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Abstract

The theory of the strong nuclear force, Quantum 
Chromodynamics (QCD), can be numerically simulated 
from first principles on massively-parallel supercomputers 
using the method of Lattice Gauge Theory. We describe the 
special programming requirements of lattice QCD (LQCD) 
as well as the optimal supercomputer hardware 
architectures that it suggests. We demonstrate these 
methods on the BlueGene massively-parallel 
supercomputer and argue that LQCD and the BlueGene 
architecture are a natural match. This can be traced to the 
simple fact that LQCD is a regular lattice discretization of 
space into lattice sites while the BlueGene supercomputer 
is a discretization of space into compute nodes, and that 
both are constrained by requirements of locality. This 
simple relation is both technologically important and 
theoretically intriguing. The main result of this paper is the 
speedup of LQCD using up to 131,072 CPUs on the largest 
BlueGene/L supercomputer. The speedup is perfect with 
sustained performance of about 20% of peak. This 
corresponds to a maximum of 70.5 sustained TFlop/s. At 
these speeds LQCD and BlueGene are poised to produce 
the next generation of strong interaction physics theoretical 
results.

1. Introduction

Perhaps the best introduction to the theory of Quantum 
Chromodynamics (QCD) was given by Frank Wilczek. He 
described QCD as “…our most perfect physical theory.” 
[1]. Wilczek was a co-recipient of the 2004 Nobel Prize in 
Physics for the discovery of the properties of QCD. In [1] 
he describes the properties of QCD that make it worthy of 
such a qualification:  it embodies deep and beautiful 
principles (it is a relativistic quantum field theory), it 
provides algorithms to answer questions (one such 
algorithm is the subject of this paper),  it has a wide scope 
(from nuclear physics to the genesis of the  cosmos), it 
contains a wealth of phenomena (asymptotic freedom, 
confinement and many others), it has few parameters (and 
is therefore simple to describe), it is true (has been verified 
experimentally), and it lacks flaws (it is fully described by 
its definition).

QCD is the theory of sub-nuclear physics. All nuclear 
particles are made of elementary particles called quarks and 
gluons. The gluons mediate the strong nuclear force that 
binds the quarks together to form stable nuclear particles. 
The strong nuclear force is one of the four known physical 
forces, the others being electromagnetism, weak nuclear, 
and gravity. The strong nuclear force is also responsible for 
the interactions of nuclear particles and is therefore the 
basic ingredient of nuclear physics. 

Nuclear matter constitutes about 90% of the visible 
universe and makes all things that surround us. But it was
not always like this. It is believed that until about 10 lsec 
after the big-bang, nuclear matter did not exist. The 
universe was so hot that quarks and gluons were in a 
plasma state, the quark-gluon-plasma. After 10 lsec the 
temperature dropped below 2 trillion degrees Kelvin and 
the quark-gluon-plasma underwent a phase transition to 
stable nuclear matter.  Currently at the Brookhaven 
National Laboratory, an enormously powerful accelerator 
collides heavy nuclei, in particular gold, at speeds near the 
speed of light. The Relativistic Heavy Ion Collider (RHIC)
produces collisions so powerful as to re-create, if only for a 
brief moment, the conditions for the formation of the 
quark-gluon-plasma. Strong evidence suggests that RHIC 
has been successful in re-creating this state of matter that 
has not existed in our universe since 10 lsec after its birth.

One of the most staggering properties of the theory is the 
behavior of its force. Quarks inside nuclear particles 
behave almost as if they were free. They experience very 
little of the strong nuclear force. This property is called 
asymptotic freedom. However, if one tries to “pull” a quark 
out of a nuclear particle, the force rapidly becomes 
extremely strong. A flux tube of gluons forms and forbids 
the quark from escaping. This property is called 
confinement. Nobody has ever observed a single isolated 
quark. It is remarkable that both of these dramatically 
opposite properties are described by a single theory.
Furthermore, the theory of QCD is extremely simple in its 
mathematical description; it is described by a one line 
mathematical formula.  

Many physical quantities can be calculated analytically for 
the case where the force is weak by using expansions 
around the zero-force point. However, the calculation of 
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physical quantities becomes extremely difficult when the 
force is strong. Few analytical calculations are possible. 
This would have been a serious problem if it were not for 
the discovery of lattice gauge theory [2][3].  This, allows us 
to calculate physical quantities, such as the masses of 
nuclear particles or the characteristics of the thermal phase 
transition, at strong force by using computer simulations. 
Lattice gauge theory for QCD (LQCD) is described in 
Section 2.

Even so, it turns out that the computing requirement is 
enormous.  As a result, LQCD has always required the 
largest supercomputers available to be able to make 
progress. In Section 3 we describe the special programming 
requirements of LQCD as well as the optimal 
supercomputer hardware architectures that it suggests. We 
demonstrate these methods on the BlueGene massively-
parallel supercomputer, and argue that LQCD and the 
BlueGene architecture is a natural match. This can be 
traced to their curiously common properties. In Section 4
we present the main result of this paper:  the sustained 
performance of LQCD on BG/L scaled to 131,072 CPUs, 
scaling with perfect speedup to 70.5 Tflop/s with sustained 
performance of about 20% of peak [4][5]. In Section 5 we 
give our conclusions.

For an introduction to quantum field theory and QCD, the 
reader is referred to the books [6] and [7]. For an 
introduction to lattice gauge theory and lattice QCD the 
reader is referred to the books [8], [9], and [10].

2. Lattice QCD

In this section we give a brief overview of the lattice gauge 
theory method [2][3] that allows QCD to be simulated on a 
computer. 

QCD is defined in the continuous four-dimensional space-
time. The quarks and gluons are described by fields over 
space-time.  Fields are complex functions of the space-time 
coordinates and, loosely speaking, indicate the probability 
of a particle’s existence at each coordinate. That probability 
is a complicated function of the fields. Specific local and 
global symmetries constrain these functions. 

Since space-time is continuous, one would need an infinite 
amount of numbers to describe a field even in a finite 
region. But a computer is a finite machine with finite 
memory and computing capability. How then is it possible 
to simulate QCD? 

The first step is to make space-time discrete by replacing it 
with a four-dimensional lattice. Typically the lattice is 
taken to be hypercubic. Because of the confinement 
property of QCD, only a small region of space that contains 
the nuclear particles is needed. Therefore, the lattice is 
finite and periodic/anti-periodic boundary conditions are
typically implemented.  The sites of the lattice are 
connected by links, where the distance along a link is called 
lattice spacing “a”. 

This rather brute-force approach could have destroyed the 
symmetry properties of the theory beyond recovery. In fact 
this is not a trivial matter at all. It turns out that by defining 
the quark fields on the lattice sites, while defining the gluon 
fields (also called gauge fields) on the lattice links, one of 

the most important symmetries of the theory is preserved. 
Local gauge invariance is exact. 

Obviously the rotational and translational symmetries of 
continuous space-time are destroyed, among some other 
important symmetries. However, these symmetries are 
recovered as the lattice spacing “a” is decreased towards 
the zero lattice spacing limit. By repeating the calculation 
on lattices with more lattice points but smaller lattice 
spacing, one can extrapolate to the zero lattice spacing 
limit. 

Therefore, the quark and gluon fields can be defined on a 
finite set of points. In fact, 24 real numbers per lattice site 
are needed for each quark field, while 18 real numbers per 
lattice link are needed for the gauge field. In a typical QCD 
simulation on the lattice, the computer generates these sets 
of numbers, called field configurations, with a probability 
that is calculated based on the formula of QCD. This 
calculation is complicated and computationally intensive,
but it is possible. From each field configuration one can 
then calculate a wealth of physically interesting quantities 
such as energy, mass, etc.. Average values of these 
quantities are calculated for the full set of field 
configurations generated by the computer. The method is 
very similar to what is used to simulate statistical 
mechanics systems. The equivalent of the Boltzman weight 
is present here as well, and it dictates the probability with
which field configurations are generated. In particular, 
molecular dynamics techniques are employed to generate 
new field configurations from previous ones.  

Although it is possible to calculate many physical 
quantities using numerical simulations, there is a class of 
them that still remains beyond reach. For example,
equilibration processes, or finite density physics, involve a 
severe “sign” problem (it is actually a complex phase 
problem) that prohibits use of these techniques. Research 
efforts have been active for many years now to address 
these issues. Thankfully, a large class of problems does not 
suffer from these difficulties. Nuclear physics calculations, 
calculations of the critical phenomena of the QCD thermal 
transition, calculations that relate to the physics of the 
current theory of elementary particle physics (the standard 
model), as well as of theories beyond the standard model 
are currently being simulated on the largest 
supercomputers. But this is not without effort, for lattice 
QCD requires enormous computational resources. 

3. BlueGene/L and LQCD

In this section we discuss LQCD on massively-parallel 
supercomputers and in particular, LQCD on BlueGene/L.

It may seem strange that a physical theory in the frontier of 
science would have anything at all to do with a machine 
designed by engineers with strict timetables and guidelines 
in the frontier of technology. Theoretical physics carries a 
tradition of “pure thinking” and of analytical calculation 
where computers are barely needed. Conversely, the 
computing industry is defined by a most rapid development 
schedule of ever faster machines that must follow Moore’s 
law, and where there is not time for theories especially of 
some distant and unrelated subject.
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But it is not strange. As described in the previous section,
the strong force regime of QCD would be inaccessible to 
theoretical calculations if it were not for the largest 
supercomputers available. In fact, if lattice theoretical 
physicists had all their wishes come true it would make 
today’s supercomputers look desperately slow. The thirst 
for computing speed is almost unquenchable. That this is so
and also that it is possible for lattice QCD to naturally 
absorb these vast amounts of computing is very interesting. 
As we will present in the following section the weak 
scaling of QCD on BG/L - a massively-parallel 
supercomputer - is perfect. And the need for ever finer 
lattices that occupy ever larger volumes indicates that very 
large lattices are of interest. This implies that QCD can use 
almost any large size parallel supercomputer that any 
current and near feature technologies can build. Petaflop-
scale machines are anxiously awaited. This brings up the 
thought that perhaps there is a much deeper reason for all 
this than simple complexity. We will come back to this at 
the end of the section with some thoughts.

From the supercomputing engineering perspective, QCD
has proven to be of great value for many reasons. To 
understand this let us briefly describe the QCD code and, in 
particular, its  implementation on the BG/L supercomputer.

It turns out that in most QCD implementations about 90% 
of the compute cycles are expended inside a small routine 
(about 1,000 lines of code) called the QCD kernel or D-
slash. This kernel calculates the dynamics of the quarks and 
their interaction with the gluons. Obviously, optimizing D-
slash very well is of great importance. The basic operation 
that involves D-slash is:

( ) )(),( yyxDx
y

ΨΨ /= ∑ (1)

where Y(x) is the quark field at the space-time coordinate 
x and ),( yxD/ is the D-slash operator. This is a sparse 
matrix with indices x, y. Most elements are zero except 
when x and y are nearest neighbors. Because the D-slash 
operator is so sparse, it is not stored in memory and its 
action is calculated operationally. D-slash is given by the 
following equation:
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In the above equation, the sum over l is a sum over the 
four space time directions.  The gluon field residing on a 
link that originates at location x and is along the l
direction is a 3x3 complex matrix (18 real numbers) 
represented by U

l
(x). The gluon field caries an internal 

index, called color charge, that can take 3 values. Thec
l

matrices are 4x4 complex matrices that act on another
internal index, called spin, carried by the quark field. The 
function d(a,b) is one if a=b and zero otherwise. These 
functions implement the nearest-neighbor feature of the 

operator. It should be noted that the terms )1(
2
1

µγ± are 

projection operators and reduce the 24 component quark 
field (also refered to as full spinor below) into four 12-
component intermediate fields (also referred to as half 
spinors below). One standard way to efficiently implement 
equation (1) so that it allows for possible overlap of 
computations and communications is as follows:

1) Using the four projection operators (1+c
l

)/2 
(l=1,2,3,4)
spin project Y into four temporary half spinors Ff

l
for all 

local lattice sites, and store them to memory.
2) Begin sending/receiving each Ff

l
that is on the surface 

of the local lattice to/from the nearest neighbor nodes along 
the negative direction l. Each half spinor consists of 12 
numbers. In double precision this is 96 bytes that need to be 
communicated for each site on the negative direction
surfaces.
3) Using each projection operator (1-c

l
)/2 (l=1,2,3,4)

spin project Y and multiply the result with U+
l 

in 
order to form four half spinors Fb

l
for all local lattice sites,

and store them to memory.
4) Begin sending/receiving each Fb

l
that is on the surface 

of the local lattice to/from the nearest neighbor nodes along 
the positive direction l. Each half spinor consists of 12 
numbers. In double precision this is 96 bytes that need to be 
communicated for each site on the positive direction
surfaces.
5) Wait for the Ff

l
communication to complete. Typically 

this involves polling a network register.
6) Now that all needed half spinors Ff

l
are on the node,

multiply each of them with U
l 

and convert them to full 
spinors. Add all four full spinors for each site and store the 
resulting full spinor to memory.

 
7) Wait for the Fb

l
communication to complete. Typically 

this involves polling a network register.
8) Now that all Fb

l
are on the node, convert each of them 

into a full spinor and for each site add them together. For 
each site add the result to the full spinor of step (6) after 
loading it from memory. This produces the resulting full 
spinor for each site.

Notice that in the above steps, the F fields are not
sequential in memory. The U fields are sequential for the 
first set of four terms and for the second set of four terms 
but not between the two sets. Also, the loop over lattice 
sites is over a four-dimensional lattice. As a result memory 
accesses from the linear memory are typically sequential 
only in the internal indices, as indicated above, which are 
therefore very short. Memory accesses per site consist of 24 
numbers for the full spinors, 12 numbers for the half-
spinors and 4x18=72 numbers for the U field in all four 
links originating from the same site. Furthermore, the 
communications involve very short size messages. The half 
spinors that are communicated reside on the surfaces of the 
four-dimensional lattice and typically can not be grouped 
together into a large message. As a result, each half spinor 
is communicated individually. These are short messages of 
only 96 bytes each. The communications and memory 
accesses cannot be rearranged because they are in-between 
computations. The computations themselves are short,
involving only a few operations. For example, the 
multiplication of the gluon matrix U with a half spinor 
involves 72 multiply-add operations which execute in just 
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36 cycles in a double floating point unit. Therefore, the 
above code involves very “bursty” memory accesses, 
communications and calculations and, as a result, is very 
sensitive to memory, communication network and floating 
point unit latencies. Surprisingly, the above code indicates 
a wealth of architectural requirements in order to achieve 
maximum performance. 

Since QCD is defined in a nearest-neighbor lattice of 
space-time points, it is naturally mapped on a lattice of 
compute nodes connected with nearest-neighbor physical 
links. However there are some implementations of QCD
that require local but more distant than nearest-neighbor 
communications. This implies that a strict nearest-neighbor 
network would be limiting and leads to the requirement for 
a more general network.

The above code allows for almost maximal overlap 
between computations, communications and memory 
accesses. Given the sensitivity to latencies, a machine that 
could overlap all three of these activities would offer a 
substantial performance advantage. This indicates that the 
following hardware features are desirable for QCD:
a) Load/store accesses in “parallel” with computations and 
communications.
b) Sophisticated memory pre-fetching that allows block-
strided accesses.
c) Communications that can overlap with computations and 
memory accesses. This implies a DMA driven network.

Finally, it should be mentioned that equation (1) is the 
inner-most part of a Conjugate Gradient (CG) inverter. This 
requires two global sum reductions per iteration. As a 
result, fast global sum reduction capability is important, 
suggesting that a good part of it should be hardware 
supported.

Although BG/L is a general purpose supercomputer, not 
designed for optimal QCD performance, many of the above 
features are present in its hardware. Here is a short 
description of the BG/L hardware. The reader is referred to 
[11] for a full description.

The BG/L supercomputer is a massively-parallel machine 
comprised of compute nodes that are inter-connected via 
nearest-neighbor links arranged in a three-dimensional 
torus topology. Each node is an IBM ASIC containing two 
IBM PowerPC 440 CPU cores.  Each core has a custom 
double multiply-add unit capable of performing up to four 
floating-point operations per cycle. Therefore each node 
can execute up to eight floating-point operations per cycle. 
Each core has a 32 KByte L1 data cache memory, but the 
two L1 memories are not coherent. Each is fed by a small,
multi-stream, sequential prefetcher (L2) which, in turn 
accesses a shared, on-chip, 4 MByte L3 cache memory. 
The L3 accesses external DRAM via an on-chip DDR2 
controller. The ASIC contains a sophisticated, packet-based 
virtual cut-through router. This allows any node to send 
packets to any other node without intermediate CPU 
intervention. Packets that arrive at a node are kept if they 
are destined for that node or are routed to the appropriate 
output links in order to reach their final destinations in an 
optimal way. The network router is accessed from either 
CPU core by writing/reading packets into hardware 
addresses that correspond to SRAM-based FIFOs inside the 
router. A second, independent collective network is also on 

the ASIC and provides fast reduction operations such as 
global sums. Two such ASICs (nodes) are assembled on a 
small circuit board that also contains the external DRAM 
(typically 1 GByte for both nodes). More functionality is 
present in the ASIC, but it does not directly relate to the 
purposes of this paper.

The 440 core has a separate load/store pipeline and can 
have up to three outstanding load instructions. This allows 
memory access and computations to overlap. However, the 
torus communication network does not allow for overlap of 
computations and communications because the CPU has to 
prepare the hardware packets and copy them between 
memory and the torus FIFOs. Because of this, the earlier 
code description should be modified by consolidating step 
(2) with step (4) and step (7) with step (5).

Given the above, it is clear that equation (1) must be 
carefully coded in a way that is “molded” to the BG/L 
hardware in order to achieve high sustained performance. 
This is particularly hard since the sensitivity to latencies is 
amplified by the large computing capability of the
hardware (8 Flops per CPU cycle). In order to be able to 
take full advantage of the hardware, we wrote our code in 
inline assembly. The main features of our code are:
i) All floating-point operations use the double multiply-add
instructions by pairing all additions with multiplications in 
sets of two wherever possible. The complex numbers used 
by QCD make this natural.
ii) All computations are arranged to avoid pipeline 
conflicts. These have to do with register access rules.
iii) The storage order of the quark and gluon fields is 
chosen to maximize the size of sequential accesses.
iv) Load and store operations are arranged to take
advantage of the cache hierarchy and the three outstanding 
load instructions capability of the 440 CPU.
v) Since load and store operations can proceed in parallel 
with floating-point computations, we overlapped memory 
accesses with computations wherever possible to reduce
memory access latencies.
vi) Since each CG iteration requires two global sums over 
the entire machine, we used fast reduction over the global 
collective network.
vii) BG/L does not have a network DMA engine and, as 
mentioned earlier, the CPUs are responsible for 
loading/unloading data from the network, reading and 
storing them to memory, as well as preparing and attaching
the hardware packet headers.  Since the transfers that need 
to complete between calculations are very short, we are 
very careful not to introduce any unnecessary latencies. To
this end, we developed a very fast communications layer 
directly on the torus hardware. This layer takes advantage 
of the nearest-neighbor nature of the communication and 
dispenses with control related communications. In addition, 
because the communication pattern is ``persistent'', the 
packet headers are only calculated once at the beginning of 
the program. Furthermore, all communications involve 
direct transfers from/to memory without intermediate 
copying. Also, although QCD requires a four-dimensional 
lattice, while BG/L has a three-dimensional lattice of 
nodes, there is a natural way to map QCD onto BG/L. The 
two CPU cores in each node can serve as a “fourth” 
dimension. The system software has a virtual node mode 
of operation where each core is assigned its own memory 
footprint, And half the torus FIFOs can be assigned to each 
core. In this sense each core is a virtual node. 
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Communication between cores is possible via a commonly 
mapped area of memory. We carefully overlap the 
necessary memory copy time with the time it takes for the 
network packets to be fully received.

As was mentioned earlier, D-slash is responsible for 90% 
of the consumed cycles. The remaining 10% are spent by 
the bulk of the QCD code. This code is tens of thousands of 
lines long and is written in a high-level language. It 
encodes both the physics of QCD as well as ingenious 
algorithms. These codes are written by groups of 
theoretical physicists and have been developed over many 
years. It is interesting that the full QCD code stack involves 
two extremes: a short kernel written in assembly together 
with a large amount of code written in a high-level 
language. In our work, we programmed the D-slash kernel 
but used the C++ code base of the CPS physics system that
originated at Columbia University (Columbia Physics 
System) [12].

From the above discussion it should be clear that although 
BG/L is a general purpose supercomputer, it is also a 
natural match for QCD. But now one can also see that 
QCD can offer more to computer engineering than just 
architectural guidelines.  In fact, it can and has been used 
during all the steps involved in the development of a 
supercomputer.

If one wishes to design hardware that will perform well for 
QCD, the design will have to be simple and modular in 
order to be able to serve all the concurrent and competing 
demands. In particular, tradeoff decisions that affect 
latency can be based on the QCD very low latency 
performance requirements. For example, this may affect the 
depths of various pipelines.

During software design, application related libraries as well 
as communications layers are developed. Again, QCD 
performance requirements indicate that a very simple, low-
latency communications layer molded directly on the 
hardware is important. Such a layer would be useful for any 
QCD-type application where the communication pattern is 
fixed and small amounts of data (KByte size) are
communicated at one time. This is in contrast to the general 
purpose “heavier” type of communication layer, such as 
MPI. Furthermore, given the importance of low-latency 
memory access, specialized library functions can be 
developed for commonly used operations such as the ones 
found in QCD.

During verification, the QCD kernel D-slash can serve as a 
valuable tool. It can be used to expose “bugs” that may 
otherwise be unreachable. This is because QCD uses the 
hardware at high efficiencies as well as at high overlap. For 
example, the floating point unit can be operating at full 
performance while the network is transferring data at high 
bandwidth and the memory hierarchy is moving data at 
high performance. This type of situation applies pressure 
on the hardware from competing as well as concurrent 
demands.  Furthermore, it is the full kernel of a real 
application and it is therefore of direct importance. 
Applications tend to be one (but certainly not the only one) 
of the best verification tools. There are examples where 
bugs “escaped” full verification suites only to appear 
during execution of some application. The problem is that 
applications tend to be large and therefore not suitable for 

hardware simulators. This is not the case for the small-sized 
QCD kernel which can execute in only a few thousand 
cycles.

During full system validation QCD can serve as a unique 
tool for fault isolation. One can program all nodes to 
perform identical operations on identical data sets (for 
example, by setting the random number generator seed to 
be the same on all nodes). This is possible because the 
communications are nearest-neighbor, their pattern is fixed 
for all nodes, and the application is strictly SIMD. All 
nodes will send and receive the same data from their 
neighbors. At certain intervals one can check that all nodes 
have the same value for some intermediate number (for 
example the on-node energy of the gluon field). If a node 
differs, then the fault is isolated in the neighborhood of that 
node and corresponding links.

Finally, and very importantly, the QCD kernel can serve as 
a powerful performance evaluation tool. This can be done 
as a paper study even before the computer development 
begins. Because the QCD demands are well defined by 
equation (1) these studies can be reliable. Equally 
important, the performance of D-slash can be measured at 
every stage of the development, from verification to a fully 
built system performance evaluation.

These considerations are not just theoretical ponderings. 
Many of them have been part of the development of several 
supercomputers, including IBM’s line of BlueGene 
systems.

In closing this section, let us comment on the cryptic 
remark we made at the beginning of the section, namely 
that the need of lattice theoretical physics for massively-
parallel computing speed and the ability to use it may not 
be accidental. One clue is that the four-dimensional local 
interaction properties of QCD and other similar theories 
allows for a natural map onto the grid of a massively-
parallel supercomputer. To be sure, the size of the BG/L 
machine is on the order of 10 meters while the size of a 
nuclear particle is about 10-15 meters. That is 16 orders of 
magnitude difference. But this gap could, in principle, close 
if Moore’s law were to hold down to such small distances. 
The point is that in principle there is no obstacle to bringing 
the computation close to the size of what is being 
simulated, especially when considering quantum 
computation. This is certainly a theoretical curiosity. 
However, some physicists have arrived at similar 
conclusions from quite a different direction. It seems as if 
nature can, after all, be described as a massively-parallel 
computer computing all the phenomena we observe. The 
idea of a cosmic computer has been the stuff of science 
fiction, but it may turn out to be a most convenient 
description of nature that can unlock our understanding of 
some yet unsolved mysteries. That massively-parallel 
supercomputers could have something to do with such 
ideas is an added bonus.

4. Performance

In this section we present the performance results of our 
code on BG/L. 

The strong scaling properties of our kernel were measured 
early on [13]. Our method is not the usual one since we 
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simply kept the number of nodes fixed (to two nodes, four-
cores) while we decreased the local problem size. This is 
akin to strong scaling which keeps the global size fixed 
while increasing the number of nodes and, thereby,
decreasing the local problem size. The results are given in 
Table 1. 

Table 1: Sustained performance for various local lattice 
sizes, akin to strong scaling.

As can be seen, the smallest local lattice (24) without 
communications achieves 31.5% of peak. This high 
performance is largely due to the fact that the data mostly 
fits into the L1 cache resulting in fast memory accesses. 
However, such a small local lattice has a large surface to 
volume ratio and therefore, a large number of 
communications per volume are necessary. Because 
communications cannot be overlapped with computations
on BG/L, the communication cost is additive and the 
performance drops down dramatically to 12.6% when 
communications are included. For the larger 16x43 local 
lattice, the performance without communications is less 
(27.8%), but the surface to volume ratio is smaller, so the 
cost of adding communications is less severe, dropping 
performance to 20.3%. This interplay between memory 
access and communications is interesting in itself.

Nevertheless, QCD is typically used as a weak scaling 
application. The nearest-neighbor nature of the 
communications as well as the existence of a fast global 
sum collective network in BG/L give perfect speedup as the 
number of compute cores is increased. We were able to 
increase the number of cores all the way up to the 
maximum number present in the fastest supercomputer (as 
of the date of this writing), the BG/L 64-rack system at 
LLNL. This result [4] is the culmination of our efforts, as 
well as of the considerations described in this paper. It 
appears here, for the first time in print, in Figure 1, which 
shows a maximum of 70.5 TFlop/s sustained on 131,072 
CPUs. The local lattice size is 4x4x4x16, resulting in 
a.maximum global size of 128x128x256x32 since the grid 
of compute nodes of the full machine is 32x32x64x2. The 
sustained percent of peak in this figure is 19.3% for the D-
slash kernel and 18.7% for the full Conjugate Gradient 
inverter, which includes the global sum reductions.

5. Conclusions

In this article we gave a general description of the physics 
of QCD and discussed how massively-parallel 
supercomputers are a natural match for this application. 
QCD and supercomputing has a long history. The reader 
may be interested to know that one of the most popular 

theoretical physicists and a Nobel laureate, Richard 
Feynman, was involved in the development of the 
Connection Machine 2. In fact, he actually coded QCD for 
that machine [14].

Furthermore, we discussed how QCD can help in the 
development of massively-parallel supercomputers from
architecture to final system performance evaluation. 
Indeed, this has been a component of several 
supercomputer development efforts, including the 
BlueGene series of machines.

Finally, we presented the culmination of our efforts in 
Figure 1, showing a perfect speedup of QCD up to 131,072 
CPU cores and 70.5 sustained TFlop/s.  This result was 
obtained with the fastest supercomputer as of the time of 
this writing, the 64 rack BG/L system at LLNL.

We hope to have communicated the close ties of QCD with 
supercomputing since these ties can serve both fields well 
in the very interesting and challenging immediate future,
where new technologies make it possible for dizzying 
computing speeds, and new physics experiments generate 
new mysteries for lattice QCD to solve.
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