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ABSTRACT23

We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used 24

for the simultaneous detection of 5 common human respiratory pathogens including influenza 25

A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group 26

B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less 27

than 3 hours, including sample collection, preparation, and processing, as well as data analysis. 28

Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, 29

and therefore allow implementation of infection control measures, and timely administration of 30

antiviral therapies. This article presents a summary of the assay performance in terms of 31

sensitivity and specificity. Limits of detection are provided for each targeted respiratory 32

pathogen, and result comparisons are performed on clinical samples, our goal being to compare 33

the sensitivity and specificity of the multiplexed assay to the combination of 34

immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. 35

Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% 36

and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of 37

the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of 38

influenza A without any extraction performed on the clinical samples. The data also showed39

that extraction will be needed for parainfluenza virus, which was only identified correctly 24% 40

of the time on un-extracted samples.41



3

Each year, between October and March, hospital admissions suddenly increase with 42

patients presenting with influenza or influenza-like symptoms.  It is estimated that influenza-43

associated hospitalizations in the United States range from approximately 54,000 to 430,000 44

per season (1).  Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis 45

and pneumonia among infants and children under one year of age, but most respiratory 46

viruses can trigger severe lower respiratory tract disease at any age, especially among the 47

elderly or among those with compromised cardiac, pulmonary, or immune systems (2).  In 48

this context, timely and accurate identification of respiratory viruses is rapidly becoming 49

more relevant as antiviral treatment options increase.  Additionally, the resulting improved50

treatment of patients presenting with respiratory illness will help control infection, prevent 51

nosocomial spread, and reduce patient stay as well as hospital costs.52

Although alternative respiratory virus identification techniques such as 53

immunofluorescence and rapid antigen detection tests have been developed to provide rapid 54

diagnostic capabilities, viral culture remains the most prevalent test in use for laboratory 55

identification (3).  The main drawback of immunoflorescence and rapid tests kits is their lack 56

of sensitivity.  A recent study reported that immunofluorescence assays detect only 19% of 57

respiratory viruses with viral loads below 106 copies/mL (4) and rapid test kits have been 58

shown to have typical false negative rates of 30% for influenza (5). While viral culture is 59

both sensitive and specific, it is labor intensive and time consuming.  Additionally, because60

some viral strains grow poorly and/or slowly in cell culture, timely results are not available to 61

impact or inform clinical decisions such as the use of antiviral drug treatment.  A recent 62

study undertaken with pediatric patients to determine the impact of rapid diagnosis of 63

influenza (such as the FluOIA test from Biostar Inc. which is only 83-96% sensitive and 64-64
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76% specific) on physician decision-making and patient management in the ER showed that 65

the use of rapid test kits at point-of-care lead to a reduction of antibiotic prescriptions of 40%, 66

a reduction of laboratory and radiograph charges of 50%, patient discharges occurring one 67

hour more quickly, and an increase in antiviral use by 25% (6).  Another study comparing 68

cell culture and immufluorescence focused on the benefits of rapid reporting of respiratory 69

viruses concluded that the mean length of stay for hospital inpatients with respiratory viral 70

isolates was 10.6 days (mean cost of $7,893) when the patients were diagnosed by viral 71

culture and only 5.3 days (mean cost of $2,177) when they were diagnosed using 72

immunofluorescence (7).  73

To alleviate issues of specificity and sensitivity inherent to the rapid tests as well as the 74

long turnaround times of viral culture, laboratories analyzing clinical samples are 75

progressively moving toward molecular diagnostics as a mean to identify respiratory viruses.  76

Nucleic acid amplification techniques such as PCR followed by gel electrophoresis (8), and 77

quantitative PCR (q-PCR) with corresponding probes (9, 10) have recently been developed 78

for the rapid detection of respiratory pathogens, leading to significant sensitivity and 79

specificity improvements over culture and immunofluorescence techniques.  Nevertheless, a 80

limitation of semiquantitative real-time PCR assays is their extremely low level of 81

multiplexing. Multiplexed detection capabilities provide many advantages over conventional 82

detection methodologies. In the event of a respiratory disease outbreak, the use of 83

multiplexed assay panels can provide a cost effective means of handling high volumes (i.e., a 84

surge) of samples. Moreover, custom tailored assay panels designed to respond to genetic 85

mutations and/or new pathogens can be rapidly implemented, and therefore greatly help 86

reduce the impact of infectious disease outbreaks. Additionally, contrary to current q-PCR 87
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assays which require DNA/RNA extraction, the only requirement of our assay is a nasal 88

swab in buffer solution, dramatically reducing processing time and reagent costs.89

We have extended the utility of nucleic acid amplification techniques by developing a 90

multiplexed RT-PCR assay that allows timely simultaneous detection of five respiratory 91

viruses. The multiplexed assays (liquid arrays) have been developed on a commercially 92

available flow cytometer (Bioplex, Bio-Rad Inc.). The assay utilizes surface-functionalized 93

polystyrene micro-beads, embedded with precise ratios of red and infrared fluorescent dyes 94

(FIG. 1).  There are 100 unique dye ratios, giving rise to 100 unique bead classes. When 95

excited by a 635-nm laser, the two dyes emit light at different wavelengths (658 and 712 nm)96

and thus each bead class has a unique spectral address.  Bead classes can be easily 97

distinguished and therefore they can be combined and up to 100 different analytes can be 98

measured simultaneously within the same sample. Although liquid arrays have been 99

demonstrated in a variety of applications (11) including detection of antigens, antibodies, 100

small molecules, and peptides, in the presently described application, beads are 101

functionalized with a nucleic acid probe approximately 30 bases long, where the probe 102

sequence is complementary to a target amplicon. Nucleic acid from the pathogen of interest 103

is amplified by RT-PCR (FIG. 1), which is conducted using a mixture of all forward and 104

reverse primers for each of the pathogen targets in the multiplexed panel. The amplified 105

product is then introduced to the bead mixture, allowed to hybridize, and subsequently 106

labeled with the fluorescent reporter, streptavidin-phycroerythrin (SAPE).  Each optically 107

encoded and fluorescently-labeled micro-bead is interrogated by the Bioplex flow cytometer.108

A red laser excites the dye molecules inside the bead and classifies it while a green laser 109

quantifies the assay at the bead surface via the median fluorescence intensity (MFI) of the 110
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SAPE reporter. The flow cytometer is capable of reading several hundred beads each second111

and fluorescence analysis can be completed in as little as 15 seconds.112

The current panel (Table 1) includes 16 beads, with assays for influenza A (2 assays) 113

influenza B (2 assays), parainfluenza type 1 (1 assay) and 3 (1 assay), respiratory syncytial 114

virus (1 assay), and adenovirus group B (2 assays), C (2 assays), and E (1 assay). The panel 115

also includes 4 unique internal controls described in the methods section. Typically, results116

on a clinical sample can be provided in less than 3 hours, including sample collection, 117

preparation, and processing, as well as data analysis.118

This article presents a summary of the assay performance in terms of sensitivity and 119

specificity. Limit-of-detection (LOD) values for each targeted respiratory pathogen are 120

presented for the multiplexed panel, and result comparisons are performed on clinical 121

samples collected at the UCDMC (University of California Davis Medical Center, Davis, 122

CA), our goal being to compare the sensitivity and specificity of the multiplexed assay to the 123

currently implemented detection techniques.124

125

MATERIALS AND METHODS126

127

Reagents. Tris-NaCl (0.1 M Tris, 0.2 M NaCl, 0.05 % Triton X-100, pH = 8.0) and TE 128

(10 mM Tris-HCl, 1.0 mM EDTA, pH = 8.0) buffers were purchased from Teknova Inc.129

(Hollister, CA). Streptavidin-phycoerythrin (SAPE) was purchased from Invitrogen Inc.130

(Carlsbad, CA) and suspended in Tris-NaCl at a concentration of 3 ng/µL. All primers and 131

probes were synthesized by Integrated DNA Technologies (Coralville, IA) and suspended in 132

TE buffer.133
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Viruses. Current circulating strains of certified killed respiratory viruses were purchased 134

at a stock concentration of 1 mg/mL. Influenza A viruses (A/H1, New Caledonia strain and 135

A/H3, Shandong strain), RSV, and adenovirus C were purchased from Research Diagnostics 136

Inc. (Flanders, NJ), while Influenza B, Victoria strain, and Parainfluenza type 1 and 3 were 137

purchased from Advanced Immunochemical Inc. (Long Beach, CA). Adenovirus group B,138

and E were also grown and titered by the method of Reed and Muench (12).139

Carbodiimide coupling of amino-substituted probes to carboxylated microbeads.140

Different sets of carboxylated fluorescent micro-beads were obtained from Luminex Corp.141

(Austin, TX), and oligonucleotide probes for the respiratory panel were assigned to 142

individual bead sets.  Each probe sequence represented the reverse complement to the target 143

region of the forward strand (5’-3’) and contained a spacer (18-atom hexa-ethyleneglycol 144

spacer) between the reactive group (Amino Modifier C6, also called phosphoramidite) and 145

the 5’ end of the oligonucleotide, to enable optimal hybridization.  Phosphoramidite is a 146

primary amine which results in a stable, covalent attachment upon reaction with the ester on 147

the bead coating. Probes for each of the pathogen targets were coupled to the beads using the 148

manufacturer’s recommended coupling protocol.  Briefly, a 1 mL aliquot of beads (1.25 x 149

107 beads) was re-suspended in 50 µL of 0.1 M 2-[N-morpholino] ethanesulfonic acid 150

(MES) buffer at pH = 4.5 and sonicated.  0.05 mg of 1-ethyl-3-[3-dimethylaminopropyl]-151

carbodiimide hydrochloride (EDC) (Pierce Biotechnology, Rockford, IL) was added, along 152

with 10 µL of probe at a concentration of 50 µM.  This solution was incubated in the dark at 153

room temperature for 30 minutes.  A second aliquot of EDC (0.025 mg) was added and 154

incubated in the conditions described above. The beads were then rinsed in 1 mL phosphate 155

buffered saline (PBS) containing 0.02 % Tween-20 (Sigma, St Louis, MO), centrifuged at 156
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10,000 rpm for 5 min, rinsed in PBS containing 0.1 % sodium dodecyl sulfate (SDS), 157

centrifuged a second time, re-suspended in 250 µL of TE buffer, sonicated, and stored in the 158

dark at 4 °C. A 10X bead set containing all conjugates was then prepared, using 200 µL of 159

each bead in a total volume of 5 mL of Tris-NaCl buffer. A 1X working solution was then160

prepared from the stock before use, using Tris-NaCl buffer for dilution. 161

RT-PCR reaction. The All RT-PCR (Reverse Transcription-Polymerase Chain 162

Reaction) reactions were prepared using the end-point Superscript III one step RT-PCR kit163

from Invitrogen Inc. (Carlsbad, CA). Typically, each 25 µL PCR reaction contained: 12.5 164

µL of Superscript III Master mix, 0.5 µL of MgSO4 (50 mM), 0.1 µL of each forward and 165

reverse primer (0.4 uM final concentration), 1 µL of reverse transcriptase and Taq DNA 166

polymerase mix, and PCR grade water to complete the volume to 20 µL. 5 µL of un-167

extracted sample was then added to 20 µL of PCR mix and cycled on a thermocycler using 168

the following parameters: reverse transcription at 50 °C for 30 min, denaturation at 95 °C for 169

15 min, followed by 35 PCR amplification cycles (denaturation at 94 °C for 15 s, annealing 170

at 55 °C for 30 s, and extension at 72 °C for 15 s).171

Microbead hybridization. Following RT-PCR, 5 µL of amplified product was added to 172

22 µL of bead mix and hybridized to the probe-coated beads using a denaturation step at 95173

°C for 2 min, followed by an annealing step at 55 °C for 5 min.174

Microbead washing and labeling. The hybridized bead solution was transferred to a 175

96-well filter plate (Millipore Inc., Bedford, MA) with 1.2 μm pores. The beads were 176

washed 3 times to remove un-bound oligonucleotides, using 100 µL aliquots of Tris-NaCl 177

buffer pipetted in each well and vacuum-aspirated with a vacuum manifold kit (Millipore 178

Inc., Bedford, MA). The washed beads were then incubated with 60 µL of 3 ng/mL SAPE 179
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reporter for 5 min, washed twice using 100 µL aliquots of Tris-NaCl buffer, and transferred 180

into a 96-well microtiter round bottom plate. For each well, 50 µL of solution was analyzed 181

in the Bioplex flow analyzer.182

Controls. Controls that convey important diagnostic information regarding reagent 183

addition, quality, and concentration, assay operator performance, and instrument stability 184

were added to the assay. A unique set of four internal controls are built into every sample,185

monitoring and reporting every step of the protocol. The negative control (NC) is a bead 186

coupled to a Mt7 probe.  Mt7 is a nucleic acid sequence obtained from Maritima maritensis, 187

an organism found near deep-sea thermal vents.  This organism was selected to serve as a NC 188

because its nucleic acid is unlikely to be observed in clinical samples.  Thus, Mt7 is not 189

expected to bind exogeneous nucleic acids and consequently, the median fluorescent 190

intensity (MFI) of the NC beads should always be low.  High MFIs on the NC beads obtained 191

in the presence of a sample would indicate a lack of specificity. The instrument control (IC) 192

verifies the reporter fluorescence optics of the flow analyzer.  The IC is a bead to which a 193

Cy3-labeled Mt7 probe has been coupled. The probe is unlikely to bind other nucleic acids, 194

and the Cy3 dye emits a constant fluorescence (i.e. constant MFI) in all samples when 195

excited by the reporter laser.  A change in MFI on the IC bead indicates fluctuations in the 196

reporter laser performance.  The fluorescent control (FC) tests for the addition of the 197

fluorescent reporter (SAPE).  FC is a bead coupled with biotinylated-Mt7 probe that 198

fluoresces after exposure to SAPE.  A bead coupled to an RNAse P probe serves as a positive 199

PCR control, as well as a control for the addition of the clinical sample.  Signals are obtained 200

only when PCR product has been generated and bound to the probe, and SAPE has been 201

added; lack of signal on the PCR control bead indicates that either PCR was not performed 202
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properly or that SAPE was not added.  The FC control, however, will yield a signal even in 203

the absence of PCR, so these two events can be decoupled.  These controls afford high-204

confidence that the assay is performed correctly by monitoring the addition of sample, 205

confirming PCR was performed, indicating that SAPE was added, checking that the 206

instrument is performing, and verifying that the assay is specific.  Every sample is analyzed 207

in the context of the performance of the controls, thereby minimizing the likelihood of false 208

positives.209

Limit Of Detection (LOD) data.  Each virus was diluted in distilled water starting from 210

a 102 ng/µL stock.  The concentration range for the LOD study spanned ten orders of 211

magnitude using 2 dilutions per order of magnitude.  Each concentration was run in 212

quadruplicate and LOD data sets for each specific virus were run on separate 96-well plates 213

in order to prevent any possible cross-contamination.  All experiments were performed on 214

whole virus without nucleic acid extraction. Each plate contained 8 blank wells in which 215

distilled water was added to the RT-PCR mix as negative controls. 216

Clinical sample collection and handling. From November 2004 through November217

2006, over 1,000 nasal swab samples were collected from patients arriving in the emergency 218

room at the UCDMC Emergency Department in Sacramento, CA, which treats 60,000 219

patients per year including 12,000 children. Nasal swabs were obtained from patients 220

showing respiratory symptoms, as well as from asymptomatic subjects such as accompanying 221

family members.222

Nasal swabs were collected in 3 mL of M4 viral transport medium (Remel, Lenexa, KS), 223

which is composed of gelatin, vancomycin, amphotericin B, and colistin. The sample was 224

then de-identified and divided into two tubes. One aliquot was subjected to 225
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immunofluorescence testing and/or viral culture utilizing standard shell vial technique while226

the other sample aliquots were analyzed with multiplexed assays on the Bioplex platform.  227

According to immunofluorescence and/or viral culture results, the clinical sample inventory 228

contained: 56 RSV samples, 35 influenza A samples, 12 influenza B samples, 46229

parainfluenza samples, 30 adenovirus samples, and 828 negative samples.230

Extraction.  Although extraction was not generally performed on clinical samples, 231

results obtained with parainfluenza virus were suboptimal.  In order to asses whether these232

results derived from poor primer performance or had other roots, viral RNA was purified for 233

8 parainfluenza samples using the MagMAX™-96 Viral RNA Isolation Kit (Ambion, 1836).  234

During the purification process, the samples were lysed, and magnetic beads were used to 235

bind the nucleic acid.  The beads were then washed using two alcohol wash solutions.  236

Following the washes, the nucleic acid was removed from the beads by adding an elution 237

buffer and heating the solution to 65ºC.  This eluent, which represents the purified RNA 238

sample, was used for the multiplexed RT-PCR reaction.239

240

RESULTS241

242

Respiratory panel design.  An initial set of 24 signatures derived from a variety of243

sources (Centers for Disease Control, Lawrence Livermore National Laboratory244

Bioinformatics Group, as well as previously published work (9, 10)) were chosen for their 245

ability to bind and amplify target-specific genes which are phylogenetically conserved and 246
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therefore insensitive to strain variations.  Each signature typically consisted of two 20 bp 247

primers and a 30 bp probe; typical amplicon length was 90-200 bp. 248

Signatures were first tested in singleplex reactions (only one primer pair present in the 249

primer mix) against their respective targets in order to ascertain the likelihood of identifying 250

target.  Four signatures did not identify target except at very high concentrations (100 pg per 251

reaction) and were therefore discarded, leaving twenty signatures for assembly in a 252

multiplexed panel. Starting with a single viral target, individual signatures were added to a 253

growing mixture one at a time, until all target signatures were added and demonstrated to 254

work as effectively in the multiplexed environment as they did in the singleplex format.  This 255

viral target signature “block” was then combined with another viral signature block and 256

tested again.  After each signature addition, poor performers and/or competing signatures 257

were isolated and removed. Poor performers were typically signatures which provided low 258

but adequate MFI signals in singleplex, but for which the MFI signals further dropped in the 259

presence of other signatures.  Competing signatures were comprised of primer sets that 260

amplified overlapping target regions and therefore competed for target amplification. The 261

effect of such a competition is a concomitant drop of the MFI signal for both competing 262

signatures while other signatures keep performing well in the assay.  263

Assay optimization.  At the end of this iterative process, the multiplexed respiratory 264

panel was composed of 12 signatures and 4 controls. RT-PCR parameters such as the added 265

MgSO4 concentration, the annealing temperature, the extension temperature, and the266

extension time, were then optimized for this final respiratory panel in order to produce a 267

combination of low backgrounds, high MFI signals, and low cross-reactivity.  Four MgSO4 268

concentrations ranging from 1 to 6 mM, three annealing temperatures ranging between 50 269
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and 60 °C, two extension temperatures: 68 and 72 °C, and three extension times ranging from 270

10 to 20 s were investigated.  For each new parameter under study, an LOD curve was built 271

in triplicate for a minimum of three organisms including adenovirus type C, RSV, and 272

influenza A, and the experimental conditions leading to the best combination of background, 273

MFI, and cross-reactivity signals across the range of targets tested was selected (data not 274

shown).  All the primer concentrations were maintained at 0.4 µM, except for the RNAse P 275

control primer concentration which was decreased to 0.2 µM to reduce the probability of 276

amplification competition, and the RSV forward primer concentration, which was increased 277

to 0.8 µM due to the fact that two reverse primers are present in the mix, amplifying RSV 278

type A and B respectively. Details of the optimized RT-PCR protocol are provided in the 279

materials and methods section.280

Limits of Detection (LODs). The LOD for each target was then determined with the 16-281

plex respiratory panel, using the protocol described in the materials and methods section.  An 282

average of the four MFI values was plotted on the LOD graph for each concentration, as well 283

as the standard deviation. Two examples are provided in FIG. 2: the LOD curves for 284

influenza A are shown on FIG. 2A, for both influenza A signatures when titrating using the 285

New Caledonia strain, which is an A/H1 subtype.   The LOD curve for the single signature 286

for parainfluenza 3 is also presented in FIG. 2B. A summary of the LOD values, defined as 287

virus concentrations at which the corresponding average MFI values were above the 288

background by more than three standard deviations, is presented in Table 2.  The LOD value 289

obtained for parainfluenza 1 was higher than for the other viruses. As discussed in the 290

clinical evaluation section below, this result was attributed to the remarkable stability of the 291

nucleocapsid which encapsidates the RNA of paramyxoviruses (13). All the other LOD 292
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values obtained with the multiplexed RT-PCR assay without performing any RNA/DNA293

extraction step were within one to two orders of magnitude of the LOD values published 294

using both RNA/DNA extraction procedures and significantly lower levels of multiplexing295

(14-17).  The ability to remove the extraction step from the assay protocol may be valuable296

for point of care applications because it simplifies the handling of clinical samples, lowers 297

the processing costs, shortens the analysis time by up to 30 minutes, and allows for easier 298

assay automation.299

Clinical evaluation. The multiplexed panel was tested on clinical samples collected 300

from patients arriving in the emergency room at the UCDMC. Nasal swabs were collected in 301

viral transport medium and divided into two aliquots.  One aliquot was diagnosed using302

immunofluorescence and/or viral culture while the other aliquot was diagnosed using the303

multiplexed RT-PCR respiratory panel on the Bioplex platform. For the Bioplex-based 304

assay, 5 µL of nasal swab sample was directly mixed with 20 µL of PCR reagents and the 305

amplification, bead hybridization, washing, labeling, and flow cytometer analysis steps were 306

performed according to the previously described protocol (see materials and methods section 307

for details). A total of 828 negative samples were first analyzed in order to set threshold 308

values for positive identification.  Threshold values for each signature were calculated based 309

on the response of the known negative patient samples. First, outliers were removed 310

iteratively using the Grubb's outlier test (18).  After the outliers were removed, thresholds 311

were calculated for each signature. The threshold value was chosen such that the MFI values 312

of negative samples that were not determined to be outliers would exceed this value at a rate 313

of 0.005, which corresponds to a set assay specificity of 99.5 %. These thresholds led to a 314

rating scale for which MFI values below the threshold were ruled negative, and MFI values 315
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equal to or above the threshold were ruled positive. A summary of the threshold values is316

provided in Table 3. For viruses for which two signatures were included in the panel, a 317

positive was called when at least one of the signatures had an MFI equal to or above 318

threshold.  Out of the 828 samples tested, 791 were confirmed negative by multiplexed RT-319

PCR (95.5 %) and 37 were identified positive for a respiratory virus. These 37 samples were 320

sent to the Viral and Rickettsial Disease Laboratory (VRDL) at the State of California Health 321

and Human Services Agency (Richmond, CA) for third party confirmatory q-PCR analysis. 322

The positive multiplexed RT-PCR result was validated for 31 samples and invalidated for 6 323

samples, bringing the percentage of correctly identified clinical negatives to 99.3% and 324

reducing the rate of false negatives by 4% compared to the combination of 325

immunofluorescence and/or shell vial culture implemented at the UCDMC. 326

Samples identified positive via viral culture and/or immunofluorescence, including 56327

RSV samples, 35 influenza A samples, 12 influenza B samples, 46 parainfluenza samples, 328

and 30 adenovirus samples, were then analyzed randomly using 96-well plates and the329

identification performed using multiplexed RT-PCR was compared to the viral culture and/or 330

immunofluorescence results. A summary of this clinical study is provided in Table 4.  For 331

each respiratory virus, the table shows the number of samples identified positive using viral 332

culture and/or immunofluorescence, the number of samples confirmed positive by 333

multiplexed RT-PCR, the number of samples for which the multiplexed RT-PCR result was 334

positive but in disagreement with viral culture and/or immunofluorecence, and the number of 335

samples identified negative by multiplexed RT-PCR. The five samples (1 RSV and 4 336

parainfluenza) for which the positive diagnoses made by viral culture and by multiplexed 337

RT-PCR were in disagreement were cultured a second time and for all 5 samples, the 338
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identification made by multiplexed RT-PCR was confirmed upon re-culture.  All the samples 339

identified positive by viral culture and/or immunofluorescence but negative by multiplexed 340

RT-PCR (10 influenza A, 1 influenza B, 8 RSV, and 4 adenovirus) were sent to VRDL for 341

third party confirmatory q-PCR analysis. The separate singleplex semiquantitative assays 342

run on these samples confirmed the negative multiplexed RT-PCR results for 2 influenza 343

samples out of 10, 5 RSV samples out of 8, and 3 adenovirus samples out of 4.  Overall, 344

when folding the third party confirmatory results into the study, the multiplexed RT-PCR 345

assay correctly identified 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of 346

influenza A without any extraction of the clinical samples (data summarized in the last 347

column of Table 4).  Compared to the combination of immunofluorescence and/or viral 348

culture, the use of the multiplexed RT-PCR assay reduced the rate of false positives by up to 349

10% for adeno virus and RSV.   350

In order to investigate the poor performance of multiplexed RT-PCR compared to viral 351

culture for parainfluenza (only 24% of correct identification on un-extracted samples), we 352

performed an extraction experiment on a subset of clinical samples diagnosed positive for 353

parainfluenza by viral culture. These samples were extracted using a magnetic bead-based 354

viral RNA isolation kit and 5 µL of the purified and concentrated RNA was tested using the 355

multiplexed RT-PCR protocol. As a control, two samples identified as parainfluenza type 1 356

and two samples identified as parainfluenza 3 by multiplexed RT-PCR before RNA 357

extraction were extracted and re-analyzed in similar conditions, confirming the initial results.358

Three randomly selected samples initially identified as parainfluenza by viral culture and 359

immunofluorescence but as negative by multiplexed RT-PCR were then extracted and re-360

analyzed. All three samples were identified as parainfluenza type 1 or 3 upon extraction, 361
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suggesting that an extraction step will be required in order to increase the sensitivity of the 362

parainfluenza assay.363

364

DISCUSSION365

366

Although immunofluorescence and/or viral culture had initially identified 828 clinical 367

samples as negative, 791 were confirmed negative by multiplexed RT-PCR (95.5 %) while368

37 were identified positive for a respiratory virus.  Confirmatory q-PCR assays performed at 369

the VRDL invalidated the positive diagnostic for 6 samples but validated it for 31 samples. 370

Out of these 31 positive samples missed when using standard detection techniques, 24 were 371

RSV positive, 4 were influenza A positive, 2 were adenovirus positive, and one was 372

parainfluenza positive.  This data points out that most of the false negatives (77%) generated 373

by the immunofluorescence/viral culture detection techniques are missed RSV samples. RT-374

PCR assays enabled improved detection of RSV, which could be particularly important for 375

pediatrics departments since RSV is the most common cause of bronchiolitis and pneumonia 376

among infants and children under one year of age (2).377

For the analysis of the samples initially identified positive using a combination of 378

immunofluorescence and/or viral culture, all 5 samples for which there was a disagreement 379

on the positive identification were confirmed in favor of the multiplexed RT-PCR result by a 380

second culture.  Additionally, 23 samples initially identified positive by viral culture and/or 381

immunofluorescence were identified negative by multiplexed RT-PCR (10 influenza A, 1 382

influenza B, 8 RSV, and 4 adenovirus).  Confirmatory q-PCR analysis performed at VRDL 383

on these samples confirmed the negative multiplexed RT-PCR results for 2 influenza, 5 RSV, 384
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and 3 adenovirus samples.  The detail of the critical PCR threshold (Ct) values obtained with 385

q-PCR for the samples that were missed using RT-PCR (1 influenza B, 1 adenovirus, and 8 386

influenza A) showed that some of these samples had fairly high Ct values after extraction, 387

which is indicative of low levels of viral RNA in the initial sample (Ct of 33.7 for the 388

influenza B sample, and Ct above 31 for 4 of the missed influenza A samples).  In addition, 389

most of the missed samples were influenza A (8 out of 10 missed).  This can most probably 390

be attributed to the rapid mutation rate of the influenza virus and stresses the necessity of 391

constantly updating viral signatures to adapt the assay to the genetic evolution of the targeted 392

organisms. 393

The weakness of this particular multiplexed assay is its low sensitivity to parainfluenza 394

virus (only 7 samples out of 42 were detected).  The LOD data pointed out that the sensitivity 395

to parainfluenza 1 was significantly weaker than the sensitivity to parainfluenza 3.  In order 396

to investigate whether the signature design was the cause of the low detection levels observed 397

for parainfluenza, parainfluenza type 1 and 3 clinical samples were extracted and analyzed 398

with the multiplexed assay.  Positive identification was obtained in all cases, confirming that 399

the signatures amplify the target RNA. We therefore attribute the weakness of the 400

parainfluenza assay to the lack of available free-floating RNA in un-extracted samples. This 401

hypothesis is supported by the fact that the viral RNA of Paramyxoviruses has been reported 402

to be encapsidated with nucleoproteins to form a very stable helical nucleocapside (13). An 403

additional extraction step could be included in the protocol to alleviate this issue when the 404

detection of particularly sturdy viruses is desired.405

In addition to main advantages such as flexibility, sensitivity, specificity, relative low-406

cost, and ease-of-use, multiplexed RT-PCR also provides the ability to detect co-infections.  407
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During our clinical study, the multiplexed RT-PCR assay detected influenza A-adenovirus 408

co-infections on three samples. Although not initially detected at the UCDMC, these 3 cases 409

of co-infection were confirmed by a second culture. Despite the fact that only 3 samples 410

showed co-infection, these results stress the unique ability of multiplexed assays to rapidly 411

and concomitantly detect of a broad range of pathogens. 412

We have demonstrated the ability of the multiplexed respiratory panel to differentiate413

influenza from pathogens that cause influenza-like illnesses in clinical samples.  The current 414

16-plex RT-PCR panel enables simultaneous detection of influenza A, influenza B, 415

parainfluenza (types 1, and 3), respiratory syncytial virus, and adenovirus (groups B, C, and 416

E) in clinical samples.  This panel is being deployed in other laboratories including the State 417

of California Health and Human Services Agency and the Naval Health Research Center for 418

further testing and evaluation with clinical samples.  Assay development efforts are 419

underway to expand the capabilities of this assay by including signatures that can420

differentiate seasonal influenza (e.g., A/H1, A/H3) from A/H5N1 or other potential pandemic 421

strains. We are also in the process of developing an instrument to automate sample analysis.  422

This system is able to process samples, perform multiplexed real-time RT-PCR with the423

respiratory panel, analyze data, and report results in less than 3 hours.  The combination of 424

assay development and automation should ultimately allow the implementation of the assay 425

to perform point-of-care diagnostics as well as disease surveillance.426
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Figure captions511

512

FIG. 1.  Individual primer pairs (biotinylated forward and standard reverse) that bracket 513

the targeted genomic sequence are included in an RT-PCR master mix.  After target 514

amplification by RT-PCR, the amplicons are mixed with beads and target amplicons 515

containing the forward biotinylated primer hybridize to the complementary probe on the 516

appropriate beads.  A fluorescent reporter molecule (streptavidin-phycoerythrin) then 517

binds biotin functional groups.  The completed assay includes a bead, a probe, and a 518

biotinylated and fluorescently tagged amplicon.  The sample is then analyzed using a 519

flow cytometer and a Median Fluorescence Intensity (MFI) value is reported for each 520

bead class, each bead class representing a specific signature.  521

522

TABLE 1.  Summary table of the 16-plex respiratory panel lay out.  The biotinylated 523

forward (Bio denotes a biotin placed at the 5’ end while iBiod denotes an internal biotin) 524

and the reverse primer sequences are provided for each signature.  The probe design is 525

also detailed, including the 5’ end reactive group (AmMC6, Amino Modifier C6, also 526

called phosphoramidite) and the spacer 18 (noted iSp18), which is an 18-atom hexa-527

ethyleneglycol spacer placed between the reactive group and the DNA sequence to allow 528

optimal coupling of the carboxylated bead to the probe.529

530

FIG. 2. LOD determination for A) influenza A (2 signatures), and B) parainfluenza (1 531

signature). The MFI signals from the other 14 bead classes corresponding to the 14 532

additional target analytes, as well as the 4 controls have been omitted for clarity.  533
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534

TABLE 2. Summary table of LOD values in the multiplexed respiratory assay, for each 535

targeted respiratory virus. The LOD value was defined as the virus concentration at which 536

the corresponding average MFI value was above the background by more than three standard 537

deviations.  538

539

TABLE 3. Summary table of the MFI thresholds for positive sample identification,540

determined after removing outliers iteratively using the Grubb's outlier test.541

542

TABLE 4. Summary table of the clinical study performed with the multiplexed RT-PCR 543

respiratory assay. A comparison of the performance of the multiplexed assay against the 544

results initially obtained using viral culture and/or immunofluorescence is presented for both 545

negative and positive samples.546
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FIG. 1
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TABLE 1

Targets Signature 
ID

Biotinylated Forward 
Primer

Reverse Primer Probe

Flu A-1 5'/5Bio/GACCRA/iBiodT
/CCTGTCACC/iBiodT/C
TGAC-3'

5'/AGGGCATTTGGACA
AAKCGTCTA-3'

5'/5AmMC6//iSp18/CGTGCCCAGT
GAGCGAGGACTGCA-3'

Influenza A

Flu A-2
5'/5Bio/GGACC/iBiodT/
CCACTTAC/iBiodT/CC
AAAACAGAAAC-3'

5'/GTAAGGCTTGCATG
AATGTTATTTGCTC-3'

5'/5AmMC6//iSp18/TTGACCTAGTT
GTTCTCGCCA-3'

Flu B-1
5'/5Bio/TCC 
TCAAC/iBiodT/CACTC
T/iBiodT/CGAGCG-3'

5'/CGG TGC TCT TGA 
CCA AAT TGG-3'

5'/5AmMC6//iSp18/CACCGCAGTT
TCAGCTGCTCGAATTGG-3'

Influenza B

Flu B-2

5'/5Bio/GTCCA/iBiodT/C
AAGCTCCAG/iBiodT/ttt
-3'

5'/TCTTCTTACAGCTTG
CTTGC-3'

5'/5AmMC6//iSp18/CCTCCGTCTCC
ACCTACTTCGTT-3'

RSV
RSV

5'/5Bio/GGAAACA/iBiod
T/ACGTGAACAA 
GC/iBiodT/TCA-3'

5'/CATCGTCTTTTTCTA
AGACATTGTATT GA-3' 
(RSV a)
5'/TCATCATCTTTTTCT
AGAACATTGTAC TGA-
3' (RSV b)

5'/5AmMC6//iSp18/TGT GTA TGT 
GGA GCC TTC GTG AAG CAA G-
3'

Para-
influenza 1 Para 1

5'/5Bio/ATGCTCC/iBiod
T/TGCCCACTG/iBiodT/
GAATG-3'

5'/AATCTTTATCCCACT
TCCTACACTTG-3'

5'/5AmMC6//iSp18/TCTATACCTTC
ACTCGAGTAATCTG-3'

Para-
influenza 3 Para 3

5'/5Bio/ACCAGGAAAC/
iBiodT/ATGC/iBiodT/GC
AGAACGGC-3'

5'/GATCCACTGTGTCA
CCGCTCAATACC-3'

5'/5AmMC6//iSp18/AGAGCTCCTA
AACATGATGGATACC-3'

Adeno B-1

5'/5Bio/TCCTGCACCA/i
BiodT/TCCCAGA/iBiod
T/A-3'

5'/CCTCCGGGACCTGTT
TGTAA-3'

5'/5AmMC6//iSp18/CTGACACGAA
TAATTCAAGGCTGGAAAGCTG-3'Adenovirus 

B

Adeno B-2

5'/5Bio/CGCTT/iBiodT/C
ACAGTCCAAC/iBiodT/
GC-3'

5'/GCTGCTTGTGGGTTT
GATGA-3'

5'/5AmMC6//iSp18/CGTTTTCGGAT
TATGATTCCCATCGTTCTTC-3'

Adeno C-1

5'/5Bio/AGCGCG/iBiodT
/AATATTTGTC/iBiodT/
AGGGC-3'

5'/TCAGCTGACTATAA
TAATAAAACGCCA-3'

5'/5AmMC6//iSp18/CGGAACGCGG
AAAACACCTGAGAAAA-3'Adenovirus

C

Adeno C-2
5'/5Bio/TCGA/iBiodT/CT
TACC/iBiodT/GCCACG
AG-3'

5'-
GCCACAGGTCCTCATA
TAGCAA-3'

5'/5AmMC6//iSp18/TGCTCCACAT
AATCTAACACAAACTCCTCACC
C-3'

Adenovirus 
E

Adeno E

5'/5Bio/TGCAAT/iBiodT/
TTGTTGGGT/iBiodT/TC
G-3'

5'/CCTGGCTGTTATTTT
CCACCA-3'

5'/5AmMC6//iSp18/TTAATCATGGT
TCTTCCTGTTCTTCCCTCCC-3'

Controls
RNAse P RNAse P 5'/5Bio/AGA T/iBiodT/T 

GGA CC/iBiodT/ GCG 
AGC G-3’

5'/GAGCGGCTGTCTCC
ACAAGT-3'

5'/5AmMC6//iSp18/TTC TGA CCT 
GAA GGC TCT GCG CG-3’

Mt7 Mt7
n/a 5'/5AmMC6//iSp18/CAAAGTGGGA

GACGTCGTTG-3'

Mt7-Cy3 Mt7-Cy3
n/a 5'/5AmMC6//iSp18/CAAAGTGGGA

GACGTCGTTG-3'Cy3

Mt7-biotin
Mt7-
biotin

n/a 5'/5AmMC6//iSp18/CAAAG/iBiodT/
GGGAGACGTCG/iBiodT/TG-3'
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FIG. 2

A

B

Influenza A

Parainfluenza 3

Virus concentration (ng/uL)
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TABLE 2

Signature ID LOD in multiplexed 
RT-PCR panel

Flu A 0.005 pg/µL
Flu B 0.01 pg/µL
Para 1 5000 pg/µL
Para 3 0.05 pg/µL

RSV 0.1 pg/µL
Adeno B 0.1 TCID50/µLa

Adeno C 0.005 pg/uL
Adeno E 0.001 TCID50/µLa

a Only available as live virus.
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TABLE 3

Signature MFI threshold 
for ‘Positive’ 
identification

Flu A-1 112
Flu A-2 40
Flu B-1 63
Flu B-2 119
RSV 181
Para 1 8
Para 3 25.5
Adeno B-1 27
Adeno B-2 47
Adeno C-1 59
Adeno C-2 29
Adeno E 40.5
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TABLE 4

Clinical 
sample 
analysis

Number of samples 
(identified by viral 

culture and /or 
immunofluorescence)

Number of 
samples 

(confirmed 
by 

multiplexed
RT-PCR)

Other 
attribution 

by 
multiplexed

RT-PCR

Negative by 
multiplexed 

RT-PCR

% of  
reconciled 

multiplexed 
RT-PCR 

identifications

Negative for 
respiratory 
virus

828 791 37
(31 

confirmed at 
VRDL)a

N/A 99.3

Influenza A 35 25 - 10
(2 confirmed 
at VRDL)a

77

Influenza B 12 11 - 1 92
RSV 56 47 1

(confirmed 
after second 

culture)b

8
(5 confirmed 
at VRDL)a

95

Parainfluenza 46 7 4
(confirmed 
after second 

culture) b

35 24

Adenovirus 30 26 - 4
(3 confirmed 
at VRDL)a

97

a All samples for which there was disagreement between the results obtained using shell vial 
culture and/or immunofluorescence and multiplexed RT-PCR were sent to the Viral and 
Rickettsial Disease Laboratory (VRDL) at the State of California Health and Human Services 
Agency (Richmond, CA) for a third party confirmatory q-PCR analysis.
b Samples cultured a second time using standard shell vial procedure.


