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ABSTRACT

The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black 
Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Crustal and upper mantle 
velocities show great heterogeneity in this region and regional phases display variations in both amplitudes and 
travel time. Furthermore, due to a lack of quality data, the region has largely been unexplored in terms of the 
detailed lithospheric seismic structure. A unified high-resolution 3D velocity and attenuation model of the crust and 
upper mantle will be developed and calibrated. This model will use new data from 23 new broadband stations in the 
region analyzed with a comprehensive set of techniques. Velocity models of the crust and upper mantle will be 
developed using a joint inversion of receiver functions and surface waves. The surface wave modeling will use both 
event-based methods and ambient noise tomography. Regional phase (Pg, Pn, Sn, and Lg) Q model(s) will be 
constructed using the new data in combination with existing data sets. The results of the analysis (both attenuation 
and velocity modeling) will be validated using modeling of regional phases, calibration with selected events, and 
comparison with previous work. Preliminary analyses of receiver functions show considerable variability across the 
region. All results will be integrated into the KnowledgeBase. 



OBJECTIVES

The Caucasus-Caspian region is an area of complex structure accompanied by large variations in seismic 
wave velocities and attenuation (e.g. Ritzwoller and Levshin, 1998; Murphy et al., 2005; Mitchell et al. 1997). In 
such areas, accurate geophysical models are fundamentally important to nuclear monitoring. In particular, the great 
thickness and irregular geometry of the low velocity and low density sediments in the Caspian and Black Sea basins 
(e.g. Laske and Masters, 1997) creates profound effects on seismic waveforms, especially on surface waves and 
regional phases. These effects are compounded by variations in crustal structure in the Caucasus and by high 
attenuation under the East Anatolian plateau (Al-Lazki et al., 2003; Sandvol et al., 2001). As regional models based 
on widely spaced stations they may suffer from insufficient spatial sampling, a comprehensive velocity and 
attenuation model is being developed using new broadband data that has become available in this area.

The primary focus is the Caucasus-Caspian region, which is roughly defined as lying between 40 and 55 E 
longitude and between 37 and 44 N latitude (Figure 1). A unified upper mantle/crustal velocity model will be 
developed using multiple techniques. In addition, the same data will be used to construct detailed maps of regional 
phase attenuation (Lg, Pg, Pn, and Sn). Finally, the results will be compared and validated using the various 
algorithms as well as independent datasets (local and regional events and active source studies).

Previous work. 

The region shows considerable spatial variability in travel times and phase propagation throughout the area 
(Table 1). Myers and Schultz (2000) noted errors of 42 km when locating events in the Caucasus Mountains with 
sparse regional stations and a standard model (prior to application of an empirical correction). They also noted that 
arrivals at regional distances are “strongly affected by upper-mantle-discontinuities”. Regional phase variations have 
been documented on a regional basis by a number of studies but reliable direct phase Q measurements are still 
lacking, mainly because of sparse station coverage and irregular distribution of earthquakes (e.g. Kadinsky-Cade et 
al., 1981; Rodgers et al., 1997a; Mitchell, 1997; Cong and Mitchell, 1998; Sarker and Abers, 1998; Baumgardt, 
2001; Sandvol et al., 2001; McNamara and Walter, 2001; Gök et al., 2000; Gök et al, 2003). Here we summarize the 
regions and relevant seismic characteristics, where known.

Figure 1. Regional map showing newly available broadband stations (triangles) and 
two years (2003-2004) of earthquakes from the PDE catalog (small circles) to show 
distribution of regional events. Names and locations of geophysical regions from 
Sweeney and Walter (1998). 



The South Caspian and the Black Sea basins are thought to be underlain by oceanic crust although it is 
possible the South Caspian may simply be thinned continental crust overlain by thick sediments (Mangino and 
Priestly, 1998; Baumgardt, 2001). The great thickness (up to 20 km) of sediments in the South Caspian strongly 
affects surface waves as well but efforts to resolve the situation by modeling higher frequency surface waves were 
inconclusive due to possible 3D effects (Priestley et al., 2001). Improved coverage and the use of ambient noise 
tomography should be useful in resolving this question. Lg, which is critical for discrimination purposes, is blocked 
by both the Black Sea and South Caspian basins. Sn does propagate through the South Caspian (Rodgers et al., 
1997b; Sandvol et al., 2001). A large amount of active source data have been collected, which is useful for 
constraining the shallow velocity structure and depth of the sedimentary cover (Neprochnov et al., 1970; Belousov 
et al., 1992, Davies and Stewart, 2005; Knapp et al, 2004).

West of the Caspian in the Caucasus orogenic belt and foreland, events (Myers and Schultz, 2000) are 
subject to substantial travel-time anomalies at regional distances. It is unclear whether the Lg blockage observed in 
the South Caspian extends into the Greater Caucasus, as the available studies disagree. Rodgers et al. (1997b) and 
McNamara and Walter (2001) infer partial blockage of Lg in a belt extending from the Black Sea to the South 
Caspian. Alternatively, Sandvol et al. (2001) observe relatively efficient Lg propagation in the Caucasus and Central 
Caspian  and attribute most of the attenuation to raypaths that cross the Anatolian plateau. Baumgardt (2001) reports 
unblocked Lg from Caucasus events to stations in Iran but blockage in the Caspian depression. The discrepancies 
among studies may reflect the poor station coverage with resulting poor resolution of ray paths. The crustal structure 
of this region still remains unclear given the lack of the data in the region. The boundary between the South Caspian 
and the Central Caspian is called the Absheron-Balkhan sill, an area of high seismicity and may be an area of 
incipient subduction (Jackson et al., 2002; Brunet et al., 2003). 

The South Caspian blends into the southern Caucaus in the Kura depression, a sedimentary basin with 
uncertain structure (i.e. is it an onshore extension of the South Caspian or is it underlain by continental crust?). Poor 
Sn propagation is evident throughout the Anatolian Plateau. The southern Caucasus (or Lesser Caucasus) differs 
from the Greater Caucasus to the north due to extensive Quaternary volcanism. Near the South Caspian, the southern 
Caucasus merges into the Alborz Mountain belt, an area of clear Lg propagation as well as Pg and Pn.

Table 1.  Phase propagation in the Caucasus.

Little broadband data has been previously available for the region. Relevant global stations exist in the S. 
Caucasus (GNI), Eurasian platform (KIV), east of the Caspian (ABKT) and to the south (MSL and BHD). A 
broadband array was temporarily installed in 1992 at ABKT and a broadband network was installed in the Caucasus 
from 1991 to 1994. A limited amount of broadband data was collected from a temporary deployment of broadband 
stations at three sites (LNK, BAK, and SHE) occupied during the two year Caspian Seismic Deployment. However, 
data return from these sites was limited and Mangino and Priestley (1998) presented receiver functions only from 
one station (LNK). Recently, permanent broadband stations have been deployed across the region as part of various 
national networks. Much of this data remains under the control of various institutes and we are working with these 
institutes to analyze the data.

 

Area Regional phases Seismicity Other
Caucasus orogen Pn, Sn? High
Caucasus foreland Pn,Pg,Lg? Mod deep? Sediments

Subduction?
Black Sea Pn,Sn Low Sediments/ oceanic crust
S. Caspian Pn,Sn Low Thick sediments; oceanic 

crust?
E. Anatolian Pn High Volcanic
Iranian Plateau Pn,Pg,Lg Mod.
Table 1. Summary of regional phase propagation among regions addressed in this proposal. Note great 
variation across short distances. Adapted from Sweeney and Walters (1998).



Methods and data

The work consists of four basic tasks: data collection, regional phase analysis, velocity model development, 
and model validation. Data collection is ongoing and will include data from at least 23 new broadband stations in the 
region from several different adjoining countries and operated by different institutions. These stations will allow us 
to extend many of the high resolution models created in eastern Turkey into the Caucasus.

Regional phase analysis will define crustal and upper mantle propagation and attenuation within the region. 
By using the relatively dense coverage of broadband stations we intend to construct a detailed map of regional phase 
propagation in and around the region (Pg, Pn, Lg, and Sn). The primary questions are: What is the lateral extent of 
Lg blockage in the South Caspian and Black Sea? How far and to what degree does it extend into the Caucasus? 
What are the boundaries of Sn propagation? Do we see effects due to the Central, North, and Pre-Caspian basins on 
Lg? Two methods will be used to isolate the regional wave path: the two-station method for measuring inter-station 
Q and the reversed two-station, two-event spectral ratio method (Chun et al., 1987; Zor et al., 2007). This method 
has the advantage that we should be able to isolate the relative station response without having to assume that our 
response information is reliable.  Once Lg Q has been measured, the results will be inverted to create Lg Q 
tomography maps, as is required for a regional phase Q model. The rapid changes in Lg in the region require dense 
station spacing. The two-station methods will also be used to measure Pg, Pn, and Sn Q. Laterally varying Pn Q 
models are more difficult to develop than Lg or Pg Q models because Pn is observed only in a limited distance range 
(between ~2-14°), thus reducing the number of Pn paths available and this will make inversion difficult. However, it 
is expected that the resulting blockage maps will be superior to existing maps. We will further refine our existing 
blockage maps for Sn (e.g. Sandvol et al., 2001) and then use to these to estimate a maximum allowable Q for those 
regions with Sn blockage.

In parallel with the attenuation work crustal and upper mantle velocity structure will be determined using 
surface wave and receiver functions modeling. Results from the surface wave work and receiver functions will be 
jointly inverted for a unified model (Gök et al., 2006).  Both phase and group velocities will be measured. The phase 
velocities will be event based (Forsyth et al. , 1998) .  The ambient noise correlation will be measured using 
continuous data  (Shapiro and Campillo, 2004) . Pasyanos and Walter (2002) performed a study of surface wave 
group velocity dispersion across Western Eurasia and North Africa and a larger-scale across Eurasia, North Africa 
and surrounding regions (Pasyanos, 2005) using 30,000 Rayleigh and 20,000 Love wave paths. We will be adding 
group velocity measurements to existing Rayleigh and Love measurements.   Receiver functions are a well-
established technique (e.g. Langston, 1979; Ammon et al, 1990; Zhu and Kanamori, 2000) that use teleseismic P(or 
S) phases to estimate crustal and upper mantle velocity structure in the vicinity of the seismometer.  Mangino and 
Priestley  (1998) applied receiver function analysis to the Caspian Seismic Experiment station LNK (near the current 
broadband station LKR) and found “considerable variation over fairly short horizontal distances”. Their results 
under LNK showed a thinner crust and approximately 13 km of sediment over a high velocity mid to lower crust. As 
receiver functions are effective at identifying discontinuities, combining receiver function analysis with surface 
wave data is a powerful technique. The joint inversion method of Julia et al. (2000) will be used.

Finally, the velocity and attenuation models will be validated using alternate data sources (such as 
reflection data), modeling, and ground truth data. The velocity model will be calibrated in two ways: by calculating 
source locations and mechanisms using our velocity models and with comparison with previous (especially seismic 
refraction and reflection) datasets. 



RESEARCH ACCOMPLISHED

Data collection

Station data availability from all stations in the region is being compiled for continuous data to achieve maximum 
coverage for ambient noise tomography and data from all stations will be collected over the next few weeks.  Some 
event data has been collected (Figure 2). Initial analysis of teleseismic data from the region has begun using receiver 
functions (Figure 3).

Receiver functions

A preliminary set of events for receiver functions have been calculated for some of the stations using the 
data in hand (Figure 3).  Both spectral division and time domain iterative deconvolution are being applied to 
telesismic events within 30-90º.  Receiver functions in Figure 3 were determined using deconvolution by spectral 
division with a waterlevel of 0.01 and a Gaussian filter of 1.5. Noise levels vary greatly from station to station, 
which leads to differing number of events possessing high signal to noise at each station. In general, noise levels 
(likely due to water waves in Caspian) were highest near the coast.  Coastal stations also lie on sedimentary bedrock 
and some of the variability is probably due to multiples and possibly structure within the crust. Modeling is ongoing 
to match the receiver functions. 

Figure 2. A) (top) Example of a local event recorded by the Azerbaijan network located near station 
QUB (no filter). Dots are local events recorded by network in three months.(Bottom) Example of 16 
June 2003 teleseism approximately 67 degrees away recorded by the Azerbaijan network. Lowpass 
filtered at 1 s. Traces are normalized. B) Example of regional event (small circle) recorded by stations 
in Eastern Turkey and Georgia. 



CONCLUSIONS AND RECOMMENDATIONS

Preliminary analysis of receiver functions shows clear consistency between events and the outlook is 
promising for this technique despite the complex structure and basin sediments. Results for station LKR are similar 
to those from the Mangino and Priestley (1998) study, which was situated near the same site. Alternate methods of 
deconvolution will be tested to improve the results and the examples shown so far represent a fraction of the 
available data.   We will be using higher Gaussian filter widths to be able to resolve the smaller scale variation 
within the crust.  We will be calculating the S-receiver functions to be able to calculate the depth of the Lithospheric 
Asthenospheric Boundary (LAB). The Moho conversion can be seen on S-receiver functions where we will be using 

Figure 3. Preliminary P receiver functions for stations colored in yellow. Data availability and noise levels 
vary from station to station which results in varying numbers of events. Note great variability in phases 
and hence crustal structure across the region.



our P-receiver functions to fix the Moho depth. Once sufficient data has been collected, event based and noise 
correlated surface wave analysis will begin. Similarly, the event data is being collected for regional phase 
attenuation maps. 
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