predictions of the models in Sec. III. First, the method used to determine the amplitudes

from the simulations is presented. Next, these amplitudes are compared to the experimental

data points. The ninth-order amplitude is then compared to the predictions of impulsive and

nonlinear perturbation models, with the model parameters computed self-consistently from

the simulation. The bubble and spike amplitudes are also compared with the predictions

of bubble and spike amplitude growth models and with the asymptotic bubble velocities

predicted by potential flow models. A local and a global metric is used to quantify the

differences between the various predictions and the simulation and experimental data—

an average fractional deviation and the ratio of the model predictions to the ninth-order

amplitude, respectively. Prior to differentiating a, the numerical amplitude was smoothed

using a standard five-point moving average60 to smooth oscillations otherwise present.

A. Determination of the bubble, spike and mixing layer amplitudes

Consider the mole fraction

X(x, y, t) =
m(x, y, t)M1

[1−m(x, y, t)]M2 +m(x, y, t)M1

, (32)

where M1 and M2 are the molecular weights of the air(acetone) and SF6, respectively, and

m is the mass fraction of SF6. Spatially-averaging X(x, y, t) in the spanwise direction gives

X(x, t) =
1

Ly

∫ Ly

0

X(x, y, t) dy , (33)
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where Ly is the spanwise domain width. The bubble and spike tip locations, `b(t) and

`s(t), are then defined as the x position where X ≤ 1 − ε and X ≥ ε, respectively, with

ε = 0.01 in the present investigation.61 The width is given by h(t) = `b(t) − `s(t). This

measure of the width was chosen, rather than using the distance between the lines x =

λ/2 and x = λ, in order to also examine the evolution of the width following reshock

when the interface becomes multi-valued and disordered. To obtain the bubble and spike

amplitudes separately, a simulation without an initial perturbation, but otherwise identical to

the Richtmyer-Meshkov instability simulation, was performed to obtain the interface position

`int, so that the bubble and spike amplitudes are determined separately by ab(t) ≡ `b(t) −

`int(t) and as(t) ≡ `int(t)− `s(t), respectively.

The interface and shock locations from the ninth-order simulation are exhibited in the

x-t diagram of Fig. 5. The interface location `int(t) is shown as a solid line. The bubble

and spike tip locations are indicated by the dash-dot and dashed lines, respectively. The

horizontal distance between the spike and bubble tips represents the width h(t) (see Fig. 4 for

a schematic of the amplitudes). The shock reflects from the end wall at ≈ 4 ms and reshock

occurs at t ≈ 6.4 ms when the shock wave refracts at the evolving interface, generating a

transmitted shock in the air(acetone) and a reflected rarefaction in the SF6 (the reflected

rarefaction is not shown in the x-t diagram). The transmitted shock following reshock

moves faster than the incident shock, as indicated by the change in slope, corresponding to

a slow-fast refraction.62 Following reshock, the interface is compressed (as seen from the kink

in the bubble and spike locations) and moves away from the end wall of the test section.

Additionally, the amplitude grows more rapidly than prior to reshock: the increased growth

is due to the additional vorticity deposited on the evolving interface during reshock (see

Part II). The reshock (inversion) process occurs over a time interval of ≈ 0.2–0.3 ms.

The following conventions are used when comparing the numerical simulation data to the

predictions of the models presented in Sec. III. The amplitude growth rate is adjusted to

account for the diffuse interface by including the growth reduction factor ψ by

da

dt
−→ 1

ψ

da

dt
, (34)

which was also used by Collins and Jacobs15 to compare their amplitude data to growth

model predictions. The time and initial velocity are also rescaled according to (5), where

a+
0 is determined by multiplying the pre-shock amplitude a−0 by the compression factor
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ηcomp = 1 − ∆u/ushock. Reshock occurs at τ . 5 ms. In general, when a model predicts

the growth rate, da/dt, the amplitude a can be obtained by solving an initial value problem

using a fourth-order Runge-Kutta scheme (for example).

Table II gives the parameters used in the amplitude growth model predictions, which are

also compared to the experimental values (see Table 1 in Ref. 15). An 11% discrepancy

exists between the interface velocity ∆u after the passage of the incident shock reported

here and the experimental value [the experimental value of ∆u can be inferred from Eq.

(6), which was also used by Collins and Jacobs]. A one-dimensional analysis assuming ideal

gas behavior and a non-ventilated shock tube gives ∆u = 6420 cm/s while the measured

speed is only ∆u = 6060 cm/s, which is attributed to the slots in the shock tube.15 The

single-gamma limitation of the present simulations only accounts for the difference between

the speed of 6731 cm/s and the one-dimensional shock refraction theory value of 6420 cm/s.

B. Comparison to experimental amplitude data

The fifth- and ninth-order simulation amplitudes are compared to the Collins and Jacobs15

experimental amplitude data in Fig. 6. The layer begins growing immediately following the

initial shock passage. The initial rapid growth saturates at ≈ 4 ms, and reshock occurs

≈ 2.4 ms later. During reshock, the amplitude is compressed by ≈ 1 cm and subsequently

grows rapidly. Comparison of the numerical and experimental data indicates very good

agreement up to the time at which the driver-based expansion present in the experiment

(but not present in either the simulations or models) begins to expand the layer at ≈ 4.5–5

ms (see Fig. 4 of Collins and Jacobs15). The subsequent discrepancy is due to the arrival

of the driver-based expansion wave not modeled in the simulation and to the difference

in interface velocity between the simulation and experiment. The driver-based expansion

decelerates the interface and, thus, delays the reshock to t > 8 ms in the experiment.

For t > 3 ms, the fifth-order amplitude is slightly larger than the ninth-order amplitude

up to reshock. The instability evolution in the experiment is essentially two-dimensional

prior to reshock (by virtue of the manner in which the initial perturbation was produced),

and becomes three-dimensional following reshock, as the shock-interface interaction excites

fluctuations in all spatial directions. Thus, it is reasonable to expect that a two-dimensional

numerical simulation can reproduce the experimentally-measured amplitude growth prior to
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reshock. However, three-dimensional simulations are necessary to more accurately estimate

the mixing layer width evolution and other quantities following reshock.

The simulation bubble and spike amplitudes are also shown in Fig. 6: the amplitude

asymmetry is due to the relatively large Atwood number. Prior to reshock, the fifth-order

bubble and spike amplitudes are slightly larger than the ninth-order amplitudes. Following

reshock, the fifth-order bubble amplitude is slightly larger than the ninth-order amplitude,

but the converse is true for the spike amplitude. To globally quantify the difference between

the experiment and simulation, the average fractional deviation41

∆ =
1

N

N∑
i=1

|asim(ti)− aexp(ti)|
asim(ti)

(35)

between the simulation data, asim(ti), and the experimental data points, aexp(ti), is computed

at the times ti (i = 1, 2, . . . , N), where N = 51 is the number of experimental data points

and the simulation amplitudes are spline interpolated to the experimental times ti. The

results ∆fifth = 0.1 and ∆ninth = 0.11 indicate that both amplitude predictions are very

similar. As a result, only the ninth-order amplitude is considered in the next sections.

C. Comparison to the predictions of impulsive models

Here, simulation and experimental data are compared to the predictions of the impulsive

models described in Sec. IIIA when they are corrected for the case of a diffuse interface

by (34). The ninth-order amplitude is compared to the prediction of the Richtmyer1 model

[Eq. (6)], the Meyer and Blewett43 model [Eq. (8)], the Fraley44 model [Eq. (10)] and

the Vandenboomgaerde et. al.46 model [Eq. (12)] in Fig. 7. The normalized amplitude

k [a(τ)− a0] is shown versus the normalized time τ given by Eq. (5). The impulsive models

all correctly capture the initial growth for τ < 1, although they slightly overestimate the

amplitude. For τ > 1 (typically referred to as the nonlinear growth phase), nonlinear effects

ensue and the models significantly overestimate the amplitude and its growth rate. The

impulsive models predict a constant growth rate, whereas the simulation growth decreases

steadily in time as in the experiment due to nonlinear saturation effects. Thus, it is difficult

to determine which model agrees best with the data at early times. However, this is not the

case for all initial conditions, as plotting the normalized growth rate as a function of the

shock strength and comparing the predictions of the impulsive models to the Fraley (exact)
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solution would show.45 For strong shocks the impulsive models exhibit large deviations from

the Fraley solution, indicating that they are no longer valid.

D. Comparison to the predictions of perturbation models

The numerical and experimental amplitude data are compared here to the predictions of

the nonlinear perturbation models summarized in Sec. III B when they are corrected for the

case of a diffuse interface by (34). The experimental and simulation data are compared to

the perturbation series solutions of Zhang and Sohn49 [Eq. (16)], Vandenboomgaerde et al.50

[Eq. (20)] of degree 9 and 11, and Matsuoka et al.51 [Eq. (23)] in Fig. 8. Also shown in Fig.

8 is a comparison of the normalized growth rate, kda/dτ , from the ninth-order simulation

to the predictions of the nonlinear perturbation series models versus the normalized time

τ : the perturbation series capture the initial growth, but quickly diverge. In particular,

the eleventh-order Vandenboomgaerde et al. perturbation series has a smaller radius of

convergence than the ninth-order series: the series can be extended via Padé approximants

to expand the radius of convergence.

The experimental and numerical data are compared to the predictions of the nonlinear

models extended via Padé approximants in Fig. 9. Shown are the Zhang-Sohn P 0
2 Padé

approximant [Eq. (18)], the Vandenboomgaerde et al. P 4
6 Padé approximant [Eq. (22)] and

the Matsuoka et al. P 0
2 Padé approximant [Eq. (24)]. The prediction of the Sadot et al.52

empirical model [Eq. (26)] is also shown. The Zhang-Sohn and Vandenboomgaerde et al.

Padé model predictions agree well with the experimental data in the linear and nonlinear

regimes. The Vandenboomgaerde et al. Padé approximant captures the correct behavior at

early times τ < 1, but overestimates the amplitude at later times. The Zhang-Sohn Padé

approximant underestimates the amplitude for τ < 1, but gives the correct behavior for

later times. The Matsuoka et al. Padé approximant correctly predicts the amplitude at

early times but underestimates the amplitude at late times. Also shown in Fig. 9 is the

normalized growth rate, kda/dτ , from the ninth-order simulation and the predictions of the

nonlinear models. The nonlinear models considered here generally capture both the initial

and late-time amplitude growth.

To determine which of the models gives the amplitude growth in best agreement

with the simulation data, the ratios of the Zhang-Sohn (Padé), Vandenboomgaerde et
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al. (Padé), Matsuoka et al. (Padé) and Sadot et al. models, to the simulation data,

[amod(τ)− a0]/[asim(τ)− a0], are presented in Fig. 10. For τ & 0.4, the Zhang-Sohn Padé

model is in best agreement with the simulation, overestimating the data by < 5% over the

evolution time. Collins and Jacobs15 reported that their data is in best agreement with the

amplitude predicted by the Sadot et al. model. Only the Sadot et al. model has the cor-

rect growth at late time, whereas the amplitudes from the other models attain a maximum

between τ ≈ 0.7–1.6 and then rapidly decay up to reshock τ . 5. To further support the

conclusions of the present investigation, the average fractional deviation [Eq. (35)] is also

computed between the simulation results and the model predictions, ∆sim in Table III. The

agreement between the simulation amplitudes and the experimental data, but the different

conclusions regarding which amplitude growth model best agrees with the simulation and

experimental data, motivates a study of the sensitivity of the model predictions to the model

input parameters v0, A
+, a+

0 and ∆u presented in Sec. IVF

E. Comparison of bubble and spike amplitudes and velocities to the predictions

of potential and perturbation models

A comparison of the bubble and spike amplitudes from the ninth-order simulation to the

Matsuoka et al. [Eq. (24)] and the Sadot et al. [Eq. (26)] model predictions, when they

are corrected for the case of a diffuse interface by (34), is shown in Fig. 11. The bubble

amplitude prediction of the Mikaelian model [Eq. (31)] is also shown. The Matsuoka et

al. model overestimates the bubble and spike amplitude. The Sadot et al. and Mikaelian

models predict very good agreement for the bubble amplitude from the linear through the

nonlinear regime. However, the Sadot et al. model overestimates the spike amplitude from

the simulation. The ratio of the predicted bubble and spike amplitudes to the simulation

results, respectively, is also shown in Fig. 11. The ratio shows an initial difference between

the predictions of the Mikaelian and Sadot et al. models for the bubble amplitudes. However,

this difference decreases, and by 3 ms the predictions of both models are nearly identical.

For short times following the passage of the shock, the spike amplitude from the Matsuoka

et al. model is in close agreement with the simulation amplitude. See Table III for the

average fractional deviation [Eq. (35)] computed between the simulation results and the

model predictions.
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A comparison between the bubble and spike velocities from the simulation with the

asymptotic bubble velocities predicted by the Goncharov model [Eq. (28)], the Sohn-Layzer

model [Eq. (29)] and the Sohn-Zufiria model [Eq. (30)], and the predictions for the bubble

and spike velocities from the Matsuoka et al., Sadot et al. and Mikaelian models, are shown

in Fig. 12. The asymptotic bubble velocities predicted by potential theory and the Sadot

et al. and Mikaelian models are in very good agreement. The Sohn-Layzer and Goncharov

models give nearly identical predictions. The bubble velocities predicted by the Sadot et

al. model, the Mikaelian model, and the asymptotic velocity predicted by the Sohn-Zufiria

model are all in very close agreement and are closest to the simulation bubble velocity. The

Matsuoka et al. model underpredicts the late-time bubble velocity. The Sadot et al. and

Matsuoka et al. model overpredicts and underpredicts the spike velocity, respectively.

F. Comparison of amplitude model predictions using experimental and numerical

model parameters

The very good agreement between the numerical simulations and experiment shown in

the previous section does not extend to the predictions of nonlinear amplitude growth mod-

els. When the amplitude model parameters, v0, A
+, a+

0 and ∆u, are computed using the

experimental data, the Sadot et al. model gives the best agreement with the experimental

and simulation data; by contrast, when the parameters are computed using the simulation

data, the Zhang-Sohn Padé model gives the best agreement. This is primarily due to the

different initial growth velocity v0 in the simulations and the experiment, and to the dif-

ferences in A+, a+
0 and ∆u. These observations and the single-gamma approximation used

in the present simulations motivate a comparison of the nonlinear amplitude growth model

predictions when the model parameters are computed using the experimental data (see Table

II and Table 1 in Ref. 15) to those when the parameters are computed using the simulation

data.

A comparison of the Zhang-Sohn Padé, Vandenboomgaerde et al. Padé, Matsuoka et al.

Padé and Sadot et al. model predictions computed using experimental and simulation values

for v0, A
+, a+

0 and ∆u is presented in Fig. 13. The Zhang-Sohn and the Sadot et al. models

are the most sensitive to changes in these model parameters. The predicted amplitudes

obtained using the simulation parameters are in general larger than those obtained using
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the experimental parameters, due to the difference in the initial velocity of the interface:

specifically, v0 from the simulation is larger than the corresponding experimental value. By

contrast, the Vandenboomgaerde et al. model does not exhibit significant sensitivity to

the variation of the experimental or simulation model parameters. When the experimental

parameters are used, the Vandenboomgaerde et al. model prediction is in best agreement

with the simulation data; however, when the simulation parameters are used, the Zhang-

Sohn model prediction is in best agreement with the simulation amplitude. The normalized

amplitude growth rates predicted by the nonlinear growth models and the ratios of the

model predictions to the ninth-order simulation data are also presented in Fig. 13.

A similar parametric sensitivity study is presented in Fig. 14 for the bubble and spike

amplitudes and velocities, and their ratios to the corresponding simulation quantities. In

general, when the experimental parameters are used, the predicted bubble and spike ampli-

tudes are lower than those computed using the simulation parameters, resulting in better

agreement with the simulation results. The velocities do not show a similar difference: in the

case of the bubble velocity, the predictions obtained using the simulation and experimental

parameters are in very close agreement.

The differences between the predictions of the models when the parameters are com-

puted using the experimental and simulation data is further quantified using the average

fractional deviation [Eq. (35)] between the simulation amplitude data asim(t) and the model

predictions amod(t), ∆exp and ∆sim, respectively (see Table III). The Vandenboomgaerde

et al. model prediction using the experimental parameters is in best agreement with the

simulation amplitude, while the Zhang-Sohn Padé model prediction using the simulation

parameters is in best agreement with the simulation amplitude. The Mikaelian bubble am-

plitude model prediction using the experimental parameters is in best agreement with the

simulation bubble amplitude, while the Sadot et al. model prediction using the simulation

parameters is in best agreement with the simulation bubble amplitude. The Sadot et al.

spike amplitude model prediction using the experimental parameters is in best agreement

with the simulation spike amplitude, while the Matsuoka et al. Padé model prediction using

the simulation parameters is in best agreement with the simulation spike amplitude. Table

III also shows the average fractional deviation between the experimental amplitude data

aexp(t) and the model predictions amod(t) when the model predictions are computed using

the experimental and simulation parameters, ∆e
exp and ∆e

sim, respectively: the Matsuoka et
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al. Padé model prediction using the experimental parameters is in best agreement with the

experimental amplitude, while the Zhang-Sohn Padé model prediction using the simulation

parameters is in best agreement with the simulation amplitude.

V. DISCUSSION AND CONCLUSIONS

The high-resolution fifth- and ninth-order weighted essentially non-oscillatory (WENO)

shock-capturing method was applied to the classical two-dimensional, reshocked single-mode

Richtmyer-Meshkov instability with a uniform grid resolution corresponding to 256 points

per initial perturbation wave length. The initial conditions and computational domain ap-

proximated the Mach 1.21 air(acetone)/SF6 shock tube experiment of Collins and Jacobs.15

Only the test section of the shock tube was simulated, so that the driver-based expansion

and reflected rarefaction waves present in the experiment were not captured in the simu-

lations. This is a convenient idealization, as the amplitude growth models considered do

not account for these waves. A single value of the adiabatic exponent was used. Molecular

dissipation and diffusion terms in the governing equations were neglected.

The simulation density and the experimental PLIF images from the Ma = 1.21 Collins

and Jacobs experiment were in very good qualitative agreement up to the time at which

the driver-based expansion affects the experimental amplitude growth (and before reshock

when three-dimensional effects are unimportant). The comparison of densities from the fifth-

and ninth-order simulations demonstrates that higher-order reconstruction better captures

secondary instabilities, the roll-ups are tighter and sharper, and more fine-scale structures are

present as a result of decreased numerical dissipation and diffusion. Following reshock, the

experiment and simulations show distinctively different flow structures due to the absence

of the driver-based expansion, the difference in the interface velocities, and the increased

importance of three-dimensional effects that are not captured in the simulations. As a result,

the simulation densities are qualitatively similar to the corrected experimental density PLIF

images, but lag in time by ≈ 1 ms.

Very good quantitative agreement was found between the fifth- and ninth-order amplitude

and the experimental data points up to the time at which the driver-based expansion in the

experiment (but not present in either the simulations or models) begins to expand the

layer prior to reshock. A comprehensive comparison of a large number of widely used
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models applied to the present simulations and to the experimental data with the diffuse

interface correction (34) was performed. The ninth-order simulation data was compared

to the predictions of the: (1) linear impulsive models of Richtmyer,1 Meyer and Blewett,43

Fraley44 and Vandenboomgaerde et al.46; (2) weakly-nonlinear perturbation models of Zhang

and Sohn,49 Vandenboomgaerde et al.50 and Matsuoka et al.,51 and; (3) nonlinear empirical

model of Sadot et al.52 The bubble and spike velocities were also compared to the predictions

of the potential models of Goncharov54 and Sohn.55,56 In addition, the bubble amplitude

was compared to the prediction of the Mikaelian59 model. A local and a global metric was

used to quantify the differences between the amplitude growth model predictions and the

simulation and experimental data—the ratio of the model predictions to the ninth-order

amplitude as a function of time (local) and the average fractional deviation (global). As

expected, very good agreement with the linear models was found at early times. At later

times, the simulation data was shown to be in very good agreement with the predictions

of the Zhang-Sohn Padé amplitude growth model before reshock. Thus, this component of

the present work provides a partial validation of the WENO method against pre-reshock

single-mode Richtmyer-Meshkov instability experimental data.

Motivated by the agreement between the simulation amplitudes and the experimental

data, but the different conclusions regarding which amplitude growth model best agrees with

the simulation and experimental data, the sensitivity of the model predictions to changes in

the model parameters v0, A
+, a+

0 and ∆u was also investigated. First, the parameters from

the Collins-Jacobs experiment and from the present simulation were compared. Then it was

shown that the predictions of the nonlinear amplitude growth models are quite sensitive to

variations in these parameters. In particular, when experimental parameters are used, the

prediction of the Sadot et al. model is in best agreement with the experimental and simula-

tion amplitude; by contrast, when the simulation parameters are used, the prediction of the

Zhang-Sohn Padé model is in best agreement with the experimental and simulation ampli-

tude. These results indicate that caution should be used when applying nonlinear amplitude

growth models to experiments and to numerical simulations and interpreting their predic-

tions. Moreover, it may not be possible to distinguish between the predictions of different

models when the parameters are varied within the experimentally reported error bars.

While the present simulations are idealized in that they consider only the shock tube

test section, two-dimensional flow and a single gamma, the agreement with experimental
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data prior to reshock provides encouragement for the continued quantitative investigation

of shock-induced complex hydrodynamic flows and mixing using high-order WENO meth-

ods. Other researchers have also advocated the WENO method for simulating compressible

flows.63–67 The hybridization of WENO reconstructions with high-order central-difference or

spectral schemes68 to improve computational efficiency and reduce numerical dissipation in

regions away from discontinuities is currently under development and will be used in future

investigations of the physics of Richtmyer-Meshkov mixing.
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FIG. 1: (Color). Comparison of corrected PLIF images from the experiment of Collins and Jacobs15

(middle row) with the density from the ninth-order WENO simulation (top row) and from the fifth-

order WENO simulation (bottom row) at selected times before reshock. The gases are air(acetone)

(blue) and SF6 (red). The simulation times differ slightly from the experimental times by 0.005–

0.015 ms. The experimental images are taken from Fig. 6 of Collins and Jacobs (reprinted with

the permission of Cambridge University Press).
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FIG. 2: (Color). Further comparison of corrected PLIF images from the experiment of Collins and

Jacobs15 and the density from the fifth- and ninth-order WENO simulations at selected times just

before and after reshock of the evolving interface. The experimental images are taken from Fig. 6

of Collins and Jacobs (reprinted with the permission of Cambridge University Press).
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FIG. 3: (Color). Details of the roll-up in the density field, ρ, from the ninth-order (top row) and

fifth-order (bottom row) WENO simulations at 4, 5, 6 and 6.38 ms.
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FIG. 4: A typical interface evolving according to the single-mode Richtmyer-Meshkov instability

with bubble and spike amplitudes ab and as, and mixing layer width h (the image is from a point

vortex simulation). The solid line in the center is the location of the shocked unperturbed interface,

and is used as the reference to measure the bubble and spike amplitudes. The mixing layer width

is h = ab + as and the amplitude is a = (ab + as)/2. The bubble and spike velocities considered

later are given by vb = dab/dt and vs = das/dt, respectively.
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FIG. 5: The x-t diagram showing the position of the interface `int(t) (solid line), shock (dotted

line), and bubble and spike tip locations `b(t) and `s(t) (dash-dot and dashed lines, respectively)

from the ninth-order simulation. The horizontal distance between the spike and bubble tip location

is the mixing layer width h(t).
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to the experimental data points from Collins and Jacobs15 (left). The bubble and spike amplitudes

from the simulations, ab(t) and as(t), respectively, are also shown (right).
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FIG. 7: (Color). The normalized amplitude k [a(τ)− a0] versus τ from the ninth-order WENO

simulation and the experimental data points, together with the predictions of the impulsive models.

The Richtmyer model gives the smallest slope (da/dt = 740.1 cm/s) as it uses the post-shock

Atwood number and amplitude. The pre- and post-shock amplitudes are averaged in the Meyer-

Blewett model, resulting in the largest slope, 828.6 cm/s. The pre- and post-shock amplitudes are

averaged by the pre- and post-shock Atwood numbers, respectively, in the Vandenboomgaerde et al.

model which thus, predicts a slightly smaller slope, 812.4 cm/s, than that predicted by the Meyer-

Blewett model, but larger than the slope predicted by the Richtmyer model. The Fraley model has

an exact initial slope of 784.3 cm/s, intermediate between those predicted by the Meyer-Blewett

and Vandenboomgaerde et al. models.

47



k
[a

(τ
)
−
a

0
]

0 1 2 3 40

0.5

1

1.5

2

2.5

3

3.5
Experiment
Simulation
Zhang−Sohn
Vandenboomgaerde et al. 9th−order
Vandenboomgaerde et al. 11th−order
Matsuoka et al.

k
da

(τ
)/

dτ

0 0.5 1 1.5 2 2.5 3 3.50

0.5

1

1.5

2

τ τ

FIG. 8: (Color). The normalized amplitude k [a(τ)− a0] versus τ from the ninth-order WENO

simulation and the experimental data points, together with the predictions of the Zhang-Sohn,

Vandenboomgaerde et al. and Matsuoka et al. perturbation series models (left). The normalized

growth rates k da(τ)/dτ versus τ from the ninth-order simulation, together with the corresponding

growth rates from the perturbation series models, are also shown (right).

48



k
[a

(τ
)
−
a

0
]

0 1 2 3 4 50

0.5

1

1.5

2

2.5

Simulation
Zhang−Sohn
Vandenboomgaerde et al.
Matsuoka et al.
Sadot et al.
Experiment

k
da

(τ
)/

dτ

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1

τ τ

FIG. 9: (Color). The normalized amplitude k [a(τ)− a0] versus τ from the ninth-order WENO

simulation and the experimental data points, together with the predictions of the Zhang-Sohn,

Vandenboomgaerde et al. and Matsuoka et al. models extended via Padé approximants, and the

Sadot et al. model (left). The normalized growth rates k da(τ)/dτ versus τ from the ninth-order

simulation, together with the corresponding growth rates from the nonlinear models extended via

Padé approximants, are also shown (right).
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Matsuoka et al. (Padé) and Sadot et al. models (with the initial perturbation amplitude subtracted

out) divided by the corresponding ninth-order WENO simulation amplitude.

50



a
(t

)
(c

m
)

0 2 4 6 80

1

2

3

4

5

 

 
as simulation
ab simulation
as Matsuoka et al.
ab Matsuoka et al.
as Sadot et al.
ab Sadot et al.
ab Mikaelian

[a
m

o
d
(t

)
−
a

0
]/

[a
si

m
(t

)
−
a

0
]
(c

m
)

0 1 2 3 4 5 60.8

0.9

1

1.1

1.2

t (ms) t (ms)

FIG. 11: (Color). Comparison of the bubble and spike amplitudes, ab(t) and as(t), from the

ninth-order WENO simulation with the predictions of the Matsuoka et al. (Padé) and Sadot et al.

models, and with the Mikaelian model in the case of the bubble amplitude (left). Also shown are

the ratios of the model predictions to the simulation bubble and spike amplitudes (with the initial

perturbation amplitude subtracted out) (right).
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FIG. 12: (Color). The bubble velocity, vb(t), from the ninth-order WENO simulation with the

asymptotic velocities predicted by the Goncharov, Sohn-Layzer and Sohn-Zufiria models and the

velocities predicted by the Matsuoka et al., Sadot et al. and Mikaelian models (left). Also shown

is the spike velocity, vs(t), and the velocities predicted by the Matsuoka et al. and Sadot et al.

models (right).
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FIG. 13: (Color). The normalized amplitude predictions (with the initial perturbation amplitude

subtracted out) of the nonlinear models using the experimental and simulation parameters v0, A+,

a+
0 and ∆u (as given in Table II), together with the experimental data points and the ninth-order

WENO simulation data (top). The normalized amplitude growth rate predictions of the nonlinear

models with the experimental and simulation parameters, together with the ninth-order simulation

data, are also shown (middle). Also shown are the ratios of the model predictions to the simulation

data (bottom).
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FIG. 14: (Color). The predictions for the bubble amplitude, bubble velocity, and ratio of the model

predictions (with the initial perturbation amplitude subtracted out) to the ninth-order WENO

simulation results, using the experimental and simulation parameters v0, A+, a+
0 and ∆u (as given

in Table II) (left). The predictions for the spike amplitude, spike velocity, and ratio of the model

predictions to the simulation results, using the experimental and simulation parameters is also

shown (right).
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Single-gamma (simulation) value Two-gamma value

γaa 1.276 1.276

γSF6 1.276 1.093

Maa (g/mol) 34.76 34.76

MSF6 (g/mol) 146.05 146.05

ui,shock (cm/s) 36369 36369

ur,shock (cm/s) 33473 33301

ut,shock (cm/s) 19218 17945

treshock (ms) 6.36 6.61

Pre-shock Post-shock Pre-shock Post-shock

ρaa (g/cm3) 1.351× 10−3 2.084× 10−3 1.351× 10−3 2.065× 10−3

ρSF6 (g/cm3) 5.494× 10−3 8.456× 10−3 5.494× 10−3 9.021× 10−3

A 0.6053 0.6045 0.6053 0.6274

p (bar) 0.956 1.667 0.956 1.648

Taa (K) 296 334.4 296 333.6

TSF6 (K) 305 346 305 321

TABLE I: The pre- and post-shock state [adiabatic exponents γr, molecular weights Mr, incident,

reflected and transmitted shock speeds ui,shock, ur,shock and ut,shock, densities ρr, Atwood number

A = (ρSF6 − ρaa)/(ρSF6 + ρaa), pressure p, and temperatures Tr (r = 1, 2)] of the air(acetone) and

SF6 gases from one-dimensional shock refraction theory. The simulation (single-gamma) values

were obtained assuming γ = 1.276 and the two-gamma values were obtained using γ1 = 1.276

and γ2 = 1.093, corresponding to the air(acetone) mixture and the SF6, respectively. The time of

reshock, treshock, is also indicated.
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Simulation value Experimental value

∆u (cm/s) 6731 6060

v0 (cm/s) 702 628

ηcomp 0.8071 –

Pre-shock Post-shock Pre-shock Post-shock

a0 (cm) 0.2 0.162 0.183 0.157

A 0.6053 0.6045 0.604 0.625

ψ 1.17 1.08 1.17 1.08

TABLE II: The interface velocity ∆u and Richtmyer velocity v0 from the ninth-order simulation

and experiment. The pre- and post-shock values of the perturbation amplitude a0, Atwood number

A and growth reduction factor ψ obtained from one-dimensional shock refraction theory are also

compared to the values reported by Collins and Jacobs.15
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∆exp (%) ∆sim (%)

Zhang-Sohn Padé 6.8 3.3

Vandenboomgaerde et al. Padé 1.9 10.1

Matsuoka et al. Padé (all) 12 8.1

Matsuoka et al. Padé (bubble) 26.4 20.4

Matsuoka et al. Padé (spike) 9.1 15.9

Sadot et al. (all) 4.5 12.8

Sadot et al. (bubble) 3.7 4.5

Sadot et al. (spike) 16.8 26.6

Mikaelian (bubble) 2.6 5.2

∆e
exp (%) ∆e

sim (%)

Zhang-Sohn Padé 9.9 11.4

Vandenboomgaerde et al. Padé 11.7 14.3

Matsuoka et al. Padé 8.4 15.6

Sadot et al. 10.1 19.2

TABLE III: Average fractional deviation between the simulation amplitude asim(t) and the model

prediction amod(t) when experimental parameters are used (∆exp) and when the simulation param-

eters are used (∆sim). Also shown are the average fractional deviation between the experimental

amplitude aexp(t) and the model prediction amod(t) when the experimental parameters are used

(∆e
exp) and when the simulation parameters are used (∆e

sim).
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