
UCRL-CONF-237305

Soft Error Vulnerability of
Iterative Linear Algebra Methods

G. Bronevetsky, B. de Supinski

December 17, 2007

Workshop on Silicon Errors in Logic - System Effects
Austin, TX, United States
April 3, 2007 through April 4, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71317159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Soft Error Vulnerability of Iterative Linear Algebra Methods

Greg Bronevetsky and Bronis R. de Supinski
{bronevetsky1, bronis}@llnl.gov

Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory,

Livermore, CA 94551, USA

Abstract: Devices become increasingly vulnerable to
soft errors as their feature sizes shrink. Previously, soft
errors primarily caused problems for space and high-
atmospheric computing applications. Modern architec-
tures now use features so small at sufficiently low voltages
that soft errors are becoming significant even at terrestrial
altitudes.

The soft error vulnerability of iterative linear algebra
methods, which many scientific applications use, is a crit-
ical aspect of the overall application vulnerability. These
methods are often considered invulnerable to many soft
errors because they converge from an imprecise solution
to a precise one. However, we show that iterative methods
can be vulnerable to soft errors, with a high rate of silent
data corruptions. We quantify this vulnerability, with al-
gorithms generating up to 8.5% erroneous results when
subjected to a single bit-flip. Further, we show that de-
tecting soft errors in an iterative method depends on its
detailed convergence properties and requires more com-
plex mechanisms than simply checking the residual. Fi-
nally, we explore inexpensive techniques to tolerate soft
errors in these methods.

1 The Soft Error Problem

Soft errors are one-time events that corrupt a computing
system’s state but not its overall functionality. They in-
clude bit-flips in memory and logic circuit output errors
and may be caused by a variety of phenomena, including
cosmic radiation, radiation from chip packaging [2], high
temperatures, and voltage fluctuations.

Modern electronics are increasingly susceptible to data
corruption from soft errors [1]. DRAM soft error rates
(SERs) have been stable over the past several technol-
ogy generations, but SRAM SERs have been growing ex-
ponentially as larger and larger memory chips come into
use (1,000-10,000 FIT/Mb is typical, where FIT is fail-
ures per billion hours of operation) [2]. A cluster with
1000 processors, each supporting a 10Mb cache with 1600
FIT averages 10 errors per month [2]. Soft errors also
impact SRAM-based FPGA designs: Xilinx reports SERs

ranging from 401 FIT/Mb for 150 micron designs, to 51
FIT/Mb for newer 90nm designs [7]. Historically, soft er-
rors primarily occur in memory. However, soft errors in
microprocessor logic will soon also become common [10].
For example, modern high-performance architecture tech-
niques such as speculation (on anything) require tables to
track history and on which to make predictions. These
tables are equivalent to on-chip SRAM memory, and are
just as susceptible to soft effors. Further, soft errors are a
critical concern in the operation of real systems [6]. ASCI
Q experiences 26.1 CPU failures per week [8]. A similarly-
sized Cray XD1 supercomputer is estimated to experience
109 errors per week in CPUs, memory, and FPGAs, if
placed at the same altitude [9].

Given the high vulnerability of the large supercomput-
ing systems, we must understand the impact of soft errors
on scientific applications. To provide initial insight, we ex-
amine the soft error vulnerability of linear methods since
many scientific applications rely on them [5]. In this paper
we focus on a subset of linear methods that many believe
are relatively immune to soft errors: iterative solutions to
sparse linear systems, which we briefly describe in Sec-
tion 2. We then present experimental results that explore
their soft error vulnerability. In Section 3.1, we demon-
strate that simple bit-flip errors frequently lead to erro-
neous solutions as well as runtime errors such as aborting
despite the iterative approach. Detecting these errors is a
more complex task than simply examining residual values,
as we show in Section 3.2. Finally, Section 3.3 examines
methods to minimize the cost of tolerating soft errors in
iterative methods.

2 Iterative Linear Methods

The linear system A x = b is the cornerstone of linear
algebra and appears widely in scientific computing appli-
cations. Methods that directly compute an exact solution
for x, such as Gaussian elimination, are generally expen-
sive. Thus, many methods, including multi-grid methods,
start with a sample solution and then iteratively refine it
to find an approximate solution with an estimated error

below an acceptable threshold.
For example, the Conjugate Gradient (CG) method ex-

presses x as a linear function of n vectors p1, p2, ... pn,
with each pair of vectors conjugate in A (pi A pj = 0).
Since the number of possible pi’s is too large to compute
directly for large matrixes A, CG approximates the solution
x = α1p1 + ... + αnpn with only a few vectors.

Under CG, the initial approximation is x0; the residual
r0 = A x0 − b, which is the direction of the error in x0,
serves as the first conjugate vector, p0. Subsequent itera-
tions compute the residual rk and use it to compute the
next conjugate vector pk. However, to ensure the that pk

is conjugate to prior pi’s, pk = rk− rk−1>rk−1
rk−2>rk−2

pk−1. The co-

efficients αk are computed as rk−1>rk−1

rk−2>p>k
Apk. This process

is repeated until rk becomes sufficiently small. Although
other iterative methods compute subsequent approxima-
tions differently, all follow a similar pattern.

Two main properties of iterative linear methods shape
the general perception of their soft error vulnerability.
First, they begin with an imprecise solution and iterate
to within some level of accuracy. As such, soft errors that
do not corrupt the data of the matrix A, the vector b or
control state, such as a pointer to a vector, should have
little impact. Second, their residual norm, which tracks
convergence towards a solution, can simplify soft error de-
tection by testing its progress for any abnormalities.

3 Experiments

We focus on SparseLib [3], a sparse matrix library that
includes several iterative solvers and linear operations
on a variety of sparse matrix storage formats. We
examined the soft error vulnerability of five iterative
methods: Conjugate Gradient Squared (CGS); Biconju-
gate Gradient (BiCG); Biconjugate Gradient Stabilized
(BiCGSTAB); Quasi-Minimal Residual (QMR); and Precon-
ditioned Richardson (PR). We used the ”Steve Hamm 20
bit adder” linear problem from the Harwell-Boeing Sparse
Matrix Collection [4] for the test matrix A and vector b.
Each method’s target tolerance was chosen to achieve a
total running time of a few seconds (tolerance and the
number of iterations are listed in Table 1).

Each experiment flips a random bit of the solver’s state
at a randomly chosen iteration’s end. We set injection lo-
cations to ensure that we inject a fault into every a variable
that the application actually uses.

Method Target Residual Number of Iterations
CGS 1e-140 1,527
BiCG 2e-150 2,725
BiCGSTAB 1.e-80 8,299
QMR 1.1e-15 1,036
PR 1.e-7 24,828

Table 1: Iterative methods examined

3.1 Effect of Soft Errors

We divide the outcomes of our experiments into four cat-
egories:

• Successful completion: the residual reached the target
tolerance, and the solution’s error (Ax−b) was within
10% of the fault-free error;

• Silent Data Corruption (SDC): the residual reached
the target tolerance but the error exceeded the fault-
free error by more than 10%;

• Hang: the application executed much longer than in
the fault-free case, which we judge indicates diver-
gence or convergence to a local maximum;

• Abort: the application aborted.

All aborts in our experiments were caused by a segmen-
tation violation. Even when the application completes
successfully, it may take more or less iterations than in a
fault-free execution. Figure 1 shows that the amount of
time required for the tests that completed successfully is
within 5% of the fault-free running time. However, even
when the methods converge, Figure 2 shows SDCs are
common, ranging from 1.3% to 8.5% of the tests for all
the codes except PR, where it did not occur. Further,
many runs hang (ranging from 1% for BiCGSTAB to 21%
for BiCG) or abort (ranging from 5.4% for QMR to 9.8% for
PR). Overall, no iterative method is immune to bit-flips,
with BiCG showing the worst resilience.

3.2 Soft Error Detection

We evaluate four methods to detect random errors in it-
erative methods. Three methods observe the change in
the residual across iterations while the fourth relies on
correctness checks built into the implementations.

• Multiple-based Detection (MD): Compare current
residual pk to the last residual pk−1 and signal error
if pk exceeds t times pk−1;

• Averaging-based Detection (AD): Compare cur-
rent residual pk to average of last a residuals
(pk−1, ..., pk−1−a) and signal error if pk exceeds it;

• History-based Detection (HD): Compare min of
last n residuals, (pk, ..., pk−n), to max of m preceding
residuals, (pk−n−1, ..., pk−n−1−m), and signal error if
min exceeds max;

• Native Detection (ND): Signal error if code invari-
ants are violated.

Although the residual converges over time for all methods,
it may increase by several orders of magnitude between
successive iterations, which limits the detection accuracy
of MD, AD and HD. We combine our convergence-based de-
tectors with the standard OS segmentation fault detector

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

CGS BiCG BiCGSTAB QMR PR

Iterative Method

%
 O

ve
rh

ea
d

fr
om

 E
rr

or
 In

je
ct

io
n

Figure 1: Percent change in run time for convergence

0

5

10

15

20

25

CGS BiCG BiCGSTAB QMR PR

Iterative Method

%
 o

f r
un

s

SDC%
Hang%
Abort%

Figure 2: SDC, Hang and Abort rates

so that our accuracy rates refer only to runs that did not
abort due to a segmentation fault.

We choose the free parameters for the MD, AD and HD
to provide a conservative estimate of their error detection
capabilities that gives a lower bound on their ability to
detect errors. These parameter choices, which are shown
in Table 2, ensure that there are no false positives for the
given input matrix when no faults are injected.

Method Name MD AD HD
t a n m

CGS 5,000,000 75 6 6
BiCG 10,200 85 22 8
BiCGSTAB 800 1,900 120 130
QMR 1.2 5 95 35 33
PR 1.7 690 2 1

Table 2: Error detection parameters

We evaluate the detection accuracy of the three meth-
ods based on two definitions of an erroneous run:

• BitFlip: any run that was injected with a bit-flip;
• OutFail: any run that exhibits an SDC or a hang.

ND results are not shown for PR since this code does not
have a native detector. We show the percentage of all
runs with fault injection (i.e., BitFlip) for which the soft
error was not detected, that is the false negative rate, in
Figure 3. Our detection methods all exhibit high false
negative rates for all codes, ranging from 75% to 100%,
which indicates that they provide little error detection ca-
pability when we ensure no false positives for runs with
no soft errors.

For the OutFail error model, we consider: (i) runs
with fault injection that complete successfully and (ii)
runs with fault injection that result in an SDC or a hang.
As would be expected with our parameter choices, all de-
tection methods rarely incorrectly identified a successful
run as erroneous as shown by the false positive rates of
no more than 12% in Figure 4. However, Figure 5 shows
that they had generally high false negative rates (31% to

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

CGS BiCG BiCGSTAB QMR PR

HD
MD
AD
ND

Figure 3: False negative rates for BitFlip error runs

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

CGS BiCG BiCGSTAB QMR PR

HD
MD
AD
ND

Figure 4: False positive rates type (i) OutFail runs

100%) for the erroneous runs. The only exceptions were
HD on PR and BiCG and AD on BiCG, which performed fairly
well. The performance of ND on BiCG was comparable to
that of the convergence-based detectors. It was very poor
in the other codes.

Accurate detection mechanisms are a topic for future
work since none of ours work well overall.

An additional error detection concern is the ability of
the application to detect errors in the final solution. While
this error can be determined by computing ||Ax − b|| af-
ter the last iteration, errors in A and b can corrupt this
computation, causing it to produce an incorrect error esti-

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

CGS BiCG BiCGSTAB QMR PR

HD
MD
AD
ND

Figure 5: False negative rates type (ii) OutFail runs

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

CGS BiCG BiCGSTAB QMR PR

Figure 6: Rate of correct error estimations

mate. Figure 6 shows the probability that each method’s
computed output error is within 10% of the true error.
While BiCG and PR show high correct estimation proba-
bilities, the other methods are wrong as much as 10% of
the time.

3.3 Soft Error Tolerance

We combine our soft error detection methods with a
checkpoint-based recovery mechanisms to create full soft
error tolerance solutions. Periodically checkpointing the
entire application state is sufficient but can be expensive
for applications with significant amounts of state. Thus,
we evaluate these checkpointing options:

• ChkptAllVars: checkpoint all variables periodically;

• ChkptWOnce: checkpoint only the write-once variables
(e.g. A and b) before the main iteration;

• ChkptWOnceScalars: checkpoint write-once variables
before the main iteration and checkpoint all scalar
variables periodically (all scalars are overwritten each
iteration) .

We also combine these options with the perfect detector
PD, which signals an error one iteration after a bit-flip is
injected (the optimal protection for a convergence-based
detector) to capture an upper bound on the protection

they provide. Checkpoints are recorded in memory to
provide a lower-bound on the cost. We use a checkpoint
period of 1, 16, 256 or 4096 iterations for ChkptAllVars
and ChkptWOnceScalars.

The checkpoint methods generally increase application
run time slightly. ChkptWOnce is the cheapest scheme since
it requires only one checkpoint. ChkptWOnceScalars cap-
tures some of the evolving iterative state at little addi-
tional expense. ChkptAllVars with a 1 iteration period is
generally the most expensive. ChkptAllVars with PD and
a checkpoint period of 4096 iterations was also observed
to have a higher overhead due to longer rollbacks.

ChkptWOnceScalars, which restores scalar variables
but not other multi-write data structures, can destabilize
the computation, as evidenced by high hang rates with
ChkptWOnceScalars+PD for CGS (up to 36%), BiCG (72%-
79%) and QMR (94%) and increased convergence times for
CGS and BiCG. This effect depends heavily on checkpoint
period: some periods lead to a large increase in conver-
gence time, while others show none at all. This destabiliz-
ing effect does not occur with other detection algorithms
due to their lower error detection rates.

Overall, the convergence times of the ChkptWOnce and
ChkptWOnceScalars are similar to those with no check-
pointing although they do lower SDC and Hang rates.
However, ChkptAllVars outperforms both: it has a low
run time cost (checkpoints are written to RAM) and
greatly reduces the rates of SDCs and Hangs, which are
completely eliminated when combined with the PD detec-
tor. No technique reduces Abort rates because segmen-
tation faults typically happen within one iteration of the
error injection.

3.4 Differential Vulnerability of State

To more accurately understand the soft error vulnerabil-
ity of iterative methods we examine the vulnerabilities of
different types of application state. We have observed a
difference between the effects of error injections into write-
once variables (WriteOnce) and into variables that are
overwritten during each iteration (OverWrite). One ef-
fect is the fact that while error injections into WriteOnce
variables can cause the iterative method to incorrectly es-
timate its final error (as shown in Figure 6), injections
into OverWrite variables do not have have this effect.
The reason is that correct error estimation depends on
the matrix A and array b having correct state. Since they
are both OverWrite variables, only OverWrite error in-
jections can have an effect on error estimation.

Another interesting effect, shown in Figure 7, is that
errors injected into OverWrite variables have 0% chance
of resulting in an abort. This is due to the fact that in-
jections into WriteOnce variables mostly happen in the
sparse matrix A. In our experiments this matrix was
stored in compressed-column format, which maintains in-

dexes into an array of matrix data values. Bit-flips into
these indexes can cause random memory to be accessed,
resulting in segmentation violations. This effect is not
seen with OverWrite variables because they are all vec-
tors and scalars and as such, use very little indirection.
Figure 7 also shows a remarkably lower SDC rate in CGS,
BiCG and BiCGSTAB for WriteOnce injections relative to
injections OverWrite. The source of this drop is unclear,
particularly in light of the opposite behavior for PR and
little difference for QMR.

0

5

10

15

20

25

CGS BiCG BiCGSTAB QMR PR

%
 o

f r
un

s

SDC%
Hang%
Abort%

0

5

10

15

20

25

CGS BiCG BiCGSTAB QMR PR

%
 o

f r
un

s

SDC%
Hang%
Abort%

Injections into WriteOnce

Injections into OverWrite

Figure 7: SDC, Hang and Abort rates for WriteOnce and

OverWrite variables

4 Summary

We experimentally measured the soft error vulnerability
of iterative linear methods. Contrary to common opinion,
we demonstrate that they can show high rates of hangs,
aborts and silent data corruptions. Further, we show that
soft error detection requires more complex techniques than
our three simple residual-based methods, despite the com-
mon belief that simple residual convergence would be suffi-
cient. Finally, checkpoint-based fault tolerance techniques
can be effective in making iterative methods less vulner-
able to soft errors. However, the only fully effective tech-
nique is full checkpointing that uses the perfect detector,
which may not be feasible in practice.

References

[1] International technology roadmap for semiconductors. White
paper, ITRS, 2005.

[2] R. C. Baumann. Radiation-induced soft errors in advanced
semiconductor technologies. IEEE Transactions on Device and
Materials Reliability, 5(3):305–316, September 2005.

[3] J. Dongarra, A. Lumsdaine, R. Pozo, and K. Remington. A
sparse matrix library in c++ for high performance architec-
tures. In Object Oriented Numerics Conference, pages 214–218,
1994.

[4] Iain Duff, Roger Grimes, and John Lewis. Single-event up-
set in evolving commercial silicon-on-insulator microprocessor
technologies. ACM Transactions on Mathematical Software,
15(1):1–14, March 1989.

[5] Gene H. Golub and Charles F. Van Loan. Matrix computations.
Johns Hopkins University Press, 1996.

[6] F. Irom and F.F. Farmanesh. Frequency dependence of single-
event upset in advanced commercial PowerPC microprocessors.
IEEE Transactions on Nuclear Science, 51(6), November 2004.

[7] Austin Lesea and Joe Fabula. The rosetta experiment: Atmo-
spheric soft error rate testing in differing technology fpgas - 90
nanometer update. In Workshop on System Effects of Logic
Soft Errors, April 2005.

[8] Sarah Michalak. Estimation of the expected weekly number of
soft errors in QA and QB. Technical Report LA-UR-04-5162,
Los Alamos National Laboratory, 2004.

[9] H. Quinn and P. Graham. Terrestrial-based radiation upsets: a
cautionary tale. In IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 193–202, April 2005.

[10] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the soft
error rate of combinational logic. In International Conference
on Dependable Systems and Networks, pages 389–398, June
2002.

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Liver-more National Laboratory under Contract DE-AC52-07NA27344.

