
UCRL-TR-227939

Multi-Layer Perceptrons and Support
Vector Machines for Detection Problems
with Low False Alarm Requirements: an
Eight-Month Progress Report

Barry Chen, Tracy Hickling, Milovan Krnjajic, William
Hanley, Grace Clark, John Nitao, David Knapp, Larry
Hiller, Marshall Mugge

February 12, 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UNT Digital Library

https://core.ac.uk/display/71317134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Unclassified
Page 1 of 62

Multi-Layer Perceptrons and

Support Vector Machines

for Detection Problems with Low

False Alarm Requirements:

an Eight-Month Progress Report
June 1, 2006

Barry Chen, Tracy Hickling, Milovan Krnjajić, Bill
Hanley, Grace Clark, John Nitao, David Knapp, Larry

Hiller, and Marshall Mugge

Unclassified
Page 2 of 62

Table of Contents

1. Receiver Operating Characteristics (ROC) and Related
Performance Metrics (Status 02-09-2006)4

2. A Brief Introduction to Cost-Sensitive Multi-Layer
Perceptrons (MLPs) (Status 1-31-2006)7

3. A Practical Guide for Applying Cost-Sensitive MLPs to
a Classification Problem...11

4. A Brief Introduction to Cost-Sensitive Support Vector
Machines (SVMs) (Status 04-04-2006)15

5. A Practical Guide for Applying Cost-Sensitive SVMs to
a Classification Problem...20

6. Experiments Using MLPs and SVMs on the
Classification Data Sets ..22

Experiment 1: Accuracy and Precision of MLPs on G2 and K35 Sets Using F1-8 With
or Without A (Status 11-15-2005)..24
Experiment 2: Accuracy and Precision of MLPs Trained on G2 and Tested on K35
Using All the Possible Feature Combinations (Status 12-08-2005 & Status 12-22-2005)
..26
Experiment 3: Accuracy and Precision of Cost-Sensitive MLPs Trained on G2 and
Tested on K35 Using F1-8 and F1, F2, and F5 (Status 01-31-2006)29
Experiment 4: Area Under the ROC (AUROC) of MLPs and Cost-Sensitive MLPs
Trained on G2 and Tested on K35 Using F1-8 (Status 02-21-2006)31
Experiment 5: AUROC of MLPs and Cost-Sensitive MLPs Trained on T1 Sets and
Tested on J1 Sets Using F1-8 and the Effect of Cross-Validation Data on Performance
(Status 02-28-2006) ...34
Experiment 6: AUROC of SVMs Trained on T1 Sets and Tested on J1 Sets Using F1-8
and the Effect of Cross-Validation Data on Performance (Status 04-04-2006 & Status
04-11-2006)...40
Experiment 7: AUROC of MLPs and SVMs Trained on T1_P_100 and Tested on J1
Sets Using All the Possible Feature Combinations (Status 03-16-2006)45
Experiment 8: AUROC of SVMs Trained on T0 and T1 Tested on J1 and J2 Using F1-
8(Status 04-18-2006 and Status 04-28-2006) ...50

Unclassified
Page 3 of 62

Experiment 9: AUROC of Cost-Sensitive SVMs Trained on T1 and T0 Tested on J1
and J2 (Status 05-10-2006 & Status 05-26-2006)...55

7. References ..62

Unclassified
Page 4 of 62

1. Receiver Operating Characteristics (ROC) and Related
Performance Metrics (Status 02-09-2006)
In this project, the basic problem is to automatically separate test samples into one of two
categories: clean or corrupt. This type of classification problem is known as a two-class
classification problem or detection problem. In what follows, we refer to clean examples
as negative examples and corrupt examples as positive examples.

In a detection problem, a classifier decision on any one sample can be grouped into one
of four decision categories: true negative, true positive, false negative and false positive.
These four categories are illustrated by Table 1.

Table 1 – Four decision categories of a classifier applied to a two-class problem.

True negatives and true positives are cases where the classifier has made the correct
decision. False positives are cases where the classifier decides positive when the true
nature of the sample was negative, and false negatives are cases where the classifier
decides negative when the sample was actually positive. To evaluate the performance of
a classifier, we run the classifier on all the samples of a data set and then count all the
instances of true negatives, true positives, false negatives, and false positives. All of the
performance metrics in this report are then formed from a combination of these four basic
decision categories.

There are four performance rates of great significance in this report: true negative rate,
true positive rate, false negative rate, and false positive rate. They are given by the
following equations:

(1.1)
positivesfalseofnumber totalnegativestrueofnumber total

negativestrueofnumber totalratenegativetrue
+

=

(1.2)
negativesfalseofnumber totalpositivestrueofnumber total

positivestrueofnumber totalratepositivetrue
+

=

(1.3)
negativesfalseofnumber totalpositivestrueofnumber total

negativesfalseofnumber totalratenegativefalse
+

=

(1.4)
positivesfalseofnumber totalnegativestrueofnumber total

positivesfalseofnumber totalratepositivefalse
+

=

Negative Positive
Negative True Negative False Negative
Positive False Positive True Positive

Actual Category of Sample

Classifier's
Decision

Unclassified
Page 5 of 62

Note that false negative rate is also equal to 1 – true positive rate; likewise, false positive
rate is equal to 1 – true negative rate.

The accuracy and precision of a classifier are given by:

(1.5)
samplesofnumber total

positivestrueandnegativestrueofnumber totalaccuracy =

(1.6)
positivesfalseofnumber totalpositivestrueofnumber total

positivestrueofnumber totalprecision
+

=

Accuracy measures the proportion of correct classifications with respect to all the data
samples, and precision measures the proportion of correct classification with respect to
all the data for which the classifier decides positive. Please note that unless otherwise
specified all accuracy and precision numbers reported below come from operating the
classifier at its default decision threshold (for MLPs, the threshold is 0.5, and for SVMs,
the threshold is 0.0).

The classifier performance goal for this project is a high true positive rate with a false
positive rate of less than 10-4. Neither accuracy nor precision adequately measures the
performance goals set by this project. To adequately measure how well a classifier is
performing with respect to the performance goal, we will be calculating a metric based on
the receiver operating characteristic (ROC) of the classifier. A ROC is simply a list (or
lists) of false positive rates and corresponding true positive rates of a classifier (or a set of
classifiers). Because most classifiers output a classification metric, e.g., a posterior
probability of positive class, one can generate a ROC by varying the decision threshold
on this classification metric and computing the true positive and false positive rates for
each decision threshold. For example, a decision threshold of 0.5 means that test samples
with posterior probabilities greater or equal to 0.5 will be classified as positive samples.
Greater decision thresholds will result in fewer true positives and false positives, while
smaller decision thresholds lead to more true positives and false positives. ROCs are
usually visualized graphically with an X-Y plot where the x-axis corresponds to the false
positive rate and the y-axis corresponds to the true positive rate. Figure 1 is a plot of
example ROC curves from a SVM tested on data from five different signal levels.

To measure the degree to which a classifier achieves the performance goal of high true
positive rates at low false positive rates, we compute the area under the ROC curve in the
region of low false positive rates – 0 to 10-3 false positive rate. The standard area under
the ROC curve (AUROC), measures the average true positive rate of a classifier over the
entire range of false positive rates. It is equivalent to the probability that the classifier
will rank a randomly chosen positive example higher than a randomly chosen negative
example [6]. We have adapted the AUROC so that we compute the area under the ROC
curve only over the region of interest for this project, i.e., low false positive rates between
0 and 10-3. We refer to this adapted metric as AUROC10-3. In what follows, we will
report normalized AUROC10-3 which is the area under the ROC curve between false
positive rates 0 and 10-3 divided by 10-3. We have written a C program called ROCMain
that computes ROC curves and AUROC10-3.

Unclassified
Page 6 of 62

Figure 1 - Receiver Operator Characteristic (ROC) Curves showing the true positive rates versus
false positive rates for a SVM classifier tested on data at various signal strengths.

Unclassified
Page 7 of 62

2. A Brief Introduction to Cost-Sensitive Multi-Layer
Perceptrons (MLPs) (Status 1-31-2006)

General Description
A Multi-Layer Perceptron or MLP is a neural network classifier that can approximate any
posterior probability given enough training data and learnable parameters. It takes a
vector of numbers, which are usually measurements of some meaningful features of the
classes, and outputs a vector of class posterior probabilities.

How They Work
The MLPs in this report have two layers of computational nodes and are fully
interconnected as shown in Figure 2. Each of the nodes encodes a hyperplane separation
in the space of their inputs. The first layer, called the “hidden layer” is responsible for
learning the initial separation boundaries in the input feature space. The second layer,
called the “output layer”, combines boundaries learned by the hidden layer, so that the
resulting decision boundaries can be non-linear functions. A cartoon of the input space
for a two class classification problem and the separators learned by a MLP is shown in
Figure 3.

1x

2x

Output Units:
P(| X)

P(| X)

Hidden Units:
yj

Input:
X

Figure 2 - The architecture of a Multi-Layer Perceptron (MLP).

Unclassified
Page 8 of 62

Figure 3 - Cartoon representation of the separators learned by the hidden and output layers of a
MLP in the input space.

Mathematically, the output of the jth hidden layer unit (hidden unit) is given by:

(2.1)
)(1

1
j

T
j Bj

e
y

+−+
=

XW
,

where X is the input vector, T
jW is the transpose of the jth hidden unit’s learnable weights

and Bj is the hidden unit’s bias. Graphically, this function is a hyperplane ramp in the
space of the inputs.

The posterior probability of class i is the output of the ith output layer unit. It is given by:

,)3.2(

,)|iP(class (2.2)

unitsoutput

Cz

e
e

T
ii

z

z

z

j

j

i

+=

=
∑

∈

YO

X

where Y is the vector of hidden layer outputs, T
iO is the transpose of the ith output unit’s

learnable weights and C is the output unit’s bias.

During the training phase, a MLP is supplied with a training set of samples, each of
which consists of an input vector and a target class label. The goal of the training process
is to estimate the learnable parameters of the MLP (the hidden unit weights and bias and
the output unit weights and bias) such that the MLP makes as few errors on this training
set as possible. This is accomplished via the Error Back-Propagation algorithm [10]
which is a gradient descent algorithm. The idea of this algorithm is to take an initial
guess at the learnable parameters, compute the gradient of the error function with respect
to the learnable parameter, and then update the learnable parameters in the opposite
direction of the gradient which amounts to updating the parameters such that the error is
reduced. Like other gradient descent algorithms, Error Back-Propagation suffers from
the problem of local minima where the final learnable parameters give a locally minimal
error rate which may be suboptimal.

To mitigate this problem, the MLPs in this report make larger updates to the parameters
in the beginning, and then based on the performance on a cross-validation set, the update
step sizes are reduced. More specifically, the user specifies an initial learning rate
(update step size) that is used until performance on the cross-validation set does not

Class 1:
Class 2:

2x
Hidden Layer:
jth Hyperplane

Separator

Class 1:
Class 2:

2x
Output Layer:

Composite
Separator

1x 1x

Unclassified
Page 9 of 62

improve by 0.5% absolute at which point the learning rate is halved after each epoch1.
Finally, training is stopped as soon as the performance on the cross-validation set does
not improve again by 0.5% absolute.

The error function used for training affects the decision boundary that the MLP
ultimately learns. The standard error function used by MLPs described above is the
cross-entropy error function given by:

(2.4) ∑ ∑
∈ ∈









−=

samplesn classesk kn

kn
kn t

tE
,

,
,

P
ln

tn,k is the target value for the kth class of the nth sample and Pn,k is the output of the kth

output unit for the nth sample and]1,0[P , ∈kn . The closer the output of the MLP is to the
target, the smaller this error will be. In a detection framework, where there are only two
classes,

(2.5) 















∈∈

0
1

,
1
0

ctor target vetheand1,0, nkn tt

When a MLP of the type described above is trained using this cross-entropy error
function, the outputs of the MLP can be shown to approximate the posterior probabilities
of the classes given the input vector [9].

There are two types of errors a MLP applied to a detection problem can make for any
sample: false positive and false negative errors. Assuming that the second element of the
target or output vector represents the positive class, then the following is an example of a

false negative error: the MLP output vector for the nth sample is 







=

1.0
9.0

nP , and the

target vector is 







=

1
0

nt . Colloquially, this example shows that the MLP wishes to

classify the sample as negative, while the sample is actually positive. On the other hand,

if 







=

9.0
1.0

nP and 







=

0
1

nt , then the MLP says the sample is positive when it actually was

negative, which is a false positive error. Calculating the cross-entropy error for these two
examples leads to a key observation: the error value for both the false positive and false
negative example is 0.105. This means that the conventional cross-entropy error function
penalizes both types of errors equally. Given the requirements of this project for
achieving ultra-low false positive rates, it would be better if the error function penalizes
the false positive errors more heavily than the false negative errors.

For this project, we developed a new cost-sensitive error function that allows the user to
specify the penalties for each kind of error. We call this new error function the class-
weighted cross-entropy error function, and it is given by:

1 An epoch is one complete round of parameter updates over the entire set of training data.

Unclassified
Page 10 of 62

(2.6) ∑ ∑
∈ ∈











−=

samplesn classesk kn

kn
knk t

tEC
,

,
,

P
lnα

Where kα is the penalty factor for errors on the kth class. The larger the penalty factor
for a certain class, the more weight an error made on that class will have. For example,
setting 0.10 =α and 1.01 =α penalizes false positive errors 10 times more heavily than
false negative errors. By penalizing false positive errors more heavily using this class-
weighted error criterion, the decision boundaries that are ultimately learned will make
fewer false positive errors than decision boundaries trained using the original error
criterion. Finally, note that when using the class-weighted cross-entropy error function,
the outputs of the MLPs may no longer be approximates of the class posterior
probabilities. Please refer to [1] for further details about MLPs.

Unclassified
Page 11 of 62

3. A Practical Guide for Applying Cost-Sensitive MLPs
to a Classification Problem
The application of any classifier to a new data set consists of four main processes: data
preparation, data preprocessing, training, and testing. The goal of data preparation is to
put the input data into a form that the classifier can read and subdivide the data into sets
for training, cross-validating, and testing. Once the data has been prepared, the
preprocessing stage performs any feature normalization or transformations that might
help the classifier perform better. The next step is to train the learnable parameters of the
classifier on the training data. This involves a grid search over the user-specified training
parameters of the classifier to find the settings that lead to the best performance on a
cross-validation set. Using these best settings, a final training is performed resulting in a
trained classifier. Finally, the trained classifier’s performance on a test set can be
measured. Figure 4 shows the flow diagram of these four processes, and Figure 5
displays a detailed flow diagram of the training process.

In what follows, we take a closer look at each of these processes and discuss details
relevant for successfully applying cost-sensitive MLPs to a classification problem.

Figure 4 – Flow diagram of the four main processes involved in applying a classifier to a problem.

Data
Preparation

Data
Preparation

Data
Preprocessing

Data
Preprocessing

TrainingTraining

TestingTesting

Partition data into disjoint sets
for training, testing, and cross-
validation.

Normalize features and
transform features.

Train classifier’s learnable
parameters and find the best
settings for the classifier.

Measure classifier performance
on test data

Data
Preparation

Data
Preparation

Data
Preprocessing

Data
Preprocessing

TrainingTraining

TestingTesting

Partition data into disjoint sets
for training, testing, and cross-
validation.

Normalize features and
transform features.

Train classifier’s learnable
parameters and find the best
settings for the classifier.

Measure classifier performance
on test data

Unclassified
Page 12 of 62

Figure 5 – Flow diagram of the training process in detail.

Data preparation
We extended the International Computer Science Institute’s quicknet software [8] to
perform cost-sensitive training in this project. Quicknet has two main MLP programs,
one for training called qnstrn, and one for testing called qnsfwd. Both of these
programs read in data from special binary files called “pfiles”. Originally, developed for
speech recognition applications, each data sample in a pfile consists of a sentence (also
known as utterance) index, a frame index, followed by either a series of numbers
representing the feature measurements or a label for the class that this sample belongs to.
Every data sample is unambiguously indexed by its sentence index and frame index.

In the first step of the data preparation stage, we have perl scripts that read in ascii files
containing the clean and corrupt samples and converts them into two pfiles. The first
pfile contains the data sample’s feature vectors, and the second pfile contains the data
sample’s class labels. The perl script createPfiles.pl is an example script for creating a
feature and label pfile from ascii feature files like the ones provided in this project.

The second step of the data preparation stage involves separating the data samples into
training, cross-validation, and test sets. In MLP training, the learnable parameters are
continuously modified to give better and better performance on the training set, and the
learning rate and stopping point of training is determined by its performance on a
separate cross-validation set. After training is finished, we measure the MLP’s

TrainingTraining

Train classifier using
current training

parameter settings

Set initial
training

parameters

Measure and record
performance on

cross-validation set

More
training settings to

search?

Train classifier using
training settings leading
to the best performance

on the cross-validation set
Trained Classifier

Set training
parameters to
next point in

the grid search

yesno

TrainingTraining

Train classifier using
current training

parameter settings

Set initial
training

parameters

Measure and record
performance on

cross-validation set

More
training settings to

search?

Train classifier using
training settings leading
to the best performance

on the cross-validation set
Trained Classifier

Set training
parameters to
next point in

the grid search

yesno

Unclassified
Page 13 of 62

performance on the test set. The MLP’s training set and cross-validation set usually
come from data originally designated for training the classifiers or else data that closely
resembles future test data. For example, to build a cross-validation set from training data,
randomly select 10% of this original training data for the cross-validation set, and then
randomize the ordering of the remaining 90% to form the MLP training set. In the SVM
sections, this same process was used, but we also experimented with an n-fold cross-
validation technique and found little difference between n-fold cross-validation and
randomly picking 10% of the data for cross-validation.

Preprocessing
The goal of the preprocessing stage is to transform the data in a way that makes the work
of the classifier easier. The most common type of data transformation is normalization
where the range that the feature values is shrunk or expanded. A standard normalization
technique, which works well for MLPs, transforms each feature component to have zero
mean and unit variance over the data set. This normalization technique works by first
computing the mean and standard deviation of each feature component over the entire
data set, and then subtracting the mean from each sample and dividing by the standard
deviation. Even though it is theoretically true that MLPs could learn this normalization,
in practice pre-normalizing the inputs to the MLPs lead to better performance since none
of the learnable parameters have to be devoted to learning this normalization.

Besides normalization, there are other transformations that may make the original data
points more separated in space. Principal Components Analysis (PCA) and Linear
Discriminant Analysis (LDA) are examples of such feature transformations that people
often use to pre-process their input data for the classifiers. In this project, we do not
explore the application of these types of transformations.

One key point to remember is to be consistent with the transformations across data sets,
i.e., apply the same transformation used for the training set on the cross-validation and
test sets.

Training
In the training stage, we are looking for the best user-specified training parameters to use
for training the MLP. In other words, we want to find the settings for parameters that
will lead to MLPs that will most likely perform the best on the testing set. This is
generally accomplished by training MLPs, one for each parameter setting, on the training
data, and then picking the parameters for the MLP that gives the highest AUROC10-3 on
a cross-validation set.

We use qnstrn as the training program for our MLPs. The user-specified parameters of
significance for qnstrn MLPs are: the total number of hidden units, the class-weights,
initial learning rate, and initial random seed. The total number of hidden units controls
the power and flexibility of the MLP: more hidden units mean more trainable parameters
which may result in more complicated decision boundaries. In practice, a good rule of
thumb is to use 10 trainable parameters for every sample in the training set. The total
number of trainable parameters, numTrainableParameters, in a two-layer MLP with

Unclassified
Page 14 of 62

numInputFeatures input features, numHiddenUnits hidden units, and numOutputUnits
output units is calculated by:

() () nitsnumOutputUnitsnumHiddenUnitsnumHiddenUaturesnumInputFe
rsleParametenumTrainab

⋅++⋅+
≡

11
)1.3(

In most of the MLP experiments below, we simply set numHiddenUnits such that
numTrainableParameters is about a tenth of the number of training data samples.

Equation 2.6 is the error function used for performing cost-sensitive MLP training. As
discussed above, there are special kα variables used for weighting the error term arising
from the kth class. In practice, we often search a limited range of these class-weights, so
that we bias the training toward decision boundaries giving fewer false positives. A

good set to search over for 








1

0

α
α

is 







0.1
0.1

, 







1.0
0.1

, 







01.0
0.1

.

The last two MLP training parameters to search over are the initial random seed and
initial learning rate. The initial random seed is used for specifying the starting point in
the gradient descent on the error functions, while the initial learning rate controls the size
of the update steps that the algorithm takes on the error surface. In more detail, the initial
random seed controls the random initial settings for all the learnable parameters in the
MLP. It may be important in applications with relatively small amounts of training data
(i.e., less than 1 million), to train many different MLPs each with a different initial
random seed (the seed for selecting random initial settings for all the learnable
parameters) since different starting points in the gradient descent algorithm can often lead
to different local minima solutions. In many of the MLP experiments below, we use 25-
50 different initial random seeds. The range to search over for the initial learning rate
depends from problem to problem, so it is best to first search a range of initial learning
rates that have a large range (e.g., log10(-4,-3,-2,-1,0,1)), and then search over smaller and
finer ranges centered at the rate that gave the best performance in the previous wider
search.

Testing
In the testing stage, all we simply do is run the MLP on the test data and measure its
performance. More specifically, we run qnsfwd, the MLP forward-pass program that
takes input samples and computes the outputs of a trained MLP. Recall that the outputs
of the MLP are posterior probabilities of the classes. For each test sample, we compute
the posterior probability of the positive class and collect the corresponding truth label
(i.e., whether the sample is actually a positive class or not). We then place the computed
posterior probabilities into a text file and the corresponding truth labels in another file
and then use these files as input to our ROC program (ROCMain) that computes the
ROC curve and AUROC10-3.

Unclassified
Page 15 of 62

4. A Brief Introduction to Cost-Sensitive Support Vector
Machines (SVMs) (Status 04-04-2006)

General Description
Support Vector Machines (SVMs), like MLPs, are classifiers that learn nonlinear
separating boundaries between the classes. SVMs are created from a combination of two
techniques: the maximal margin classifier and the kernel trick. The maximal margin
classifier is simply the linear hyperplane separator that best separates the two classes2

while maximizing the distance between the closest training example and the hyperplane.
Figure 6 shows a graphical depiction of a maximal margin classifier separating two
classes.

Figure 6 - The hyperplane separator learned by a maximal margin classifier.

The kernel trick is a powerful technique that is used to turn the linear decision boundary
into a nonlinear one. This trick involves using a kernel function to perform dot product
operations in “feature” space while operating on input space. More specifically, a kernel
is a function operating on the input vectors in input space that represents the dot product
of two input vectors mapped to a “feature” space which often has a much higher

2 Typically SVMs solving multi-class classification problems consist of a set of two-class SVMs, one for
every pair of two classes.

Hyperplane

Hyperplane
Normal Vector

Margin

w

Unclassified
Page 16 of 62

dimensionality than the original input space. Mathematically, a kernel function is given
by:)(),(),(2121 xxxxk ΦΦ= , where ix are the input vectors, ⋅⋅, is the dot product
operator, and)(⋅Φ is the mapping from input space to “feature” space.
The problem of computing the maximal margin hyperplane is a quadratic optimization
problem whose constraints are expressed as dot products. By using a kernel for the dot
products found in the maximal margin optimization problem, a maximal margin
hyperplane is formed in the higher dimensional “feature” space which when projected
back to the original input space becomes a nonlinear separation boundary. Figure 7
depicts the kernel trick applied to maximal margin classification. For a more extensive
tutorial on SVMs, please see [2].

Figure 7 - The "kernel trick" allows one to learn a linear decision boundary in feature space that
corresponds to a nonlinear one in input space.

Further Details on Maximal Margin Classifiers and the Kernel Trick
In this subsection we discuss some of the mathematics underlying the maximal margin
classifiers which leads to the development of a cost-sensitive SVM. During the training
phase, this type of SVM can penalize different errors more heavily so that the final result
can be biased toward making as few false positive errors as possible. This subsection
ends with several salient comments concerning kernel functions.

Figure 8 shows the geometry of the problem of finding the hyperplane that best separates
two classes while maximizing the margin between the two classes. The margin is defined
to be the distance to the closest point to the hyperplane. For a separable data set, the
optimization problem can be expressed by the following:

3R 3R

Φ

Input Space Feature Space

Corresponding Decision Boundary

Unclassified
Page 17 of 62

(4.1)
() mibwxy

w

ii ,...,1 1,subject to

,
2
1 minimize 2

=∀≥+

Where ||w|| is the norm of the normal vector of the hyperplane, yi is the ith training
sample’s class label (1,1 +−∈iy), xi is the ith training sample’s input vector, ⋅⋅, is the dot
product, b is the hyperplane’s bias, and m is the total number of training samples. In
layman’s terms minimizing 2w is equivalent to maximizing the margin (see Figure 8).
The constraints specify that all training examples lie on the correct side of the
hyperplane, i.e., all positive classes on one side and all negative classes on the other.

Figure 8 - The geometry of the maximal margin classifier.

For a non-separable data set, there will be some training examples that lie on the wrong
side of the hyperplane or that lie within the margin on the correct side of the hyperplane.
For these samples, we introduce some “slack variables” which measure how far these
samples lie from the margin of the correct side of the hyperplane. Slack variables are 0
for samples that are classified correctly and lie outside the margin; otherwise, slack
variables measure the distance we have to move the sample in order to be classified
correctly and lie on the margin. We denote the ith slack variables by iξ , and the new
optimization problem becomes:

1x

w

2x

margin.thetwiceiswhich
tofromdistancetheis

2)(,

2)(,

1,

1,
margin.on the

pointsbeandLet

21

21

21

2

1

21

xx

w
xx

w
w

xxw

bxw

bxw

xx

=−⇒

=−⇒

−=+

=+

Unclassified
Page 18 of 62

(4.2)

() mibwxy
mi

Cw

iii

i

i
i

,...,1,-1,
,...,1,0

subject to

,
2
1 minimize 2

=∀≥+

=∀≥

+ ∑

ξ

ξ

ξ

As before minimizing 2w maximizes the margin, but this time we would also like to
minimize the sum of the slack variables or margin error. C is the parameter that controls
the tradeoff between maximizing the margin and minimizing the errors. Larger C values
result in hyperplanes that minimize the margin errors, while smaller C values lead to
hyperplanes with larger margins. This type of SVM is call the C-Support Vector
Classifier (C-SVC).

The SVMs discussed thus far have not addressed the issue of cost-sensitive training, i.e.,
biasing the training to make fewer false positive or fewer false negative errors. A cost-
sensitive adaptation to SVMs is discussed in [4] and [5]. They present the 2Nu-Support
Vector Classifier (2Nu-SVC) which uses the following optimization problem for learning
the hyperplane separator:

(4.3)
()

0
,...,1,-,

,...,1,0
subject to

,1
2
1 minimize 2

,,,

≥

=∀≥+

=∀≥

−
++− ∑∑

−+ ∈∈

ρ

ξρ

ξ

ξγξγνρ
ρ

mibwxy
mi

mm
w

iii

i

Ii
i

Ii
ibw ξ

where I+ and I- are the positive and negative class training samples respectively, γ is the
penalty factor for false negative errors, ν is a user specified parameter that controls the
margin and error tradeoff, and ρ is an auxiliary variable that is solved for during the
optimization proportional to the final margin. [4] and [5] point out that by
reparameterizing ν and γ with:

(4.4)

()

,
)1(2

 ,
2

or,
2

 ,2

−
−

+
+

++−−++

−−

−−++

−+−+

−
==

=
+

=
+

=

m
m

m
m

m
m

mm
m

mmm
mm

γ
ν

ν
γ
ν

ν

ν
ν

νν
νγ

νν
ννν

the user can work with parameters with nice theoretical interpretations. It can be shown
that +ν (−ν) is an upper bound on the fraction of margin errors on the training set from
the positive (negative) class and a lower bound on the fraction of support vectors from
the positive (negative) class. Moreover, both +ν and −ν must lie between 0 and 1 for the

Unclassified
Page 19 of 62

solution to the optimization problem to be valid, which also makes the parameter search
much cleaner. In practice a user just has to perform a search for +ν and −ν on an evenly
spaced grid spanning the square area between +ν =0, −ν =0 and +ν =1, −ν =1. In an
application that requires low false alarm rates, −ν should be set to smaller values since

−ν controls the upper bound on number of false alarms in the training set.

We conclude this section with several quick comments about kernel functions. There are
many kernel functions that a user can choose to use. In fact, researchers are constantly
developing new ones, but this does not mean that the existing kernel functions are going
to give poor results. The most commonly used kernel function is the Gaussian kernel
function. Its name comes from the form that the kernel takes and not from any
requirement that the data be Gaussian. The feature space that a Gaussian kernel takes a
dot product in is theoretically infinite dimensional, which makes the Gaussian kernel
quite powerful. Also, because the Gaussian kernel has only one parameter to vary, it is
also a simple kernel to work with. The Gaussian kernel is given by:

(4.5)












 −−
= 2

2

exp),(
σ

ba
bak

where a and b are input vectors and σ is the Gaussian kernel’s width parameter that is
chosen by the user. For the savvy user, experimenting with other kernel function may
potentially lead to better performance, but in this work we work solely with Gaussian
kernels.

Unclassified
Page 20 of 62

5. A Practical Guide for Applying Cost-Sensitive SVMs
to a Classification Problem
A successful application of SVMs for a classification problem involves the same four
processing steps of a successful application of MLPs as discussed in Section 3. They are:
data preparation, data preprocessing, training, and testing. In this section we discuss
specifically how SVMs relate to these four processing stages.

Data Preparation
In this project we have been using the LIBSVM [3] software package for training and
testing our SVM models (svm-train for training and svm-predict for testing). LIBSVM
requires the input data file to be in a space-delimited format such that the first element in
a line is the label (-1 or 1) of the sample followed by the sample’s feature measurements
preceded by the feature index number and a colon, e.g. “-1 0:0.34384 1:1.37839
2:0.098765”.

In the MLP case, we divided the training data into a train and cross-validation set, where
the cross-validation set was used for the grid search on the MLP parameters. For SVM
training, we will also be using cross-validation sets to test our SVM parameter settings.
Because we are using LIBSVM, we have the option of creating a single cross-validation
set (as in the MLP case), or we may choose to perform n-fold cross-validation. svm-train
has a built-in n-fold cross-validation option. This means that it will randomly partition
the input training set into n equally populated sets and then perform training on all n-1 set
combinations using the remaining set as the cross-validation set. At the end of n-fold
cross-validation training, the average performance score (AUROC10-3) on each of the n
cross-validation sets is reported.

Data Preprocessing
As in the MLP case, normalizing the features is critical for the successful application of
SVMs to a classification problem. We typically perform the same type of feature
normalization used for MLPs, i.e., zero mean and unit variance normalization computed
within a data set.

Training
Like the training phase for MLPs, the training phase for SVMs consists of two separate
steps: the first step is to find the best SVM training parameter settings via cross-
validation, and the second step is to train the SVM on the training set using the best
parameter settings.

For C-SVCs the training parameters of significance are C, the parameter controlling the
tradeoff between margin maximization and error minimization, and σ , the width of the
Gaussian kernel. The first step is to find settings for C and σ that gives the best
performance as measured by AUROC10-3 on a cross-validation set. As mentioned above,
with LIBSVM the user can choose to use a single cross-validation set (like the MLP case)
or to use n-fold cross-validation. We have found that the difference in performance
between the two choices of cross-validation is small. To find the best settings for C and

Unclassified
Page 21 of 62

σ , perform a grid search over values of C and σ . At each grid point, train a SVM with
the values of C and σ corresponding to the values at the grid point and measure the
performance of the resulting SVM model on the cross-validation set. A useful strategy
for choosing the grid values is to start with a large range and set the distance between
grid points logarithmically. For example, search over the set of C values log2(-5),
log2(-4), log2(-3), … , log2(10). Larger C values result in looser decision boundaries,
while smaller C values result in tighter decision boundaries. Likewise, smaller σ values
lead to tighter decision boundaries, while larger σ values lead to looser ones. After
finding the best values of C and σ , train the C-SVC on the entire training set using these
values. See [7] and [11] for more details on practically training SVMs.

The parameters of significance for 2Nu-SVCs are +ν (upper bound on false negative
margin errors), −ν (upper bound on false positive margin errors), and σ (the width of the
Gaussian kernel). Finding the best settings for these parameters involves a 3-d grid
search, which makes the 2Nu-SVC training phase more time consuming than the C-SVC
training phase which involves a 2-d grid search. As pointed out in [4] and [5] the
advantage of parameterizing the 2Nu-SVC using +ν and −ν is that the user simply needs
to search for the best setting of +ν and −ν over a uniform unit grid]1,0[]1,0[× . Using
coarser spacing between grid points at the beginning and then zooming in to finer spacing
at the best operating point in the coarser level is a good strategy for performing this grid
search. Finally, search over values of σ in the same way described above for C-SVCs.
After finding the best values of +ν , −ν , and σ , train the 2Nu-SVC on the entire training
set using these values.

Testing
The testing phase for SVMs, simply involves computing the side of the decision
boundary as well as the distance to the decision boundary of each sample in the test set.
The side tells us what class the SVM has classified a sample, while the distance is a
measure of how sure the SVM believes the classification to be true. We have modified
svm-predict to output this distance information. Using this distance information, we can
plot ROC curves and calculate AUROC10-3 using our ROCMain program.

Unclassified
Page 22 of 62

6. Experiments Using MLPs and SVMs on the
Classification Data Sets
In the following subsections, we will summarize the various experiments performed
using MLPs and SVMs on the classification data sets by summarizing the main findings
and describing the experiment via the experimental parameters table. Also, each
subsection contains references to the relevant status report which the reader can refer to
for more figures and details.

Each experiment can be uniquely described by the set of experimental parameters and
their settings. For MLPs, this set of experimental parameters includes:
Training set What data is used to train the MLP?
Cross-validation set What data is used for controlling the learning rate schedule and

for determining the optimal initial learning and initial random
seed?

Testing set What data is used to test the MLP?
Features used Which features are used as input (e.g., F1,F5,&F8)?
Feature
normalization

What kind of normalization is applied to the input features?

Cross-validation
performance criteria

Which performance measure is used to rank and control the
learning rate schedule for MLPs during cross-validation (e.g.,
accuracy, precision, AUROC)?

Testing performance
criteria

Which performance measure is used during testing (e.g.,
accuracy, precision, AUROC)?

Class-weights What importance weighting is given to negative and positive
classes respectively (e.g., 10,1 weights negative class 10 time
more than positive class)?

Learning rate search
range

What range of learning rates is used for the grid search?

Number of initial
random seeds

How many times is MLP training repeated using a different initial
starting point?

Number of hidden
units or trainable
parameters

How many hidden units or trainable weights are in the MLP?

Unclassified
Page 23 of 62

For SVMs, the set of experimental parameters consists of:
Training set What data is used to train the SVM?
Cross-validation set What data is used for determining the optimal Gaussian kernel

width, C, or −ν and +ν ?
Testing set What data is used to test the SVM?
Features used Which features are used as input (e.g., F1,F5,&F8)?
Feature
normalization

What kind of normalization is applied to the input features?

Cross-validation
performance criteria

Which performance measure is used to rank the SVMs trained
with different training settings during cross-validation (e.g.,
accuracy, precision, AUROC)?

Testing performance
criteria

Which performance measure is used during testing (e.g.,
accuracy, precision, AUROC)?

Kernel type What type of kernel is used (all SVM experiments below use the
Gaussian kernel)?

Gaussian kernel
width search range

What range of Gaussian widths,σ , is used for the grid search?

C search range (For non-cost-sensitive SVM training only) What range of C is
used for the grid search? Note that this is only the initial search
range since successive grid searches focus the search on maxima
of the previous grid search.

−ν and +ν search
range

(For cost-sensitive SVM training only) What range of −ν and +ν
is used for the grid search? Note that this is only the initial search
range since successive grid searches focus the search on maxima
of the previous grid search.

Unclassified
Page 24 of 62

Experiment 1: Accuracy and Precision of MLPs on G2 and K35
Sets Using F1-8 With or Without A (Status 11-15-2005)
Summary:
In this experiment we apply MLPs on six different pairings of G2 and K35 as training
and test sets using features 1-8 with and without the A-feature. The main findings are:

• Accuracy and precision are higher for same-type training/testing (e.g., train on G2
and test on G2) than different-type training/testing.

• The A-feature seems to help in same-type training/testing and hurt in different-
type training/testing.

• The number of hidden units in the MLPs does not affect performance greatly.

Experimental Settings:
The cross-validation sets used in this experiment are the same as the test set, so the
resulting performance is an optimistic estimate of what we can expect in a fair test where
the cross-validation set is disjoint from the test set.
Training and testing sets:
• G2+G2_P100

– Train and test on clean and corrupt G2 (50% training, 50%test)
• G2train-K35test

– Train on clean and corrupt G2, test on clean and corrupt K35 (both P50 and P100)
• K35+K35_P100

– Train on clean and P100 K35 (50% training, 50%test)
• K35+K35_P50

– Train on clean and P50 K35 (50% training, 50%test)
• K35+K35all

– Train on clean and P50 & P100 K35 (50% training, 50%test)
• K35train-G2test

– Train on clean and corrupt (both P50 and P100) K35, test on clean and corrupt
G2

Features used F1-F8 or F1-F8+A
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

Accuracy or precision

Testing performance
criteria

Same as cross-validation performance criteria: Accuracy or
precision

Class-weights Not used (i.e., equal class-weights)
Learning rate search
range

From 0.001 to 2.5 in increments of 0.005

Number of initial
random seeds

One

Number of hidden
units

10, 20, 40, 80, 160, 320, vs. 640

Unclassified
Page 25 of 62

Tables and Graphs:

Figure 9 – Graphs of accuracy and precision versus the number of MLP hidden units for the six
different training and testing conditions.

G2+G2_P100 Accuracies and Precisions

0.975

0.98

0.985

0.99

0.995

1

1.005

10 20 40 80 160 320 640

Number of Hidden Units

Accuracy w/A
Accuracy no A
Precision w/A
Precision no A

K35+K35_P50 Accuracies and Precisions

0.965

0.97

0.975

0.98

0.985

0.99

0.995

10 20 40 80 160 320 640

Number of Hidden Units

Accuracy w/A
Accuracy no A
Precision w/A
Precision no A

K35+K35_P100 Accuracies and Precisions

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

10 20 40 80 160 320 640

Number of Hidden Units

Accuracy w/A
Accuracy no A
Precision w/A
Precision no A

K35+K35all Accuracies and Precisions

0.97

0.975

0.98

0.985

0.99

0.995

1

10 20 40 80 160 320 640

Number of Hidden Units

Accuracy w/A
Accuracy no A
Precision w/A
Precision no A

G2train+K35test Accuracies and Precisions

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

10 20 40 80 160 320 640

Number of Hidden Units

Accuracy w/A
Accuracy no A
Precision w/A
Precision no A

K35train+G2test Accuracies and Precisions

0.93

0.94

0.95

0.96

0.97

0.98

0.99

10 20 40 80 160 320 640

Number of Hidden Units

Accuracy w/A
Accuracy no A
Precision w/A
Precision no A

Unclassified
Page 26 of 62

Experiment 2: Accuracy and Precision of MLPs Trained on G2
and Tested on K35 Using All the Possible Feature Combinations
(Status 12-08-2005 & Status 12-22-2005)
Summary:
In this experiment we investigate how different input feature combinations affect the
accuracy and precision of the MLPs that use them. This study is restricted to the case of
training on G2 data, cross-validating on a random half of all K35 data, and testing on the
remaining half of the K35 data. Here are the main findings:

• The best feature combination in terms of accuracy and precision for MLPs is not
F1-F8. For accuracy, the best is F1,F2,F5,F6 and for precision, the best is
F2,F4,F5,F7.

• Using accuracy and precision as performance criteria for cross-validation and
testing does not lead to a high true positive rate in the low false positive rate
regions (< 10e-3).

Experimental Settings:
Training set G2 and G2_P_100
Cross-validation set Random half of K35, K35_P_50, and K35_P_100
Testing set Remaining half of K35, K35_P_50, and K35_P_100
Features used All 511 possible combinations of F1-F8, and A
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

Accuracy or precision

Testing performance
criteria

Same as cross-validation performance criteria: accuracy or
precision

Class-weights Not used (i.e., equal class-weights)
Learning rate search
range

0.05 to 1.7 with increments of 0.05

Number of initial
random seeds

One

Number trainable
parameters

About 300

Unclassified
Page 27 of 62

Tables and Graphs:

Table 2– Top and bottom five feature combinations chosen and ranked by precision.

Table 3 - Top and bottom five feature combinations chosen and ranked by accuracy.

0.65310.65310101F6,F8

0.65310.65310101F6,F7

0.65310.65310101F7,F8

0.65310.65310101F6,F7,F8

0.65310.65310101F6

0.65310.65310101F7

0.65310.65310101F8

0.99360.86410.20290.00960.99040.7971F1,F2,F4,F5

0.99360.88230.1750.010.990.825F1,F4,F5,F7,F8

0.99360.88440.17170.010.990.8283F1,F4,F5,F6,F7

0.99390.89820.15060.00980.99020.8494F1,F5

0.99480.91080.1320.00860.99140.868F2,F4,F5,F7

PrecisionAccuracyFNFPTNTPfeatures

0.65310.65310101F6,F8

0.65310.65310101F6,F7

0.65310.65310101F7,F8

0.65310.65310101F6,F7,F8

0.65310.65310101F6

0.65310.65310101F7

0.65310.65310101F8

0.99360.86410.20290.00960.99040.7971F1,F2,F4,F5

0.99360.88230.1750.010.990.825F1,F4,F5,F7,F8

0.99360.88440.17170.010.990.8283F1,F4,F5,F6,F7

0.99390.89820.15060.00980.99020.8494F1,F5

0.99480.91080.1320.00860.99140.868F2,F4,F5,F7

PrecisionAccuracyFNFPTNTPfeatures

0.65310.65310101F6,F8

0.65310.65310101F6,F7

0.65310.65310101F7,F8

0.65310.65310101F6,F7,F8

0.65310.65310101F6

0.65310.65310101F7

0.65310.65310101F8

0.97940.96510.03320.03820.96180.9668F2,F5,F7

0.97850.96550.03150.040.960.9685F2,F5

0.98080.96590.03330.03560.96440.9667F2,F5,F8

0.97440.96810.02320.04830.95170.9768F1,F2,F5,F8

0.98390.96960.03060.02980.97020.9694F1,F2,F5,F6

PrecisionAccuracyFNFPTNTPfeatures

0.65310.65310101F6,F8

0.65310.65310101F6,F7

0.65310.65310101F7,F8

0.65310.65310101F6,F7,F8

0.65310.65310101F6

0.65310.65310101F7

0.65310.65310101F8

0.97940.96510.03320.03820.96180.9668F2,F5,F7

0.97850.96550.03150.040.960.9685F2,F5

0.98080.96590.03330.03560.96440.9667F2,F5,F8

0.97440.96810.02320.04830.95170.9768F1,F2,F5,F8

0.98390.96960.03060.02980.97020.9694F1,F2,F5,F6

PrecisionAccuracyFNFPTNTPfeatures

Unclassified
Page 28 of 62

Figure 10 - False negative rate versus false positive rate curves of MLPs trained on G2 data with the
best precision tested on K35 data. The best precision MLP (F1+F2+F4+F5-lr0.35) achieves about a
30% true positive rate at a false positive rate of 10e-3.

Figure 11 - False negative rate versus false positive rate curves of MLPs trained on G2 data with the
best accuracy tested on K35 data. Note that x-axis is scaled by 10-3 and that true positive rates (1-
false negative rate) are less than 20% for false positive rates less than 10e-3.

Unclassified
Page 29 of 62

Experiment 3: Accuracy and Precision of Cost-Sensitive MLPs
Trained on G2 and Tested on K35 Using F1-8 and F1, F2, and F5
(Status 01-31-2006)
Summary:
In this experiment we compare the accuracy and precision of MLPs trained with and
without class weightings. More specifically, we compare MLPs trained using equal
class-weights with MLPs trained using class-weights of 1.0 and 0.1 which penalizes false
positive errors ten times more than false negative errors. As in experiments 1 and 2, the
best initial learning rate for the MLPs is chosen by picking the one that leads to the
highest accuracy or precision on the cross-validation set. The main findings are:

• Using a class-weighting that penalizes false positives ten times more than false
negatives consistently reduces the false positive rate when using the 0.5 decision
threshold.

• However, operating characteristic curves show that unequal class-weighting only
helps in certain regions.

• The problem is that picking the MLP that has the best accuracy or precision on
the cross-validation set does not usually lead to the MLP that has the lowest false
alarm rate and simultaneously the highest true positive rate.

Experimental Settings:
Training set G2 and G2_P_100
Cross-validation set Random half of K35, K35_P_50, and K35_P_100
Testing set Remaining half of K35, K35_P_50, and K35_P_100
Features used F1-F8 and F1+F2+F5 (one of the better feature combinations

from experiment 2)
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

Accuracy or precision

Testing performance
criteria

Same as cross-validation performance criteria: accuracy or
precision

Class-weights Equal class-weights (1,1) and 10x false alarm penalizing (1.0,
0.1)

Learning rate search
range

0.05 to 1.7 with increments of 0.05

Number of initial
random seeds

One

Number of trainable
parameters

About 300

Unclassified
Page 30 of 62

Tables and Graphs:

Table 4 - The false positive rate and false negative rate (at decision threshold = 0.5) of MLPs trained
with equal class-weights (1,2,3,4,5,6,7,8-normed-byacc and 1,2,3,4,5,6,7,8-normed-byprec) and MLPs
trained with false alarm penalizing class-weights (1,2,3,4,5,6,7,8-normed-classweight-byacc and
1,2,3,4,5,6,7,8-normed-classweight-byprec). Note that “byacc” refers to the fact that the MLP with
the highest accuracy on the cross-validation set was chosen, while “byprec” means that the MLP with
the highest precision was chosen.

Table 5 - The false positive rate and false negative rate (at decision threshold = 0.5) of MLPs trained
with equal class-weights (1,2,5-normed-byacc and 1,2,5-normed-byprec) and MLPs trained with false
alarm penalizing class-weights (1,2,5-normed-classweight-byacc and 1,2,5-normed-classweight-
byprec). Note that “byacc” refers to the fact that the MLP with the highest accuracy on the cross-
validation set was chosen, while “byprec” means that the MLP with the highest precision was chosen.

0.133590.026631.41,2,3,4,5,6,7,8-normed-classweight-byprec

0.103060.052261.351,2,3,4,5,6,7,8-normed-classweight-byacc

0.11210.041050.81,2,3,4,5,6,7,8-normed-byprec

0.012440.106330.851,2,3,4,5,6,7,8-normed-byacc

False NegFalse Pos
Initial

Learning
Rate

0.133590.026631.41,2,3,4,5,6,7,8-normed-classweight-byprec

0.103060.052261.351,2,3,4,5,6,7,8-normed-classweight-byacc

0.11210.041050.81,2,3,4,5,6,7,8-normed-byprec

0.012440.106330.851,2,3,4,5,6,7,8-normed-byacc

False NegFalse Pos
Initial

Learning
Rate

0.126360.007210.31,2,5-normed-classweight-byprec

0.086150.015221.41,2,5-normed-classweight-byacc

0.099870.013821.41,2,5-normed-byprec

0.041590.026630.051,2,5-normed-byacc

False NegFalse Pos
Initial

Learning
Rate

0.126360.007210.31,2,5-normed-classweight-byprec

0.086150.015221.41,2,5-normed-classweight-byacc

0.099870.013821.41,2,5-normed-byprec

0.041590.026630.051,2,5-normed-byacc

False NegFalse Pos
Initial

Learning
Rate

Unclassified
Page 31 of 62

Experiment 4: Area Under the ROC (AUROC) of MLPs and Cost-
Sensitive MLPs Trained on G2 and Tested on K35 Using F1-8
(Status 02-21-2006)
Summary:
In this experiment, we use the area under the receiver operating characteristic curve from
false alarm rates 0 to 10-3 (AUROC10-3) as the performance criteria during cross-
validation and testing. We compare the performance on K35 data of MLPs trained on G2
data using equal class-weights with MLPs trained on G2 using false alarm penalizing
class-weights. The main findings show:

• MLPs trained with false alarm penalizing class-weights consistently achieve
higher true positive rates at lower false alarm rates than those trained with equal
class-weights.

• Using AUROC10-3 as the performance criteria during cross-validation leads to
better performing MLPs than MLPs chosen using accuracy.

Experimental Settings:
Training set G2 and G2_P_100
Cross-validation set Random half of K35, K35_P_50, and K35_P_100
Testing set Remaining half of K35, K35_P_50, and K35_P_100
Features used F1-F8
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

Accuracy or AUROC10-3

Testing performance
criteria

Same as cross-validation performance criteria: accuracy or
precision

Class-weights Equal class-weights (1,1) and false alarm penalizing class-weights
(1.0, 0.1) , (1.0, 0.01), (10, 1), (100, 1)

Learning rate search
range

Depends on class-weights
(1,1) – from 0.05 to 1.0 with increments of 0.1
(1.0, 0.1) – from 0.5 to 3 with increments 0.25
(1.0, 0.01) – from 1.0 to 10.0 with increments of 1.0
(10, 1) – from 0.01 to .1 with increments of 0.01
(100, 1) – from 0.01 to .1 with increments of 0.01

Number of initial
random seeds

100

Number of trainable
parameters

About 300

Unclassified
Page 32 of 62

Tables and Graphs:

Table 6 - Tables of accuracy and AUROC10-3 on the testing half of all K35 data for MLPs trained
using various class-weights on G2. The left table shows the results when using accuracy as the cross-
validation performance criteria, while the right table shows the results when using AUROC10-3 as
the cross-validation performance criteria. Using AUROC10-3 in cross-validation leads to higher
AUROC10-3 in testing.

Figure 12 – ROC curves on half of all K35 data for MLPs trained on G2 using different class-weights
(e.g., “cw1,0.01” refers to setting the class-weights as (1, 0.01)) and accuracy as the cross-validation
performance criteria. All MLPs using false alarm penalizing class-weights have higher AUROC10-3

than the MLP with equal class-weights. Note that the x-axis is scaled by 10-3.

Class Weights Best Accuracy Best AUROC10-3
1,1 95.50% 3.31E-04
1,0.1 95.37% 5.00E-04
1,0.01 91.63% 5.65E-04
10,1 91.87% 3.75E-04
100,1 91.91% 5.20E-04

Accuracy-Based Cross-Validation
Class Weights Best Accuracy Best AUROC10-3
1,1 95.50% 3.31E-04
1,0.1 95.37% 5.00E-04
1,0.01 91.63% 5.65E-04
10,1 91.87% 3.75E-04
100,1 91.91% 5.20E-04

Accuracy-Based Cross-Validation
Class Weights Best Accuracy Best AUROC10-3
1,1 95.12% 3.93E-04
1,0.1 92.94% 6.31E-04
1,0.01 91.57% 6.33E-04
10,1 91.66% 4.26E-04
100,1 91.91% 6.52E-04

AUROC-Based Cross-Validation
Class Weights Best Accuracy Best AUROC10-3
1,1 95.12% 3.93E-04
1,0.1 92.94% 6.31E-04
1,0.01 91.57% 6.33E-04
10,1 91.66% 4.26E-04
100,1 91.91% 6.52E-04

AUROC-Based Cross-Validation

P(False Positive)P(False Positive)

Unclassified
Page 33 of 62

Figure 13 - ROC curves on half of all K35 data for MLPs trained on G2 using different class-weights
(e.g., “cw1,0.01” refers to setting the class-weights as (1, 0.01)) and AUROC10-3 as the cross-
validation performance criteria. All MLPs using false alarm penalizing class-weights have higher
AUROC10-3 than the MLP with equal class-weights. Note that the x-axis is scaled by 10-3.

P(False Positive)P(False Positive)

Unclassified
Page 34 of 62

Experiment 5: AUROC of MLPs and Cost-Sensitive MLPs Trained
on T1 Sets and Tested on J1 Sets Using F1-8 and the Effect of
Cross-Validation Data on Performance (Status 02-28-2006)
Summary:
In this experiment, we investigate how the choice in cross-validation data affects the
performance (AUROC10-3) on J1 data of MLPs trained using equal and false alarm-
penalizing class-weights on T1 data. The main findings are:

• Cross-validation data that more closely resemble test data lead to MLPs that
perform better on the test data.

o Using a T1 cross-validation set leads to MLPs that perform very well on
T1, but they do not perform as well as MLPs that use J1 cross-validation
sets when tested on J1.

o Increasing the amount of T1 data or J1 data in the cross-validation set does
not always lead to better performance on J1 test data.

• There is some evidence that training on harder data (P_40) leads to MLPs that
perform better on easy data (P_100) than MLPs trained on easy data (P_100).

Unclassified
Page 35 of 62

Experimental Settings:
Training/Cross-Validation sets:
1. CV with 2000 samples from T1 & T1_P_100, Train with remaining3 T1 & T1_P_100
data
2. CV with 2000 samples from J1 & J1_P_100, Train with T1 & T1_P_100
3. CV with 9700 samples from T1 & T1_P_100, Train with remaining2 T1 & T1_P_100
data
4. CV with 9700 samples from J1 & J1_P_100, Train with T1 & T1_P_100.
5. Train with T1 & T1_P_40, CV with 2000 samples from J1 & J1_P_40.

Testing set Remaining2 J and J1_P_100 data, J1_P_80, J1_P_60, J1_P_40,
and J1_P_20.

Features used F1-F8
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

AUROC10-3

Testing performance
criteria

AUROC10-3

Class-weights Equal class-weights (1,1) and false alarm penalizing class-weights
(1.0, 0.1) , (1.0, 0.01), (10, 1), (100, 1)

Learning rate search
range

Depends on class-weights
(1,1) – from 0.05 to 1.0 with increments of 0.1
(1.0, 0.1) – from 0.5 to 3 with increments 0.25
(1.0, 0.01) – from 0.5 to 6 with increments of 0.5
(10, 1) – from 0.005 to .1 with increments of 0.01
(100, 1) – from 0.005 to .1 with increments of 0.01

Number of initial
random seeds

50

Number of trainable
parameters

About 300

3 Note that in all cases, the cross-validation set is disjoint from the test set, which means
no sample occurs in both the cross-validation set and test set.

Unclassified
Page 36 of 62

Tables and Graphs:

Table 7 - AUROC10-3 percentages of MLPs trained using various class-weights. The upper table
reports numbers from MLPs trained with cross-validation data from 2000 samples of T1, while the
lower table reports numbers from MLPs trained with cross-validation data from 2000 samples of J1.
AUROC10-3 percentages are higher on J1 testing data when the MLP uses a J1 cross-validation set.

Figure 14 – ROC curves of an MLP cross-validated on 2000 samples of T1 & T1_P_100, trained on
the remaining samples of T1 & T1_P_100, and tested on J1 data of different signal strengths. Note
that the x-axis is scaled by 10-3.

ClassWeights CV J1_P_100 J1_P_80 J1_P_60 J1_P_40 J1_P_20
1,1 97.44% 37.40% 21.53% 8.17% 2.35% 0.33%
1,0.1 97.24% 56.83% 46.13% 31.86% 13.04% 0.73%
10,1 97.32% 39.93% 26.43% 8.27% 1.22% 0.06%
1,0.01 97.02% 7.11% 1.99% 0.25% 0.04% 0.04%
100,1 97.22% 49.50% 33.01% 13.40% 1.87% 0.22%

Train=T1_P0&P100
CV=T1_P0&P100 (2000

Samples)

ClassWeights CV J1_P_100 J1_P_80 J1_P_60 J1_P_40 J1_P_20
1,1 77.69% 54.98% 40.85% 19.38% 4.11% 0.41%
1,0.1 82.02% 67.99% 64.02% 48.02% 23.15% 1.64%
10,1 80.87% 52.96% 40.47% 22.62% 2.68% 0.35%
1,0.01 81.81% 63.93% 56.50% 41.16% 12.40% 0.52%
100,1 82.55% 58.87% 51.61% 34.60% 6.95% 0.60%

Train=T1_P0&P100
CV=J1_P0&P100 (2000

Samples)

P(False Positive)P(False Positive)

Unclassified
Page 37 of 62

Figure 15 - ROC curves of an MLP cross-validated on 2000 samples of J1 & J1_P_100, trained on T1
& T1_P_100, and tested on remaining J1 data of different signal strengths. Note that because these
ROC curves show better performance than those in Figure 14, cross-validating using J1 data leads to
better performance on J1 test data. Note that the x-axis is scaled by 10-3.

Table 8 - AUROC10-3 percentages of MLPs trained using various class-weights. The upper table
reports numbers from MLPs trained with cross-validation data from 7900 samples (about 50%) of
T1, while the lower table reports numbers from MLPs trained with cross-validation data from 9700
samples (about 50%) of J1. The AUROC10-3 percentages are not always higher than those of smaller
CV sets in Table 7.

P(False Positive)P(False Positive)

ClassWeights CV J1_P_100 J1_P_80 J1_P_60 J1_P_40 J1_P_20
1,1 89.33% 9.00E-05 0.00% 0.00% 2.00E-05 3.00E-05
1,0.1 93.13% 34.12% 17.48% 5.69% 0.41% 0.07%
10,1 89.59% 21.64% 5.10% 1.21% 0.37% 0.13%
1,0.01 88.92% 55.71% 52.74% 41.87% 13.20% 0.72%
100,1 88.10% 62.93% 55.70% 39.72% 7.47% 0.47%

Train=T1_P0&P100
CV=T1_P0&P100 (7900

Samples)

ClassWeights CV J1_P_100 J1_P_80 J1_P_60 J1_P_40 J1_P_20
1,1 72.24% 66.95% 64.83% 49.36% 15.18% 1.46%
1,0.1 73.29% 69.20% 66.67% 55.01% 28.89% 1.84%
10,1 73.63% 50.73% 54.99% 36.53% 7.11% 0.42%
1,0.01 75.28% 55.71% 58.92% 42.65% 12.08% 0.80%
100,1 75.69% 65.04% 63.52% 52.16% 28.22% 2.98%

Train=T1_P0&P100
CV=J1_P0&P100 (9700

Samples)

Unclassified
Page 38 of 62

Table 9 - AUROC10-3 percentages of MLPs trained on T1 & T1_P_100 and cross-validated on 2000
samples from J1 & J1_P_40 using various class-weights. For class-weights = (10,1), (1,0.01), and
(100,1), these AUROC10-3 percentages are much better than those of bottom table in Table 7, which
provides some evidence to support the hypothesis that training on a harder task (P40) leads to
improvements on the easier task (P100).

Figure 16 - ROC curves of an MLP cross-validated on 2000 samples of J1 & J1_P_100, trained on T1
& T1_P_100, and tested on remaining J1 data of different signal strengths. Note that the x-axis is
scaled by 10-3.

ClassWeights CV J1_P_100 J1_P_80 J1_P_60 J1_P_40 J1_P_20
1,1 46.16% 54.63% 47.26% 36.41% 15.51% 1.23%
1,0.1 55.96% 55.53% 50.71% 42.02% 20.16% 0.79%
10,1 47.99% 61.59% 49.80% 39.10% 14.85% 1.84%
1,0.01 53.10% 70.65% 58.45% 42.76% 23.20% 1.37%
100,1 54.02% 67.10% 61.15% 46.45% 16.68% 1.89%

Train=T1_P0&P40
CV=J1_P0&P40 (2000

Samples)

P(False Positive)P(False Positive)

Unclassified
Page 39 of 62

Figure 17 - ROC curves of an MLP cross-validated on 2000 samples of J1 & J1_P_100, trained on T1
& T1_P_40, and tested on remaining J1 data of different signal strengths. Comparing these curves to
the ones in Figure 16, shows that training on harder data (e.g., T1_P_40) can sometimes lead to
better performance on easier data (e.g., J1_P_100 and J1_P_80). Note that the x-axis is scaled by 10-3.

P(False Positive)P(False Positive)

Unclassified
Page 40 of 62

Experiment 6: AUROC of SVMs Trained on T1 Sets and Tested
on J1 Sets Using F1-8 and the Effect of Cross-Validation Data on
Performance (Status 04-04-2006 & Status 04-11-2006)
Summary:
In this experiment, we vary the data used for cross-validation and investigate the effect
this has on final test performance of SVMs. The main findings are:

• As in the MLP case (Experiment 5), the AUROC10-3 percentages on J1 data are
better for SVMs trained using J1 data for cross-validation.

o Increasing the amount of T1 data for cross-validation hurts performance
on J1 test data.

• 10-fold cross-validation leads to similar performance compared with cross-
validation on a single cross-validation set consisting of a disjoint 10% collection
of training data.

Experimental Settings:
Training set Remaining T1 & T1_P_100
Cross-validation set 2000 samples of J1 & J1_P_100 (“J1-2000”)

2000 samples of T1 & T1_P_100 (“T1-2000”)
9700 samples of T1 & T1_P_100 (“T1-9700”)
10-Fold Cross Validation (i.e., CV on each of the ten subsets of
T1 & T1_P_100, and train on the remaining nine subsets. “10-
Fold CV on T1”)

Testing set J1, J1_P_100, J1_P_80, J1_P_60, J1_P_40, J1_P_20
Features used F1-F8
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

AUROC10-3

Testing performance
criteria

AUROC10-3

Kernel type Gaussian
Gaussian kernel
width search range

σ=1 to 10 with increments of 1

C search range 1 to 500 with increments of 25
−ν and +ν search

range
Not applicable

Tables and Graphs:

Table 10 – AUROC10-3 percentages for C-SVC using Gaussian kernels trained on T1 & T1_P_100
with various cross-validation sets.

P100 P80 P60 P40 P20 AVG
SVM (Gaussian) CV J1-2000 72.58% 69.01% 59.87% 39.05% 5.17% 49.14%
SVM (Gaussian) CV T1-2000 60.67% 51.74% 34.59% 12.51% 1.12% 32.12%
SVM (Gaussian) CV T1-9700 53.92% 48.96% 39.05% 19.13% 2.61% 32.73%
SVM (Gaussian) 10-Fold CV on T1 60.00% 50.07% 31.48% 11.57% 1.27% 30.88%

Unclassified
Page 41 of 62

Figure 18 – ROC curves on various J1 test sets of a C-SVC with Gaussian kernel. The SVM is
trained on T1 & T1_P_100 and cross-validated on 2000 samples of J1 & J1_P_100. Note that the x-
axis is scaled by 10-3.

SVM, CV J1-2000SVM, CV J1-2000

Unclassified
Page 42 of 62

Figure 19 – ROC curves on various J1 test sets of a C-SVC with Gaussian kernel. The SVM is cross-
validated on 2000 samples of T1 & T1_P_100 and trained on the remaining T1 & T1_P_100 data.
Note that the x-axis is scaled by 10-3.

SVM CV T1-2000SVM CV T1-2000

Unclassified
Page 43 of 62

Figure 20 – ROC curves on various J1 test sets of a C-SVC with Gaussian kernel. The SVM is cross-
validated on 9700 samples of T1 & T1_P_100 and trained on the remaining T1 & T1_P_100 data.
Note that the x-axis is scaled by 10-3.

SVM CV T1-9700SVM CV T1-9700

Unclassified
Page 44 of 62

Figure 21 – ROC curves on various J1 test sets of a C-SVC with a Gaussian kernel. The SVM is 10-
fold cross-validated using each of the 10% disjoint subsets of T1 & T1_P_100. The values of C and σ
leading to the best average AUROC10-3 are used to train the final SVM on all of the T1 & T1_P_100
data. Note that the x-axis is scaled by 10-3.

SVM, 10-Fold CV on T1SVM, 10-Fold CV on T1

Unclassified
Page 45 of 62

Experiment 7: AUROC of MLPs and SVMs Trained on T1_P_100
and Tested on J1 Sets Using All the Possible Feature
Combinations (Status 03-16-2006)
Summary:
In this experiment, we investigate the how varying the input features affects the
AUROC10-3 percentages in MLPs as well as SVMs. Both are trained using T1 &
T1_P_100 data, cross-validated on J1 data, and tested on J1 data. Because the cross-
validation sets contain J1 data, the resulting AUROC10-3 percentages on the J1 test set
are higher than those where the cross-validation set does not contain any J1 data. The
main findings are:

• SVM performance degrades less rapidly than MLP performance as signal strength
decreases

• The best MLP feature combination uses 6 out of the 8 features, while the best
SVM feature combination uses all 8 features.

Experimental Settings:
For MLPs:
Training set T1 & T1_P_100
Cross-validation set 2000 Samples of J1 & J1_P_100
Testing set J1, J1_P_100, J1_P_80, J1_P_60, J1_P_40, J1_P_20
Features used All 255 possible combination of F1-F8
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

AUROC10-3

Testing performance
criteria

AUROC10-3

Class-weights (1.0, 0.01)
Learning rate search
range

From 0.5 to 6.0 with increments of 0.5

Number of initial
random seeds

25

Number of trainable
parameters

About 300

For SVMs:
Training set T1 and T1_P_100
Cross-validation set All of J1 & J1_P_100
Testing set J1, J1_P_100, J1_P_80, J1_P_60, J1_P_40, J1_P_20,
Features used All 255 possible combination of F1-F8
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

AUROC10-3

Unclassified
Page 46 of 62

Testing performance
criteria

AUROC10-3

Kernel type Gaussian
Gaussian kernel
width search range

σ=1 to 5 with increments of 1

C search range 1 to 300 with increments of 25
−ν and +ν search

range
Not applicable

Tables and Graphs:

Figure 22 – The top-10 AUROC10-3 percentages versus J1 signal strength for MLPs trained with
class-weights (1, 0.01) on T1 & T1_P_100.

Unclassified
Page 47 of 62

Figure 23 – The top-10 AUROC10-3 percentages versus J1 signal strength for SVMs trained on T1 &
T1_P_100.
Refer to Status 3-16-2006 for more top-10 AUROC10-3 percentages versus J1 signal
strength graphs of MLPs and SVMs.

Unclassified
Page 48 of 62

Figure 24 – ROC curves for the best performing MLP feature combination F1+F3+F4+F6+F7+F8.
Note that the x-axis is scaled by 10-3.

Unclassified
Page 49 of 62

Figure 25 – ROC curves for the best performing SVM feature combination
F1+F2+F3+F4+F5+F6+F7+F8. Note that the x-axis is scaled by 10-3.

Unclassified
Page 50 of 62

Experiment 8: AUROC of SVMs Trained on T0 and T1 Tested on
J1 and J2 Using F1-8(Status 04-18-2006 and Status 04-28-2006)
Summary:
In this experiment, we investigate the effect that training on T0 or T1 has on the
AUROC10-3 percentages measured on J1 and J2 test data. We also investigate the effect
of feature normalization (zero mean unity variance normalization versus no
normalization) has on performance. The main findings are:

• Zero mean and unity variance normalization leads to much better results.
• With normalization:

o When testing on J1, training with T1 leads to better AUROC10-3 than
with T2.

o When testing on J2, training at the P_100 level with T1 leads to better
AUROC10-3 than with T2, but training at the P_40 level with T2 is better
than T1.

• Without normalization:
o Training with T1 almost always leads to poorer AUROC10-3 than training

with T2 except when training and testing at the highest signal levels
(P_100 and P80).

Unclassified
Page 51 of 62

Experimental Settings:
Training set T1 & T1_P_100

T1 & T1_P_40
T0 & T0_P_100
T0 & T0_P_40

Cross-validation set 10-fold cross-validation using training set
Testing set J1, J1_P_100, J1_P_80, J1_P_60, J1_P_40, J1_P_20

J2, J2_P_100, J2_P_80, J2_P_60, J2_P_40, J2_P_20
Features used F1-F8
Feature
normalization

Zero mean and unit variance for each feature or
Unnormalized

Cross-validation
performance criteria

AUROC10-3

Testing performance
criteria

AUROC10-3

Kernel type Gaussian
Gaussian kernel
width search range

Depends on Normalization,
Zero mean: log2γ=-7 to 1 with increments of log21
Unnormalized: log2γ=-7 to 4 with increments of log21

(where
γ

σ 1
=)

C search range Depends on Normalization,
Zero mean: log2C=-2 to 10 with increments of log21
Unnormalized: log2C=-5 to 10 with increments of log21

−ν and +ν search
range

Not applicable

Tables and Graphs:

Table 11 – Table of AUROC10-3 percentages for C-SVCs trained on T1 or T2 data and tested on J1
or J2 at various signal strengths. Features are normalized to zero mean and unity variance.

P100 P80 P60 P40 P20 AVG
Train T1_P100, Test J1 59.25% 49.40% 31.82% 12.13% 1.10% 30.74%
Train T0_P100, Test J1 33.59% 16.79% 5.82% 1.42% 0.17% 11.56%
Train T1_P100, Test J2 56.14% 51.56% 40.19% 19.82% 2.13% 33.97%
Train T0_P100, Test J2 11.44% 5.45% 2.78% 1.23% 0.38% 4.25%
Train T1_P40, Test J1 59.09% 57.46% 52.04% 37.49% 7.14% 42.65%
Train T0_P40, Test J1 61.96% 51.74% 35.72% 13.13% 1.33% 32.77%
Train T1_P40, Test J2 38.34% 34.46% 27.07% 18.10% 4.84% 24.56%
Train T0_P40, Test J2 48.56% 45.94% 39.30% 21.30% 1.20% 31.26%

AUROC 10e-3
P100 P80 P60 P40 P20 AVG

Train T1_P100, Test J1 59.25% 49.40% 31.82% 12.13% 1.10% 30.74%
Train T0_P100, Test J1 33.59% 16.79% 5.82% 1.42% 0.17% 11.56%
Train T1_P100, Test J2 56.14% 51.56% 40.19% 19.82% 2.13% 33.97%
Train T0_P100, Test J2 11.44% 5.45% 2.78% 1.23% 0.38% 4.25%
Train T1_P40, Test J1 59.09% 57.46% 52.04% 37.49% 7.14% 42.65%
Train T0_P40, Test J1 61.96% 51.74% 35.72% 13.13% 1.33% 32.77%
Train T1_P40, Test J2 38.34% 34.46% 27.07% 18.10% 4.84% 24.56%
Train T0_P40, Test J2 48.56% 45.94% 39.30% 21.30% 1.20% 31.26%

AUROC 10e-3

Unclassified
Page 52 of 62

Figure 26 – Plot of AUROC10-3 percentages for C-SVCs trained on T1 or T2 data and tested on J1 at
various signal strengths. Features are normalized to zero mean and unity variance.

Figure 27 – Plot of AUROC10-3 percentages for C-SVCs trained on T1 or T2 data and tested on J2 at
various signal strengths. Features are normalized to zero mean and unity variance.

AUROC 10e-3 Test on J1

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

P100 P80 P60 P40 P20 AVG

Signal Level

A
U

R
O

C
 1

0e
-3

Train T1_P100, Test J1
Train T0_P100, Test J1
Train T1_P40, Test J1
Train T0_P40, Test J1

AUROC 10e-3 Test on J2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

P100 P80 P60 P40 P20 AVG

Signal Level

A
U

R
O

C
 1

0e
-3

Train T1_P100, Test J2
Train T0_P100, Test J2
Train T1_P40, Test J2
Train T0_P40, Test J2

Unclassified
Page 53 of 62

Table 12 – Table of AUROC10-3 percentages for C-SVCs trained on T1 or T2 data and tested on J1
or J2 at various signal strengths. Features are not normalized.

Figure 28 – Plot of AUROC10-3 percentages for C-SVCs trained on T1 or T2 data and tested on J1 at
various signal strengths. Features are not normalized.

P100 P80 P60 P40 P20 AVG
Train T1_P100, Test J1 52.00% 45.58% 24.04% 3.71% 0.33% 25.13%
Train T0_P100, Test J1 49.77% 46.68% 31.04% 9.79% 1.33% 27.72%
Train T1_P100, Test J2 47.93% 41.37% 26.65% 4.45% 0.57% 24.19%
Train T0_P100, Test J2 39.80% 38.70% 28.97% 11.88% 2.07% 24.28%
Train T1_P40, Test J1 16.15% 30.72% 42.58% 35.10% 6.24% 26.16%
Train T0_P40, Test J1 29.17% 42.71% 46.56% 34.43% 8.29% 32.23%
Train T1_P40, Test J2 8.91% 17.73% 25.30% 19.10% 1.07% 14.42%
Train T0_P40, Test J2 18.57% 27.70% 30.33% 20.08% 1.72% 19.68%

AUROC 10e-3 Test on J1 Unnormalized

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

P100 P80 P60 P40 P20 AVG

Signal Level

AU
RO

C
10

e-
3 Train T1_P100, Test J1

Train T0_P100, Test J1
Train T1_P40, Test J1
Train T0_P40, Test J1

Unclassified
Page 54 of 62

Figure 29 – Plot of AUROC10-3 percentages for C-SVCs trained on T1 or T2 data and tested on J1 at
various signal strengths. Features are not normalized.

AUROC 10e-3 Test on J2 Unnormalized

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

P100 P80 P60 P40 P20 AVG

Signal Level

AU
RO

C
10

e-
3 Train T1_P100, Test J2

Train T0_P100, Test J2
Train T1_P40, Test J2
Train T0_P40, Test J2

Unclassified
Page 55 of 62

Experiment 9: AUROC of Cost-Sensitive SVMs Trained on T1
and T0 Tested on J1 and J2 (Status 05-10-2006 & Status 05-26-2006)
Summary:
In this experiment, we compare the performance on J1 and J2 of the cost-sensitive 2Nu-
SVC with the non-cost-sensitive C-SVC trained on T1 or T0 data at the P_100 level. The
main findings are:

• 2Nu-SVC training is much more time consuming due to extra grid search
dimension as well as the slower individual execution time compared to the C-
SVC.

• 2Nu-SVCs achieve higher AUROC10-3 at all signal levels except for P_20 of J1
and J2 than comparable C-SVCs when trained on T1_P_100 data or T0_P_100
data.

Experimental Settings:
Training set T1 & T1_P_100

T0 & T0_P_100
Cross-validation set 5-fold cross-validation using training set
Testing set J1, J1_P_100, J1_P_80, J1_P_60, J1_P_40, J1_P_20

J2, J2_P_100, J2_P_80, J2_P_60, J2_P_40, J2_P_20
Features used F1-F8
Feature
normalization

Zero mean and unit variance for each feature

Cross-validation
performance criteria

AUROC10-3

Testing performance
criteria

AUROC10-3

Kernel type Gaussian
Gaussian kernel
width search range

log2γ=-5 to 1 with increments of log23

(where
γ

σ 1
=)

C search range For the C-SVCs: log2C=-2 to 10 with increments of log21
−ν and +ν search

range
For the 2Nu-SVCs: Uniform grid from 0.1 to 0.9 with increments
of 0.1 for both −ν and +ν

Unclassified
Page 56 of 62

Tables and Graphs:

Table 13 – AUROC10-3 percentages on J1 and J2 test sets at various signal strengths of C-SVCs and
2Nu-SVCs trained on T1 & T1_P_100 and T0 & T0_P_100 data. Each 2Nu-SVC outperforms its C-
SVC counterpart for every signal strength except the P_20 level.

Figure 30 – Graph of AUROC10-3 percentages on the J1 test set at various signal strengths of C-
SVCs and 2Nu-SVCs trained on T1 & T1_P_100 or T0 & T0_P_100 data. Each 2Nu-SVC
outperforms its C-SVC counterpart for every signal strength except the P_20 level.

P100 P80 P60 P40 P20 AVG
C-SVC Train T1_P100, Test J1 49.40% 42.17% 28.58% 11.71% 0.94% 26.56%
2Nu-SVC Train T1_P100, Test J1 63.87% 57.28% 42.08% 12.50% 0.42% 35.23%
C-SVC Train T1_P100, Test J2 36.66% 24.58% 16.07% 6.80% 2.42% 17.30%
2Nu-SVC Train T1_P100, Test J2 52.92% 41.29% 25.53% 10.54% 1.89% 26.43%0.00%
C-SVC Train T0_P100, Test J1 33.59% 16.79% 5.82% 1.42% 0.17% 11.56%
2Nu-SVC Train T0_P100, Test J1 52.39% 39.90% 16.59% 1.50% 0.15% 22.11%
C-SVC Train T0_P100, Test J2 11.44% 5.45% 2.78% 1.23% 0.38% 4.25%
2Nu-SVC Train T0_P100, Test J2 45.06% 39.62% 26.74% 7.55% 1.00% 23.99%

C-SVC Vs. 2Nu-SVC: AUROC 10e-3 Test on J1

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

P100 P80 P60 P40 P20 AVG

Signal Level

A
U

R
O

C
 1

0e
-3 C-SVC Train T1_P100,

Test J1
2Nu-SVC Train T1_P100,
Test J1
C-SVC Train T0_P100,
Test J1
2Nu-SVC Train T0_P100,
Test J1

Unclassified
Page 57 of 62

Figure 31 – Graph of AUROC10-3 percentages on the J2 test set at various signal strengths of C-
SVCs and 2Nu-SVCs trained on T1 & T1_P_100 or T0 & T0_P_100 data. Each 2Nu-SVC
outperforms its C-SVC counterpart for every signal strength except the P_20 level.

C-SVC Vs. 2Nu-SVC: AUROC 10e-3 Test on J2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

P100 P80 P60 P40 P20 AVG

Signal Level

A
U

R
O

C
 1

0e
-3 C-SVC Train T1_P100,

Test J2
2Nu-SVC Train T1_P100,
Test J2
C-SVC Train T0_P100,
Test J2
2Nu-SVC Train T0_P100,
Test J2

Unclassified
Page 58 of 62

Figure 32 – ROC curves on J1 test data of the C-SVC (C=0.25 and σ=1.41) trained and 5-fold cross-
validated on T1 & T1_P_100. Note that the x-axis is scaled by 10-3.

Figure 33 – ROC curves on J1 test data of the 2Nu-SVC (−ν =0.021, +ν =0.071, and σ=1.41,) trained
and 5-fold cross-validated on T1 & T1_P_100. Note that the x-axis is scaled by 10-3.

Unclassified
Page 59 of 62

Figure 34 – ROC curves on J2 test data of the C-SVC (C=0.25 and σ=1.41) trained and 5-fold cross-
validated on T1 & T1_P_100. Note that the x-axis is scaled by 10-3.

Figure 35 – ROC curves on J2 test data of the 2Nu-SVC (−ν =0.021, +ν =0.071, and σ=1.41,) trained
and 5-fold cross-validated on T1 & T1_P_100. Note that the x-axis is scaled by 10-3.

Unclassified
Page 60 of 62

Figure 36 – ROC curves on J1 test data of the C-SVC (C=724.1 and σ=8.88) trained and 5-fold cross-
validated on T0 & T0_P_100. Note that the x-axis is scaled by 10-3.

Figure 37 – ROC curves on J1 test data of the 2Nu-SVC (−ν =0.009, +ν =0.005, and σ=4,) trained and
5-fold cross-validated on T0 & T0_P_100. Note that the x-axis is scaled by 10-3.

Unclassified
Page 61 of 62

Figure 38 – ROC curves on J2 test data of the C-SVC (C=724.1 and σ=8.88) trained and 5-fold cross-
validated on T0 & T0_P_100. Note that the x-axis is scaled by 10-3.

Figure 39 – ROC curves on J2 test data of the 2Nu-SVC (−ν =0.009, +ν =0.005, and σ=4,) trained and
5-fold cross-validated on T0 & T0_P_100. Note that the x-axis is scaled by 10-3.

Unclassified
Page 62 of 62

7. References

[1] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
New York, 1995.

[2] C.J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”,
Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, Kluwer Academic
Publishers, 1998.

[3] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,”
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

[4] M. A. Davenport, R. G. Baraniuk, and C. D. Scott, “Controlling false alarms with
support vector machines,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), Toulouse, France, 2006.

[5] M. A. Davenport, “The 2nu-SVM: A Cost-Sensitive Extension of the nu-SVM,” Rice
University ECE Technical Report TREE 0504, October 2005.

[6] T. Fawcett, “ROC Graphs: Notes and practical considerations for researchers,” Tech
Report HPL-2003-4, HP Laboratories, 2003.

[7] C.-W. Hsu, C.-C. Chang, C.-J. Lin, “A practical guide to support vector
classification,” 2003.

[8] D. Johnson, “QuickNet: a suite of software that facilitates the use of multi-layer
perceptrons (MLPs) in statistical pattern recognition systems,” Software available at
http://www.icsi.berkeley.edu/Speech/qn.html.

[9] N. Morgan and H. Bourlard, “Continuous speech recognition,” IEEE Signal
Processing Magazine, vol. 12, no. 3, pp. 25-42, May 1995.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.

[11] B. Scholkopf and A. J. Smola, Learning With Kernels, MIT Press, Cambridge,
Massachusetts, 2002.

