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Abstract

We present a hybrid fluid-particle algorithm to simulate flow and transport of DNA-
laden fluids in microdevices. Relevant length scales in microfluidic systems range
from characteristic channel sizes of millimeters to micron scale geometric variation
(e.g., post arrays) to 10 nanometers for the length of a single rod in a bead-rod
polymer representation of a biological material such as DNA. The method is based
on a previous fluid-particle algorithm in which long molecules are represented as
a chain of connected rods, but in which the physically unrealistic behavior of rod
crossing occurred. We have extended this algorithm to include screened Coulombic
forces between particles by implementing a Debye-Hückel potential acting between
rods. In the method an unsteady incompressible Newtonian fluid is discretized with
a second-order finite difference method in the interior of the Cartesian grid do-
main; an embedded boundary volume-of-fluid formulation is used near boundaries.
The bead-rod polymer model is fully coupled to the solvent through body forces
representing hydrodynamic drag and stochastic thermal fluctuations. While intra-
polymer interactions are modeled by a soft potential, polymer-structure interactions
are treated as perfectly elastic collisions. We demonstrate this method on flow and
transport of a polymer through a post array microchannel in 2D where the polymer
incorporates more realistic physical parameters of DNA, and compare to previous
simulations where rods are allowed to cross. We also show that the method is capable
of simulating 3D flow in a packed bed micro-column.
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1 Introduction

Microfluidics is emerging as a vital technology in the design of devices used for
fluidic control in biodefense and biomedical applications including pathogen
detection, continuous monitoring, and drug delivery. Numerical algorithms
that can model flows of complex biological fluids within these devices are
needed to facilitate development and optimization. However, the fluid dy-
namics in these systems is not well understood due to the presence of large
particles in the bulk fluid whose sizes are comparable to a length scale in the
flow geometry. This is inherently a multiscale problem since continuum flow
is strongly controlled by channel geometry and, to a lesser degree, by sol-
vated polymers whose dynamics are sensitive to nanometer-scale properties of
the system. For example, in a biomolecular processing microdevice the length
scales range from about 1-10 nanometers (the scale at which the surface of
a small globular protein is discretized, or the length of a rod in a polymer
model for single stranded DNA), to tens or hundreds of microns for typical
fluidic processors (average channel width) with the full length of channels ex-
tending to a millimeter. The time scales range from tens of nanoseconds (a
characteristic time for protein reorientation and short-range interactions of
DNA) to a few minutes (a typical time for a complete bioassay). Currently it
is not possible to computationally resolve the phenomena of interest over this
entire range of length and time scales with any single computational method,
necessitating new multiscale schemes.

The overall goal of this paper is to predict the flow, transport, and confor-
mation of individual DNA molecules in microfluidic or biological systems.
A highly concentrated or even semi-dilute solution of suspended polymer
molecules may be represented at the larger, engineering scales of a microdevice
with a continuum constitutive model of a viscoelastic fluid. We have developed
such models where DNA in a solvent is represented by the Oldroyd-B constitu-
tive equation, which assumes that the effect of DNA on the fluid is an elastic
one, and fundamentally a spring and dashpot fluid element [22]. However,
when the geometry length scales are comparable to the inter-polymer spac-
ing, a continuum approximation is no longer appropriate; instead, a hybrid
approach with a discrete molecular approximation is needed. Furthermore, if
the fluid is not static then there must be full coupling of particles and fluid
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if a model is to be predictive. We have also developed a hybrid fluid-particle
method along these lines where a bead-rod polymer representation of DNA
is coupled to an incompressible viscous solvent [26]. In this method the poly-
mer and solvent forces – both viscous and stochastic – are fully-coupled such
that the fluid can “feel” the effect of the polymer, which is different from, for
example, [11], where the coupling is one way and the flow is steady. Addition-
ally in [26], the polymer nodes may experience elastic collisions with domain
boundaries; however, there is no model for intra-polymer interactions in that
work, that is, a mechanism to prevent rods from crossing.

Our specific interest in this paper is to incorporate more physically realistic
behavior of DNA into the bead-rod polymer model as part of a fully-coupled
fluid-particle algorithm. For polymer models of DNA, of immediate concern
is the non-crossing constraint: a polymer section cannot pass through another
polymer section. This constraint is frequently neglected (e.g., [21]). Padding
and Briels describe a complex algorithm to detect and prevent bond cross-
ings [19]. Bonds are considered as elastic bands between bonded particles.
When any two of these elastic bands make contact, an entanglement point
is created which prevents them from crossing. We have since improved the
particle algorithm in [26] to include ideas in [19] but with some improvements
in order to enhance the fluid coupling. In a novel technique we developed
a rigid constraint whereby infinitely thin rods elastically bounce off one an-
other, described initially in [4], then in 2D [25] and in 3D with a new mesoscale
model [17]. We have also used a short-ranged Debye-Hückel potential acting
between rods based on the algorithm for a repulsive Lennard-Jones potential
in [15]. The short-ranged Debye-Hückel potential has also been implemented
for rod-surface interactions. The purpose of this paper is two-fold: to extend
our previous fluid-particle coupling [26] to include the non-crossing constraint
for intra-polymer interactions using the Debye-Hückel potential; and to ex-
pand on the fluid modeling with embedded boundary methods for complex
microscale geometries. Polymer-surface interactions are elastic as in [26]. We
demonstrate the capability on non-trivial irregular microscale flow geometries
in 2D and discuss extension to more complicated 3D applications.

2 Equations of Motion

We use the Navier-Stokes equations to model the solvent as a continuum on
domain Ω:

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P = ν∆u +

1

ρ
F (1)

∇ · u=0. (2)
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These equations describe an incompressible fluid of density ρ, pressure P ,
velocity u, and Newtonian viscosity ν, subject to an additional body force F.
On the domain boundary δΩ we have the no-slip boundary condition u = 0.

The polymer solute is represented as a collection of point masses each subject
to Newton’s second law of motion

mα

d2xα

dt2
= mα

dvα

dt
= fα. (3)

Here mα is the mass of the αth particle, xα is its coordinate, and vα is its
velocity. The particle is subject to a force fα which combines a Stokes drag
term with a stochastic (Brownian) perturbation,

fα = mαγ(u(xα)− vα) + FBα. (4)

Here, 1/γ is a phenomenological relaxation time (mγ = 6πµb for a Stokes
sphere of radius b) , and FB is the stochastic force

〈FBα(t)〉=0 (5)

〈FBα(t)FBα(t
′)〉=σ2αIδ(t− t′) (6)

σα=
√

2mαγkBT , (7)

with kB being Boltzmann’s constant and T the temperature.

The force F acting on the fluid is

F(x) = −
∑

α

fαδε(x− xα) (8)

where δε represents a smoothed Dirac delta function with length scale ε.

In addition to the incompressibility condition (2) we have three additional
constraints on the particles: (i) interparticle spacing is constant

‖xα − xβ‖ = a (9)

if particles α and β represent adjacent nodes in a bead-rod polymer represen-
tation; (ii) particles cannot pass through a physical boundary,

xα ∈ Ω; (10)

and (iii) rods cannot cross.
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Fig. 1. Example of an irregular geometry on a Cartesian grid (left). Close-up view
of embedded boundaries “cutting” regular cells (middle). Single irregular cut cell
showing boundary fluxes (right). Shaded area represents volume of cells excluded
from domain. Dots represent cell-centers. X’s represent centroids.

3 Embedded Boundary Methods for Incompressible Viscous Flow

We use a Cartesian grid embedded boundary method to discretize the fluid
equations in the presence of irregular boundaries. In this approach, the irreg-
ular domain is discretized as a collection of control volumes formed by the
intersection of the problem domain with the cubic Cartesian grid cells as in a
“cookie-cutter” (see Figure 1). The various operators – the discrete divergence
∇·, discrete gradient ∇, and discrete Laplacian ∆ – are approximated using
finite volume differences on the irregular control volumes, with the fluxes com-
puted using the primary discretized dependent variables, which approximate
the solution evaluated at the centers of the original Cartesian cells.

For example, the Laplacian operator, ∆φ = ∇ · ∇φ, is a divergence of a flux
and can be calculated in a finite volume (such as the cut cell in Figure 1b) by
applying the divergence theorem which converts a volume integral to a surface
integral so that fluxes can be simply summed around the perimeter of the cut
cell along normals:

∇ · ~F ≈
1

κhd

∫

Ω
∇ · ~FdΩ =

1

κh

∫

∂Ω

~F · ~ndS =
1

κh

∑

s

αs
~Fs + αb

~Fb (11)

where κ is the volume fraction of the cell, α is the area fraction of a cell edge, h
is the grid spacing and subscripts s and b indicate cell edges and the embedded
boundary, respectively.

To obtain a flux at an embedded boundary when only cell-centered data exists,
which is the case when a homogeneous Dirichlet boundary condition is needed
for no-slip of the fluid velocity at solid walls, a special extrapolation procedure
is needed. Instead of applying the advanced stencil for Dirichlet boundary
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conditions described in [12] we assume a lower-order truncation error stencil
based on least squares [23,20], but one that maintains second-order solution
error, to interpolate the flux ϕ at an irregular boundary, B. The gradient ∇ϕ
is obtained from the system:

A · ∇ϕ = δϕ (12)

where

A=(δ~x1, δ~x2, ..., δ~xp)
T (13)

δϕ=(δϕ1, δϕ2, ..., δϕp)
T (14)

δ~xm= ~xm − ~xB (15)

δϕm=ϕm − ϕB. (16)

The stencil (m = 1, 2, ..., p) is determined by the normal of the embedded
boundary. In 2D the stencil includes up, side and corner cells (see Figure 1b),
with p = 3; in 3D, the normal points to an octant where p = 7. In 2D, for
example, there are two equations and three unknowns; a least squares fit is
applied to obtain the gradients ∇ϕ.

The embedded boundary / volume-of-fluid approach has been used as the basis
for second-order accurate methods for elliptic, parabolic, and hyperbolic PDEs
in two and three dimensions [12,16,8,20]. These methods also have been com-
bined using the predictor-corrector approach in [2] to provide a second-order
accurate projection method for the incompressible Navier-Stokes equations
for problems in irregular geometries [1]. This is the underlying algorithm for
solving the fluid equations (1,2). In addition, the embedded boundary volume-
of-fluid approach to complex geometry is compatible with a fast and accurate
surface extraction technique to go from raw image data to direct simulation
without loss in geometric detail [9,24].

4 Hybrid Fluid-Particle Algorithm with Short Range Forces

The particle solver is tightly coupled to the fluid solver through an interwoven
predictor-corrector strategy as in [26]. In the previous algorithm [26] the par-
ticle position is advanced and then the rod length constraint is applied in both
particle predictor and corrector steps. Here, the rod-rod crossing constraints
are added in both the predictor and corrector with the bead-surface constraint
applied last in the hierarchy.

We discretize time in steps ∆t, with tn = tn−1 + ∆t; and we discretize space
with a rectangular Cartesian grid, xi,j,k = h(i, j, k), regardless of the geometry
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of the fluid domain Ω. The domain boundary δΩ is given indirectly by assigning
to each rectangular grid cell a set of volume and area fractions, which describe
the intersection of the cell with the fluid boundary. Away from boundaries,
the discrete divergence ∇·, discrete gradient ∇, and discrete Laplacian ∆
operators use standard symmetric second-order discretizations of the fluid.
These operators are modified by the presence of boundaries as described above.

Following [26], to advance the coupled fluid-particle system in time consists
of the following four steps, in sequence. A tilde is used to denote quantities
computed in the predictor step of our predictor-corrector strategy; no tilde
is used for the corrector. Superscripts ∗ and † denote provisional quantities;
e.g., u∗ is a fluid velocity subject to divergence cleaning, and x∗,v∗ and x†,v†

are particle coordinates and velocities subject to correction by appropriate
constraints. All quantities are assumed to be cell-centered unless otherwise
noted, either explicitly or by use of cell edge indices (e.g., i+ 1

2
).

Step 1: Particle Predictor

We base our solution to the particle equations onO(∆t2.5)–accurate Ito-Taylor
[14] expansions of the Langevin equations for variables xα and eγtvα.

The predictor is derived using time–n quantities only to estimate the time–
(n+ 1) state of the particles:

ṽ∗,n+1
α =un(xn

α) + (vn
α − un(xn

α))e
−γ∆t +

σ

mα

Rn
v,α(∆t) (17)

x̃∗,n+1
α =xn

α + (vn
α − un(xn

α))
1− e−γ∆t

γ
+ un(xn

α)∆t+
σ

γmα

Rn
x,α(∆t) (18)

∆t fnα =mα

(

ṽ∗,n+1
α − vn

α

)

(19)

Fn(x)=−
∑

α

fnαδε(x− xn
α), (20)

with Rn
v,α(∆t) and Rn

x,α(∆t) vectors of independent random numbers drawn
from Gaussian distributions with zero mean and variances

〈

Rv(∆t)
2
〉

=
1

2γ

(

1− e−2γ∆t
)

(21)

〈

Rx(∆t)
2
〉

=
1

2γ

[

2γ∆t− e−2γ∆t + 4e−γ∆t − 3
]

(22)

〈Rx(∆t)Rv(∆t)〉=
1

2γ

(

1− e−γ∆t
)2

(23)

for variables of identical vector index, and all covariances are zero for terms
with different vector indices. In Eq. (17) un(xn

α) is evaluated by linear interpo-
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lation of the cell-centered discretization un
cc. The discrete Dirac delta function

is represented using a PIC or cloud-in-cell model [3].

Rod length constraint. The particle coordinates x̃∗,n+1 do not in general
obey the rod length constraint (9). To enforce this condition we use the La-
grange multiplier technique described in [6]. This correction consists of iter-
ative solution of a tridiagonal linear system obtained by linearization of (9).
We refer to this corrected state as x̃†, and

ṽ†
α = ṽ∗,n+1

α +
1

∆t
(x̃†

α − x̃∗,n+1
α ) (24)

is the corresponding corrected velocity. See also [17] for additional details.

Rod-rod repulsion. The time-linear trajectory xn
α → x̃†

α may cause rods
to cross, thereby violating the rod crossing constraint. This is prevented by
implementing a short range potential between rods. The algorithm for a repul-
sive potential interaction between rods is taken from the work of Kumar and
Larson [15]. The shortest vector between two rods is calculated, and a repul-
sive force is applied to both rods along that vector. While Kumar and Larson
explored the use of an exponential potential and a Lennard-Jones potential,
this work uses a short-ranged Debye-Hückel potential

UDH = A
e−κr

r
.

It should be noted that while the mathematically correct introduction of these
forces is directly into the Langevin equation, we initially introduced these
forces after the rod length constraint to avoid complexities in the Ito-Taylor
expansion of [26]. For details of the hard constraint for rod crossing see [25]
in 2D and [17] in 3D.

Bead-surface boundary. Application of the repulsive potential may lead a
particle α across the fluid domain boundary, thereby violating constraint (10).
We use a continuous distance function representation of the domain boundary
to detect collisions due to such crossings. If the trajectory contacts the domain
at a point χ ∈ δΩ at relative time τ , 0 < τ ≤ ∆t, we elastically “bounce”
the particle off the boundary at χ as follows. Let n be unit normal to the
boundary at χ:

ṽn+1= ṽ‡ − 2(n · ṽ‡)n (25)

x̃n+1
α =χ+ (∆t− τ)ṽn+1. (26)

If no collision is indicated, then ṽn+1
α = ṽ‡

α, etc. We have also implemented
a short range repulsive potential in addition to the elastic collision model to
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prevent particles from leaving the fluid domain. The same algorithm as in
rod-rod repulsion using the shortest vector between a rod and the level set
boundary defining a surface can be applied here, too.

Step 2: Fluid Predictor

The main feature of the fluid predictor is a numerical estimate of the con-
vective derivative using a second-order Godunov method [7]. (For details of
the embedded boundary discretization for this advection step see [8] and [1].)

We calculate (u · ∇)un+ 1

2 in several steps, first, by approximating edge- and

time-centered velocities, ûn+ 1

2 , using an upwind Taylor series expansion of un

and the PDE (1), including a viscous stability correction to the slopes [18], an
explicit determination of the viscous source term, and the explicit source Fn,
but omitting the pressure. For example, the extrapolated states at plus and
minus edges from a cell center in 2D are

ûx,+=un+1
2
min

[(

1−un
∆t

∆x

)

, 1
]

∆xu
n−

∆t

2∆y
vn∆yu

n−
ν∆t

2
∆un (27)

ûx,−=un−1
2
min

[(

1+un
∆t

∆x

)

, 1
]

∆xu
n+

∆t

2∆y
vn∆yu

n+
ν∆t

2
∆un (28)

ûy,+=un+1
2
min

[(

1−vn
∆t

∆y

)

, 1

]

∆yu
n−

∆t

2∆x
un∆xu

n−
ν∆t

2
∆un (29)

ûy,−=un−1
2
min

[(

1+vn
∆t

∆y

)

, 1

]

∆yu
n+

∆t

2∆x
un∆xu

n+
ν∆t

2
∆un, (30)

where monotonized 2nd-order slopes are used

(∆xu)
n=











(∆xu)
vL if (un

i+1,j − un
i,j)(u

n
i,j − un

i−1,j) > 0

0 if (un
i+1,j − un

i,j)(u
n
i,j − un

i−1,j) ≤ 0,
(31)

and

(∆xu)
vL = sign (

un
i+1,j − un

i−1,j

2
)

×min(2|un
i,j − un

i−1,j|, 2|u
n
i+1,j − un

i,j|, .5|u
n
i+1,j − un

i−1,j|) (32)

after [27], with one-sided differences at boundaries; the upwinded transverse
slopes include a viscous correction for stability [18]
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(∆yu)
n
i,j =











un
i,j+1 − un

i,j +
ν∆t
2
(∆un

i,j+1 −∆un
i,j) if v

n
i,j < 0

un
i,j − un

i,j−1 +
ν∆t
2
(∆un

i,j −∆un
i,j−1) if v

n
i,j ≥ 0

(33)

(∆xu)
n
i,j =











un
i+1,j − un

i,j +
ν∆t
2
(∆un

i+1,j −∆un
i,j) if uni,j < 0

un
i,j − un

i−1,j +
ν∆t
2
(∆un

i,j −∆un
i−1,j) if u

n
i,j ≥ 0.

(34)

We then solve a Riemann problem at each cell edge. For the incompressible
Navier Stokes equations the exact Riemann problem solution amounts to sim-
ple upwinding:

ûn+ 1

2 =



























û
x,+
i,j if

un
i,j
+un

i+1,j

2
> 0

û
x,−
i+1,j if

un
i,j
+un

i+1,j

2
< 0

û
x,+

i,j
+û

x,−
i+1,j

2
if

un
i,j
+un

i+1,j

2
= 0.

(35)

These provisional edge states are made divergence-free (i.e., account for previ-
ously omitted pressure in the Taylor extrapolation) with a MAC-stencil Hodge
projection,

un+ 1

2 = (I −∇∆−1∇·)ûn+ 1

2 . (36)

The edge states un+ 1

2 are used to estimate the convective derivative (u · ∇)un+ 1

2 :

[(u · ∇)u]n+
1

2 =
(u

n+ 1

2

i+ 1

2
,j
+ u

n+ 1

2

i− 1

2
,j
)

2

(u
n+ 1

2

i+ 1

2
,j
− u

n+ 1

2

i− 1

2
,j
)

∆x

+
(v

n+ 1

2

i,j+ 1

2

+ v
n+ 1

2

i,j− 1

2

)

2

(u
n+ 1

2

i,j+ 1

2

− u
n+ 1

2

i,j− 1

2

)

∆y
. (37)

Then,

ũn+1 − un

∆t
= −

1

ρ
(∇πn−

1
2 )− [(u · ∇)u]n+

1
2 +

1

ρ
F n + ν∆ũn+1 (38)

is solved implicitly for the time–(n + 1) cell-centered velocity field ũn+1 to
yield an estimate to the fluid velocity at time–n + 1. This velocity is not
necessarily divergence-free because∇πn− 1

2 is lagged in time (see (48)). Second-
order accuracy in time can be obtained here using the approach described
in [13,16,1] instead of backward Euler. The time step in this explicit fluid
predictor is subject to the CFL condition (σ < 1)
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max
i,j

[|ui,j|]∆t < σ∆x (39)

max
i,j

[|vi,j|]∆t < σ∆y. (40)

In fact, due to the higher frequency particle motions, σ has been reduced by
an order of magnitude for particle stability. A stable particle time step that is
equivalent to the fluid CFL condition can be achieved using the ideas in [17],
providing optimal stability to a multiscale fluid-particle system.

Step 3: Particle Corrector

The particle update is re-evaluated using a mean fluid velocity ū,

ūα =
un(xn

α) + ũn+1(x̃n+1
α )

2
, (41)

if particle α was not predicted to have bounced off the interface; or,

ūα =
τ

2∆t
un(xn

α) +
(∆t− τ)

2∆t
(I − 2nnT )ũn+1(x̃n+1

α ), (42)

if it was predicted to have bounced. Eq. (42) is the average field u on the
particle’s trajectory, referenced to the particle’s original tn orientation. This
expression takes into account the u = 0 no slip boundary condition experi-
enced at relative time τ . For the particle trajectory we then have the O(∆t2.5)
estimate

v∗,n+1
α = ūα + (vn

α − ūα)e
−γ∆t +

σ

mα

Rn
v,α(∆t) (43)

x∗,n+1
α =xn

α + (vn
α − ūα)

1− e−γ∆t

γ
+ ūα∆t+

σ

γmα

Rn
x,α(∆t), (44)

and

∆t fn+1α =mα

(

v∗,n+1
α − vn

α

)

(45)

Fn+1(x)=−
∑

α

fn+1α δε(x− x̃n+1
α ) (46)

gives the fluid-particle coupling centered at tn+1.

Note that the random variables R appearing in the corrector are identical to
those used in the predictor. The provisional terms x∗,n+1

α ,v∗,n+1
α are corrected

to enforce constraints (9) and (10) following the procedures used in the particle
predictor step; the Debye-Hückel forces are re-calculated in between the two
constraints to prevent rod crossing as described in the predictor step.
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Fig. 2. 3D continuum model of packed bed geometry represented by 200 randomly
packed spheres (30µm < r < 80µm) in a cylinder (L = 2cm, R = 500µm) for a
Re = 0.02 flow. Grid spacing is h = 1/64. Pressure data shown.

Step 4: Fluid Corrector

We update the fluid velocity and pressure gradient using a projection method
to enforce the incompressibility constraint [5,2]. This divergence-cleaning re-
sembles the predictor step except that the quantities are now cell-centered:

u∗ − un

∆t
=−

1

ρ
∇πn−

1
2 − [(u · ∇)u]n+

1
2 +

1

2ρ
(Fn + Fn+1) + ν∆u∗ (47)

∆t

ρ
∆πn+

1
2 =∇ ·

[

u∗ +
∆t

ρ
∇πn−

1
2

]

(48)

un+1=u∗ −
∆t

ρ
∇
[

πn+
1
2 − πn−

1
2

]

(49)

where π also appears in (38).

5 Results and Discussion

The application for the modeling capability described above is flow and trans-
port of DNA in a microfluidic device. We are specifically interested in mod-
eling flows in microchannel configurations used for DNA extraction and size-
separation. These processes are typically performed in packed bed columns or
post array channels. The latter lends itself to 2D modeling. We can employ
the embedded boundary technique to treat these geometries. Figure 2 depicts
the pressure drop in a packed bed represented by randomly placed micro-
spheres in a micro-cylinder. The purpose of this result is to demonstrate the
3D computational capability for the macroscale continuum flow. Similarly,
Figure 3a depicts a 2D representation of a dense post array microchannel.
In these results, the array of obstructions in the flow–both homogeneous in
Figure 3b and heterogeneous in Figure 2–create a pressure differential in the
transverse direction, as in Figure 3b. This bulk flow effect is different from
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Fig. 3. (a) 2D continuum model of a “pillar chip” channel represented by a 38x38
post (r = 12.5µm) ordered array in a channel () for a Re = 0.02 flow (left). Pressure
data shown. (b) Non-zero pressure gradient in the vertical direction due to channel
obstructions (right).

pressure-driven flows with no obstructions in the flow where the flow direction
is the dominant gradient vector. The flow parameters for the packed bed are
a plug inflow velocity of 0.01cm/sec, Re = 0.02, cylinder length is 2cm, cylin-
der width is 1mm and the 200 randomly packed spheres range in radius from
30-80µm. The flow parameters for the straight post array are a plug inflow
velocity of 0.01cm/sec, Re = 0.02, channel length is 4mm, width is 2mm and
the 38x38 posts in an ordered array each have a radius of 12.5µm. The stag-
gered post array is a smaller length section of a channel (L = 400µm) with
larger posts (r = 50µm). The idealized geometries in these 2D and 3D results
are generated using the following implicit function on the grid:

φ(x) = min
k

(|~x− ~xk|
2 − r2k) (50)

where ~xk = center of kth sphere, rk = radius of kth sphere and ~x : φ(~x) = 0 on
the boundary.

The 2D pillar chip model can be restricted to a single molecule traveling
through a smaller section of the array. This is the test problem in which we
implement the new short range interactions into our algorithm. Figure 4 is a
comparison between the hybrid method including the repulsive Debye-Hückel
potential between rods (noncrossing) and the hybrid method which does not
treat intra-polymer interactions at all (crossing) as in [26]. In the noncrossing
simulation there is a clear separation of the polymer from itself at all locations.
In the crossing simulation the beads tend to bunch up on top of each other in
several locations along the polymer. The rods do cross as depicted by colored
particles which are out of sequence. A smooth colormap is used to represent
the particle number in the polymer chain. Clumping of particles on top of one
another is an artifact of visualization, similar to any particles that cross the
boundary. In these simulations the physical parameters of the polymer are
meant to closely resemble genomic DNA at constant temperature T = 300K
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Fig. 4. Bead-rod polymer representation of DNA flowing around a pillar in a 2D post
microarray. (left) Hybrid algorithm with repulsive Debye-Hückel potential between
rods to prevent crossing. There is a clear separation of the polymer from itself at all
locations. (right) Hybrid algorithm with no treatment of intra-polymer interactions.
Rods are allowed to cross. The color of the beads represents the number of the bead
in the polymer chain using a smooth colormap. Clumping of beads on top of one
another is an artifact of visualization. Crossing of rods occurs where the color of a
bead is out of order sequentially, particularly in the red, orange and yellow to green
bead areas.

and have been corrected according to an assumed Kuhn length for double-
stranded DNA of 100nm: 200 nodes atm = 3×10−19g/node, separated by rods
of length a = 100nm with a Stokes drag coefficient of mγ = 1.0×10−6cm2/sec.
We use a rough estimate to the Debye screening length k = 10nm and choose
the constant A = 1.0×10−17. The flow parameters are a 40µm square channel
with a single cylindrical pillar obstruction (r = 10µm) at Re = 0.4 with plug
inflow velocity 1cm/sec, densityρ = 1g/cm3 and dynamic viscosity of water
0.01g/(cm− sec).

6 Conclusion

We have presented a hybrid fluid-particle algorithm in which the fluid-particle
forces are tightly coupled, and which includes short range Debye-Hückel model
to enforce the physical rod-crossing constraint. The calculations shown here
use a perfectly elastic collision model to enforce the particle-wall constraints,
though we have also implemented this using Debye-Hückel elsewhere [4].

By itself, the fluid dynamics part of our hybrid fluid-particle approach is gov-
erned by a time scale set by the advective CFL condition. The particle al-
gorithms are stable with a somewhat shorter time step. In this paper, we
maintain tight coupling between the fluid and particles by marching both me-
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dia at the same reduced time step. The computational cost of a single time
step is strongly controlled by the explicit advection step in the fluid, however,
so reducing the fluid timestep does increase the cost of the method. Elsewhere,
we describe efforts to reduce this cost by implementing new particle algorithms
which are subject to significantly less restrictive stability conditions [17].

We present sample calculations spanning several of the length scales relevant to
our goal of system-level modeling: from a resolved view of polymers interacting
with embedded posts, to a continuum-level result for a packed bed reactor.
One of our goals is to integrate these approaches through the adaptive mesh
and algorithm refinement technique (AMAR) [10]. In this method, those parts
of a domain requiring molecular resolution can be handled with algorithms like
dissipative particle dynamics; those parts in which the polymer is dilute, but
in which its dynamics can be more crudely approximated, can be simulated
with the methods described in this paper; and any parts where a continuum
approach is sufficient can be handled with the methods of, e.g., [22]. Through
this multiscale hierarchy of algorithms, efficient and predictive simulation of
complete microfluidic devices may be attained.
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