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Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
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Abstract 
A simple probability model was applied to detection sampling in a room or space in 
which different surface materials are present. The model assesses the overall detection 
capability when the sampling and analytical methods have different performance 
properties for the different materials. The results suggest that some common sampling 
strategies may not be ideal. In particular: (1) In a single room or area that includes 
different surface types with different detection properties, do not use a single sampling 
grid with a common spacing throughout. (2) If it is known or strongly suspected that one 
material has better detection properties than the other, place all samples on that material. 
(3) When it is completely unknown which material has the better detection properties, 
allocate the samples equally between them.  
Introduction 
Consider a situation in which a large indoor space is to be sampled in order to find out if 
a contaminant (for example, viable Bacillus anthracis (B.a.)) is present, and the entire 
space is being considered for sampling. Such a circumstance could arise, for example, 
during clearance sampling, when a sampling grid covering the flat surfaces (floor, wall, 
ceiling) of the whole space is used as a back up to focused sampling. Or, it could occur 
during characterization, in portions of a facility where there is essentially no information 
about which areas are more likely to be contaminated, and therefore no basis for 
judgmental selection of sampling locations. It could also be the case that judgmental 
samples are being collected in parts of the space where contamination is considered more 
likely (e.g., near doors coming from more contaminated parts of the facility or beneath air 
supply registers), and a grid or simple random sampling design is being used in the 
remainder of the space. 

Suppose, further, that in this large space about 30% of the flat surface area is carpeted, 
and the remaining 70% consists of a hard, smooth material such as terrazzo tile. The 
sampling team may consider using different sampling methods on the different surfaces, 
such as wipes on the terrazzo and vacuum samples on the carpet (this is not meant to 
imply they should use different methods, only that they may use different methods). 
If the sampling team chooses to use different sampling methods, then the sampling 
strategy could be described as using “material-based” stratification. The question then 
arises: what proportion of the samples should be collected from each of the surface types? 
If a regular grid covering the whole space, including both materials, were to be used to 
determine sampling locations, then about 30% of the samples would be on the carpet and 
70% on the terrazzo. The samples would be allocated in proportion to the sizes of the 
strata. 
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Stratified Sampling 
In the statistical literature, “stratified sampling” is a general term that refers to a sampling 
strategy that “… makes use of prior information to divide the target population into 
subgroups that are internally homogeneous” (Gilbert, 1987). Here, the surface material 
defines the subgroups. The statistical approach to stratification uses some aspect of the 
subgroups to optimize the number of samples within each stratum (given a fixed total 
number of samples) so as to do the best possible job of meeting the sampling goal. A 
typical example in the statistical literature would be for estimating the average value of 
an attribute (such as contaminant concentration), in which case the samples would be 
allocated in proportion to the variability of the attribute in the subgroups. If the attribute 
varies more within one of the subgroups, more of the samples should be collected from 
that subgroup, in order to improve the estimate of the average in the subgroup where it is 
more difficult to estimate.  
Detection sampling 
The focus of this analysis is on detection sampling. That is, if a contaminant is present in 
a specified area, but we don’t know that it is, we want our sampling to discover that fact. 
The specified area could be a single room, a boarding concourse in an airport, the 6th 
floor of an office building; a city park…any well defined area. 

When there is sufficient information, or when contaminant levels are high enough, and/or 
the contaminant has spread throughout, discovery sampling is easy. For example, if a 
release is large, and the release location is known, then we have good reason to expect 
high levels of contamination near the release location, and we expect samples near the 
release location to be very likely to have positive detections of the contaminant. If it is 
known that someone walked through a release area shortly after the release, and then 
went into the next room, there is a very good chance that samples in the next room near 
the door will have positive results. If the contaminant is both widespread in a room, and 
at high levels, it does not matter much where in the room a sample is collected – it is 
highly likely to have a positive result. In cases like these, it should not take very many 
samples to discover the presence of the contaminant, and it may not matter where 
samples are collected, or what the surface material is. 

This analysis focuses on situations where discovery is difficult. For example, when 
assessing the extent of contamination in a large transportation facility, there will be 
rooms near the furthest extent of contamination in which contamination, if present at all, 
will be at low levels, and probably sparse. After a decontamination fumigation that 
almost, but not quite, succeeded, the density of viable spores on surfaces may be low 
(e.g., barely detectable), or the locations of viable spores may be patchy and sparse (e.g., 
the fumigant was not distributed uniformly). In cases like these, the probability of 
detection for a randomly placed sample will be low, or equivalently the false negative 
rate of the sampling and analysis process will be high. Then, differences between surface 
materials might become critical, and questions of how many samples to place where are 
more important than in areas where discovery is easy. For this reason, the analysis of 
stratification presented below is illustrated with examples where the probability of 
detection is low. 
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Stratification for detection sampling 
It turns out, for our carpet/terrazzo example, that in order to have the best chance of 
detecting the contaminant when it is present, the samples should not be allocated in 
proportion to the sizes of the areas. Quite the opposite; all of the samples should be 
collected from the material with the best detection probability. That is, all of the samples 
should be collected from one of the two surface types, and the other should be completely 
ignored.  
The following probability calculation demonstrates this result. 

Probability equations 
Refer to the two strata as S1 and S2 respectively. Define: 

N The total number of samples 
n1 The number of samples collected in S1;  n1 can range from 0 to N 

n2 The number of samples collected in S2; 
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n
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p1 Probability that a single sample collected in S1 will detect the agent 
(also referred to as “detection capability” herein) 

p2 Probability that a single sample collected in S2 will detect the agent 
(also referred to as “detection capability” herein) 

q1 = 1 – p1 Probability that a single sample collected in S1 will fail to detect the 
agent (the false negative rate in S1) 

q2 = 1 – p2 Probability that a single sample collected in S2 will fail to detect the 
agent (the false negative rate in S2) 

 

The overall probability of detecting the agent is 
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If q1 < q2, then the ratio is smallest when n1 is largest, i.e., n1 = N, or all samples are 
collected in S1. Note that if 
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,  then
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2
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p
1

> p
2
 .

 

That is, all the samples should go in S1 when the detection capability in S1 is better than 
in S2. 
When all of the samples are in S1, 
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The converse is true as well: if the detection probability in S2 is better than in S1, then all 

the samples should go in S2 (making n1 small will make the ratio 
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This result is illustrated by example in Figure 1. We imagine that deposition is light, so 
that surface contamination levels are near the limit of detection. At low levels, detection 
is difficult, so we set the probability of detection in the second stratum, S2, rather low, at 
0.1 (p1 = 0.1, q1 = 0.9). In S1, the sampling and analytical methods are somewhat more 
effective, so that the detection rate in S1 is larger. Two values for the detection rate in S1 
are illustrated. 

Since the example detection rates in S1 are greater than in S2, the ratios 
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0.8, corresponding to detection rates in S1 of 0.46 and 0.28  (0.46 = 1– 0.6 × 0.9). 

The total number of available samples is N = 10, and these can be distributed with all 
samples in S2 (

! 

n
1

= 0), or all samples in S1 (

! 

n
1

=10), or anywhere in between. The two 
curves in Figure 1 show the overall detection probability as a function of n1 ranging from 
0 to 10. 
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Figure 1. Probability of detecting the presence of a contaminant when distributing 
N = 10 samples between two strata having different probabilities of detection. 
As can be seen by the two curves, the overall probability of detection is largest when all 
samples are in S1, the area with the better detection capability, and lowest when all 
samples are in S2, the area with the poorer detection capability. 
It should be noted that this elementary probability calculation is similar to one of the 
most common rationales for judgmental sampling: sample where the agent is believed 
most likely to be present (i.e., “most likely to be present” is similar in concept to “most 
likely to be detected”). 
In using judgmental sampling, however, the reasons why the agent is believed most likely 
to be present are typically be due to event-specific information, such as the release 
location (“follow the letter trail”), or specific information about how an air-handling 
system was operating, or specific movements from place to place of people who were 
present, or results of numerical models that predict the contaminant fate and transport. 

In the above scenario, that kind of information is considered to be not available. Instead, 
the different types of material lead to different detection capabilities, because there may 
be different collection and extraction efficiencies for different sampling methods, or for 
the same sampling method on different materials (compare wipes on terrazzo with 
vacuum samples on carpet, for which both collection and extraction efficiencies may be 
different; or compare vacuum on carpet with vacuum on terrazzo, for which extraction 
efficiencies should be the same, but collection efficiencies may be different). 
Analysis for more than two material types 
The principle extends to multiple strata, but the equation for Pr(detect) does not have a 
nice solution as above. With K strata, 
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subject to the constraint that 
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n
i" = N  . To make the probability of detection as large as 

possible, make product of the q’s as small as possible. To do that, raise the smallest qi to 
the largest possible power, which means set ni = N, and all other n = 0. That is, put all 
samples in the stratum with the smallest q, and thus the largest p. If even a single sample 
is shifted to a stratum with a larger q, then one of the terms in the product is replaced with 
a larger q, and that increases the product, making Pr(detect) smaller. 
Analysis when it is unknown which stratum has the better detection capability 
Suppose there are two materials that have different detection capabilities (different false 
negative rates), but it is completely unknown which one has the better capability. Figure 
2 illustrates a case where S2 has the poorer detection capability (p2 = 0.04) and the ratio 
q1/q2 = 0.5  [p2 = 0.04; q1 = 0.5 × q2 = 0.5 × (1 – 0.04) = 0.48;  p1 = 1 – 0.48 = 0.52]. 

 
Figure 2. Overall detection probabilities for an example where one material has a 
poor detection capability and the other is better, to illustrate the case in which it is 
completely unknown which is which. 
If half of the samples are placed each area, the overall probability of detection is 0.98. If 
the samples are allocated in a different proportion, for example, 2 and 8, then the 
detection probability is either 0.67 or 0.99, depending on which stratum gets which 
number of samples. However, since we don’t know which stratum is better, we don’t 
know which of those two overall detection probabilities will apply. By changing from 5 
in each stratum to 2 in one and 8 in the other, we can either increase our overall detection 
probability from 0.98 to 0.99, or reduce it from 0.98 to 0.67. We get either a negligible 
gain or a substantial loss; obviously the change is not worth the risk. Therefore, if it is 
completely unknown which stratum is better, the best strategy is to place half our samples 
in each one. Samples are not placed in proportion to the sizes of the areas. This means 
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that placing a single equally spaced grid over the entire area, including both types of 
material, is not a good idea. 

Analysis when it is uncertain which strata has the better detection capability 
Now suppose it is suspected that detection capability is better on one of the materials, but 
there is some uncertainty about this. For example, one might be willing to say, “Detection 
capability in S1 is probably better than in S2, but we’re not completely sure.” 

To model this situation, we fix the detection capability in one of the strata, and consider a 
range of possible detection capabilities in the other. This is illustrated by the curve in 
Figure 3. Detection capability in S1 is considered to range from about 0.01 up to 0.6, with 
capabilities at the low end being more likely (the higher the curve in Figure 3 the more 
likely). Detection capability in S2 is set at 0.1. Thus, the curve in Figure 3 represents the 
idea that detection capability in S1 is probably better than in S2, but that there is some 
possibility it is poorer. The expected value of the detection capability in S1 (the weighted 
average over the range from 0.01 to 0.6) is about 0.25, which is better than the 0.1 in S2.  

 
Figure 3. Example probability distribution for the detection capability of the 
sampling and analytical process in area S1. 
To find the best value of n1 we average over the range of possible values of q1. We 
simplify the calculation by using a set of equally spaced discrete values for q1, that is, 
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The results of this calculation, for n1 from 0 to N = 10, are shown in Figure 4.  
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Figure 4. Example overall discovery probability when it is uncertain which stratum 
has the better detection capability. 
The theoretical and practical interpretations of this result differ. Theoretically, the best 
allocation of samples is n1 = 8 in S1 and n2 = 2 in S2, with an overall detection 
probability of 0.80. More samples are in S1 because detection capability is probably 
better in S1 than in S2, but some are placed in S2 to allow for the possibility that 
detection capability may be better in S2. Practically speaking, however, if all samples are 
placed in S1, the detection probability is 0.79, and the difference between 0.80 and 0.79 
is of course completely negligible. If all samples are placed in S2, the overall detection 
probability is reduced to 0.65, and that difference, though not necessarily large, is 
meaningful. Practically speaking, one might as well place all samples in S1. 
Dispersion 
The discussions above were focused on detection sampling. Detection capability (p1 or 
p2) was defined as the probability of detection given that the contaminant is present at the 
exact location sampled. In that context, differences in detection capability were attributed 
to differences in surface type and sampling and analytical processes (e.g., collection and 
extraction efficiencies).  
The discussions were also set in the context of a space or room where there is no basis for 
judgmental selection of sampling locations, i.e., no reason for expecting higher surface 
concentrations in some areas. If surface concentrations are uniform throughout then it is 
differences in collection and extraction efficiencies that drive the detection capability. 
In reality, detection probability is a function of both the probability that the contaminant 
is present (a function of dispersion), and the probability that the contaminant is detected 
if a sample is placed in a contaminated location (a function of the sampling and analytical 
process). This is written mathematically as  
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! 

Pr detection in a single sample( )

= p present at the sampled location and detected( )

= p detected given present at the sampled location( )p present at the sampled location( )

 

However, the probability equations in the stratified sampling analysis are ignorant of any 
real world reasons for differences in detection capability. The probability equations 
require only that there be a detection probability for a sample placed at random in each 
stratum. 

If dispersion is sufficiently uneven, then a randomly placed sample may or may not land 
on a contaminated location, and the degree of unevenness affects the detection 
probability. That is, p1 and p2 depend on both the dispersion pattern and on the interaction 
between surface type and the sampling and analytical methods. If one of the strata is very 
small and dispersion is highly uneven, then the detection probability in that stratum might 
be low, even if the sampling and analytical methods are better in that stratum. Therefore, 
if dispersion is highly heterogeneous and one of the strata is very small, the 
recommendations described above, to sample in the stratum with the better sampling and 
analytical methodology, do not apply. 
Applicability 
In should also be noted that the examples above used a relatively small number of 
samples (N = 10). Suppose that detection is difficult, such as p1 = 0.05 for each sample. 
The overall detection probability can still be made large by collecting enough samples. 
Even with as p1 at 0.05, the overall detection probability can be raised to 0.95 by 
collecting 60 samples. Thus, if resources (time, personnel, fund, laboratory throughput) 
are sufficient to collect enough samples, the issue of allocating samples to strata may 
might not be critical. 
Review 
This analysis started out as an attempt to optimize the allocation of samples between 
different surface materials within a single space. After the analysis was complete it 
became clear that the results are intuitively sensible even without the probability analysis, 
as follows. 

The overall chance of detection in a sampling program depends on the chance of 
detection for each sample. The larger the chance of detection for each sample, the larger 
the overall chance of detection. So put as many samples as possible in places where their 
individual chance of detection is greatest. If the surface material affects the chance of 
detection (and there is no other information to indicate the chance of detection), place all 
samples on the surface with the best chance of detection. An ordinary regular grid does 
not do this. 
If a sample is moved from a given location to another location where the chance of 
detection is smaller, the overall chance of detection decreases. Therefore, if the affect of 
surface material is completely unknown, a 50-50 allocation is best, because given a 50-50 
split, moving even a single sample to the other material may be a move in the wrong 
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direction. An ordinary regular grid does not provide a 50-50 split (unless, of course, the 
materials cover equal areas). 

Summary 
This simple probability model suggests that for detection sampling: 

When it is completely unknown which material has the better detection properties, split 
the samples equally between them. 

If it is known or suspected that one material has better detection properties than the other, 
place all samples on that material. 

Do not use a single sampling grid (with the same spacing throughout) that covers 
different materials, if those materials have different detection properties. That is, in a 
single room that has different surface types, do not use a single sampling grid. 
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