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Abstract

We detail the new LLNL evaluation of 237U for inclusion in both the next release of the ENDL and
ENDF/B-VII databases. This evaluation is based on a combination of TALYS calculations, data fits and
the earlier JEFF-3.1 evaluation. Our evaluation is in excellent agreement with published surrogate (n, f)
data [11, 12, 13, 14, 18] and the unpublished LLNL surrogate (n,2n) data [16].
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1 Introduction

237U is an unstable uranium isotope with an 6.75 day half-life. Its short half life makes direct measurement of
its properties extremely difficult. To date, only one published direct measurement of its fission cross-section
exists [23]. Other integral experiments [20, 22, 19, 25] are equally difficult due to the care that must be taken
to characterise the rapidly decaying target material. The dearth of experimental data poses a challenge to
creating a faithful evaluation of 237U’s neutron induced reactions.

Recently, a re-evaluation of Cramer and Britt’s 236U(t, pf) [15] data by Younes et al.(Refs. [11, 12, 13, 14])
led to an improved estimate of the 237U(n, f) cross-section. This estimate is in excellent agreement with
another surrogate measurement performed by Burke et al. [18] and in reasonable agreement with the direct
measurement of McNally et al. [23]. This coupled with the new, unpublished, data from L. Bernstein [16]
and the new evaluations in the ENDF/B-VII.0 [4], JEFF-3.1 [5] and JENDL-3.3 [6] data libraries make this
an opportune time to re-evaluate 237U.

We now outline this report. First, we review existing evaluations, concentrating on parts of the evaluations
we intend to adopt for our new evaluation. Second, we review the available resonance evaluations in some
detail and discuss why we adopt the JEFF-3.1 evaluaton. Third, we review direct and integral measures
of the 237U(n, f) cross-section. Next, we review the surrogate measurements, concentrating on the Younes
et al. [11, 12, 13, 14] work and the Burke et al. [18] sets. Finally, we assemble our hybrid evaluation
encapsulating best features of existing evaluations, overall good agreement with existing data, and solid
theoretical calculations based on the TALYS reaction code [34].

2 Overview of Evaluations

In this section we present an overview of all of the evaluations for 237U. Table 1 compares the contents of
the evaluations and Figures 1 and 2 presents plots of some selected evaluations compared to data.

2.1 Caner, Segev and Yiftah

In 1976, Caner, Segev and Yiftah evaluated the total, elastic, capture, inelastic, and fission cross-sections
using Hauser-Feshbach techniques [1]. These results are quite reasonable, but clearly could use tuning to
match our current understanding of the fission cross-sections as discussed below.

2.2 ENDL99

No documentation is provided for this evaluation. Furthermore, it is in poor agreement with fission data
and total cross-section systematics.

2.3 ENDF/B-VI.8

The ENDF/B-VI.8 is mostly derived from the older ENDL evaluation contained in ENDL99 [7], with a few
modifications. The prompt ν̄ data are computed from Gordeeva and Smirenkin [27] and Manero and Konshin
[28]. The delayed ν̄ is taken from Brady and England [26]. The resonance parameters are an independent
evaluation based on the GENRPAR code of McCrosson [29], the McNally data from LANL [23] and an
average level spacing of 3.5 eV.

2.4 ENDF/B-VII.0

The ENDF/B-VII.0 evaluation from LANL [4] was designed to support both reactor and weapons appli-
cations. Therefore, it is quite complete. Most of the evaluation results from a single Hauser-Feshbach
calculation using the GNASH code system. In fact, the only data files not part of this calculation are the
resonance data and the outgoing neutron data from fission, both of which are hold-overs from the ENDF/B-
VI evaluation [2]. The evaluators had access to the data of Burke et al. [18] and the evaluation of Younes
and Britt [11, 12, 13, 14] so the fission cross-section was tuned to be in excellent agreement with both results.
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Figure 1: Plots of the (n,2n) and capture cross-section data compared with current evaluations.

The disagreement with the McNally et al. [23] is driven by the contamination problem with that data, as
noted by Younes and Britt [11, 12, 13, 14], to be discussed below.

2.5 JEFF-3.1

The JEFF-3.1 evaluation in Ref. [5] was constructed at CEA (France) in 2004 in order to support a variety
of applications. Thus, it is very complete. The evaluators adopted nearly all of the outgoing particle
distributions from the ENDF/B-VIIβ1 evaluation [3] which we assume is the same as the ENDF/B-VII.0
evaluation. The one part not adopted from ENDF/B-VIIβ1 is the outgoing neutrons from fission which
the evaluators created from the Vladuca-Tudoro model (a modified Madland-Nix model). The evaluators
adopted the high-quality JENDL-3.3 resonance data in total. For the cross-section data, the evaluators
performed their own set of Hauser-Feshbach model calculations. This calculation gives a fission cross-section
that is in good agreement with the low-energy data of Mc Nally et al. [23], but deviates substantially from
the later experimental work of Burke et al. [18] and Bernstein [16]. It is not clear whether the evaluators were
aware of the contamination problem noted by Younes and Britt [11, 12, 13, 14], but the fission cross-section
does not track the McNally data in the region with the contamination problem (1-3 MeV).

2.6 JENDL-3.3

The JENDL-3.3 evaluation in Ref. [6] was constructed at JAERI (Japan) in 1993 for reactor simulations.
Therefore, the evaluators took great care in developing the resonance and fission data. No effort was made to
ensure that the outgoing photon data was complete. Some effort was made to generate the outgoing neutron
distributions based on systematics. For the cross-section data, the evaluators performed an independent set
of Hauser-Feshbach model calculations. For fission, however, they adopted a fit to the fission data in Ref.
[23]. They were unaware of the contamination problem noted by Younes and Britt [11, 12, 13, 14], so this
cross-section is not in agreement with the later experimental work of Burke et al. [18]. The resonance data
in JENDL-3.3 uses a fit to the fission data from Ref. [23].

3 Resonance Data

There are three data sets that were used to determine the resonance region evaluations in JENDL-3.3 and
ENDF/B-VI.8: the McNally bomb-shot data [23] and the reactor irradiation measurements of Cornman,
Hennelly, and Banick [19], Halperin et al. [22] and Cowen et al. [20]. The critical assembly measurements of
Cowen et al. [20] and [25] were of limited usefulness because the neutron flux was higher energy.
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Reaction Quantity (MF, MT) ENDF/B-VII.0 JEFF-3.1 JENDL-3.3 Data

(n, res) Thermal (2, 151) Adopt [2] Adopt [6] FIT [19, 20, 22]
RR (2, 151) Adopt [2] Adopt [6] FIT [23]

URR (2, 151) Adopt [2] Adopt [6] FIT [23]
(n, tot) σ(E) (3, 1) HF HF HF None
(n, el) σ(E) (3, 2) HF HF HF None

Pn(E|µ) (4, 2) HF HF HF None
(n, Xγ) σ(E) (3, 3) HF HF HF None

Mγ(E) (13, 3) HF HF HF None
Pγ(E|µ) (14, 3) HF HF HF None
Pγ(E|E′) (15, 3) HF HF HF None

(n, γ) σ(E) (3, 102) HF HF HF [16]
Mγ(E) (12, 102) HF Adopt [4] None None
Pγ(E|µ) (14, 102) HF Adopt [4] None None
Pγ(E|E′) (15, 102) HF Adopt [4] None None

(n, n′) σ(E) (3, 4, 51-79, 91) HF HF HF None
Pn(E|µ) (4, 4, 51-79) HF HF HF None
Pn(E|µ) (4, 91) None None HF None
Pn(E|E′) (5, 91) None None SYS None

Pn(E|µ, E′) (6, 91) None None None None
Pγ(E|µ, E′) (6, 91) None None None None

(n, 2n) σ(E) (3, 16) HF HF HF [16]
Pn(E|µ) (4, 16) None None ISO None
Pn(E|E′) (5, 16) None None SYS None

Pn(E|µ, E′) (6, 16) HF Adopt [4] None None
(n, 3n) σ(E) (3, 17) HF HF HF None

Pn(E|µ) (4, 17) None None ISO None
Pn(E|E′) (5, 17) None None SYS None

Pn(E|µ, E′) (6, 17) HF Adopt [4] None None
(n, 4n) σ(E) (3, 37) HF HF None None

Pn(E|E′) (5, 37) None None None None
Pn(E|µ) (4, 37) None None None None

Pn(E|µ, E′) (6, 37) HF Adopt [4] None None
(n, f) σ(E) (3, 18) HF HF FIT+SYS [18], [23]

νtot(E) (1, 452) Adopt [2] SYS SYS None
νd(E) (1, 455) Adopt [2] SYS SYS None
νp(E) (1, 456) Adopt [2] SYS SYS None

Pn(E|µ) (4, 18) ISO ISO ISO None
Pn(E|E′) (5, 18) Adopt [2] SYS SYS None
Mγ(E) (12, 18) HF Adopt [4] None None
Pγ(E|µ) (14, 18) HF Adopt [4] None None
Pγ(E|E′) (15, 18) HF Adopt [4] None None

Table 1: Contents of the various evaluations. Here, FIT means fit to available data, SYS means systematics
were used, ISO means that the particular angular distribution was assumed to be isotropic, HF means a
Hauser-Feshbach and/or Optical Model code was used and None means that data type is not present. If
a reference is provided then this refers to the data itself or to another evaluation from which this file was
taken.
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Figure 2: Plots of selected cross-section data compared to current evaluations, on a linear scale (left) and a
logrithmic scale (right).
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ENDF/B-VI.8 JENDL-3.3 Data
σ(0.0253 ev) R.I. σ(0.0253 ev) R.I. σ(0.0253 ev)

(barns) (barns) (barns) (barns) (barns)

Total 487.106 - 478.50 - -
Elastic 9.131 - 24.39 - -
Fission 2.000 9.209 1.70 48.7 < 2 [20]

Capture 475.975 309.585 452.40 1080.0 ≈ 100 [22]
Absorption 477.975 - 454.10 - 478 ± 160[19]

Table 2: Calculated thermal cross-sections and resonance integral (R.I.) from the JENDL-3.3 evaluation
compared to data from Refs. [19, 20, 22]. Here the absorption channel is the sum of capture and fission
channels. The unpublished fission data from Ref. [20] is inconsistent with the JENDL-3.3 evaluation unlike
the absorption and capture data from Refs. [19, 22].

The reactor irradiation measurements of Refs. [19], [22] and [20] amounted to placing a 237U foil in front
of reactor. This data cannot be used without the incident neutron spectrum, so previous evaluators assumed
a thermal neutron spectrum and used these data to set the overall normalization of the resonances.

The detailed resonances were generated using a combination of systematics and the McNally data. In
either case, neither of the problems noted by Younes et al. [11, 12, 13, 14] were accounted for in their data
analysis. In particular, neither the additional 25% 237Np contamination nor the 0.8 factor. This implies
that the overall smooth background to the resonance data may need renormalization and several of the 237U
resonances may actually be mis-identified 237Np resonances.

None of the datasets strongly favors one resonance evaluation over another. We chose the JENDL-3.3
evaluation only because it matched onto the high energy fission data better.

4 Direct and Integral Fission Measurements

4.1 LANL Integral Measurements

In addition to the reactor irradiation experiment mentioned previously, Cowen et al. [20] performed two other
irradiation experiments using the neutron flux from the Topsy/Flattop critical assembly (HEU-MET-FAST-
028 in Ref. [21]). D. Barr repeated the experiments ([25]) using the second foil prepared for McNally et al.,
but found different results [23]. The discrepancy between these results is most likely due to the different
target composition of the two experiments and is disentangled in [11].

4.2 Direct Measurement Using the Pommard Event

In March 1968, scientists at LANL undertook the most remarkable experiment: they used the Pommard
nuclear event as a source of neutrons for irradiating, and measuring the fission cross-section of, 237U. This was
a heroic measurement owing both to the activity of the 237U target and the unique nature of the experimental
setup, shown in Figure 3.

To produce the 237U target, the McNally et al. [23] irradiated a 236U sample in reactor at High Flux
Isotopes Reactor (HFIR) at ORNL. The sample was rapidly shipped to LANL where two foils were created.
One foil was eventually shipped to the Nevada Test Site for use in the Pommard event and the other remained
at LANL for testing. Due to the high activity of the foils, target purity hard to ascertain. The experimenters
measured the amount of 237U in the foils by estimating the amount of 237Np (the decay product of 237U).
The amount of 237Np was deduced from the number of decay gammas found using a Ge(Li) detector on
decay gamma. As a cross-check, the experimenters also performed a radiochemical analysis of the foil used
in the Pommard event after the event.

The foil that remained at LANL was used to estimate the fission cross-section by irradiating it with the
Flattop critical assembly [25]. The results of this experiment are in disagreement with the previous Cowen
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Figure 3: Schematic of Pommard event experimental setup. Reproduction of Fig. 1 from Ref. [24].

et al. experiment [20].
The foil that was used during the Pommard event was placed 185 m above the “working point,” along

with several other foils including a 235U flux monitor. The samples were irradiated with both the gamma
rays from the electromagnetic pulse of the bomb and the fast and moderated neutrons from the source. The
neutron incident energy was measured by time of flight, but data taking was lost during 50 – 250 µsec after
the event began, leading to a loss of intermediate energy data. Furthermore, this loss caused an amplifier
to drift creating a non-trivial background to the data. In addition, determining the actual flight time of a
neutron is complicated by the evolving shape of the source region and the presence of the moderator in the
bore-hole. In addition, the electromagnetic pulse ionized the residual gas in the vacuum pipe, creating an
additional background. To determine the cross-section, the experimenters counted the number of fissions
with a fission counter.

There are numerous potential sources of underestimated uncertainty and error, and this experiment will
never be repeated. Given this, Younes et al. set out to understand it in order to compare to their own
surrogate data. Lynn and Hayes were first to point out a possible scale factor problem [10], but did not
provide any reason for it. Younes et al. also noted that the rise in the 237U fission cross-section corresponds
to the threshold for 237Np(n, f), leading them to suggest that McNally et al. underestimated the degree of
237Np contamination in their targets. Using an overall normalization factor of 0.8 and a fractional 237Np
contamination of 25%, Younes was not only able to match their estimate of 237U(n, f) onto the McNally
measurement, but they were able to match the critical assembly measurements. We will not attempt to
justify Younes et al. corrections to the McNally data, but we will adopt them and adjust the McNally data
accordingly.
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5 Surrogate Measurements of (n, γ), (n, 2n) and (n, f)

There are two sets of measurements of 237U(n, f) using the Surrogate Method: Cramer and Britt [15] and
Burke et al. [18]. The earlier measurement by Cramer and Britt was a measurement of 236U(t, pf) which
was reanalyzed by Younes et al. and reported in a series of papers [11, 12, 13, 14]. The later measurement by
Burke et al. was a measurement of the ratio 238U(α, α′f)/236U(α, α′f) and then analyzed to produce the ratio
237U(n, f)/235U(n, f). Despite the very different spin matchings and reaction mechanisms, both surrogate
measurements produce results in excellent agreement with each other and with the corrected McNally data
[23]. This agreement between these three completely different approaches gives us confidence in all three.
Given this, we fit the combination of all three measurements and used the fit in our evaluation.

Recently, L. Bernstein et al. [16] measured the (n, γ) and (n, 2n) cross-sections for 237U using the Surrogate
Method on 238U(α, α′). While this data remains preliminary, it is intriguing since the capture cross-section is
comparable to or slightly larger than the fission cross-section around 200 keV. However, we caution that since
this data is preliminary, we compare to it, but do not tune our evaluation to match them. The (n, 2n) data
compares favorably with the fission-competition-corrected TALYS calculations, however the (n, γ) appears
to be about a factor of 2-4 too high. It is possible to tune our capture results to match the Bernstein data,
but we are hesitant to do so before the data progresses out of its current preliminary state.

There are several possible reasons for the disagreement, and we list them here:

• The absolute normalization may be off due to the overly complicated data analysis of emitted gammas.
We doubt this could account for a factor of 2.

• The energy gets shifted in the reworking of (α, α′X) to (n, X). A fix here might improve the agreement
with the (n, 2n) near threshold and reduce the disagreement between the (n, g) data from a factor of
4 to a factor of 2.

• The spin distribution in the surrogate reaction may be a poor match to the compound formation
reactionsurrogate formation.

• The capture measurements have an equivalent measurement that corresponds to neutron energies in
which the width fluctuation correction (WFC) is important. Previous experience shows us that the
WFC tends to lower the capture cross-section and raise the other reaction channel cross-sections.
Indeed, since the measured data was actually a ratio to fission, the ratio should be lowered twice over
because of the WFC. Since it is difficult to predict the magnitude of the WFC and because of its energy
dependence, we will ignore the surrogate (n, γ) data. However test calculations show that this does
not explain the result.

6 Assembly of the Hybrid Evaluation

We now describe how we generated our 237U evaluation. First we detail our fit to the 237U(n, f) cross-section.
Second, we describe the TALYS calculations that we performed to generate the high-energy cross-section
data and outgoing neutron data. Third, we detail the adjustments we made to the cross-section data in
order to properly account for the change in the competition with the fission channel caused by the use of our
fit to the fission data as well as the modification to the reaction cross-section that we did. This will allow us
to compare our predictions of the (n, 2n) and (n, γ) cross-sections with the data of Bernstein [16]. Finally,
we list the components from other evaluations that we adopt as part of this evaluation.

6.1 Determining the (n, f) Cross-section

To determine the 237U(n, f) cross-section, we performed a generalized least-square fit of a linear spline to
the combined data sets of Burke, et al. [18], (corrected) McNally et al. [23], and Cramer and Britt [15] as
interpreted by Younes et al. [11, 12, 13, 14]. Figure 4 shows our fit. The linear spline is defined on the interval
0.1 - 20 MeV with 24 knots and 22 fit coefficients. The final χ2 is 526 giving a χ2 per degree of freedom of
2.38. It is possible to improve the quality of the fit, but we felt the issues with the various experiments did
not merit the improved fit quality.
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Figure 4: Generalized least-squares fit to surrogate and absolute 237U(n, f) data.

6.2 Calculating the Other Cross-Sections and Outgoing Particle Distributions
Using TALYS

To calculate the remaining cross sections, as well as the outgoing particle distributions, the Hauser-Feshbach
code TALYS [34] was used. The RIPL-2 database included in the TALYS distribution provided the masses,
level scheme, and discrete γ-ray data.

The neutron channels were calculated by using the optical potential of Soukhovitski, Chiba, et al. [35],
which was fitted to use deformation lengths of δ2 = 1.75 fm and δ4 = 0.65 fm to couple the ground state to
the excited states 1, 2, 3 and 5 (spins 1/2+ through 9/2+). (The default TALYS calculation also calculates
DWBA octupole transitions to three negative parity states around 0.55 MeV, but these were removed [39].)

The proton transmission coefficients use the optical potentials of Koning and Delaroche [36], and the
deuteron potential is constructed as the sum of neutron and proton potentials at half the deuteron incident
energy. The density of the compound nuclear states was calculated by the method of Gilbert and Cameron
[37], from the Fermi Gas model above 2.6 MeV and the constant temperature model below that energy. The
density parameters were a = 20.297 for 237U, and a = 20.675 for 238U, with ∆ = 0.779 and 1.555 respectively.
The γ-ray strength function used the Kopecky-Uhl model [38] for E1 transitions, renormalised by a factor
of 1.202 to reproduce the experimental total radiative width of 0.03 eV. Pre-equilibrium reactions were
simulated using a two-component exciton model with cluster emission, using nn matrix elements enhanced
by a factor of 1.5 over the other isotopic combinations.

We further note that the fudge fixQandThreshold() function was used to bring thresholds and Q values
in synchronization with masses from the Audi Wapstra 2003 atomic mass evaluations. We also encountered
a bug in TALYS that allows outgoing particles with energy E′ < E + Q − X1, exceeding what is physically
possible. This seems to be an artifact of the way TALYS bins the outgoing particle distributions. Finally,
we discarded any reactions whose maximum was < 1 % of maximum compound elastic cross-section
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Figure 5: Plot showing the world’s collection of actinide non-elastic cross-section measurements, along with
the TALYS calculations used in thie evaluation. The Black Nucleus curve is also included for reference.

6.3 Accounting for Fitted Fission Cross-Section and TALYS’s Poor Agreement
with Non-Elastic Cross-Section Data

The TALYS calculations just described, when combined with the default fission barriers, have two short-
comings. First, they do not match the fits to the fission cross-section performed above. They also do
not match the systematics for the non-elastic cross-sections on actinides as shown in Figure 5. These
non-elastic cross-section measurements are difficult neutron transmission experiments and thus potentially
untrustworthy. However, they do indicate that the TALYS non-elastic cross-section is systematically high.
Indeed, since this cross-section is the reaction cross-section minus the compound elastic cross-section, this
cross-section is controlled by the gross behavior of the imaginary part of the optical model potential (or
the equivalent coupled channel calculation). Thus, it is dominated by the gross shape of the nucleus except
at the lowest energies (< 2 MeV) where structure effects become important. Given the nuclear structure
similaries between 235U and 237U, we would expect that the non-elastic cross-section for 237U should track
the 235U data below 2 MeV.

Given these two shortcomings, we now describe how we remedy them. First, we note that the various
reaction cross-sections all sum to form the total reaction cross-section:

σrxn = σcomp−elas + σfis + σ(n,2n) + ... =
∑

x

σx, (1)

where the non-elastic cross-section is σnon−elas = σrxn−σcomp−elas. We wish to replace the incorrect reaction
and fission cross-sections σrxn and σfis with corrected ones σ′

rxn and σ′

fis, while maintaining the correct inter-
channel competition from TALYS.

If we define “partial widths” as Γ′

x = σx/(σrxn − σfis), these Γ′

x should be preserved as they describe
the inter-channel competition in TALYS. To be compatible with the correct σ′

rxn and σ′

fis cross sections, the

10



10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Einc (MeV)

10
-2

10
-1

10
0

10
1

10
2

10
3

σ 
(B

ar
ns

)

Best fit
Bernstein, private communication (2006)
Bernstein, private communication (2006)
ENDF/B-VII.0 (2006)
Fission corrected TALYS +
JEFF-3.1 resonance region

Figure 6: Our evaluation of the (n, γ) reaction.

other channels x should therefore be simultaneously corrected according to

σ′

x = σx

(

σ′

rxn − σ′

fis

σrxn − σfis

)

. (2)

This result can be made rigorous in the Weisskopf-Ewing limit.
The result of this adjustment can be seen in Figures 6 and 7. We arrive at an (n, 2n) cross-section that is

in reasonable agreement with the surrogate measurement of Bernstein et al., but is significantly lower than
their (n, γ) cross-section. This difference is now under study by Bernstein et al. and, if the capture data
proves to be correct, we will adjust either the appropriate gamma ray strength function in TALYS or the
reaction cross section to achieve a better match.

6.4 Files Adopted from Other Evaluations

TALYS, being a nuclear reaction code, has no capability to produce resonance data. It also does not have a
model for the outgoing fission neutron spectrum or ν̄. Finally, because we used software tools that are still
in active development, we were also unable to translate the TALYS gamma data into either ENDL or ENDF
format. All these elements are present in the JEFF-3.1, JENDL-3.3 and ENDF/B-VII.0 evaluations as they
are required of all ENDF evaluations. So, we adopted all of these from the JEFF-3.1 evaluation. Table 3
summarizes our choices.
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MF MT Data type Reason
2 151 Resonance region See section 3
1 452 Total fission ν̄ data New JEFF-3.1 evaluation
1 455 Delayed fission ν̄ data New JEFF-3.1 evaluation
5 455 Delayed fission neutron spectrum New JEFF-3.1 evaluation
1 456 Prompt fission ν̄ data New JEFF-3.1 evaluation
4 18 Fission neutron angular distribution New JEFF-3.1 evaluation
5 18 Fission neutron spectrum New JEFF-3.1 evaluation
12 18 Fission γ multiplicity New JEFF-3.1 evaluation
14 18 Fission γ angular distribution New JEFF-3.1 evaluation
15 18 Fission γ spectrum New JEFF-3.1 evaluation
12 102 Capture γ multiplicity and discrete spectrum Cannot parse TALYS γ data yet
14 102 Capture γ angular distribution Cannot parse TALYS γ data yet
15 102 Capture γ continuous spectrum Cannot parse TALYS γ data yet
13 3 C = 55 γ production cross-sections Cannot parse TALYS γ data yet
14 3 C = 55 γ angular distribution Cannot parse TALYS γ data yet
15 3 C = 55 γ continuous spectrum Cannot parse TALYS γ data yet

Table 3: Files adopted from the JEFF-3.1 evaluation for use in our 237U evaluation.
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A Evaluation Documentation

D.A. Brown, N. Summers, I. Thompson, W. Younes

MF=1 General Information

Taken from JEFF-3.1.

MT=452 Total Nubar. Sum of MT=455 and 456

MT=455 Delayed Neutron Yields, taken from Ref. [2]

and is given in 8 delayed neutron groups.

MT=456 Prompt Neutron Yields.

Vladuca and Tudora BRC improved Madland-Nix model

MT=458 Not given

The prompt fission neutron multiplicity and spectra

are calculated using the BRC improved Los Alamos model from

Vladuca and Tudora [1]. The model parameters are slightly

different from those adopted in [1]. The prompt fission

neutron multiplicity is obtained from an energetic balance

ratio. The available energy (the average fission energy

released minus the average fission fragment kinetic energy

minus the average prompt gamma ray energy) is divided by the

energy carry away by the neutron (the average fission

fragment neutron separation energy plus the average

center-of-mass energy of the emitted neutrons). The main

improvement is the dependence of the average total

fission-fragment kinetic energy and the average gamma energy

on neutron incident energy.

MF=2, MT=151 Resonance Parameters

Taken from JEFF-3.1 (which adopts JENDL-3.3 parameters).

1) Resolved Resonance Parameters: MLBW (1.0e-5 - 200 ev)

below 45 ev, hypothetical resonances were generated from

fission width of 0.004 ev, s0 of 1.0e-4 and level spacing o

3.5 ev, and adjusted to reproduce thermal cross sections.

above 46 ev, parameters were estimated from fission-area

data measured by McNally et al. [3]

2) Unresolved Resonance Parameters: 200 ev - 30 kev

obtained by fitting to capture and fission cross sections

with ASREP [4].

S0 and S2 = (0.97 - 1.02)e-4, S1 = (1.95 - 2.04)e-4,

Gamma-f = (0.006 - 0.070) ev, Gamma-g = 0.035 ev

R = 9.668 fm
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Calculated thermal cross sections and res. integral (barns)

0.0253 ev resonance integral

(barns) (barns)

Total 478.50 -

Elastic 24.39 -

Fission 1.70 48.7

Capture 452.40 1080.0

Unresolved Resonance Range 10 keV to 30 keV :

The four energy dependant widths parameters originally

described in JENDL-3.3 have been removed to account for

direct interaction on the first inelastuc level

MF=3 Cross-section data

New LLNL evaluation

MT=18: Generalized least squares fit to data

Other MT’s: Taken from calculations using TALYS-0.72,

including correction for inter-channel

competition.

To determine the 237U(n,f) cross-section, we performed a

generalized least-square fit of a linear spline to the

combined data sets of Burke, et al. [5], (corrected)

McNally et al. [3], and Cramer and Britt [6] as interpreted

by Younes et al. [7]. The linear spline is defined on the

interval 0.1 - 20 MeV with 24 knots and 22 fit coefficients.

The final chi^2 is 526 giving a chi^2 per degree of freedom

of 2.38. It is possible to improve the quality of the fit,

but we felt the issues with the various experiments did not

merit the improved fit quality.

To calculate the remaining cross sections, as well as the

outgoing particle distributions, the Hauser-Feshbach code

TALYS [8] was used. The RIPL-2 database included in the

TALYS distribution provided the masses, level scheme, and

discrete gamma-ray data.

The neutron channels were calculated by using the optical

potential of Soukhovitski, Chiba, et al. [9], which was

fitted to use deformation lengths of delta_2 = 1.75 fm and

delta_4 = 0.65 fm to couple the ground state to the excited

states 1, 2, 3 and 5 (spins 1/2+ through 9/2+). (The default

TALYS calculation also calculates DWBA octupole transitions

to three negative parity states around 0.55 MeV, but these

were removed.)

The proton transmission coefficients use the optical

potentials of Koning and Delaroche [10], and the deuteron

potential is constructed as the sum of neutron and proton

potentials at half the deuteron incident energy. The density
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of the compound nuclear states was calculated by the method

of Gilbert and Cameron [11], from the Fermi Gas model above

2.6 MeV and the constant temperature model below that energy.

The density parameters were a=20.297 for 237U, and a=20.675

for 238U, with Delta= 0.779 and 1.555 respectively. The

gamma-ray strength function used the Kopecky-Uhl model [12]

for E1 transitions, renormalised by a factor of 1.202 to

reproduce the experimental total radiative width of 0.03

eV. Pre-equilibrium reactions were simulated using a

two-component exciton model with cluster emission, using

nn matrix elements enhanced by a factor of 1.5 over the

other isotopic combinations.

The TALYS calculations as described did not reproduce either

the measured fission data or non-elastic cross-section

systematics for the actinides. So, we replace the TALYS

fission cross-section, sigma_fis, with our fit, sigma_fis’,

and we adjusted the TALYS reaction cross-section sigma_rxn.

Our new reaction cross-section, sigma_rxn’, lowers the TALYS

non-elastic cross-section above 3 MeV to be consistent with

actinide systematics and raises it below 2 MeV to be

consistent with 235U non-elastic measurements in this

energy range. To be compatible with the correct sigma_rxn’

and sigma_fis’ cross sections, the other channels x are

simultaneously corrected according to

sigma_x’ = sigma_x * [ (sigma_rxn’-sigma_fis’) /

(sigma_rxn-sigma_fis) ].

This result can be made rigorous in the Weisskopf-Ewing limit.

MF=12 Photon Production Multiplicities

Taken from JEFF-3.1 (which adopts ENDF/B-VII.0 data).

MT=18 Taken from GNASH calculations in ENDF/B-VII.0

MT=102 Taken from GNASH calculations in ENDF/B-VII.0

MF=13 Photon Production Cross-section

Taken from JEFF-3.1 (which adopts ENDF/B-VII.0 data).

MT=3 Taken from GNASH calculations in ENDF/B-VII.0

MF=14 Photon Angular Distribution

Taken from JEFF-3.1 (which adopts ENDF/B-VII.0 data).

MT=3 Taken from GNASH calculations in ENDF/B-VII.0

MT=18 Taken from GNASH calculations in ENDF/B-VII.0

MT=102 Taken from GNASH calculations in ENDF/B-VII.0
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MF=15 Continuous Photon Energy Spectra

Taken from JEFF-3.1 (which adopts ENDF/B-VII.0 data).

MT=3 Taken from GNASH calculations in ENDF/B-VII.0

MT=18 Taken from GNASH calculations in ENDF/B-VII.0

MT=102 Taken from GNASH calculations in ENDF/B-VII.0

----------------------------------------------------------------
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