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The ninth-order weighted essentially non-oscillatory (WENO) shock-capturing method is used to
investigate the physics of reshock and mixing in two-dimensional single-mode Richtmyer-Meshkov
instability to late times. The initial conditions and computational domain were adapted from the
Mach 1.21 air(acetone)/SF6 shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464,
113 (2002)]: the growth of the bubble and spike perturbation amplitudes from fifth- and ninth-
order WENO simulations of this experiment were compared to the predictions of amplitude growth
models, and were shown to be in very good agreement with the experimental data prior to reshock
[Latini, Schilling and Don, Phys. Fluids (2007), in press]. In the present investigation, the density,
vorticity, baroclinic vorticity production, and simulated density Schlieren fields are first presented
to qualitatively describe reshock. The baroclinic circulation deposition on the interface is shown to
agree with the predictions of the Samtaney and Zabusky [J. Fluid Mech. 269, 45 (1994)] model
and linear instability theory. The time-evolution of the positive and negative circulation on the
interface is considered before and after reshock: it is shown that the circulations are equal before,
as well as after reshock, until the interaction of the reflected rarefaction with the layer leads to
flow symmetry breaking and different evolutions of the positive and negative circulation. The post-
reshock mixing layer growth is shown to be in very good agreement with three models predicting
linear growth for a short time following reshock. Next, a comprehensive investigation of local and
global mixing properties as a function of time is performed. The distribution and amount of mixed
fluid along the shock propagation direction is characterized using averaged mole fraction profiles,
a fast kinetic reaction model, and molecular mixing fractions. The modal distribution of energy
in the mixing layer is quantified using the spectra of the fluctuating kinetic energy, fluctuating
enstrophy, pressure variance, density variance, and baroclinic vorticity production variance. It is
shown that a broad range of scales already exists prior to reshock, indicating that the single-mode
Richtmyer-Meshkov instability develops non-trivial spectral content from its inception. At reshock,
fluctuations in all fields (except for the density) are amplified across all scales. Reshock strongly
amplifies the circulation, profiles and mixing fractions, as well as the energy spectra and statistics,
leading to enhanced mixing, followed by a decay. The mole and mixing fraction profiles become
nearly self-similar at late times following reshock; the mixing fraction approaches unity across the
layer at the latest time, signifying nearly complete mixing. The comparison of the spectra to
the predictions of classical inertial subrange scalings in two-dimensional turbulence shows that the
post-reshock spectra are consistent with most of these scalings over short wave number ranges. To
directly quantify the amplification of fluctuations by reshock, the previously considered quantities
are compared immediately after and before reshock. Finally, to investigate the decay of fluctuations
in the absence of additional waves interacting with the mixing layer following reshock, the boundary
condition at the end of the computational domain is changed from reflecting to outflow to allow
the reflected rarefaction wave to exit the domain. It is shown that the reflected rarefaction has
an important role in breaking symmetry and achieving late-time statistical isotropy of the velocity
field.
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I. INTRODUCTION

The Richtmyer-Meshkov instability is a fundamental
fluid instability that occurs when perturbations on an
interface separating different gases grow following the
passage of a shock. In the weighted essentially non-
oscillatory (WENO) simulations of a model of the Mach
1.21 air(acetone)/SF6 experiments of Collins and Jacobs
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[1] considered here (see Ref. 2 for details on the exper-
iment and simulations), following the initial interaction
at 0 ms, a transmitted shock enters the second gas. This
shock reflects from the end wall of the shock tube test
section and interacts with the evolving mixing layer at
≈ 6.4 ms in a process called reshock. Following reshock,
a transmitted shock continues into the first gas and a re-
flected rarefaction wave returns into the second gas. The
rarefaction wave reflects from the end wall and interacts
again with the evolving interface at ≈ 11 ms, generating
a compression wave. The compression wave reflects from
the end wall and again interacts with the evolving inter-
face at ≈ 15 ms. The growth and other properties of the
mixing layer are affected by these wave-interface interac-
tions, with each subsequent interaction further increas-
ing turbulent fluctuations contributing to the mixing and
formation of complex small-scale structures.

The dynamics and physics of the reshocked Richtmyer-
Meshkov instability is under intensive investigation due
to its relevance to both core-collapse supernovae dynam-
ics [3] and to inertial confinement fusion (ICF) [4–6].
Very little previous investigation of reshocked Richtmyer-
Meshkov instability-induced mixing has been performed
in either two or three dimensions [7, 8]. The vast major-
ity of simulations of capsule implosions in ICF involving
the Rayleigh-Taylor and Richtmyer-Meshkov instabilities
are still performed in one and two dimensions, as the
resolutions and computational resources required to ad-
equately resolve such flows in three dimensions are still
beyond the reach of available computing facilities. Thus,
ICF designers continue to rely on lower dimensional simu-
lations, and it is therefore, valuable to better understand
the dynamics of these instabilities in two dimensions.

Here, data from ninth-order WENO simulations using
a grid resolution of 512 points per initial perturbation
wavelength λ (the WENO9F simulation in Ref. 9) is used
to investigate the physics of reshock and mixing. In par-
ticular, the effects of reshock, as well as the decay proper-
ties at late times, are quantified and assessed. The anal-
ysis considered here includes local and global quantities.
Two types of local quantities are considered at different
times—profiles across the mixing layer and energy spec-
tra. In the present geometry, mixing profiles are quan-
tities averaged across the spanwise (y) direction perpen-
dicular to the shock propagation direction (so that they
are only a function of the streamwise coordinate x and
time) characterizing the distribution of mixing within the
layer. Spectra of fluctuations within the mixing layer as
a function of the wave number k characterize the modal
energy distribution within the layer. Global quantities
include mixing fractions and statistics as a function of
time. Mixing fractions characterize the efficiency of mix-
ing, including the effects of reshock and wave-interface
interactions, and statistics characterize the energy evolu-
tion as the mixing progresses. To investigate the effects
of the reflected rarefaction wave on the mixing, simula-
tions using outflow and reflecting boundary conditions
(the latter corresponding to the WENO9M simulation in

Ref. 9) at the end wall with resolutions of 256 points per
initial perturbation wavelength were compared.

This paper is organized as follows. The equations
solved and the suitability of the WENO method for inves-
tigating the physics of reshock and mixing are briefly dis-
cussed in Sec. II. The density, vorticity, baroclinic vortic-
ity production, and simulated density Schlieren fields are
used to visualize and qualitatively describe the reshock
process in Sec. III. The circulation deposited on the in-
terface by the shock is compared with the predictions of
the Samtaney-Zabusky model and linear instability the-
ory in Sec. IV. The post-reshock mixing layer width is
compared to the predictions of three phenomenological
reshock models in Sec. V. The analysis of the local and
global properties of mixing, including profiles, mixing
fractions, energy spectra, and statistics, is presented in
Sec. VI. Also presented are a comparison of mixing quan-
tities and spectra immediately before and after reshock,
and a comparison of results from reflecting and outflow
boundary conditions at the end wall. A summary of the
results and conclusions are given in Sec. VII.

II. THE WENO METHOD FOR THE
SIMULATION OF RESHOCK

The reshocked Richtmyer-Meshkov instability must be
simulated with a shock-capturing method. The funda-
mental issue with a direct numerical simulation (DNS)
to simulate this flow is that high-order (e.g., spectral or
high-order finite-difference) schemes used for DNS are in-
capable of simulating shocked flows such as those arising
from the Richtmyer-Meshkov instability due to Gibbs os-
cillations. In addition, it is not possible to fully resolve
shocks in a continuum simulation in the sense required to
consider it a DNS. Also, in simulations of the reshocked
Richtmyer-Meshkov instability using explicit molecular
dissipation terms in formally high-order shock-capturing
schemes, the implicit dissipation may exceed the molecu-
lar dissipation upon shock passage (and especially upon
reshock of a mixing layer). Typically, implicit numerical
diffusion present in the scheme or some type of subgrid-
scale model (e.g., an “artificial viscosity”) must be used.

In the present simulations, the two-dimensional Euler
equations augmented by the mass fraction conservation
equation for the denser gas

∂φ

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (1)

are solved, where the conservative variables, φ, and in-
viscid fluxes, F and G, are

φ = (ρ, ρ u, ρ v, ρ e, ρm)T
, (2)

F =
(
ρ u, ρ u2 + p, ρ u v, (ρ e+ p)u, ρmu

)T
, (3)

G =
(
ρ v, ρ u v, ρ v2 + p, (ρ e+ p) v, ρmv

)T
. (4)

Here, ρ is the density, u = (u, v) is the velocity, p is
the pressure, e =

(
u2 + v2

)
/2 + p/(γ − 1) is the total
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energy per unit mass, m is the mass fraction (here of the
sulfur hexafluoride gas, SF6) and p = ρRT is the ideal
gas pressure (R is the gas constant).

The simulations were performed using the finite-
difference WENO shock-capturing method [2, 9]. The
conservative finite-difference discretization of the Euler
equations with WENO flux reconstruction contains im-
plicit truncation errors that can be regarded as a non-
linear, adaptive numerical dissipation. Although the Eu-
ler equations are solved in the present work, it is pos-
sible to compare the kinematic viscosity of the mixture,
νmix, in the Collins and Jacobs experiment to the implicit
numerical viscosity, νnum. The kinematic viscosities of
air(acetone) and SF6 are 0.156 cm2/s and 0.026 cm2/s,
respectively [10]. Estimating the mixture dynamic vis-
cosity by [11]

µmix =
X1 µ1

√
M1 +X2 µ2

√
M2

X1

√
M1 +X2

√
M2

, (5)

where Xr are the mole fractions of the mixture compo-
nents and Mr are the molecular weights [2], gives νmix =
µmix/ρmix = 0.047 cm2/s, where ρmix = (ρ1 +ρ2)/2. The
computed numerical viscosity νnum ≈ 0.1 cm2/s following
reshock [9] is close to the estimated νmix. In this previ-
ous study [9], the effects of order of WENO flux recon-
struction and grid resolution on the quantities considered
here showed that prior to reshock, these quantities exhib-
ited little sensitivity to order and resolution. However,
following reshock, higher order methods preserved more
small-scale structure and had much lower numerical dis-
sipation than lower-order methods at the same grid res-
olution. Furthermore, in Ref. 2 the agreement between
the WENO densities and the experimental PLIF images,
as well as the agreement of the amplitude with the ex-
perimental data and with the predictions of amplitude
growth models, provided an element of validation of this
numerical method. All of these results support using the
ninth-order WENO method in investigating the physics
of shock-interface interactions, including the reshocked
Richtmyer-Meshkov instability.

III. THE PHENOMENOLOGY OF RESHOCK

Here, a temporal sequence of the density, vorticity,
baroclinic vorticity production, and simulated density
Schlieren fields is used to qualitatively describe the phe-
nomenology of reshock, including the effects of vorticity
deposition on the interface, shock focusing, and the ef-
fects of reflected waves on the interface evolution. Images
of the vortex roll-up are also considered to describe the
interior structure of the core during reshock. As in Refs.
2 and 9, the simulation fields are rotated 90◦ counter-
clockwise.

A. The density fields

Reshock is first visualized through the time sequence of
density fields shown in Fig. 1 from 6 to 7.18 ms. At 6 ms
(prior to reshock), the densities exhibit small-scale struc-
tures on the roll-up of the interface, which form as a result
of the secondary deposition of vorticity occurring from
the interface roll-up [12]. Reshock is a refraction from a
heavier gas (SF6) into a lighter gas [air(acetone)], result-
ing in a transmitted shock that enters the air(acetone)
and a reflected rarefaction that returns back into the SF6.
Reshock occurs over a timescale of ≈ 0.2–0.3 ms. The
densities show the arrival of the reflected shock at 6.38
ms, the shock refraction with the transmitted shock in
air(acetone), the reflected rarefaction returning into the
SF6 at 6.48 and 6.58 ms, the inversion process when the
bubble transforms into a spike (and vice versa) from 6.58–
7 ms, and the formation of additional small roll-ups and
complex, disordered structures at 7 and 7.18 ms. Curved
waves can be seen in the SF6 during inversion. At late
times (11, 15 and 18 ms) shown in Fig. 2, a large spike of
SF6 develops. A finely-mixed complex layer is observed,
which is the remnant of the spike prior to reshock. The
creation of small disordered structures breaks symmetry
and forms a complex interface topology.

B. The vorticity and baroclinic vorticity
production fields

The vorticity evolution equation (in two dimensions
and in the absence of dissipation) is

dω

dt
= P + C , P ≡ ∇ρ×∇p

ρ2
, C ≡ −ω∇ · u (6)

where d/dt = ∂/∂t+ u · ∇, P is the baroclinic vorticity
production term, and C is the vortex compression term
(which is small compared to P); ω and P are shown in
Fig. 3 at the same times as the density fields in Fig.
1. Baroclinic vorticity production causes the deposition
of vorticity with opposite sign on the interface during
reshock: this term is approximately two orders of mag-
nitude larger than prior to reshock. The vorticity rolls-
up into strong cores prior to reshock, as seen at 6 and
6.38 ms. At the same times, the density and pressure
fluctuations along the interface cause the deposition of
additional vorticity, as seen in P at the corresponding
times. During reshock at 6.48 ms, the baroclinic vortic-
ity production is strongly increased along the interface,
particularly on the sides of the bubbles, where the mis-
alignment of ∇ρ and ∇p is greatest. The vorticity de-
posited is also approximately four times larger than the
vorticity in the cores of the spikes prior to reshock. The
vorticity of opposite sign subsequently drives the inver-
sion process, which transforms the bubbles into spikes
and vice versa, and induces the formation of additional
disordered complex structures at 7 and 7.18 ms. Follow-
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FIG. 1: (Color). The density fields at 6, 6.38, 6.48, 6.58, 6.58, 6.68, 6.78, 7 and 7.18 ms. The gases are air(acetone) (blue) and
SF6 (red).
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FIG. 2: (Color). Same as Fig. 1 but at 11, 15 and 18 ms.

ing shock passage, baroclinic production becomes much
weaker.

The vorticity and baroclinic vorticity production fields
are shown in Fig. 4 at late times following reshock (11,
15 and 18 ms). The vorticity fragments into small lo-
calized vortices at late times. Baroclinic production is
active at the interface and contributes to the develop-
ment of complex structures and to increased mixing. At
late times, P is approximately two orders of magnitude
smaller than at reshock. Furthermore, it remains ap-
proximately constant at late times, indicating that the
arrival of the reflected rarefaction at ≈ 11 ms and of the
reflected compression at ≈ 15 ms does not significantly
affect baroclinic vorticity production.

A close-up of the density, vorticity, and baroclinic vor-
ticity production fields inside the roll-up is shown in
Fig. 5 during and after reshock. The density shows the
formation of complex structures, the vorticity shows the
dynamical mechanisms driving the formation of these
structures, and the baroclinic vorticity production shows
the mechanisms driving the vorticity through the mis-
alignment of ∇ρ and ∇p inside the vortex core as the
roll-up progresses. The baroclinic vorticity production
increases at 6.58 ms in the roll-up, corresponding to the
passage of one of the transmitted shocks during reshock.
This shock can also be seen in the Schlieren images dis-
cussed in the next section. The passage of this shock
causes the deposition of vorticity of opposite sign on the
interface, which drives the inversion process and the for-
mation of additional complex small-scale structures.
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FIG. 3: (Color). The vorticity, ω, and baroclinic vorticity production, P, fields at 6, 6.38, 6.48, 6.58, 6.68, 6.78, 7 and 7.18 ms.

C. The simulated density Schlieren fields

The detailed wave structure can be investigated using
simulated density Schlieren fields, which visualize density
gradients associated with the waves and fine-scale mixing
structures. The density Schlieren is that used in two-
dimensional fifth-order WENO simulations of a shock-
cylinder interaction [13],

Φ(x, y, t) = exp
[
−α(m)

|∇ρ|
max |∇ρ|

]
, (7)

where α(m) = 20 for m > 0.25 and α(m) = 100 other-
wise, and m is the mass fraction of SF6.

A temporal sequence of simulated density Schlieren
fields during reshock and at late times is shown in Fig.
6. The fields sharply capture the diffuse interface, the
complex wave structure during reshock, and the small-
scale structures at late times. Note the focusing effect of
the waves and the bubble transforming into the spike and
vice versa. The field at 11 ms shows the arrival of the
reflected rarefaction produced by the second shock after
it has reflected from the end wall of the domain. The rich
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FIG. 4: (Color). Same as Fig. 3 but at 11, 15 and 18 ms.
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FIG. 5: (Color). Details of the roll-up in the density, ρ, vorticity, ω, and baroclinic vorticity production, P, fields at 6.48, 6.58,
6.68 and 7 ms. The images show the complex structure in the roll-up, including the effects of reshock on this structure.
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structure displayed by Φ shows weak, curved waves that
intersect and cause focusing. As these waves are weak
due to the small Mach number, it is unclear whether
they have an important role in the flow dynamics. At
late times, the waves have dissipated and are no longer
present in the unmixed gases. Similar complex wave
structures were also observed following a shock-interface
interaction in the Ma = 1.32 experimental Schlieren im-
ages of Brouillette and Sturtevant [14].

IV. BAROCLINIC CIRCULATION
DEPOSITION ON THE INTERFACE

The circulation deposited on the interface by the shock
quantifies the principal mechanism driving the evolution
of the Richtmyer-Meshkov instability. Reshock imparts
additional circulation on the interface, contributing to
the rapid development of complex flow structure through
baroclinic production.

Consider a closed oriented curve C enclosing a surface
S, so that the circulation is

Γ(t) =
∮

C

u · dr =
∫

S

ω · dS ,

where dr is tangent to C and dS is the outward ori-
ented area element. Here, the vorticity vector and the
area element are parallel; as a result, the latter definition
for computing the circulation is adopted, with dS taken
to be a rectangle. In the limit of a rectangle with infi-
nite length in the streamwise (x) direction and negligible
width in the spanwise (y) direction, the circulation on the
interface is approximated as 〈ω〉(y, t) ≡

∫∞
−∞ ω(x, y, t)dx.

Samtaney and Zabusky [15] analytically derived

〈ω〉(y, 0+) = Γ′1 k a
+
0 sin (k y) (8)

for the circulation deposition on the sinusoidal interface
by the initial incident shock in a fast/slow interaction,
i.e., when the refraction is from a lighter gas into a heav-
ier gas, where

Γ′1 =
c1
Mas

[
1

γ2 − 1
1− ψ(p4/p2)

η γ1/γ2
(9)

−1− ψ(p5/p3)ψ(p3/p1)
γ1 − 1

]
,

p1 = p2 is the initial pressure ahead of the incident shock,
p3 is the pressure behind the incident shock, p4 = p5 is
the pressure behind the reflected and transmitted shocks,
η is the initial density ratio, c1 is the initial sound speed,
and the ratio of sound speed across the incident, re-
flected and transmitted shocks is given by

√
ψ(p3/p1),√

ψ(p5/p3) and
√
ψ(p4/p2), respectively, where ψ(r) ≡

r (1 + µr)/(µ+r) and µ ≡ (γ+1)/(γ−1). In the present
simulation, Γ′1 = 8736.12 cm/s, the perturbation wave
number is k = 2π/λ = 1.065 cm−1, and the post-shock

perturbation amplitude is a+
0 = 0.162 cm. The initial

interfacial circulation deposited by the incident shock,
together with the prediction of Eq. (8), are shown in
Fig. 7, indicating that the circulation deposition is si-
nusoidally distributed and closely follows the Samtaney-
Zabusky model prediction. The model underpredicts the
simulation data by ≈ 4%. Also shown is a comparison
with linear instability theory 〈ω(y, 0+)〉 = dµ/dy, where
µ(y) = 2 v0 cos(ky) and v0 = 702 cm/s is the initial in-
stability growth rate, indicating that linear instability
theory is in close agreement with the Samtaney-Zabusky
model and also underpredicts the simulation data.

As the circulation deposition is sinusoidal, the regions
S− = [0, Lx]× [0, λ/2] and S+ = [0, Lx]× [λ/2, λ] enclose
the circulation, 〈ω〉(y, t), of the same sign. Thus, define
the positive and negative circulations

Γ±(t) ≡
∫∫

S±
ω(x, y, t) dxdy (10)

(see [9] for details on their computation) which, as shown
in Fig. 8, overlap prior to reshock, indicating symme-
try as the instability evolves. At ≈ 6 ms, a small de-
crease resulting from the deposition of vorticity of op-
posite sign due to baroclinic vorticity deposition [12] is
observed (this can also be seen in the roll-up in Fig. 5,
where the vorticity forms positive and negative patches).
Reshock at≈ 6.4 ms deposits vorticity of opposite sign on
the interface, as the refraction is from a heavier gas into
a lighter gas. Consequently, both circulations increase
sharply. The large values of Γ± following reshock are due
to the more complex topology of the interface, resulting
in a larger amount of vorticity deposited by the shock.
The secondary baroclinic circulation also explains the
more pronounced increase in |Γ±| following reshock, but
prior to the arrival of the reflected rarefaction. Following
the arrival of the reflected rarefaction, Γ+ and |Γ−| begin
to differ as a result of symmetry breaking. Vortical struc-
tures become disordered and may cross from the positive
region into the negative region, inducing the asymmetry.
Baroclinic secondary instability and the rapid growth of
positive and negative circulation was investigated in a
two-dimensional stratified mixing layer [16–18].

V. THE POST-RESHOCK MIXING LAYER
WIDTH

The post-reshock mixing layer width is compared here
to the phenomenological Mikaelian [19], Brouillette and
Sturtevant [20], and Charakhch’yan [21] reshock mod-
els, which predict linear growth for short times following
reshock. These models apply up to the time of the in-
teraction with the reflected rarefaction at ≈ 11 ms. The
numerical determination of the mixing layer width is dis-
cussed in detail in Ref. 2.
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FIG. 6: (Color). Simulated density Schlieren fields Φ showing the complex wave structure during reshock, shock focusing, and
the fine-scale structure of the interface at late times.

A. The Mikaelian reshock model

A linear power-law model for the post-reshock mixing
layer width was developed [19] based on the rocket-rig
experimental results of Read [22] and Youngs [23] for
the growth of the Rayleigh-Taylor unstable mixing layer.
Assuming no dependence on the initial conditions and
neglecting molecular dissipation (and other) effects [24]

dh
dt

= 0.28 ∆u1A
+
1 , (11)

where ∆u1 is the change in the interface velocity resulting
from reshock, A+

1 is the post-reshock Atwood number,
and the empirical coefficient 0.28 is based on the mixing
layer growth rate from the experiments [22].

B. The Brouillette-Sturtevant reshock model

Brouillette and Sturtevant [20] studied the effect of
a diffuse interface on Richtmyer-Meshkov instability
growth in shock tube experiments in which a thin metal

plate initially separated air and SF6 or air and Freon-
22 gas. Prior to launching the shock wave in the air, the
plate was slowly withdrawn to generate a quasi-sinusoidal
perturbation, leaving a thick diffuse interface separating
the gases. The Ma = 1.12–1.66 shock refracted at the
interface and was transmitted into the second gas. The
transmitted shock reflected from the end wall of the shock
tube test section and reshocked the interface.

The growth of the total width of a single-mode in-
terface following N + 1 impulsive accelerations (or de-
celerations) was empirically modeled by generalizing the
Richtmyer model:(

dh
dt

)
N

= 2 k
N∑

i=0

∆uiA
+
i a

+
i

ψ+
i

, (12)

where k is the initial perturbation wave number, ∆ui is
the change in the velocity of the interface correspond-
ing to the ith wave, A+

i and a+
i are the post-(re)shock

Atwood number and amplitude, ψ+
i is the post-shock

growth reduction factor [25] and the factor of two ac-
counts for the width (twice the amplitude a). As the
growth is based on the Richtmyer model for each impul-
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FIG. 7: The initial circulation deposition on the interface
〈ω〉(y, 0+) (solid line) by the incident shock at time t = 0+,
together with the predictions of the Samtaney-Zabusky model
[Eq. (8)] (dashed line) and linear theory (dashed grey line).

sive acceleration phase, the Brouillette-Sturtevant model
predicts piecewise-linear-in-time growth phases. This
model also accounts for the multiple waves that succes-
sively interact with the interface. Brouillette and Sturte-
vant reported good agreement between their data and
the prediction of Eq. (12).

C. The Charakhch’yan reshock model

Charakhch’yan [21] assumed that the reshock is much
weaker than the initial incident wave and occurs during
the nonlinear phase when a(t) ∼ λ. As a result, the
change in Atwood number caused by reshock can be ne-
glected and

dh
dt

= 2 v0 − 2.5 ∆u1A
+
0 , (13)

where A+
0 is the Atwood number following the passage

of the initial shock, the empirical coefficient 2.5 is based
on two-dimensional simulations, and da−r /dt in Ref. 21
was interpreted as the Richtmyer velocity v0. A wide
range of numerical simulations was reported to support
this model.

D. Comparison of the post-reshock mixing layer
width to model predictions

The comparison of the post-reshock mixing layer width
to the predictions of the models is shown in Fig. 9.
Reshock in the simulation occurs at nearly the same time
as in the experiment, as confirmed by both the x-t dia-
gram and the mixing layer amplitude in Ref. 2. For
the Mikaelian model, the values ∆u1 = 8000 cm/s and
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FIG. 8: The time-evolution of the positive and negative circu-
lation Γ±(t) on the interface before (top) and after (bottom)
reshock.

A+
1 = 0.6448 from the simulation were used. For the

Brouillette-Sturtevant model,(
dh
dt

)
1

= 2 k
(

∆uA+
0 a

+
0

ψ+
0

+
∆u1A

+
1 a

+
1

ψ+
1

)
(14)

was used, where the post-reshock amplitude is a+
1 = 1.5

cm, ∆u1 = 8000 cm/s, and the value of ψ+
1 was extrap-

olated as follows. First, recall that ψ is linear in δ/λ,
where δ is the diffuse mixing layer width (linear in the
post-shock perturbation amplitude a+

0 ). As a+
1 ≈ 10a+

0

and the value of ψ+
0 is known, the new value of a+

1 gives
the new value of ψ+

1 . The value A+
0 = 0.6045 from Table

I of Ref. 2 was used for the Charakhch’yan model.
Agreement between the mixing layer width and the

predictions of the models can only be expected follow-
ing reshock for t > 6.5 ms and prior to the arrival of
the reflected rarefaction at ≈ 11 ms. Comparison of h(t)
with the model predictions confirms that the growth is
approximately linear for very short times (< 2 ms) follow-
ing reshock. The simulation width generally agrees well
with the both the Mikaelian and Charakhch’yan model
predictions at early times following reshock. Vetter and
Sturtevant [24] also concluded that the widths from their
reshocked air/SF6 experiments agreed with the Mikaelian
model within 1.5–23%, depending on the shock strength.
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FIG. 9: (Color). The mixing layer width h(t) showing reshock
at ≈ 6.4 ms and the arrival of the reflected rarefaction at ≈ 11
ms. Also shown are the predictions of the models, which are
shown starting at t+r = 6.58 ms and at h(t+r ) = 3.1 cm. Us-
ing the values in the text yields (dh/dt)1 = 1444.35 cm/s,
(dh/dt)1 = 1195.1 cm/s and (dh/dt)1 = 1492 cm/s for the
Mikaelian, Brouillette-Sturtevant, and Charakhch’yan mod-
els, respectively. The variations in the growth rate at ≈ 11
and 15 ms are due to further wave interactions with the evolv-
ing interface, and are not accounted for by these models.

For later times, the Mikaelian and Charakhch’yan models
overestimate the growth, while the Brouillette-Sturtevant
model underestimates the growth at all times follow-
ing reshock. These reshocked amplitude growth predic-
tions only depend on ∆u1 and A+

1 . The Mikaelian and
Charakhch’yan models do not depend on k (in contrast
to the Brouillette-Sturtevant model) and contain empir-
ical parameters. The Mikaelian model is based on an
estimate of the growth rate of a three-dimensional multi-
mode Rayleigh-Taylor experiment, while the Brouillette-
Sturtevant and Charakhch’yan models are fundamentally
two-dimensional single-mode (and thus more consistent
with the present simulations). The comparison shown
here cannot distinguish which model best agrees with the
simulation data.

VI. ANALYSIS OF MIXING AND THE
PHYSICS OF RESHOCK

Presented here is an investigation of quantities char-
acterizing the evolution of mixing induced by the
reshocked Richtmyer-Meshkov instability. The quantities
are adapted from similar investigations of the Rayleigh-
Taylor instability [26] and, more generally, of turbulent
flows. The variety of quantities considered—mixing pro-
files and parameters, production and mixing fractions,
energy spectra, and statistics—allow a quantitative es-
timate of the effects of reshock for the first time. The

effects of additional waves on the evolution of the layer
are also considered.

The initial condition is deterministic in the present
study. Furthermore, only one realization of the flow is
simulated. Thus, the profiles, spectra and statistics ex-
hibit variations that would otherwise be reduced if an
ensemble average of realizations with stochastic initial
conditions was used. The observed trends, however, are
not expected to differ significantly between a single real-
ization and an ensemble average.

A. Definitions of averages, fluctuations, spectra,
and statistics

Several averages are introduced to define streamwise
profiles across the mixing layer, as well as fluctuations
required to define energy spectra. Let an overbar de-
note an instantaneous average of a field φ(x, y, t) over
the spanwise direction y with length Ly:

φ(x, t) =
1
Ly

∫ Ly

0

φ(x, y, t) dy , φ̃(x, t) =
ρ φ

ρ
, (15)

which can be interpreted as an instantaneous Reynolds
average (see Ref. 7 for the three-dimensional analog)
and an instantaneous Favre average, respectively; the lat-
ter is used for the statistical analysis of variable-density
and compressible flows [27, 28]. Then the corresponding
Reynolds and Favre fluctuating fields are

φ(x, y, t)′ = φ(x, y, t)− φ(x, t) (16)

φ(x, y, t)′′ = φ(x, y, t)− φ̃(x, t) . (17)

Thus, in the present analysis, the Reynolds- and Favre-
averaged fields are functions only of the streamwise co-
ordinate x and of time, while the fluctuating fields are
functions of both the streamwise and spanwise coordi-
nates x and y, and of time.

The time-evolution of the fluctuating kinetic energy,
fluctuating enstrophy, density variance, pressure vari-
ance, and baroclinic vorticity production variance spectra
quantify the growth of different scales of the flow. The
spectral analysis used here adapts the formulations previ-
ously applied to inhomogeneous flows with one direction
of statistical-homogeneity [8, 12, 29, 30]. The general
procedure used to compute the spectrum of a quantity
φ(x, y, t) within the mixing layer x ∈ [`s, `b] is described
in Ref. 9 (where `b and `s are the positions of the bubble
and spike, respectively). The energy associated with each
Fourier mode k is obtained by averaging over the mixing
layer to obtain the one-dimensional energy spectrum

Eφφ(k, t) =
1
h(t)

∫ `b(t)

`s(t)

φ̂(k, x, t)∗ φ̂(k, x, t) dx , (18)

where the superscript ∗ denotes complex conjugation. In
the results presented below, all modes above the Nyquist
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wave number π/∆x are neglected [31]. The spectrum
Eφφ(k, t) provides information on the energy content of
all of the scales in the autocorrelation of φ as a function
of time. The characteristic scale of a structure with wave
number k is ∼ 1/k. The time-evolution of statistics

Eφφ(t) =
∫ ∞

0

Eφφ(k, t) dk (19)

is also considered.

B. Local and global mixing properties

Quantities previously used in the analysis of Rayleigh-
Taylor mixing [7, 26] are adapted here to the two-
dimensional Richtmyer-Meshkov instability, including
mixing profiles, production and mixing fractions, energy
spectra, and statistics [9].

1. Mole and mixing fraction profiles

To simplify the comparison of the profiles across the
mixing layer at different times, the streamwise coordi-
nate is recentered by the midpoint between the bubble
and spike location xmid(t), and divided by the mixing
layer width h(t). Thus the mixing layer extent is mapped
to [x− xmid(t)] /h(t) ∈ [−0.5, 0.5], where [−0.5, 0] is the
air(acetone) side and [0, 0.5] is the SF6 side, which facil-
itates the analysis of self-similarity.

a. Mole fraction profile Consider the mole fraction

X(x, y, t) =
m(x, y, t)M1

[1−m(x, y, t)] M2 +m(x, y, t)M1
(20)

averaged over the spanwise direction y, X(x, t). The
gases have densities ρ1 and ρ2 > ρ1; M1 and M2 are
the molecular weights of the air(acetone) and SF6, re-
spectively, and m is the mass fraction of SF6. The mole
fraction profile X(x, t) gives the relative mass distribu-
tion of the two gases within the mixing layer. If the gases
are uniformly-distributed over the entire domain, as ex-
pected in complete homogeneous mixing, then X = 0.5.

The mole fraction profiles shown in Fig. 10 at 1 ms
time intervals increase from X = 0 in the air(acetone)
to X = 1 in the SF6. The profiles show the varying
mass distribution inside the layer prior to reshock. At
the initial time, X increases monotonically as the ini-
tial interface is slightly diffused. After the initial shock
passage, X widens and becomes non-monotonic, with a
peak developing within the air(acetone) that moves left
and increases in magnitude with time. This is due to
spikes of SF6 penetrating into the air(acetone), forming
the characteristic roll-ups resulting from the entrainment
of additional SF6 within the air(acetone). The bubbles of
air(acetone) “rise” in the SF6, causing an overall decrease
in X in the SF6. Reshock compresses X between 6 and
7 ms, and also generates additional structure reflected

in the distribution of X (now with localized peaks). At
later times, the layer growth slows, the peaks decrease
in magnitude, and X begins to approach 0.5 on average,
indicating a well-mixed distribution of mass within the
layer.

b. Product mole fraction profile A quantitative mea-
sure of mixing can be defined using X(x, y, t) as follows.
Suppose that the two fluids undergo a fast kinetic reac-
tion, so that the amount of ‘product’ produced is [26, 32]

Xp(x, y, t) =

{
X(x,y,t)

Xs
for X ≤ Xs

1−X(x,y,t)
1−Xs

for X > Xs

, (21)

where Xs = 1/2 (indicating that the product is com-
posed of one mole of each ‘reactant’), and is limited by
the amount of reactant (either heavy or light fluid). The
product mole fraction profile Xp(x, t) ∈ [0, 1] is a mea-
sure of how well mixed the ‘reactants’ are. Here, nu-
merically induced mixing is a surrogate for a chemical
reaction.

The time-evolution of the product mole fraction pro-
file Xp is shown in Fig. 10. The initial diffusion layer is
well-mixed, with a rapid decrease in Xp between 0 and
1 ms, as expected; Xp broadens and rapidly develops
sharp cusps near the mixing layer edges x/h(t) ≈ ±0.5
as the heavy gas spikes penetrate into the lighter gas and
the light gas bubbles “rise” in the lighter gas (and the
gases become less mixed). At these early times in the
instability evolution, Xp is nearly-symmetric, with val-
ues ≈ 0.04–0.06 over most of the layer. A pronounced
asymmetry develops for t > 2 ms: as the roll-ups form,
additional peaks within the air(acetone) develop, corre-
sponding to well-mixed fluid in the cores. Reshock sig-
nificantly increasesXp, as additional fine-scale structures
form; Xp oscillates following reshock, which persists to
late times. At late times the gases are more mixed and
larger peaks develop in the SF6, corresponding to the ar-
rival of multiple reflected waves that increase mixing at
this end of the layer. The gases are less mixed in the
region closer to the air(acetone) than in the region closer
to the SF6.

c. Mixing fraction profile Averaging the volume
fractions of gases r = 1 and 2,

fr(x, y, t) ≡
mr(x,y,t)

ρr

m1(x,y,t)
ρ1

+ m2(x,y,t)
ρ2

, (22)

over the spanwise direction gives the volume fraction pro-
files fr(x, t). The molecular mixing fraction θ(x, t) is
then obtained from the volume fraction profiles and the
average of their product [7, 33],

θ(x, t) =
f1f2

f1 f2
, (23)

where f2 = 1 − f1. When θ = 0 (corresponding to
f1f2 = 0), the two fluids are completely segregated, and
when θ = 1 (corresponding to f1f2 = f1f2), they are
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FIG. 10: (Color). The time-evolution of the mole fraction profile X (top row), product mole fraction profile Xp (middle row)
and mixing fraction profile θ (bottom row) across the mixing layer at 1 ms intervals. The profiles before reshock (0–5 ms) are
shown in the first column, and the profiles following reshock (6–17 ms) are shown in the second and third columns.

completely molecularly mixed. Prior to reshock, the evo-
lution of θ in Fig. 10 indicates increased mixing toward
the air(acetone) side of the layer, corresponding to the
formation of the roll-up with a well-mixed core. Addi-
tional mixed structures within the roll-up are indicated
by the peaks at 5 and 6 ms. At reshock (≈ 6.4 ms), the
layer is compressed by the passage of the shock [which
continues into the air(acetone)] and is “pulled back” on
the SF6 side by the reflected rarefaction. This effect is
captured by θ, which is larger on the air(acetone) side and
smaller on the SF6 side. Following reshock, the layer con-
tains complex, disordered, well-mixed structures, as mea-
sured by a large value of θ across the layer (varying from
approximately 0.6 to 1). On average, the largest values
of θ across the entire layer are attained at the latest time,
with the degree of mixedness increasing, as indicated by
θ approaching unity. This ‘molecular mixing’ is induced
by stirring and by the numerical diffusion in the algo-
rithm, rather than by molecular processes. Comparison
of the profiles at 6–11 ms to those at 12–17 ms shows

that X, Xp and θ become approximately self-similar at
late times, with intermittent variations across the layer.

2. Production and mixing fractions

The total chemical product Pt(t) and maximum chem-
ical product Pm(t) are [26, 32]

Pt(t) =
1
h(t)

∫ `b(t)

`s(t)

Xp dx (24)

Pm(t) =
1
h(t)

∫ `b(t)

`s(t)

Xp(X) dx .

In general Pm(t) > Pt(t), and is the amount of product
obtained if both ‘reactants’ were homogeneously mixed.
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The mixing fractions Ξ(t) and Θ(t) are [7, 26, 33]

Ξ(t) =
Pt(t)
Pm(t)

, Θ(t) =

∫ `b(t)

`s(t)
f1 f2 dx∫ `b(t)

`s(t)
f1 f2 dx

. (25)

Note that Ξ is a measure of the total product formed rel-
ative to the product that would be formed if all entrained
fluid were completely mixed. Larger Ξ and Θ correspond
to more complete mixing.

The time-evolution of the global production quanti-
ties Pt and Pm is shown in Fig. 11. Before reshock, Pt

increases, indicating an increase in mixing, while Pm de-
creases. The decrease in Pm indicates that the maximum
molar product decreases due to the bubble (which creates
large, unmixed structures within the mixing layer). Dur-
ing reshock, the mixing layer is compressed, inducing ad-
ditional mixing as measured by Pt. Following reshock, Pt

increases rapidly, indicating significantly increased mix-
ing. As the mixing progresses, large unmixed structures
form, decreasing Pm.

The time-evolution of the mixing fractions Ξ and Θ,
also shown in Fig. 11, provide qualitatively similar infor-
mation, with Θ(t) > Ξ(t) for all time. As the gases mix
following the initial shock passage, the fractions decrease
and then increase. Immediately after reshock, the layer
is compressed, causing a well-mixed region to form, as
shown by the sharply-peaked values of Ξ and Θ. This
well-mixed region is characterized by the rapid produc-
tion of small-scale flow structures by reshock, as shown
in Sec. III. Following reshock, Ξ and Θ increase faster
than before reshock, indicating that reshock increases the
mixing rate, as expected physically. Subsequently, the
mixing layer undergoes a rapid growth as the bubbles
and spikes invert, causing the overall mixing rate to de-
crease rapidly over a time interval of ≈ 2 ms. Following
this decrease, the formation of complex flow features with
roll-ups again increases the mixing.

C. Energy spectra and statistics

The time-evolutions of fluctuating energy spectra pro-
vide a measure of the growth and decay of the energy
at different scales in the flow at a given time. The post-
reshock energy spectra are compared here to the scalings
suggested by two-dimensional turbulence phenomenol-
ogy. The time-evolution of statistics (integrated energy
spectra) are also considered.

1. Energy spectra

The time-evolution of the total, streamwise, and span-
wise fluctuating kinetic energy spectra per unit volume
E(k, t) = Eu′′u′′(k, t) + Ev′′v′′(k, t), Eu′′u′′(k, t), and
Ev′′v′′(k, t), respectively, is shown in Fig. 12. The os-
cillations for small and intermediate wave numbers k at
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FIG. 11: The time-evolution of the production fractions Pt(t)
and Pm(t) (top), and mixing fractions Ξ(t) and Θ(t) (bot-
tom).

early times and following reshock are damped out at
late times, as indicated by the more smoothly decay-
ing spectra at large t. Reshock sharply increases the
spectra between 6 and 7 ms by exciting a wide range of
scales, thereby imparting additional energy into the mix-
ing layer. For t > 8 ms, the spectra decay very slowly
in time. The streamwise fluctuating kinetic energy spec-
trum Eu′′u′′(k, t) is peaked at k ≈ 1.5 cm−1, while the
peak of the spanwise fluctuating kinetic energy spectrum
Ev′′v′′(k, t) corresponds to the largest scale of the flow.
As expected, there is more energy content in the stream-
wise than spanwise velocity fluctuations, i.e., the energy
spectra are anisotropic. Thus, the evolution of E(k, t) is
dominated by that of Eu′′u′′(k, t).

The time-evolution of the ratio of the stream-
wise and spanwise fluctuating kinetic energy spectra
Eu′′u′′(k, t)/Ev′′v′′(k, t) is shown in Fig. 13. The energy
content is similar at early times, approaching a constant
for all scales at 1 ms. At later times prior to reshock, the
ratio increases at intermediate and large k, with similar
increases at reshock. At late times (t ≥ 13 ms) the ratio
changes very little with time, with a value ≈ 2 at the
smallest k increasing nearly linearly to ≈ 6 at k ≈ 170
cm−1, and then decreasing to ≈ 4.5 at k ≈ 270 cm−1.
Reshock, the arrival of the reflected rarefaction wave at
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≈ 11 ms, and the compression wave at ≈ 15 ms decrease
the ratio, indicating that these waves excite more span-
wise fluctuations relative to streamwise fluctuations. At
late times, the ratio indicates that spectral isotropy (i.e.,
a ratio of unity) is not achieved, as the streamwise fluctu-
ating kinetic energy spectrum contains more small-scale
energy than the spanwise spectrum by a factor ≈ 2–6.

The fluctuating enstrophy density per unit mass is
Ω(x, y, t)′′ = [ω(x, y, t)′′]2/2 and the time-evolution of
the fluctuating enstrophy spectrum Eω′′ω′′(k, t) is shown
in Fig. 14. In a homogeneous flow, the fluctuat-
ing enstrophy and kinetic energy spectra are related by
Eω′′ω′′(k, t) = k2E(k, t), so that the peak of Eω′′ω′′(k, t)
is weighted toward smaller scales than that of E(k, t).
The fluctuating enstrophy spectrum is less steep than
the fluctuating kinetic energy spectrum. As in the case
of E(k, t), reshock primarily amplifies Eω′′ω′′(k, t) but
does not change its shape. The spectrum decays very
slowly at late times.

The time-evolution of the density variance spectrum
Eρ′ρ′(k, t) and pressure variance spectrum Ep′p′(k, t) is
also shown in Fig. 14. The density variance spectrum
varies very little with time, indicating that density fluc-
tuations are not as strongly affected by reshock as other
quantities. Moreover, the magnitude of Eρ′ρ′(k, t) is very
small for all times, indicating that the density variance
is very small and the flow is nearly-incompressible: addi-
tional numerical evidence exists to support this conclu-
sion in Richtmyer-Meshkov unstable flows [34, 35]. The
spectrum also shows the interaction of reflected waves
with the mixing layer, which have a profound effect on
Ep′p′(k, t). The pressure variance spectrum increases
very rapidly upon reshock at ≈ 6.4 ms, and also exhibits
a rapid increase at ≈ 11 ms when the reflected rarefac-
tion interacts with the mixing layer. Both Eρ′ρ′(k, t) and
Ep′p′(k, t) decay very slowly at late times.

To determine the scales at which the baroclinic vor-
ticity production [Eq. (6)] is large, consider the baro-
clinic vorticity production variance spectrum EPP(k, t)
shown in Fig. 14. This spectrum is large and nearly con-
stant over all scales for t > 2 ms and decreases rapidly
at the smallest scales, where numerical dissipation dom-
inates. The spectrum increases rapidly after 2 ms (prior
to reshock), consistent with additional baroclinic produc-
tion at the interface where the roll-up occurs. Prior to
reshock, EPP(k, t) is highly oscillatory. A large increase
occurs at reshock, followed by a rapid decay. A further
increase occurs between 11 and 12 ms, corresponding to
the arrival of the reflected rarefaction. At late times,
EPP(k, t) decays at a significantly faster rate than the
other spectra.

2. Comparison to classical two-dimensional turbulence
phenomenology

The fluctuating kinetic energy, enstrophy, and density
and pressure variance spectra are compared here to the

inertial subrange scalings predicted by two-dimensional
turbulence phenomenology [36–41] at 7 and 18 ms (late
time). It is of interest to explore whether these scal-
ings apply in the reshocked two-dimensional Richtmyer-
Meshkov unstable flow considered here. This phe-
nomenology applies to incompressible and isotropic tur-
bulence; here it is assumed that the flow is nearly-
incompressible and approximately isotropic at late times
after reshock.

For sufficiently large Reynolds numbers, the inertial
subrange fluctuating (turbulent) kinetic energy spectrum
scales as

E(k, t) = Ko′ η(t)2/3 k−3 , kf � k � kη(t) , (26)

which was originally proposed for turbulence forced at
a wave number kf , with kinetic energy and enstrophy
injection rates ε and η, respectively. Here, Ko′ is the
two-dimensional analog of the Kolmogorov constant and
kη(t) =

[
η(t)/ν3

]1/6 is the enstrophy dissipation wave
number (with ν the kinematic viscosity). A subse-
quent logarithmic modification to the k−3 law explic-
itly depending on kf was found to be required for self-
consistency [42]. The inertial subrange enstrophy spec-
trum corresponding to (26) is

Eω′ω′(k, t) = Ko′ η(t)2/3 k−1. (27)

These are the fluctuating kinetic energy and enstrophy
spectra in the enstrophy cascade subrange in which the
turbulent kinetic energy and enstrophy flux are Π(k, t) ≈
0 and ΠΩ(k, t) ≈ η(t), respectively.

In the inverse kinetic energy cascade subrange in which
Π(k, t) ≈ ε(t) and ΠΩ(k, t) ≈ 0 , the inertial subrange
kinetic energy spectrum for small wave numbers is

E(k, t) = Ko′′ ε(t)2/3 k−5/3 , k � kf (28)

with a different Kolmogorov constant Ko′′. The corre-
sponding inertial subrange enstrophy spectrum is

Eω′ω′(k, t) = Ko′′ ε(t)2/3 k1/3 , k � kf . (29)

The above scaling laws are a consequence of the conserva-
tion of kinetic energy and enstrophy in two-dimensional,
nearly-inviscid, high Reynolds number turbulent flows.

The fluctuating kinetic energy spectrum E(k) shortly
after reshock at 7 ms is shown in Fig. 15, together with
the expected power-laws: k−5/3 for the small, energy-
containing wave numbers and k−3 for larger wave num-
bers. Also shown are the compensated spectra used to
verify the approximate scalings and the wave number
extent of these scalings (less than one decade). Peng,
Zabusky and Zhang [12] also found that the density-
weighted kinetic energy spectrum was consistent with
a k−3 power-law in their two-dimensional piecewise-
parabolic method simulation of a model of the Jacobs and
Krivets [43] Ma = 1.3 single-mode, air/SF6 Richtmyer-
Meshkov instability experiment.



15

The fluctuating enstrophy spectrum Eω′′ω′′(k) is also
shown in Fig. 15. As the vorticity is the spatial derivative
of the velocity field, the fluctuating enstrophy and fluctu-
ating kinetic energy spectra are related by Eω′′ω′′(k, t) =
k2E(k, t). Consequently, the expected inertial subrange
scalings for the intermediate and large wave numbers are
k1/3 and k−1, respectively. The compensated spectra
show that a possible k−1 scaling is observed over less
than one decade; however, there is an insufficient range
of wave numbers in the largest scales to ascertain whether
a k1/3 scaling exists.

The fluctuating kinetic energy spectrum E(k) and fluc-
tuating enstrophy spectrum Eω′′ω′′(k) are shown at late
time (18 ms) in Fig. 16. The fluctuating kinetic en-
ergy spectrum exhibits a scaling similar to the one im-
mediately following reshock, viz. k−5/3 for intermediate
scales and k−3 for small scales: this is further verified by
the compensated energy spectrum. However, Eω′′ω′′(k)
exhibits a different scaling than expected in classical two-
dimensional turbulence: a decay close to k−2/3 and k−2 is
observed for intermediate and small scales, respectively,
as shown by the compensated spectra. The fluctuating
enstrophy scalings k1/3 and k−1 can only be expected in
the presence of forcing that sustains the turbulence. In
the absence of such forcing, the spectra may satisfy dif-
ferent scalings. In the case of the Richtmyer-Meshkov
instability, a transient forcing in the momentum equa-
tion, F ∼ ρ∆v1 δ(t), is induced by the interaction of the
reflected shock with the evolving mixing layer (reshock),
where ∆v1 is the velocity jump. Following the passage
of the shock, no additional forcing is provided, and the
turbulence enters a quasi-decay phase, in which only in-
teractions with smaller amplitude waves occur: this re-
sults in different scaling laws for the late-time enstrophy
spectrum than expected classically.

In a nearly-incompressible flow, density fluctuations
are expected to be weakly coupled to the velocity field, so
that the density fluctuations may be passively advected
by the velocity field. If the Reynolds number is suffi-
ciently large to support an inertial subrange, and the
Schmidt number is small enough so that molecular diffu-
sivity is negligible over a large wave number range, then
there is an inertial-convective subrange in which density
fluctuations are advected and the density variance spec-
trum scales as

Eρ′ρ′(k, t) = Ba
ερ′ρ′(t)
ε(t)1/3

k−5/3 , (30)

where Ba is the Batchelor (or Corrsin-Obukhov) con-
stant and ερ′ρ′(t) is the density variance dissipation rate
[44–48]. Dimensionally, the inertial subrange pressure
variance spectrum in two-dimensional large Reynolds
number turbulence is proportional to kE(k, t)2, so that
[49]

Ep′p′(k, t) = Ko′p ρ
2 η(t)4/3 k−5 , kf � k � kη(t) ,

(31)

Ep′p′(k, t) = Ko′′p ρ
2 ε(t)4/3 k−7/3 , k � kf , (32)

in the enstrophy cascade and inverse kinetic energy cas-
cade subranges, respectively, where Ko′p and Ko′′p are
pressure Kolmogorov constants.

The density variance spectrum Eρ′ρ′(k) is shown fol-
lowing reshock at 7 ms and at late time (18 ms) in Figs.
15 and 16, respectively. The density variance spectrum
shows an approximate k−5/3 scaling for intermediate-to-
large k, which is further verified by the compensated
spectrum. The pressure variance spectrum Ep′p′(k) in
Figs. 17 and 18 shows a scaling of k−7/3 over a slightly
broader range of scales than the density variance spec-
trum at late time, which is also verified by the compen-
sated spectrum. A k−5 decay of Ep′p′(k) at large k is
inconclusive. The k−5/3 scaling [Eq. (30)] for the den-
sity variance spectrum and the k−7/3 scaling [Eq. (31)]
for the pressure variance spectrum may be approximately
valid in the two-dimensional case considered here. Note
that the apparent scalings of Ep′p′(k, t) are shifted to
larger k than the short apparent inverse kinetic energy
and enstrophy cascade subranges exhibited by E(k, t).

3. Statistics

Statistics within the mixing layer were obtained by in-
tegrating the spectra over all wave numbers. The time-
evolution of the streamwise, spanwise, and total fluc-
tuating kinetic energy is shown in Fig. 19. Initially,
Ev′′v′′(t) < Eu′′u′′(t) as the initial shock primarily ex-
cites modes in the streamwise direction. The kinetic en-
ergy decreases following the initial shock passage, while
reshock deposits additional vorticity on the interface and
amplifies the kinetic energy. Reshock and the subsequent
reflected wave interactions also excite spanwise velocity
fluctuations, as can also be seen by considering the time-
evolution of the ratio Eu′′u′′(t)/Ev′′v′′(t), also shown in
Fig. 19. On average, this ratio is & 3, with a peak
value ≈ 20 at reshock. At 18 ms this ratio decreases to
≈ 1.3, showing that the contributions from the spanwise
and streamwise fluctuations become comparable at late
times, and indicating an approach of the flow to statisti-
cal (but not spectral) isotropy at late times.

The fluctuating enstrophy Eω′′ω′′(t) in Fig. 20 in-
creases significantly during reshock. Following reshock,
Eω′′ω′′(t) decays, but the arrival of the reflected waves
compensates for the decrease, and a nearly constant value
is observed for 8–11 ms. Finally, after the interaction of
the reflected rarefaction with the mixing layer at ≈ 11
ms, Eω′′ω′′(t) begins to decay once again.

The density variance Eρ′ρ′(t) in Fig. 20 is not as sig-
nificantly affected by reshock or by other reflected waves
as the other statistics, and remains nearly constant in
time. The pressure variance Ep′p′(t) is much more sensi-
tive, exhibiting peaks as waves interact with the mixing
layer. The first peak at ≈ 6.4 ms corresponds to the
arrival of the reflected shock; the second peak at ≈ 11
ms corresponds to the arrival of the reflected rarefaction,
and; the third peak at ≈ 15 ms corresponds to the ar-
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FIG. 15: The fluctuating kinetic energy spectrum E(k) and compensated spectrum knE(k) shortly after reshock at 7 ms

showing a k−5/3 decay for small k with Ko′′ε2/3 = 1.0987 × 106 cm2/s3 and an approximate k−3 decay for large k with

Ko′η2/3 = 7.6912× 107 s−2 (left column). The fluctuating enstrophy spectrum Eω′′ω′′(k) showing an approximate k1/3 growth

for small k with Ko′′ε2/3 = 2.7469 × 106 cm2/s3 and an approximate k−1 decay for large k with Ko′η2/3 = 2.4722 × 107 s−2

(middle column). The density variance spectrum Eρ′ρ′(k) showing an approximate k−5/3 decay with Baερ′ρ′/ε1/3 = 1.011×10−6

g2/cm20/3 (right column).

rival of the reflected compression wave generated by the
refraction of the rarefaction. The pressure variance is
the only statistic considered that captures the effect of
this third interaction. With the exception of Eρ′ρ′(t), all
of the other statistics decrease sharply following reshock.
With the reflecting boundary condition at the end wall,
the simulation does not achieve a purely-decaying state
at late times: later in Sec. VI E, the reflecting boundary
condition is changed to outflow at the end wall in order
to remove the effects of reflected waves following reshock.

The baroclinic vorticity production variance EPP(t) is
also shown in Fig. 20. Prior to reshock, EPP(t) increases
between 3.5 and 4 ms, corresponding to the vortex roll-
up. As the roll-up develops, EPP(t) is large as a result of
the density gradient between the two gases, and later de-
creases as the gases mix. Reshock sharply increases the
production, followed by a rapid decay as the shock passes
through the interface. At ≈ 11 ms, another increase cor-
responding to the arrival of the reflected rarefaction is
observed, followed by a decay; EPP(t) does not increase
upon the arrival of the reflected compression wave.

D. Comparison of mixing quantities and spectra
immediately after and before reshock

As in the case of the interaction of a shock with a tur-
bulent flow [50–52], reshock of the evolving Richtmyer-
Meshkov mixing layer amplifies quantities characterizing
turbulence and mixing. This amplification is investi-
gated here by comparing quantities at t = t−r = 6.38
and t = t+r = 6.58 ms, immediately prior to and follow-
ing reshock, respectively. The mole fraction profile X,
product mole fraction profile Xp, and the mixing fraction
profile θ prior to and following reshock are shown in Fig.
21 as a function of [x− xmid(t)]/h(t). The mole fraction
profile shows that reshock compresses the interface, shift-
ing mass from the SF6 side to the air(acetone) side. The
product mole fraction profile shows that reshock accel-
erates mixing at the diffuse interfaces, including in the
cores of the vortex roll-ups. This results in increased
overall mixing, as shown by the increase in θ.

The fluctuating kinetic energy spectrum E(k, t) and
its streamwise and spanwise components, Eu′′u′′(k, t) and
Ev′′v′′(k, t), are shown in Fig. 22. The ratio of the spec-
tra after and before reshock quantifies the amplification
in energy as a function of wave number k. The spectra are
all amplified most at the intermediate and small scales.
Reshock sharply increases the modal energy content: the
increase in the total and streamwise spectra is nearly
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FIG. 16: The fluctuating kinetic energy spectrum E(k) and compensated spectrum knE(k) at 18 ms showing a k−5/3 decay

for small k with Ko′′ε2/3 = 2.4546 × 105 cm2/s3 and an approximate k−3 decay for large k with Ko′η2/3 = 9.9937 × 106

s−2 (left column). The fluctuating enstrophy spectrum Eω′′ω′′(k) showing an approximate k−2/3 decay for small k with

Ko′′ε2/3 = 1.2376 × 106 cm2/s3 and an approximate k−2 decay for large k with Ko′η2/3 = 1.7533 × 108 s−2 (middle column)

The density variance spectrum Eρ′ρ′(k) showing an approximate k−5/3 decay with Baερ′ρ′/ε1/3 = 9.3085 × 10−7 g2/cm20/3

(right column).

uniform for small k, with an increase for intermediate-to-
large k, as indicated by the ratio after and before reshock
(also shown in Fig. 22). The spanwise component
Ev′′v′′(k, t) increases nearly uniformly from small to large
k, as indicated by the increasing ratio. Reshock primarily
excites fluctuations in the spanwise direction, as the ratio
is considerably larger for Ev′′v′′(k, t) than for Eu′′u′′(k, t).
The ratio of the streamwise and spanwise fluctuating ki-
netic energy spectra, Eu′′u′′(k, t)/Ev′′v′′(k, t), is shown in
Fig. 23 after and before reshock: this ratio decreases with
k following reshock. The ratio is of O(1) at intermediate
k (k > 5 cm−1) and approaches ≈ 0.3 for large k: reshock
significantly increases the spanwise fluctuations to a level
comparable to the streamwise fluctuations at the largest
scales. As mentioned in Sec. VI C 1, this ‘equilibration’
is only transient, as the spanwise component dominates
shortly after reshock once inversion occurs.

The fluctuating enstrophy, pressure variance and baro-
clinic vorticity production variance spectra in Figs. 24
and 25 also sharply increase following reshock. The
largest amplification of Eω′′ω′′(k, t) occurs at intermedi-
ate to small k. The density variance spectrum Eρ′ρ′(k, t)
is not significantly amplified compared to the other spec-
tra, and shows an average amplification of ≈ 3. By con-
trast, the pressure variance spectrum undergoes the most
amplification, having a peak of ≈ 1.4 × 107 for k ≈ 110
cm−1. The baroclinic vorticity production variance spec-

trum also shows an amplification of ≈ 8 × 105 for small
k, with the amplification decreasing at larger k.

E. The effects of reflected waves on the mixing
dynamics

Following reshock, the mixing layer interacts with the
rarefaction formed during reshock at≈ 11 ms. This inter-
action causes the formation of a compression wave, which
subsequently interacts with the layer at ≈ 15 ms. Here,
the boundary condition at the right end of the computa-
tional domain (corresponding to the end wall of the test
section) is changed from reflecting to outflow immedi-
ately following reshock to allow the reflected rarefaction
to exit the computational domain, so that no further in-
teractions of waves with the layer occur. The purpose of
this is to investigate the properties of mixing in the de-
cay regime, as distinguished from those in the quasi-decay
regime occurring when reflected waves interact with the
evolving interface following reshock. Another objective
is to understand the effects of a reflected rarefaction on
the evolution of a mixing layer in the same spirit that the
study of reshock investigates the effects of a shock wave
on an evolving mixing layer. The results presented are
from simulations with resolution of 256 points per ini-
tial perturbation wavelength (the WENO9M simulation
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in Ref. 9).
A comparison of the mixing layer width, production

fractions and mixing fractions is shown in Fig. 26 for re-
flecting and outflow boundary conditions. As expected,
the quantities overlap from the time of reshock ≈ 6.4 ms
until ≈ 11 ms when the reflected rarefaction interacts
with the mixing layer. Generally, quantities computed
with the outflow boundary condition are smoother com-
pared to those computed with the reflecting boundary
condition, as a consequence of the absence of wave inter-
actions with the layer.

A comparison of the spectra obtained with the out-
flow and reflecting boundary conditions is shown in Figs.
27–30 at 12 ms, following the arrival of the reflected rar-
efaction wave and at 18 ms. When ratios are shown, the
quantity computed from the reflecting case is divided by
the corresponding quantity from the outflow case. The
reflected rarefaction has a modest effect on the fluctuat-
ing kinetic energy (and its streamwise and spanwise com-
ponents), fluctuating enstrophy, and pressure and density
variance spectra. The reflected rarefaction contributes
to approximately a factor of two difference in the energy
content, which is significantly less than the corresponding
contribution by energy deposition during reshock. How-
ever, the effects on the ratio of the spanwise and stream-
wise components in Fig. 28 are significant, indicating
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FIG. 21: Comparison of the mole fraction and production fraction profiles X and Xp, and of the mixing fraction θ before
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that the reflected rarefaction excites spanwise velocity
fluctuations and contributes to the late-time isotropiza-
tion of the velocity field. The reflected rarefaction in-
creases EPP(k, t) in Fig. 30 by an order of magnitude.

A comparison of the evolution of the statistics ob-
tained with reflecting and outflow boundary conditions
is shown in Figs. 31 and 32. The fluctuating kinetic en-
ergy per unit mass E(t) and its components Eu′′u′′(t) and
Ev′′v′′(t) are shown in Fig. 31. In the outflow case, the
energy is not increased by the reflected waves, and there-
fore decays. The reflected rarefaction increases the span-
wise energy, contributing to the statistical isotropization
of the flow. In the outflow case, both components retain

their separation, as shown by the ratio of the compo-
nents in Fig. 31. In particular, statistical isotropy is
approached faster at late time in the reflecting than in
the outflow case.

The evolution of the fluctuating enstrophy Eω′′ω′′(t)
in Fig. 32 is very similar for the reflecting and outflow
cases, indicating that the reflected waves do not increase
Eω′′ω′′(t) significantly. However, Eρ′ρ′(t) corresponding
to the outflow case is greater than Eρ′ρ′(t) corresponding
to the reflecting case, indicating that the reflected rar-
efaction decreases the density fluctuations. The pressure
variance Ep′p′(t) indicates that the pressure fluctuations
are nearly constant in the absence of reflected waves. By
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after and before reshock is also shown (bottom).

contrast, the fluctuations in the reflecting case undergo a
sudden transient increase following the interaction with
reflected waves, and approach the nearly constant value
corresponding to the outflow case shortly thereafter. The
baroclinic vorticity production variance, EPP(t), decays
in the absence of the reflected rarefaction.

VII. DISCUSSION AND CONCLUSIONS

Presented in this study is a comprehensive investiga-
tion of the physics and mixing properties before and af-
ter reshock, obtained from two-dimensional ninth-order
WENO simulations using initial and boundary conditions
and flow geometry modeling the test section in the Mach
1.21 Collins and Jacobs air(acetone)/SF6 shock tube ex-
periment. The details of the simulations are discussed
in Ref. 2, which considered the growth of the perturba-
tion amplitude into the nonlinear regime prior to reshock.
The dependence of the quantities considered here on the
order of WENO flux reconstruction and grid resolution
was considered in Ref. 9.

A. Phenomenology of reshock

Density fields were used to visualize reshock, including
the inversion process and the formation of complex dis-
ordered structures. The vorticity and baroclinic vorticity
production fields were also used to investigate vorticity
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FIG. 24: Comparison of the fluctuating enstrophy spectrum Eω′′ω′′(k, t) (in units of cm/s2), density variance spectrum
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(top). The ratio of the spectra after and before reshock is also
shown (bottom).

production during reshock, and the deposition of vor-
ticity of opposite sign on the interface, which drives the
inversion process. Simulated density Schlieren fields were
used to visualize the complex wave interactions occurring
during reshock, i.e., the reflected and transmitted waves,
and the focusing effects. The following qualitative pic-
ture emerges for the roll-up dynamics: the misalignment
of the density and vorticity gradient during the roll-up
causes vorticity deposition of opposite sign on the roll-up.
This vorticity is responsible for the formation of large-
scale structures as the roll-up develops, resulting in the
formation of complex structures.

B. Baroclinic interfacial circulation deposition

To quantify the baroclinic mechanism driving the evo-
lution of the Richtmyer-Meshkov instability, the circula-
tion deposited on the interface by the initial shock was
shown to be in agreement with the predictions of the
Samtaney-Zabusky model and linear instability theory.
The positive and negative circulations increase following
the shock interaction, consistent with the physical pic-
ture of ‘vortex-accelerated secondary baroclinic vorticity
deposition’ [12]. This secondary instability is responsi-
ble for the complex structures in the roll-ups and for
additional vorticity deposition of opposite sign on the in-
terface, decreasing the circulation. Reshock causes the
deposition of additional vorticity of opposite sign, which
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(top row). The ratios of the spectra for the reflecting and outflow cases are also shown (bottom row).

is further amplified by the secondary baroclinic vorticity
deposition. Following the interaction with the reflected
rarefaction wave, complex structures form and the flow
breaks symmetry, resulting in large asymmetry between
the positive and negative circulations and a non-zero to-
tal circulation.

C. The post-reshock mixing layer width

The mixing layer width immediately following reshock
was shown to be consistent with the linear growth pre-
dicted by the Mikaelian [19] and Charakhch’yan [21]

reshock models. The Brouillette-Sturtevant model un-
derestimated the growth at all times following reshock.
At later times following reshock, the amplitude is affected
by waves interacting with the layer.

D. Analysis of mixing and the physics of reshock

Mixing was investigated by considering the time-
evolution of the: (1) mole fraction, production fraction,
and mixing fraction profiles to quantitatively assess mix-
ing across the layer; (2) spatially-averaged mixing frac-
tions to quantify the efficiency and rate of mixing; (3)
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fluctuating kinetic energy, fluctuating enstrophy, density
variance, pressure variance, and baroclinic vorticity pro-
duction variance spectra to determine the modal distri-
bution of the fluctuations, and; (4) statistics to charac-
terize the time-evolution of energy.

1. Mole and mixing fraction profiles

The mole and mixing fraction profiles quantify mixing
along the shock propagation direction. The mole frac-
tion profile measures the evolving redistribution of mass
within the mixing layer caused by the creation of bubble-
and spike-like structures, and the mixing fraction profile
characterizes the efficiency of mixing. Prior to reshock,
the main mechanism affecting these profiles is the for-
mation of the single bubble and spike, which roll up at
late times creating a region of well-mixed fluid within.
Single localized peaks are observed in the mole and mix-
ing fraction profiles prior to reshock. Prior to reshock,
the evolution of the mixing fraction profile indicates in-
creased mixing toward the air(acetone) side of the layer,
corresponding to the formation of the roll-up with a well-
mixed core.

During reshock, the layer is compressed by the pas-
sage of the shock [which continues into the air(acetone)]
and is “pulled back” on the SF6 side by the reflected
rarefaction. This effect is captured by the mixing frac-
tion profile, which is larger on the air(acetone) side and

smaller on the SF6 side. Reshock significantly increases
the mixing fractions as the mixing layer is compressed.

Following reshock, the inversion process, followed
by the late-time formation of small bubbles and
spikes, contributes to the formation of highly irregular,
topologically-complex structure on the interface. These
additional bubbles and spikes elongate the mixing layer,
resulting in a nearly uniformly increasing distribution of
mass across the layer from the air(acetone) to the SF6

side. Several smaller roll-ups also form, indicating large
regions of locally well-mixed air and SF6. The mixing
fractions also show that these regions grow larger at late
times, corresponding to more complete mixing. This is
consistent with the inverse cascade of small-scale veloc-
ity fluctuations to larger scales in two-dimensional turbu-
lence. The profiles indicate a late-time collapse towards
self-similarity within the mixing layer.

2. Production and mixing fractions

The total chemical product, maximum chemical prod-
uct, and global mixing fractions provide a physical inter-
pretation of the enhanced mixing caused by reshock. Be-
fore reshock, the total chemical product increases, indi-
cating an increase in mixing. During reshock, the mixing
layer is compressed, inducing additional mixing as mea-
sured by the total chemical product. Following reshock,
the total chemical product increases rapidly, indicating
significantly increased mixing. The mixing fractions are
sharply-peaked at reshock: these fractions increase faster
than before reshock, indicating that reshock increases the
mixing rate.

3. Energy spectra

The spectral evolution prior to and following reshock
provides a modal quantification of the complex features
in the density, vorticity, and baroclinic vorticity pro-
duction fields. It was shown that a broad range of
scales already exists prior to reshock, indicating that the
Richtmyer-Meshkov instability develops non-trivial spec-
tral content from its inception. At reshock, the fluctu-
ations in all fields (except for the density) are amplified
across all scales. Reshock does not appear to broaden
the range of scales, but primarily imparts energy into
structures of all sizes. At late times, numerical dissipa-
tion smooths the spectra. When the shock is far away
from the layer and the reflected waves become weaker,
the spectra decay very slowly.

The decomposition of the fluctuating kinetic energy
spectrum into its streamwise and spanwise components
indicates that the former is dominant, and that signifi-
cant spectral anisotropy in the velocity field exists even at
late times. As the flow is nearly-incompressible at small
Mach numbers, density-weighted spectra [53, 54] are not
expected to provide different conclusions. Compared to
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the fluctuating kinetic energy spectrum, the fluctuating
enstrophy spectrum exhibits a more pronounced cascade
toward smaller scales, as expected from two-dimensional
turbulence phenomenology. The pressure variance spec-
trum increases upon reshock and during the arrival of
the reflected rarefaction. The density variance spectrum
shows that density fluctuations remain small through-
out the flow evolution and are not strongly affected by
reshock. To our knowledge, this is the first examina-
tion of the fluctuating enstrophy, density variance, pres-
sure variance, and baroclinic vorticity production vari-
ance spectra in a reshocked Richtmyer-Meshkov mixing
layer.

Possible inertial subrange scalings of the fluctuating
kinetic energy, fluctuating enstrophy, density variance
and pressure variance spectra were also investigated by
comparing to the scaling predictions for two-dimensional
turbulence. Immediately following reshock, the compen-
sated spectra showed that the turbulence induced by
the reshocked Richtmyer-Meshkov instability has a tran-
sient behavior in which the energy is transfered both to
smaller scales (forward cascade) and to larger scales (in-
verse cascade), and approximate inertial subranges may
exist for short wave number extents. However, at late
time the fluctuating enstrophy spectra exhibit large and
intermediate wave number scalings different from those
expected from classical two-dimensional isotropic turbu-
lence phenomenology, as a consequence of the transient
forcing mechanism in the reshocked Richtmyer-Meshkov
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instability. The density variance spectrum may exhibit
an inertial-convective subrange scaling expected for a
passive scalar, and the pressure variance spectrum may
scale as expected in two-dimensional turbulence. How-
ever, an even larger range of scales must be simulated to
definitively examine the putative scalings examined here.
Reshock is also necessary to attain the intensity of tur-
bulence and to develop the broad range of structures nec-
essary to achieve such scalings.

4. Statistics

The time-evolution of statistics was also investigated.
The fluctuating kinetic energy and enstrophy were
sharply peaked at reshock, with a rapid increase followed
by a rapid decrease, then followed by a decay. The de-
cay becomes more established following the interaction
with the reflected rarefaction. The streamwise and span-
wise fluctuating kinetic energies indicate that statistical
isotropy is approached at very late times. The span-
wise component increases following the interaction with
reflected waves and then decreases due to dissipation.
The pressure variance showed narrow sharp peaks corre-

sponding to reshock and to the arrival of the reflected rar-
efaction, and further showed the arrival of the reflected
compression wave at late times. These waves excite fluc-
tuations that are apparent in the increased values of the
statistics. The fluctuations are damped and the variances
decrease in magnitude as time evolves. The density vari-
ance is very small in magnitude and remains nearly con-
stant, although signatures of the reflected shock and of
the reflected rarefaction are evident.

E. Comparison of mixing quantities and spectra
immediately after and before reshock

The comparison of mixing quantities and spectra im-
mediately after and before reshock quantified the effects
of reshock on the mixing layer and the energy deposi-
tion into the layer by baroclinic production mechanisms.
Reshock compresses the layer and shifts mass from the
SF6 side toward the air(acetone) side, consistent with
the direction of reshock from the heavier gas into the
lighter gas. Reshock further generates structures within
the mixing layer, creating a well-mixed region close to
the SF6 and peaks closer to the air(acetone). This is also
reflected by the mixing fraction θ.

The energy deposition by reshock was quantified by ex-
amining the amplification of the energy spectra. Reshock
amplifies the fluctuating kinetic energy spectra most at
larger wave numbers (smaller scales), consistent with
the formation of small-scale, vortical structures follow-
ing reshock. The pressure variance is amplified most
by reshock, while the density variance is only slightly
amplified, indicating that it does not have a significant
role in the post-reshock dynamics for the flow considered
here. Thus, the fluctuating kinetic energy, fluctuating
enstrophy, and pressure variance spectra are useful for
the characterization of the modal distribution of energy
within the mixing layer following reshock. The amplifica-
tions above are dependent upon the shock Mach number
and on other details of the flow configuration.

F. The effects of reflected waves on mixing

The effects of the reflected rarefaction wave on the mix-
ing layer were also investigated through a comparison of
simulations with reflecting and outflow boundary condi-
tions at the end wall of the domain. The reflected rarefac-
tion does not significantly increase the energy content in
the layer, but contributes to flow symmetry breaking and
driving the flow towards statistical isotropy at late times
by exciting fluctuations in the spanwise direction. The
reflected rarefaction also has a small effect on the fluc-
tuating enstrophy and pressure variance evolution. By
contrast, reshock compresses the layer and causes a sig-
nificant deposition of energy that induces rapid growth
of the layer, concomitant with the formation of complex
structures. The reflected rarefaction instead “stretches”
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the mixing layer (causing it to grow), but provides little
additional energy, so that the overall mixing decreases,
as quantified by the mixing fractions. The additional
mixing induced by the reflected waves is responsible for
a faster approach to late-time statistical isotropy. This
comparison further supports the important role that re-
flected waves have in the post-reshock flow dynamics.
The interactions of the waves with the evolving layer can
be interpreted as small, transient forcings at all scales.
To our knowledge this is the first study that removed the
effects of reflected waves on the post-reshock Richtmyer-
Meshkov mixing layer evolution, and showed their impor-
tant role on the dynamics of the reshocked flow.

G. Final remarks

The modern shock-capturing WENO method was used
here to investigate the physics of reshock and mixing
by computing and physically interpreting quantities not
presently available from experiments. Specifically, a wide
range of quantities that have been used to characterize
other mixing layers, including profiles across the layer,
mixing fractions, energy spectra, and statistics, were con-
sidered here. A comparison of such quantities just after
and before reshock quantified the effects of reshock, in-
cluding the mechanisms of energy deposition. A com-

parison of these quantities for outflow and reflecting
boundary conditions quantified the important role that
successive wave-interface interactions have on mixing.
Thus, the quantities presented here complement those
currently available from Richtmyer-Meshkov instability
experiments. Additional experimental data pertaining to
the post-reshock phase, including quantities depending
on spatial derivatives (vorticity or enstrophy) or quan-
tities sensitive to small-scale mixing (mixing fractions),
is needed to further validate numerical simulations and
constrain models.
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1535 (1999).
[50] Y. Andreopoulos, J. H. Agui, and G. Briassulis, Ann.

Rev. Fluid Mech. 32, 309 (2000).
[51] G. Briassulis, J. H. Agui, and Y. Andreopoulos, J. Fluid

Mech. 432, 219 (2001).
[52] J. H. Agui, G. Briassulis, and Y. Andreopoulos, J. Fluid

Mech. 524, 143 (2005).
[53] S. Kida and S. A. Orszag, J. Sci. Comput. 5, 1 (1990).
[54] S. Kida and S. A. Orszag, J. Sci. Comput. 7, 1 (1992).




