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Abstract.
The Community Atmosphere Model (CAM) is the atmospheric component of the

Community Climate System Model (CCSM) and is the primary consumer of computer resources
in typical CCSM simulations. Performance engineering has been an important aspect of CAM
development throughout its existence. This paper briefly summarizes these efforts and their
impacts over the past five years.

1. Introduction
The Community Climate System Model (CCSM) is a fully-coupled, global climate model that
provides state-of-the-art computer simulations of the Earth’s past, present, and future climate
states, and is an important tool in understanding climate change [1]. CCSM development is the
focus of the Department of Energy (DOE) Scientific Discovery through Advanced Computing
(SciDAC) project Collaborative Design and Development of the Community Climate System
Model for Terascale Computers. Performance and performance portability have been major foci
of this project since its inception in July 2001.

The CCSM is constantly evolving to incorporate new science. The target computer platforms
change periodically as well. The project performance engineering goals are addressed by an
iterative process that includes porting the CCSM to new platforms, collecting and analyzing
performance data, optimizing performance, and modifying code to improve performance
portability. (Performance portability refers to the capability of a code to be optimized on a new
platform or for a new problem instance quickly, and is an important enabler of this iterative
process.) These activites are performed in close collaboration with the SciDAC Integrated
Software Infrastructure Center on performance engineering Performance Evaluation Research
Center (PERC). PERC provides both personnel and tools, and has been an important enabler
of the success of the performance engineering activities, particularly in the areas of performance
data collection and analysis.

The CCSM is made up of four component models (atmosphere, ocean, land, and sea ice)
and a coupler. The Community Atmosphere Model (CAM) is the atmospheric component of
the CCSM and is the primary consumer of computer resources in typical CCSM simulations.
This paper briefly summarizes the impact of the above mentioned SciDAC projects on both
performance and performance portability of CAM over the past five years. For information on



performance engineering in other CCSM component models, see the special issue (volume 19,
number 3) on climate modeling of the International Journal on High Performance Computer
Applications.

2. Community Atmosphere Model
CAM is a global atmosphere model developed at the National Science Foundation’s National
Center for Atmospheric Research (NCAR) with contributions from researchers funded by the
DOE and by the National Aeronautics and Space Administration (NASA) [2]. CAM is a mixed-
mode parallel application code, using both the Message Passing Interface (MPI) [6] and OpenMP
protocols [5]. CAM is characterized by two computational phases: the dynamics, which advances
the evolution equations for the atmospheric flow, and the physics, which approximates subgrid
phenomena such as precipitation processes, clouds, long- and short-wave radiation, and turbulent
mixing [3]. The approximations in the physics are referred to as the physical parameterizations.
Control moves between the dynamics and the physics at least once during each model simulation
timestep.

CAM includes multiple options for the dynamics, referred to as dynamical cores or dycores,
one of which is selected at compile-time. Three dycores are currently supported: a spectral
Eulerian (EUL) [7], a spectral semi-Lagrangian (SLD) [12], and a finite volume semi-Lagrangian
(FV) [8]. The spectral and finite volume dycores use different computational grids. An explicit
interface exists between the dynamics and the physics, and the physics data structures and
parallelization strategies are independent from those in the dynamics. A dynamics-physics
coupler moves data between data structures representing the dynamics state and the physics
state.

The development of CAM is a large community-wide effort with CAM software engineering led
by the CCSM Software Engineering Group at NCAR. The authors were instrumental in much
of the performance engineering of CAM [9, 14], including all three dycores and the physics.
However, some of the performance portability features in the FV dycore were developed at
NASA [10] and David Parks of NEC Solutions America, in partnership with the Japanese Earth
Simulator Center, was responsible for the initial vectorization of many of the routines in CAM.

3. Performance Engineering
The general performance engineering goals are to (1) maximize single processor performance,
e.g., optimize memory access patterns and maximize vectorization or other fine-grain parallelism,
and (2) minimize parallel overhead, e.g., minimize communication costs, load imbalance, and
redundant computation. These goals need to be achieved for a variety of target computer
systems, a range of problem specifications, and a range of processor counts, all while preserving
maintainability and extensibility. There is no optimal solution for all desired configurations of
platform, problem, and processor count, and we rely on performance portability techniques. We
have been successful in delaying decisions that affect performance until compile-time or run-time
by hiding performance options in utility layers or in initialization routines. The code seen by
developers has not been significantly impacted. The current set of CAM tuning options are
discussed in [13].

Most of our optimization efforts can be categorized as either (1) eliminating unnecessary
work, (2) cache blocking and/or vectorization, (3) exposing additional parallelism, (4) load
balancing, (5) interprocessor communication optimizations, or (6) evaluating different compiler
optimization options and exploiting optimized libraries. The largest impact on the code, in terms
of number of lines modified, has come from exposing additional parallelism, e.g., by introducing
a two dimensional domain decomposition where before there was only a one dimensional
decomposition, and from enabling vectorization, e.g., by reordering loops and changing data
structures to increase loop lengths.
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Figure 1. CAM EUL Performance History: June 2001 to May 2004.

4. Performance History
Documenting performance improvements in an evolving code is complicated. Changes that
add, for example, new processes to the physics can increase the amount of work required in
a simulation. Such complexity-changing modifications invalidate performance optimization
comparisons between versions of the code before and after the modification. Periodically,
the problem specification or dynamical core of most interest also changes, which requires the
redefinition of baseline performance using the current production version of the code. (It is
often not possible to run the new problem specification on older versions of the code.) A version
control system is essential for this type of study as it documents the code evolution. First CVS,
then Subversion [4], have been used with CAM. One side effect of introducing performance
optimizations as compile-time and run-time options is that new versions of the code can be run
in the “old way”, so that the performance impact of the introduction of a performance tuning
option can still be quantified.

The left graph in Figure 1 describes the performance improvement between June 2001 and
November of 2002 on an IBM p690 cluster (32-way symmetric multiprocessor (SMP) nodes with
1.3 GHz Power4 processors and IBM SP Switch2 interconnect between nodes). The benchmark
problem T42 L26 uses a 64x128x26 (latitude by longitude by vertical) computational grid and
the EUL dycore, which were the production settings at the time of the experiments. The initial
curve is the performance when setting the optimization options to emulate the way that CAM
version 1.0 was run in June 2001. Note that the performance improvements include increasing
the number of processors that could be used effectively from 64 to more than 256.

The right graph in Figure 1 describes the performance improvement due to the performance
optimization options introduced between June 2001 and May 2004 on the IBM p690 cluster,
now using the IBM HFS interconnect, on an IBM p575 cluster (8-way SMP nodes with 1.9 GHz
Power5 processors and IBM HFS interconnect between nodes), and on a Cray X1E (cluster of
4-way SMP nodes with a 2D torus interconnect where each node contains four 1.13 GHz 8-pipe
vector processors). Results are for the new production problem size of T85 L26, which uses the
EUL dycore and a computational grid of size 128x256x26.

So far we have described the impact of performance optimizations in the physics and in the
spectral dycores. Over the same period of time the NASA FV dycore was integrated with CAM,
a two-dimensional (2D) domain decomposition option was implemented, and a number of FV
communication optimization options were added. As FV was not available in CAM previously,
no baseline existed against which to evaluate these optimizations, and many of the optimizations
were introduced simultaneously. The left graph in Figure 2 compares CAM performance when
using MPI-2 one-sided and MPI-1 two-sided communication requests with varying levels of
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Figure 2. CAM FV Performance Optimizations.
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Figure 3. CAM Vector Performance History: March 2005 to March 2006.

thread parallelism. The experimental platform is an SGI Origin3800 nonuniform memory access
global shared memory system with 600 MHz MIPS R14000 processors. The benchmark problem
(1x1.25 L26) uses a 181x288x26 computational grid.

The right graph in Figure 2 illustrates the performance impact of the 2D domain
decomposition on performance on three platforms, the Cray X1E, the Cray XT3, and the IBM
p690 cluster. The Cray XT3 is a cluster of single processor nodes with 2.4 GHz Opteron
processors and a 3D torus interconnect. The benchmark problem (0.5x0.625 L26) uses a
361x576x26 computational grid. Performance is graphed for the original one-dimensional (1D)
decomposition, a 2D decomposition where four processors are applied to the new dimension,
and a 2D decomposition in which seven processors are applied to the new dimension. The
1D decomposition is limited to 120 MPI processes for this benchmark. The 2D domain
decomposition increases MPI scalability significantly, but with diminishing performance returns
for high processor counts. For the IBM p690 cluster, OpenMP parallelism is more efficient at
increasing scalability than is the 2D decomposition up to the indicated number of processors.

The most recent performance engineering efforts involved (re)vectorizing CAM without
degrading performance on the nonvector systems. The target vector systems are the Cray
X1E and the Earth Simulator. As these two systems have somewhat different performance
sensitivities, maintaining performance portability between them has been an issue. Figure 3
illustrates the performance history for three benchmark problems and processor counts on the
X1E from May 2005 to May 2006. The versions named on the X-axis were developed on the
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Figure 4. CAM Performance, May 2006

X1E, and often include changes that eliminate performance degradations that crept in since the
previous X1E-oriented modification. For each named version, we also measured performance
for the immediately preceding version. The name of each version is of the form “3.X Y”. The
“3.” is dropped from the name in the graph where it improves readability. The two graphs
contain the same data, but the one on the right uses a logarithmic Y-axis. From this it should
be clear that maintaining vectorization is a significant performance advantage, and requires
ongoing monitoring as new code is introduced. The new benchmark problem, 1.9x2.5 L26, has a
96x144x26 computational grid and is the initial production resolution for the FV dycore within
CCSM.

5. Future Challenges
As shown in section 3, performance engineering efforts over the past five years have improved
CAM performance significantly. The graphs in Figure 4 describe current CAM performance,
where recent performance optimizations have been backported into versions 3.0 and 3.1. While
performance on the current production platforms is very good, scalability is still limited. CAM is
evolving quickly at the current time. Computational complexity, load imbalance in the physics,
and communication overhead in the dynamics are all expected to increase significantly. To
maintain the required simulation throughput rates will require further improvement in processor
scalability and algorithm flexibility, and performance portability techniques will continue to be
vital to achieving CAM performance goals.
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