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Abstract

A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of
perfect time synchronicity is presented. The algorithm provides an exact general-
ization of any standard serial kMC model and is trivially implemented in parallel
architectures. We demonstrate the mathematical validity and parallel performance
of the method by solving several well-understood problems in diffusion.
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1 Introduction

Kinetic Monte Carlo (kMC) is an extremely powerful method to simulate the
time evolution of Markovian processes [1,2]. kMC relies on the a priori knowl-
edge of a given set of transition rates characterizing the simulated processes,
which are assumed to obey Poisson statistics. The scope of applications for
kMC is extraordinarily wide, ranging from epidemiology and population ki-
netics to surface growth or radiation damage. Because of its versatility, ease
of implementation, and wide range of applications, kMC is a prime candidate
for parallelization with the recent advent of tera- and peta-scale computing
capabilities. However, the difficulty of parallel kinetic Monte Carlo (pkMC)
simulations lies in the intrinsic asynchronicity underlying discrete events, each
one characterized by a different rate. In mathematical terms, a necessary con-
dition that must be satisfied by any parallel kMC algorithm is that it be
rigorous, i.e. that it solve the same master equation as the sequential (serial)
method. This does not necessarily imply that both approaches give the same
sequence of events, but that, on average, both result in the same statistical
distributions, and give the same kinetic evolution.

Early attempts to use parallel algorithms achieved some speedup but failed
to satisfy this provision [3,4]. To date, most approaches that do ensure this
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compatibility between sequential and parallel processes rely on asynchronous
kinetics, with different processors simulating events independently and then
accepting or rejecting them on the basis of domain correlation schemes that
may severely limit the computational efficiency [5–9].

Most of the recent work in this area has been inspired by Lubachevsky’s
original paper [5], which provides an exact parallel algorithm that simulates
discrete-event kinetics. This class of algorithms attempts to advance a ‘virtual
time horizon’ (VTH) asynchronously by a combination of kMC steps whose
progression is controlled by relatively cumbersome acceptance/rejection tech-
niques. The progress rate of the simulation depends on the density of local
minima of the instantaneous VTH, which in turn depends on the relative
occurrence of event roll-backs across domain boundaries. Depending on the
problem at hand, VTHs can display a strongly fluctuating behavior, for which
ingenious roughness-suppressing algorithms have been proposed [6,7]. Another
interesting alternative for parallel discrete event simulations is Jefferson’s time-
warp algorithm [9]. The timewarp paradigm provides a protocol for minimizing
the number of conservative synchronization updates by ignoring causality er-
rors, which are later detected and retraced for their resolution. Nevertheless,
owing to their intrinsic implementation complexity, limited use has been made
of these classes of methods, and the development and application of rigorous
efficient parallel algorithms for kMC simulations remains a significant chal-
lenge.

In this article we propose an exact, synchronous, parallel generalization of the
rejection-free n-fold kMC method of Bortz, Kalos and Lebowitz [10] (herein
referred to as BKL for brevity). Our algorithm ensures a flat VTH construc-
tion, thereby rendering all communications between domains essentially trivial
and suppressing the need for roll-backs. This results in an ease of implemen-
tation not achieved for earlier parallel algorithms. The paper comprises two
main sections: first we describe the algorithm in detail and discuss its potential
parallel performance; secondly, we demonstrate correctness and scalability by
solving several well-understood diffusion problems.

In BKL, a system with N walkers, each with rate ri (i = 1 . . . N), is evolved
in time by randomly selecting an event with probability ri/Rtot, where Rtot =∑N

i ri is what we hereafter term the frequency line, i.e. the aggregate of all
the individual ri. The system is then advanced in time by randomly sampling
from exponential distribution exp (−RtotδtBKL).
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2 Parallel kMC algorithm

The algorithm is based on the minimal process method as originally proposed
by Hanusse and Blanché [11,12]. Our procedure goes as follows. The computa-
tional cell is divided into K arbitrary subdomains Ωk (where, for consistency
with the parallel computing literature, K is the number of processing units).
A parallel kMC step consists of the following:

(1) A frequency line is constructed for each Ωk as the aggregate of the indi-
vidual rates, rik, of all the walkers located within each subdomain:

Rk =
nk∑

i

rik.

where nk and Rk are, respectively, the number of walkers and the total
rate in each subdomain k. Here Rtot =

∑K
k Rk and N =

∑K
k nk.

(2) We choose the maximum rate, Rmax as:

Rmax = max
k=1,...K

{Rk}.

(3) We assign a null event with rate rk0 to each frequency line in each sub-
domain k such that:

rk0 = Rmax −Rk,

where, in general, the rk0 will all be different. Of course in Ωα, α ∈ {k}
| Rα ≡ Rmax, rα0 = 0, and there is no possibility of null events.

(4) In each Ωk an event to be carried out is sampled with probability pik =
rik/Rmax, including null events chosen with pk0 = rk0/Rmax. For this
step, we must ensure that independent sequences of random numbers
be produced for each K, using an appropriate parallel random number
generator.

(5) As in standard BKL, a time increment is sampled from an exponential
distribution:

δtp = − ln ξ

Rmax

where ξ ∈ (0, 1) is a suitable random number. Here it becomes a global
time step for all of the parallel processes.

The imposition of fixed length for the frequency lines in all Ωk processes guar-
antees exact synchronicity. This is a key aspect of our algorithm. Time is
advanced exactly the same amount in all processors, which enables direct
communication across domain boundaries trivially, without the need for so-
phisticated rejection minimization schemes across boundaries commonly found
in other parallel (asynchronous) methods (cf. Ref. [13]). However, note that,
because in principle the spatial decomposition may be arbitrary (i.e. it does
not affect the global kinetics), optimal efficiency is not guaranteed per se.
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Evidently, an optimum decomposition will be that which renders
{ ∑

k rk0

}

minimum, but the solution is not unique (in fact it need not even be ‘spa-
tial’) and the catalog of options is quite varied. For example, in his proposed
improvement of the original minimal process method, ben-Avraham chose a
cell-coarsening scheme that preserves the half-life of the particle concentration
[12]. Our method of choice is to perform a domain decomposition using the
method of orthogonal recursive bisection (ORB) [14] so as to conserve the total
accumulated rate after each recursive partition. In the ideal limit of numbers
of walkers that are an exact multiple of K, with equal rates, such decomposi-
tion produces perfectly scaling gain by imposing {rk0 = 0, ∀ k}. In this sense,
the utilization ratio (UR), defined as the probability that a ‘real’– rather than

‘null’– event will occur in each processing unit, is
(
1− 1

KRmax

∑
k rk0

)
.

As interdomain migration occurs, however, the {rk0} must be recomputed
to continue ensuring synchronicity. In other words, step 6 of our algorithm
consists of the following conditional block:

(6)

if COMM, then go to step 1

else, go to step 4

where the condition COMM implies communication among processing units.

The intrinsic parallel efficiency of the method is governed by the utilization
ratio. A domain decomposition (or any other distributed decomposition) that
prescribes {rk0 = 0, ∀ k} will yield ideal parallel scaling (UR=100%). Un-
der these conditions, Rmax = Rtot/K and, hence, on average δtp = KδtBKL.
UR=100% is the theoretical speedup limit and acts as an upper bound to
the time step gain. Of course, generally, for discrete systems with non-integer
rates ri, UR6 100%, Rmax > Rtot/K, and δtp 6 KδtBKL.

Steps (1) to (6) above provide a rigorous, synchronous, parallel algorithm in
closed form. So far, no numerical arguments have been made as regards the
computational efficiency of the method. However, in the event that the time
evolution of the density profile results in a spatial redistribution of particles
that deviates from the original optimum decomposition, the utilization ratio
may drop enough to lead to poor parallel performance. The metrics chosen to
establish reasonable tolerance limits on UR are typically problem-dependent
(e.g. diffusion coefficients, cell sizes, etc). In general, when this occurs, the
domain decomposition must be updated, either by performing some type of
dynamic load balancing, or by generating a new decomposition (such as a
global ORB). Irrespective of the method chosen, this step can be integrated
into our kMC algorithm in the form of a closed loop between steps 3 and 4:
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if UR < TOL, then

update domain decomposition (perform ORB)

go to 3

where TOL is a problem-dependent tolerance. It is worth stressing that this is
an optional modification that does not detract from the generality of our algo-
rithm, since correct kinetics arise independent of the domain partition scheme
chosen. Refreshing the domain decomposition is aimed simply at optimizing
the parallel performance.

3 Applications

We now turn to the validation of our algorithm by comparing with some simple
cases of known analytical solution. First, we study pure diffusion without
volumetric terms, i.e. according to the following master equation:

[
−D∇2 +

∂

∂t

]
ρ(x; t) = 0 (1)

where ρ(x; t) is the time and space-dependent particle number density and
D is the diffusion coefficient. We study diffusion in an n-dimensional square
domain of side a, Ωa, subject to the following boundary conditions:

(i) Absorbing (‘black box’) boundary conditions:

ρ(x; 0) = ρ0

n∏

α=1

cos
(

πxα

a

)
,x ∈ Ωa

ρ(x; t) = 0,x ∈ ∂Ωa

where ρ0 is a constant.
(ii) Periodic boundary conditions (PBC):

ρ(x; 0) = ρ0

n∏

α=1

[
1

a
− cos

(
2πxα

a

)]
,x ∈ Ωa

ρ(x1, x2, . . . , xα, . . . , xn; t)

= ρ(x1, x2, . . . , xα ± a, . . . , xn; t), ∀ α

Here we focus on the two-dimensional (2D) case. In both cases (i) and (ii)
the solution of the diffusion equation is given by the time dependent Green’s
function for an infinite medium with diffusion constant D:

G(x,x0; t) =
e−

(x−x0)2

2σ2

√
4πDt

(2)
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where x and x0 are the initial and final position of each walker, t is the time,
and σ2 = 2Dt is the mean square displacement. For a fixed D, the mean
square displacement must be conserved in all Ωk, from which it follows that,
for each walker i, ti = δtpRmax/ri. Both of these cases are eigenvalue problems
[15] with known eigenvalues of (i) λabs = π

a

√
2D, and (ii) λPBC = π

a

√
4D.

Figure 1 shows the comparison between the analytical solution and our parallel
algorithm for case (i) with a = 1 cm, Di = 1 cm2·s−1, and ρ0 = 131072 walkers.

For these values, λabs = 4.443 s−
1
2 , while in a series of runs with K = 2n

(n = 1, . . . , 7) processors we obtained an average value of 4.410±0.042 s−
1
2 .

For case (ii) with the same parameters, we show in Fig. 2 the time evolution
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Fig. 1. Comparison between the analytical solution (continuous line) and a parallel
run with 64 processors (open diamonds) for the problem of simple diffusion with no
particle interactions and absorbing boundaries.

with eigenvalue λPBC = 6.28 s−
1
2 of the spatial particle distribution (ii). The

plot contains the projection of ρ(x; t) on one of the box dimensions at four
different times. Note that, for a = 1 cm and D = 1 cm2·s−1, the exponent of
the time dependent terms is ∼40 so that the convergence to ρ0 is very fast.
We obtain 〈λPBC〉 = 6.27 and an average error of ±4.4% with respect to the

analytical value of 6.28 s−
1
2 . For all other parallel runs performed the values

were of the same order of magnitude. In this particular case (ii) the initial
particle density evolves with time towards a more flattened profile. Thus, the
utilization ratio derived from the initial ORB will gradually worsen as walkers
diffuse and the mapping between the spatial particle distribution and the
initial domain decomposition degrades. For the specific simulation shown in
Fig. 2, the UR decreases from its initial value of 97.2% to a steady state value of
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Fig. 2. Comparison between pkMC for 16 processors and the analytical solution of
the time evolution of the spatial density profile for the case (ii) of diffusion without
particle interactions and periodic boundary conditions.

∼77.5% after homogenization has completed. Figure 3 illustrates the temporal
variation of the UR for this case, compared with the case of a flat particle
density profile using the same number of processors. While both cases start
out at UR≈97%, the domain decomposition that maps the initial sinusoidal
particle distribution in (ii) becomes gradually unsatisfactory, resulting in a
steady-state UR of ∼77.5%, compared to a value of 96.8% for the flat density
profile. Although these results, which are perfectly satisfactory, have been
obtained for a single ORB, as noted above, nothing precludes carrying out
subsequent ORBs to improve the efficiency when the value of UR drops below
some problem-specific (arbitrary) tolerance.

Next we turn to the study of cases where particles interact. In particular,
we consider the multiparticle reaction NA → 0 (where N is the number of
reacting particles) and the two-species annihilation A+B → 0. Figure 4 shows
the time evolution in 2D of an ensemble of 32768 A-type walkers with a = 1
cm, D = 1 cm2·s−1, and rc, the particle interaction radius, equal to 10−5 cm.

For an arbitrary value of N the appropriate asymptotic decay is t−
1

N−1 [16].
Here we have chosen rc small enough to minimize the number of interactions
for which N > 2, i.e. ρ(t) is expected to scale approximately as 1/t, which is
equivalent to the biparticle (A + A → 0) annihilation time decay. The figure
shows results for 64 processors and a single-CPU BKL run, with excellent
agreement between both calculations. Also shown is the 1/t asymptotic trend
characteristic of the A+A → 0 reaction. The time evolution of the UR in this
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Fig. 3. Time evolution of the utilization ratio (UR) for three different 32-proces-
sor cases with periodic boundary conditions: (i) homogeneous particle distribution
with no interactions; (ii) cosinusoidal particle distribution with no interactions; (iii)
homogeneous distribution with A + A → 0 particle annihilations.

particular case varies with the number of processors K, ranging from 98% to
89% for K = 4, and from 97% to about 70% for K = 32 (shown in Fig. 3).

The two-species reaction A+B → 0 is important in many physical and chemi-
cal processes, and has been studied in detail in the literature (e.g. Refs. [16,17]).
In principle, the kinetics of a random homogeneous bimolecular system with
cross-annihilations and equal initial populations ρA(0) = ρB(0) is governed by
two parameters, namely, the capture radius rc, and the typical diffusion length,
` =

√
4Dδt. The relative values of ` and rc give rise to two well-differentiated

regimes. In the so-called reaction-limited regime (RLR), ` À rc, and the sys-
tem obeys an asymptotic decay law of the type 1/kt, where k is a rate constant.
However, in the diffusion-limited regime (DLR), ` . rc, spatial fluctuations
asymptotically result in the separation of A and B particles into A and B-rich
domains. In this case, the kinetics is considerably decelerated and the system
evolves as t−

1
2 . Figure 5 shows pkMC calculations for both the reaction- and

the diffusion-limited regimes and their corresponding asymptotic decay laws.
For the DLR case we have used ` = 10−3 and rc = 10−2 cm, whereas, for
RLR, we used values for ` and rc of 10−2 and 10−5 cm respectively. It is quite
clear from the figure that the parallel kMC calculations capture the correct
asymptotic kinetics in each case. To further analyze the separation kinetics
(or lack thereof) in the RLR and DLR, we show in Figure 6 the A−B pair
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Fig. 4. Comparison between a serial BKL run (continuous line) and a parallel run
with 64 processors (open diamonds) for the problem of multiparticle NA → 0
annihilation with periodic boundary conditions. The asymptotic behavior ∼ 1/t
expected for this reaction is also shown.

correlation function, gAB(r), for both cases 1 . gAB(r) measures the probability
of finding a B-type particle from an A particle, averaged over the entire sim-
ulation area. These probabilities are given relative to the overall background
particle density in each case, i.e. a probability higher than unity at a distance
r simply means that, at that distance, the pair density of particles is higher
than 〈ρB〉. In the DLR, where particles separate into A and B-rich domains,
gAB(r) is initially very low, corresponding to a B-depleted, A-type domain.
As the distance is increased, the pair correlation function gradually reaches its
background value of 1.0. On the contrary, in the RLR, where homogenization
is expected, gAB(r) resembles the pair distribution for an ideal gas. Different
amounts of roughness can be appreciated in both curves, presumably indi-
cating short and medium range order. In summary, our parallel calculations
satisfactorily capture the time and spatial correlations of a particle population
subject to the A + B → 0 kinetics.

1 Here, r is a generic radial distance, not to be confused with the rates of the
diffusing species ri
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Fig. 5. Two-species annihilation kinetics (only the A-type normalized density is
shown) for the reaction (` À rc) and diffusion (` . rc) limited regimes as obtained
with our parallel kMC algorithm. The expected asymptotic decay law in each case
is also shown for reference.

4 Performance Analysis

Next we turn to the study of the parallel efficiency of our algorithm as imple-
mented on a distributed-memory Linux cluster with 1.4-GHz Itanium2 proces-
sors. We define two metrics for our scalability analysis, namely ‘weak’ and
‘strong’ scalability. Weak scalability measures the performance of a parallel
algorithm using K processing units when the problem size is increased K-
fold. For simplicity, we study this metric on a PBC system with a uniform
particle distribution with no interactions. From step (6) of our algorithm, it is
clear that, although not strictly necessary for this computation, our program
incurs a communications overhead when particles that move across domain
boundaries are reassigned to the corresponding processing units.

Figure 7 shows a family of curves for three different numbers of walkers per
processor (see legend). In the absence of particle interactions, this metric esti-
mates the cost of parallel communications when all other factors are kept
invariant. For the present MPI implementation adopted here, the compu-
tational cost correlates directly with the perimeter-to-surface area (i.e., the
communication-to-computation) ratio in our system [18]. It has been shown
that the communication-to-computation ratio in 2D improves as the aspect
ratio of the subdomains tends toward perfect quadrature [19]. Of course, a per-
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fect quadratic decomposition can only be achieved when K is an even power
of 2, e.g. 4, 16, 64, etc., which is why the curves in Fig. 7 display abrupt steps
at, for example, K=2 and K=8.

In contrast, strong scalability measures the computational speedup when an
increasing number of processors is applied to a problem of fixed size. Results for
up to K=128 processors for a PBC case with 131072 walkers are presented in
Fig. 8. The total scalability, which is seen to be superlinear in the figure, bene-
fits from two distinct contributions, namely (i) the time step gain derived from
decreasing the length of Rtot (discussed in Section 2), and (ii) a contribution
associated with the ORB decomposition implemented here. The binary search
method used to select an event out of the frequency line carries an associated
computational cost that ideally scales as log(N) [20]. After performing our

ORB, each processor must now perform a search with cost log
(

N
K

)
. In other

words, there is a factor of log(N)/ log
(

N
K

)
speedup related simply to the cost

of carrying out smaller binary search tree operations in parallel. Therefore,
this speedup is in addition to the time step gain discussed earlier, which can
only scale linearly at best (see discussion in Section 2 above). In figure 8 we
have separated contributions (i) and (ii) from the total speedup by performing
serial calculations in the fashion of Hanusse and Blanché [11], i.e. only with
time step gain. This has been subtracted out in the curve termed ‘parallel’,
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Fig. 7. Weak scalability of our algorithm for a family of curves with different numbers
of particles per processor (in legend).

which is therefore the one that better represents parallel performance. As we
can see, this true parallel gain scales linearly, with proportionality constant
≈ 0.5, up to about K=32, after which it is seen to gradually saturate. These
metrics (Figs. 7 and 8) are simply intended for demonstrating parallel gain as
obtained with a first-order implementation of our algorithm. Although the pri-
mary focus of this paper is to demonstrate correctness of our parallel method,
it is encouraging that the efficiency found in the test problems is very high.
Nevertheless, the full assessment of the effectiveness of the algorithm remains
for future applications.

5 Summary

In summary, we have developed a novel parallel kinetic Monte Carlo algo-
rithm that promises to access time and length scales as-of-yet unexplored in
kMC simulations. Our algorithm is based on a perfectly-synchronous parallel
decomposition of the master equation, to which it provides an exact solution.
The efficiency of the method is contingent on the characteristics of the problem
at hand and the optimization facilities of the decomposition chosen. We have
demonstrated the rigorousness and performance of our algorithm in a few well
understood diffusion problems, with reasonable scaling and excellent agree-
ment between our computational results and analytical and serial cases. Due
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prototype code. The total speedup can be broken down into a timestep gain which
can be calculated using serial calculations (hence ’serial’) and a gain related to
a reduced binary search cost which can only be obtained in parallel calculations
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to its trivial implementation in parallel architectures, our algorithm suggests
itself as a more practical alternative to previously published asynchronous
methods.
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