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Abstract

In Refs. [1] - [3], I suggest a concerted computational effort to study profile 

control of spheromaks, in anticipation that it is timely to incorporate the q < 1 regime of 

RFP’s and spheromaks into an integrated advanced toroidal confinement program, 

together with improvements in tokamaks and stellarators now being pursued.  For profile 

control of spheromaks  by neutral beam injection,  with care to avoid super-Alfvenic 

beam instability the main issue is excitation of tearing modes that can be studied using 

the NIMROD code already calibrated to MST and SSPX. In this note, I show that profile 

control on spheromaks could be demonstrated in a device the size of SSPX, leading 

ultimately to a very compact ignition facility, and possibly modular fusion reactors with a 

shorter development path.

1. Numerical Study of Profile Control

Following Ref. [4], profile control could first be studied merely by adding a force 

term to Ohm’s Law of the form:

∂A/∂t - v x B   = F/e   -  ηj (1)

 

Success depends on the existence of a stable state, jS(x). That interesting stable states 

probably exist is discussed in Refs. [3] and [5]. Our task is to find a force F giving the 

stable jS(x) as was done successfully for MST [4]. Given the existence of a stable jS(x), 

an existence theorem for a force F yielding this state is found by choosing a rising 

function a(t) → 1 in steady state, writing j = µo
-1∇x∇xA = a(t)jS(x) in Eq. (1), and 

solving for F(x,t) [3]. More practically, we would seek a trial function for F

corresponding roughly to a realizable array of NBI or RF current drive. Linear analysis 
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discussed in Appendix A of Ref. [3] suggests that stability against tearing mainly requires 

that λ = (µoj(x)/B) be flat in the interior (like a Taylor state), even if j(x) then sags to zero 

at the separatrix bounding closed flux surfaces. Thus a suitable trial function should 

direct current drive mainly near the edge, but as far from the edge as is consistent with 

stability, in order to avoid excessive collisional dissipation of the injected current. 

2. Buildup of the Current

To explore the potential for spheromaks stabilized by profile control, we construct 

a zero-D model along the lines of Ref. [6]. In Eq. (1) we drop v x B and operate by                       

µo
-1∇x∇x ≈ µo

-1λ2 to transform A to j and multiply by πa2 to obtain the total current (with 

minor radius a and Taylor eigenvalue λ = 2.5/a in a cylinder). The result is:

dI/dt = (1/τL/R)[C1(PT/na)   - I] (2)

 

analogous to Eq. (2) in Ref. [6]. Here τL/R = (µo/ηλ2) = 5a2T3/2 with electron temperature 

T in KeV. Also n is in units of 1020 m-3 and I in MA for current drive power P in MW. 

For neutral beam  current drive,  C1 = 0.33J(x,y)(cosθ)(1 - 1/Z) where θ is the mean angle 

between neutral beams and field lines. The factor J, discussed in Ref. [7], is given by 

J(x,y) = x2/{7 + x3 + 2 x2} (for deuterium and Z = 2 giving y = 1), derived by fittings to j 

∝  ∫dv v| | f with an analytical approximation  for f, the distribution of beam 

ions slowing down by electron-ion collisions, with a cutoff at Ec = 15T and x2 = E/Ec

with beam energy E [6]. 

All numbers are evaluated for deuterium beams. The coefficient  0.33 was chosen 

to agree with Cordey’s formula in Eq. (13) of Ref. [8], giving  I/P = 0.33J(T/nR)(1 – 1/Z)                                   

= 0.06(T/nR)(1 – 1/Z) evaluated at the maximum value of a quantity J playing the role of 

J(x,y) in Refs. [6] and [7] (both Cordey’s J and J(x,y) have maxima at E = 80T [8]). 

Following Ref. [7], the coefficient could also be obtained from ICIRC = ∫ eSτSev0 xJ(x,y) 

integrated over the beam cross-sectional  area Abwith beam speed v0 at injection, slowing 

down time τSe ∝ T3/2/n and source term eS = (P/2πRAbE). The latter procedure yields a 

coefficient smaller by a factor 1.5 (see Appendix).  Better numbers, and guidance how to 

design beam injection to maintain profile control, can be obtained from neutral beam 
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injection calculations using the Corsica code already applied  to calculate current drive in 

DIIID and SSPX.

The electron temperature appearing in Eq. (2) is given by:

dT/dt = (P/3nV)  - T/τE = 1.06 (P/na3)  - T/τE (3)

 

where the coefficient 1.06 accounts for the plasma volume V = 2π2a3 and conversion to 

the units above.  For τE we take the L-mode scaling adapted for spheromaks [9], 

consistent with results in SSPX [3], giving:

τE = 0.023 a1.83 (10n)0.4 I0.96 /P0.73 (4)

As in Ref. [6], we note that τE is small compared to timescales in Eq. (1), and 

substitute the steady state for Eq. (3) into Eq. (1). Doing this, and using Eq. (4), we obtain 

a condition for buildup of the current by requiring that the right hand side of Eq. (1) be 

positive, giving, after some algrebra:

P > 116 (n1.26 a1.71 ) (MW) (5)

T = 0.06 (P0.27 I0.96 /n0.6 a1.17) (6)

t = I/(dI/dt)      =   I/(C1(P/na3)) ≈ 20√E(Ina3/P) (7)

 

In Eq. (5), for simiplicity we have set I0.96 ≈ I. Also, we should design for cosθ ≈ 1 and 

we note that J(x,y) varies less than a factor 2 over an order of magnitude range in x2 and 

take the optimum J = 0.18. With these simplifications,  and Z = 2, we get C1 ≈

(0.33)(.18)(1 - 1/Z) = 0.03 as in Cordey’s formula cited above.  In Eq. (7), t is the buildup 

time for the current, neglecting the dissipation term. Note that β ∝ T/I2 ∝ 1/I decreases 

during buildup, so that pressure driven modes are likely to be avoided during buildup.
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3. Sustainment of the Current 

Still relying on tokamak scaling, in this section we will assume H-mode 

confinement in steady-state,  using the ITER-98P(y,2) scaling of Ref. [9] given by:

τE = 0.056 (2.5)0.19 (aA)1.97 A-0.58 (10n)0.41 I0.93 P-0.69 (8)

 

where we have now kept scaling with the aspect ratio A and a factor (2.5)0.19 for DT 

mass. For ignition, for which P should include alpha heating, we solve Eq. (3) for P in 

steady state and substitute this in Eq. (8) keeping a factor A in the volume in the 

denominator of the first term. Substituting this P into Eq. (8) gives, after some algebra:

nτE = 3.83 x 10-3 (I3.0A2.25/T2.2)(n0.1/a0.3) (9)

 

This gives ignition at T = 20 KeV, I = 47 MA and A = 1 for the Hagenson-Krakowski 

spheromak discussed in Ref. [3]. The larger aspect ratio for tokamaks reduces the 

required current, giving ignition for I around 20 MA for ITER CDA phase parameters. 

Eq. (9) gives the proper nτE to be applied in a heat balance equation whatever the 

source of heating. Given T, the power required to sustain the current  is given by the 

steady state of Eq. (2), giving, with C = 0.06(1 – 1/Z) = 0.03 with Z = 2, as in Section 2:

P = (1/0.03) (fInR/T) = 33(fInR)/T (10)

  

where f is the fraction of the current that must be driven by NBI (after subtracting 

bootstrap current) and R = Aa is the major radius with aspect ratio A (A = 1 for 

spheromaks). 

Eq. (10) agrees fairly well with current drive powers found in ARIES studies [e.g. 

35 MW to drive a net fI = 1.2 MA (91% bootstrap) in ARIES-AT and 237 MW to drive 

7.2 MA (57% bootstrap) in ARIES-I, both with (<nR>/T) ≈ 1 [10]. 

Better estimates of the power can be obtained using the Corsica code applied to 

neutral beam injection,  as mentioned in Section 2 (see Appendix). These calculations 

include approximate treatment of beam ion orbits not included in Eq. (10). Even so, 
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without taking account of <cosθ>  adjusted to confine beam ions, Eq. (10) agrees within 

a factor ≈ 2 with the power calculated by Corsica for neutral  beam injection experiments 

proposed for SSPX (0.7 MW absorbed to produce driven I = 0.016 MA at n = 0.9, R = a 

= .25, T = 0.3 [11]). Similar calculations have been compared with experiments in DIIID 

[12, 13]. Generally speaking,  regimes do exist in which calculations and experiment 

agree.  The main discrepancy between theory and experiment occurs  when  instabilities 

are excited [12], including fast ion modes not captured in NIMROD MHD simulations 

but observed on NSTX [14].  Fast ion modes are discussed in the next Section.

4. Fast Ion Instability

In addition to stabilizing  ideal and resistive MHD modes, discussed in Section 1, 

we must also avoid fast ion instability created by neutral beam current drive,  or 

analogous unwanted wave excitations with RF current drive. For neutral beams,  relevant 

parameters are:

vA = 4.3 x 105 (I/a)(1/nM)1/2 Alfven speed

vB = 4.3 x 105 (E/M)1/2 beam speed

nB = 0.092 (fI/a2)(1/EM)1/2 beam density

  

Here M is the beam ion mass in ratio to hydrogen. Coefficients are chosen to yield the 

units of Section 2. That coefficients for vA and vB are the same in these units is correct.

The density nB represents the energetic tail of the ion distribution created by 

neutral beams,  accumulating to carry a fraction f of the total current I. The formula 

above is nB = [(fj/evB)/(1 - 1/Z)] with j = I/πa2 and Z = 2. To represent the energetic tail, 

we require also that nB ≤ n(τS/τp) or n, whichever is smaller, where τp is the 

lifetime of thermal ions and τS is the slowing down time of fast ions, given by τS = 

0.01(T3/2/n) in our units. Particle lifetimes are not well known. Using instead the energy 

confinement time given by Eq. (9), we find that usually τS/τp > 1 and hence adopt as our 

rule of thumb:
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nB < n → IMAX =   10.9 (na2)(E/M)1/2 (11)

An analysis of beam-driven instability requires more work. Here, we apply 

experience with NBI in NSTX to provide practical rules by which instability might be 

avoided, namely:  

vA > vB → IMIN = a(nE)1/2 (12)

 

Eq. (12) is the condition to avoid super-Alfvenic wave excitation.  Even if Eq. (12) were 

violated, instability might be suppressed or weak if the beam free energy were 

sufficiently small, say (nBE/2nT) < 20% [14] giving nB/n < 5% M-1 for the optimum E/T 

= 40 M for deuterium [8]. We find this free energy limit to be difficult to satisfy and 

choose instead to insist on satisfying Eq. (12), together with Eq. (11).

We note that, with neutral beams to stabilize and sustain the current, the 

Hagenson-Krakowski spheromak reactor design discussed in Ref. [3] only marginally 

satisfies Eq. (12), giving vB/vA = 1.5. The free energy factor is also marginal, giving 

(nBE/2nT) = 1 at a nominal E = 1000 KeV and a temperature T = 20 KeV at the design 

point. Improved stability margins would require some adjustment of parameters.

Eq. (11) determines the maximum current consistent with fast ions as the current 

carriers, while Eq. (12) determines the minimum current needed in a target plasma 

created by gun injection. An additional criterion in order to confine beam ions is:

(a/rL) = 43 [I/(EM)1/2] > 5 (13)

  

where the demand for 5 orbits across is somewhat arbitrary. Substituting the minimum 

allowed I from Eq.(12) gives:
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na2 > 0.014 M (14)

 

Eq. (14), based on the minimum current in Eq. (12), is nearly always satisfied. Thus the 

operative criteria both to confine ions and avoid destabilizing super-Alfvenic ions are just 

those given by Eqs. (11) and (12).

Eq. (11) places constraints on na2 to obtain buildup of the current. We define the 

allowed current gain as G = (IMAX /IMIN), giving:

G = 10.9 (na2/M)1/2 (15)

na2 ≥ (G/10.9)2 M (16)

 

Eqs. (15) and (16) are independent of the beam energy E. Introducing Eq. (16) into Eq. 

(5) and solving for G gives the maximum gain G for a given power P, consistent with 

Eqs. (11) and (12):

G = 1.6 M-0.5 a0.3 P0.4 (17)

 

Given G, one can calculate the corresponding minimum density n from Eq. (16). Given n 

and the beam energy E, one can calculate the current limits from Eqs. (11) and (12).

5. Experimental Tests

The SSPX has achieved good  confinement in the core corresponding to χ ≈ 1 

m2/s [15] without profile control.  Building on these results, in Table 1 we give 

parameters for a Proof of Principle (POP) experiment  with profile control satisfying Eqs. 

(5) - (17), and also an ignition facility. All results listed are highly model dependent.  

Better numbers could be obtained using the Corsica code, as mentioned in Sections 2 and 

3. Also, we have not yet reconciled the line density na with requirements for beam 

penetration  (see Appendix).
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The density listed is that obtained from Eq. (16), applicable during buildup. For 

the ignition experiment with DT, two values for the temperature are listed. The lower 

value of T is that given by Eq. (6) for beam heating and L-mode scaling. The higher 

value applies to the sustainment  phase for which we assume improved H-mode 

confinement, yielding a  correpsondingly higher  I requiring some increase in density in 

the approach to steady state. For the POP and ignition facility, nτE is that for H-mode 

confinement, from Eq. (9), using the higher values of T and I in the table. 

Table 1. Experimental Parameters

a P G E n IMIN IMAX T t__ nτE_ 

POP 0.25 20 2.5 40 1.6 2 5 2.4 0.8 0.1

 

Ignition:  

D 0.75 40 6 80 0.6 5       33 9 37*   0.8

DT 0.75 60 5 80 0.8 5      30→50 8→10 30* 3.0

*See text, Section 6

The SSPX employs a flux conserver for confinement, while the POP with a 

buildup time t = 0.8 sec requires poloidal coils with duration of several seconds to 

maintain equilibrium. Since the physical size of the POP is the same as that for SSPX, 

first studies of equilibrium could be done by adding coils to SSPX. These studies could 

also begin to address the stabilization of tilt/shift modes now stabilized by the flux 

conserver in SSPX. Maintaining tilt/shift stability on POP timescales will require active 

feedback -- no small undertaking.

6. Spheromak “CIT”

The ignition facility listed in Table 1 could for spheromaks serve the role 

previously intended for the tokamak CIT. Because of its small size, one might hope to 

avoid an intermediate step. 
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As with TFTR and JET, we imagine this facility to be operated first with 

hydrogen or deuterium  plasmas to explore confinement scaling in spheromaks, with full 

power and DT operation to follow only if warranted.  With reuse of equipment in mind, 

beam power for the deuterium plasma phase is taken as P = 40 MW, like TFTR.

Though possible in principle,  buildup by neutral beams would take a long time,  t 

= 30 s as shown in the table. Alternatively it might be possible to inject most of the 

current  by gun injection at low temperature using  inexpensive homopolar energy storage 

[16], followed by neutral beam injection to heat the plasma rapidly and to sustain and 

stabilize the current. 

Finally, we note that the parameters listed for DT operation in Table 1, giving nτE

= 3 at T = 10 KeV, yield an alpha power equal to thermal loss, a fully ignited condition, 

but not quite a steady state due to the low density required to maintain profile control 

with only P = 60 MW. Scaling to achieve a self-consistent steady state burn with profile 

control is discussed in the next section.

7. Reactor Scaling

A dominating feature of reactor scaling is the neutron wall load PWALL given by:

PFUS ∝ PWALLa2κA ∝ n2(σv)DT ENEUTRON (a3κA) (18)

 

with elongation κ and aspect ratio A. For a fixed temperature, this gives:

n ∝ (PWALL/a)0.5 (19)

 

where in the second step we use the ignition condition a ∝ B-m, like Eq.(10). With current 

drive, an additional important parameter is the electrical gain QE given by:

QE ≡  ηTH(PFUS/P) ∝ [(PWALL a)0.5 /fB] (20)

P ∝  f InaA  ∝  f Bna2κA (21) 
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where ηTH is the efficiency of conversion to electricity. In Eq. (21), we use Eq. (10) for 

the power required to maintain profile control in steady state, f being the fraction of 

current that must be driven, and we use B = (I/5aκ). On the far right side of Eq. (20), we 

first substitute Eq. (18) for PFUS in terms of PWALL and  then P from Eq. (21) with n from 

Eq. (19). Finally, we estimate reactor cost as:

$/Kwe ∝ [1 - (1/QE)]-1 {K1(a3κA/PFUS) + K2(P/PFUS)}

∝ [1 - (1/QE)]-1 {k1(a/PWALL) + k2(1/QE)} (22)

  

Here the first term proportional to total confinement facility volume (roughly 50-100 

times the plasma volume) represents coils, structures and the blanket. The second term 

represents the cost of current drive.

While the compactness of spheromaks (κ, A ≈ 1) cancels in Eq.(22), other 

advantages survive in a simpler divertor; the potential for a higher magnetic field, 

yielding a much smaller confinement system; and perhaps a lower fusion power (which is

∝ κA) at a given $/Kwe, allowing for modular units and less costly development. Higher 

field is possible because: (1) only simple poloidal coils are required, and (2) the poloidal 

coils are located outside where stresses are lower for a given B at the magnetic axis. The 

small size, simple geometry and the possibility an external divertor (as in mirrors) may 

allow full or partial use of liquid walls to increase the wall load, which both reduces 

facility cost and increases QE. The Hagenson-Krakowski reactor design, with a = 1.5, 

yields PWALL = 20, which is twice the likely maximum with conventional heat flow into 

thin metal coolant tubes and 4 - 5 times that in ARIES design studies. Flowing liquid 

walls could sustain much higher wall loads [17].

Given success with profile control, the main disadvantage of spheromak reactors 

based on auxiliary current drive is a lower QE due to small bootstap current, and possibly 

higher current required to achieve ignition with aspect ratio A = 1 [11]. However, this can 

be traded against a lower confinement facility cost [1,2]. Eq. (10) gives P = 265 MW to 

sustain a current of 47 MA (n = 2.26, a = 1.5, T = 20). With a fusion power 2775 MW, 

this gives, for ηTH = 40%,  QE = 4 corresponding to 33% recirculation of electric power 
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(the same as ARIES 1 and ARIES-ST); and higher  QE if alpha-channeling drives current 

[18].

8. Conclusions

A concerted numerical effort using the NIMROD resistive MHD code, as 

proposed in Refs. [1] - [3], could determine whether profile control can be successful in 

the q < 1 regime of spheromaks and compact RFP’s, and, in doing so, open the door to 

advanced toroidal reactors very different from those based on tokamaks or stellarators. 

In this note we have attempted to show for spheromaks that a successful 

prognosis from computer simulations could be followed by comparatively rapid 

experimental demonstrations, rapid because the required devices are small in size (like 

SSPX for the POP) and they would only require NBI power levels already available in 

tokamak laboratories < 40 MW.  That such low power can drive the full current  required 

for good confinement  in spheromaks  follows from the small size giving <na> < 1, but 

only if beam instability is avoided as discussed in Section 4. 

Appendix.  Cordey Formula, Comparsion with Experiment and Theory

Results in Table 1 are intended only as an indication that future work using 

Corsica and NIMROD is warranted, to determine useful paths for spheromak 

development. 

The Cordey formula yielding the power for buildup in Eq. (5) and to sustain the 

current in Eq. (10) is idealized in that we do not account for beam orientation (cos θ ≈ 1) 

and we have not constrained nR = na (in spheromaks) to prevent “shine through” of the 

beam. We also assume stabilization of fast ion modes, by Eqs. (11) and (12), and MHD 

modes by profile control, to be explored on NIMROD. 

Beam orientation and other effects apparently contribute to significant differences 

from Eq. (10) in DIIID experiments modeled by Corsica and other codes [12, 13]. In an 

invited paper at APS in 2005, Politzer reported a case in which 6.5 MW of beam power 
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was required to drive 0.14 MA of current at T = 2.1 KeV [19]. With n = 0.5 and R = 1.5, 

Eq. (10) gives P = 1.7 , or 4 times less power. For experiments reported in Ref. [12] 

(cited also in Ref. [13]), at the time when non-inductive current drive and bootstrap 

provided all of the current, P = 12.5 MW was required to drive I = 0.34 MA at T = 4.8 

KeV, in part due to fluctuations transporting fast ions [12], while Eq. (10), with n = 0.4, 

gives P = 1.4 or 9 times less. As noted in Section 3, Corsica calculations for SSPX give 

results within a factor ≈ 2 of that predicted by Eq. (10), despite compromises in injection 

angle to optimize against ion confinement and shine through (35o off perpendicular to the 

geometric axis) [11]. Closer agreement is obtained with code calculations  in Ref. [20] for 

tangential injection into an SSPX-like device (n = 1, a = 0.25), giving I/P = 0.06 by Eq. 

(10) compared to 0.05 for the optimum in Fig. 4 of Ref. [20] and variation off-optimum 

within 20 % of the scaling TJ(x,y) per the discussion  below (case E = 30 KeV, Fig. 9).  

Ref. [20] also deals with shine through. In general, shine through places restrictions on 

nRσ > 1 where σ is the effective cross-section for ionization of the neutral beam, 

determined by the injection energy E and electron temperature T [7]. Ref. [20] also 

discusses increases in the shielding factor F due to electron trapping, which we ignore for 

spheromaks, taking F = 1 - 1/Z as in Ohkawa’s original paper. 

The Cordey formula is evaluated at an optimum  E = 80T (for deuterium). Scaling 

around the optimum can be understood from Fig. 2 of Ref. [8], and analytically by 

comparison with the analytical formula of Mikkelsen-Singer [7] that agrees with the 

Cordey formula within a factor 1.5, as noted in Section 2. The circulating current ICIRC = 

A0jCIRC is obtained from a beam current IB with cross-sectional area A0, where, by Eq. 

(11) of Ref. [7]:

jCIRC = eSτSe v0 I(x,y) = eSτSe (vo
2 /vC)J(x,y) (A1)

eS = (IB/2πRA0) = (P/2π103E RA0) (A2)

τSe = AB(0.37/√10)(T3/2/n) = 0.012(T3/2/n) (A3)

vo
2 = 1.6 x 10-16 (2E/ABmp) (A4)
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vC = (1.6 x 10-16 2EC/ABmp)1/2 = 1.68 x 106 (Z/AB)1/3√T (A5)

 

Here R = a is the major radius for the spheromak;  AB is the beam ion atomic number; E 

is the beam energy in KeV and vo the velocity; T is the electron temperature in KeV; and 

EC = 15T(Z/AB)2/3 is the cutoff energy in KeV from Ref. [7] and Ref. [6], Eq. (11). 

Multiplying Eq. (A1) by A0 to obtain the total circulating ion current ICIRC and using Eqs. 

(A2) - (A5), we obtain after some algebra:

ICIRC = [0.21J(x,y)] (AB/Z)1/3 (PT/nR)

(A6)

 

where for y = 1 (deuterium, Z = 2) J(x,y) = x2/{7 + x3 + 2x2}  as in Section 2. At the 

optimum J = 0.18 [7], 0.21J = 0.04, to be compared with 0.06 in Cordey’s formula; hence 

a factor 1.5 greater power in Eq. (10). Results are not much different for hydrogen beams, 

giving (AB/Z)1/3 = 0.8 for Z = 2. For that case, the optimum J = 0.16 -- almost the same 

(case y = 1.6, Table 1, Ref. [7]). For both hydrogen and deuterium, Fig. 2 of Ref. [7] 

shows little change in J for E/T higher than the optimum value (for deuterium, E/EC = 5.3  

or E/T = 80), but a 50% decrease at E/EC = 1 at the margin of validity.  
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