
UCRL-JRNL-229921

Massively Parallel QCD

Ron Soltz, Pavlos Vranas, Matthias Blumrich, Dong
Chen, Alan Gara, Mark Giampap, Philip Heidelberger,
Valentina Salapura, James Sexton

April 15, 2007

IBM Journal of Research and Development

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71317125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

4/11/20077 1

Massively Parallel QCD

Pavlos Vranas, Matthias Blumrich, Dong Chen, Alan Gara,
Mark Giampapa, Philip Heidelberger, Valentina Salapura, James C. Sexton

IBM T.J. Watson Research Center
Yorktown Heights, New York

Ron Soltz
Lawrence Livermore National Laboratory

Livermore, California

Gyan Bhanot
Rutgers University

Piscataway, New Jersey

Abstract

The theory of the strong nuclear force, Quantum
Chromodynamics (QCD), can be numerically simulated
from first principles on massively-parallel supercomputers
using the method of Lattice Gauge Theory. We describe the
special programming requirements of lattice QCD (LQCD)
as well as the optimal supercomputer hardware
architectures that it suggests. We demonstrate these
methods on the BlueGene massively-parallel
supercomputer and argue that LQCD and the BlueGene
architecture are a natural match. This can be traced to the
simple fact that LQCD is a regular lattice discretization of
space into lattice sites while the BlueGene supercomputer
is a discretization of space into compute nodes, and that
both are constrained by requirements of locality. This
simple relation is both technologically important and
theoretically intriguing. The main result of this paper is the
speedup of LQCD using up to 131,072 CPUs on the largest
BlueGene/L supercomputer. The speedup is perfect with
sustained performance of about 20% of peak. This
corresponds to a maximum of 70.5 sustained TFlop/s. At
these speeds LQCD and BlueGene are poised to produce
the next generation of strong interaction physics theoretical
results.

1. Introduction

Perhaps the best introduction to the theory of Quantum
Chromodynamics (QCD) was given by Frank Wilczek. He
described QCD as “…our most perfect physical theory.”
[1]. Wilczek was a co-recipient of the 2004 Nobel Prize in
Physics for the discovery of the properties of QCD. In [1]
he describes the properties of QCD that make it worthy of
such a qualification: it embodies deep and beautiful
principles (it is a relativistic quantum field theory), it
provides algorithms to answer questions (one such
algorithm is the subject of this paper), it has a wide scope
(from nuclear physics to the genesis of the cosmos), it
contains a wealth of phenomena (asymptotic freedom,
confinement and many others), it has few parameters (and
is therefore simple to describe), it is true (has been verified
experimentally), and it lacks flaws (it is fully described by
its definition).

QCD is the theory of sub-nuclear physics. All nuclear
particles are made of elementary particles called quarks and
gluons. The gluons mediate the strong nuclear force that
binds the quarks together to form stable nuclear particles.
The strong nuclear force is one of the four known physical
forces, the others being electromagnetism, weak nuclear,
and gravity. The strong nuclear force is also responsible for
the interactions of nuclear particles and is therefore the
basic ingredient of nuclear physics.

Nuclear matter constitutes about 90% of the visible
universe and makes all things that surround us. But it was
not always like this. It is believed that until about 10 lsec
after the big-bang, nuclear matter did not exist. The
universe was so hot that quarks and gluons were in a
plasma state, the quark-gluon-plasma. After 10 lsec the
temperature dropped below 2 trillion degrees Kelvin and
the quark-gluon-plasma underwent a phase transition to
stable nuclear matter. Currently at the Brookhaven
National Laboratory, an enormously powerful accelerator
collides heavy nuclei, in particular gold, at speeds near the
speed of light. The Relativistic Heavy Ion Collider (RHIC)
produces collisions so powerful as to re-create, if only for a
brief moment, the conditions for the formation of the
quark-gluon-plasma. Strong evidence suggests that RHIC
has been successful in re-creating this state of matter that
has not existed in our universe since 10 lsec after its birth.

One of the most staggering properties of the theory is the
behavior of its force. Quarks inside nuclear particles
behave almost as if they were free. They experience very
little of the strong nuclear force. This property is called
asymptotic freedom. However, if one tries to “pull” a quark
out of a nuclear particle, the force rapidly becomes
extremely strong. A flux tube of gluons forms and forbids
the quark from escaping. This property is called
confinement. Nobody has ever observed a single isolated
quark. It is remarkable that both of these dramatically
opposite properties are described by a single theory.
Furthermore, the theory of QCD is extremely simple in its
mathematical description; it is described by a one line
mathematical formula.

Many physical quantities can be calculated analytically for
the case where the force is weak by using expansions
around the zero-force point. However, the calculation of

4/11/20077 2

physical quantities becomes extremely difficult when the
force is strong. Few analytical calculations are possible.
This would have been a serious problem if it were not for
the discovery of lattice gauge theory [2][3]. This, allows us
to calculate physical quantities, such as the masses of
nuclear particles or the characteristics of the thermal phase
transition, at strong force by using computer simulations.
Lattice gauge theory for QCD (LQCD) is described in
Section 2.

Even so, it turns out that the computing requirement is
enormous. As a result, LQCD has always required the
largest supercomputers available to be able to make
progress. In Section 3 we describe the special programming
requirements of LQCD as well as the optimal
supercomputer hardware architectures that it suggests. We
demonstrate these methods on the BlueGene massively-
parallel supercomputer, and argue that LQCD and the
BlueGene architecture is a natural match. This can be
traced to their curiously common properties. In Section 4
we present the main result of this paper: the sustained
performance of LQCD on BG/L scaled to 131,072 CPUs,
scaling with perfect speedup to 70.5 Tflop/s with sustained
performance of about 20% of peak [4][5]. In Section 5 we
give our conclusions.

For an introduction to quantum field theory and QCD, the
reader is referred to the books [6] and [7]. For an
introduction to lattice gauge theory and lattice QCD the
reader is referred to the books [8], [9], and [10].

2. Lattice QCD

In this section we give a brief overview of the lattice gauge
theory method [2][3] that allows QCD to be simulated on a
computer.

QCD is defined in the continuous four-dimensional space-
time. The quarks and gluons are described by fields over
space-time. Fields are complex functions of the space-time
coordinates and, loosely speaking, indicate the probability
of a particle’s existence at each coordinate. That probability
is a complicated function of the fields. Specific local and
global symmetries constrain these functions.

Since space-time is continuous, one would need an infinite
amount of numbers to describe a field even in a finite
region. But a computer is a finite machine with finite
memory and computing capability. How then is it possible
to simulate QCD?

The first step is to make space-time discrete by replacing it
with a four-dimensional lattice. Typically the lattice is
taken to be hypercubic. Because of the confinement
property of QCD, only a small region of space that contains
the nuclear particles is needed. Therefore, the lattice is
finite and periodic/anti-periodic boundary conditions are
typically implemented. The sites of the lattice are
connected by links, where the distance along a link is called
lattice spacing “a”.

This rather brute-force approach could have destroyed the
symmetry properties of the theory beyond recovery. In fact
this is not a trivial matter at all. It turns out that by defining
the quark fields on the lattice sites, while defining the gluon
fields (also called gauge fields) on the lattice links, one of

the most important symmetries of the theory is preserved.
Local gauge invariance is exact.

Obviously the rotational and translational symmetries of
continuous space-time are destroyed, among some other
important symmetries. However, these symmetries are
recovered as the lattice spacing “a” is decreased towards
the zero lattice spacing limit. By repeating the calculation
on lattices with more lattice points but smaller lattice
spacing, one can extrapolate to the zero lattice spacing
limit.

Therefore, the quark and gluon fields can be defined on a
finite set of points. In fact, 24 real numbers per lattice site
are needed for each quark field, while 18 real numbers per
lattice link are needed for the gauge field. In a typical QCD
simulation on the lattice, the computer generates these sets
of numbers, called field configurations, with a probability
that is calculated based on the formula of QCD. This
calculation is complicated and computationally intensive,
but it is possible. From each field configuration one can
then calculate a wealth of physically interesting quantities
such as energy, mass, etc.. Average values of these
quantities are calculated for the full set of field
configurations generated by the computer. The method is
very similar to what is used to simulate statistical
mechanics systems. The equivalent of the Boltzman weight
is present here as well, and it dictates the probability with
which field configurations are generated. In particular,
molecular dynamics techniques are employed to generate
new field configurations from previous ones.

Although it is possible to calculate many physical
quantities using numerical simulations, there is a class of
them that still remains beyond reach. For example,
equilibration processes, or finite density physics, involve a
severe “sign” problem (it is actually a complex phase
problem) that prohibits use of these techniques. Research
efforts have been active for many years now to address
these issues. Thankfully, a large class of problems does not
suffer from these difficulties. Nuclear physics calculations,
calculations of the critical phenomena of the QCD thermal
transition, calculations that relate to the physics of the
current theory of elementary particle physics (the standard
model), as well as of theories beyond the standard model
are currently being simulated on the largest
supercomputers. But this is not without effort, for lattice
QCD requires enormous computational resources.

3. BlueGene/L and LQCD

In this section we discuss LQCD on massively-parallel
supercomputers and in particular, LQCD on BlueGene/L.

It may seem strange that a physical theory in the frontier of
science would have anything at all to do with a machine
designed by engineers with strict timetables and guidelines
in the frontier of technology. Theoretical physics carries a
tradition of “pure thinking” and of analytical calculation
where computers are barely needed. Conversely, the
computing industry is defined by a most rapid development
schedule of ever faster machines that must follow Moore’s
law, and where there is not time for theories especially of
some distant and unrelated subject.

4/11/20077 3

But it is not strange. As described in the previous section,
the strong force regime of QCD would be inaccessible to
theoretical calculations if it were not for the largest
supercomputers available. In fact, if lattice theoretical
physicists had all their wishes come true it would make
today’s supercomputers look desperately slow. The thirst
for computing speed is almost unquenchable. That this is so
and also that it is possible for lattice QCD to naturally
absorb these vast amounts of computing is very interesting.
As we will present in the following section the weak
scaling of QCD on BG/L - a massively-parallel
supercomputer - is perfect. And the need for ever finer
lattices that occupy ever larger volumes indicates that very
large lattices are of interest. This implies that QCD can use
almost any large size parallel supercomputer that any
current and near feature technologies can build. Petaflop-
scale machines are anxiously awaited. This brings up the
thought that perhaps there is a much deeper reason for all
this than simple complexity. We will come back to this at
the end of the section with some thoughts.

From the supercomputing engineering perspective, QCD
has proven to be of great value for many reasons. To
understand this let us briefly describe the QCD code and, in
particular, its implementation on the BG/L supercomputer.

It turns out that in most QCD implementations about 90%
of the compute cycles are expended inside a small routine
(about 1,000 lines of code) called the QCD kernel or D-
slash. This kernel calculates the dynamics of the quarks and
their interaction with the gluons. Obviously, optimizing D-
slash very well is of great importance. The basic operation
that involves D-slash is:

())(),(yyxDx
y

ΨΨ /= ∑ (1)

where Y(x) is the quark field at the space-time coordinate
x and),(yxD/ is the D-slash operator. This is a sparse
matrix with indices x, y. Most elements are zero except
when x and y are nearest neighbors. Because the D-slash
operator is so sparse, it is not stored in memory and its
action is calculated operationally. D-slash is given by the
following equation:

)],()1)((

),()1)((

[
2
1),(

4

1

yxxU

yxxU

yxD

µδγµ

µδγ

µµ

µµ

µ

−−−

+++

=/

+

=
∑

(2)

In the above equation, the sum over l is a sum over the
four space time directions. The gluon field residing on a
link that originates at location x and is along the l
direction is a 3x3 complex matrix (18 real numbers)
represented by U

l
(x). The gluon field caries an internal

index, called color charge, that can take 3 values. Thec
l

matrices are 4x4 complex matrices that act on another
internal index, called spin, carried by the quark field. The
function d(a,b) is one if a=b and zero otherwise. These
functions implement the nearest-neighbor feature of the

operator. It should be noted that the terms)1(
2
1

µγ± are

projection operators and reduce the 24 component quark
field (also refered to as full spinor below) into four 12-
component intermediate fields (also referred to as half
spinors below). One standard way to efficiently implement
equation (1) so that it allows for possible overlap of
computations and communications is as follows:

1) Using the four projection operators (1+c
l

)/2
(l=1,2,3,4)
spin project Y into four temporary half spinors Ff

l
for all

local lattice sites, and store them to memory.
2) Begin sending/receiving each Ff

l
that is on the surface

of the local lattice to/from the nearest neighbor nodes along
the negative direction l. Each half spinor consists of 12
numbers. In double precision this is 96 bytes that need to be
communicated for each site on the negative direction
surfaces.
3) Using each projection operator (1-c

l
)/2 (l=1,2,3,4)

spin project Y and multiply the result with U+
l

in
order to form four half spinors Fb

l
for all local lattice sites,

and store them to memory.
4) Begin sending/receiving each Fb

l
that is on the surface

of the local lattice to/from the nearest neighbor nodes along
the positive direction l. Each half spinor consists of 12
numbers. In double precision this is 96 bytes that need to be
communicated for each site on the positive direction
surfaces.
5) Wait for the Ff

l
communication to complete. Typically

this involves polling a network register.
6) Now that all needed half spinors Ff

l
are on the node,

multiply each of them with U
l

and convert them to full
spinors. Add all four full spinors for each site and store the
resulting full spinor to memory.

7) Wait for the Fb

l
communication to complete. Typically

this involves polling a network register.
8) Now that all Fb

l
are on the node, convert each of them

into a full spinor and for each site add them together. For
each site add the result to the full spinor of step (6) after
loading it from memory. This produces the resulting full
spinor for each site.

Notice that in the above steps, the F fields are not
sequential in memory. The U fields are sequential for the
first set of four terms and for the second set of four terms
but not between the two sets. Also, the loop over lattice
sites is over a four-dimensional lattice. As a result memory
accesses from the linear memory are typically sequential
only in the internal indices, as indicated above, which are
therefore very short. Memory accesses per site consist of 24
numbers for the full spinors, 12 numbers for the half-
spinors and 4x18=72 numbers for the U field in all four
links originating from the same site. Furthermore, the
communications involve very short size messages. The half
spinors that are communicated reside on the surfaces of the
four-dimensional lattice and typically can not be grouped
together into a large message. As a result, each half spinor
is communicated individually. These are short messages of
only 96 bytes each. The communications and memory
accesses cannot be rearranged because they are in-between
computations. The computations themselves are short,
involving only a few operations. For example, the
multiplication of the gluon matrix U with a half spinor
involves 72 multiply-add operations which execute in just

4/11/20077 4

36 cycles in a double floating point unit. Therefore, the
above code involves very “bursty” memory accesses,
communications and calculations and, as a result, is very
sensitive to memory, communication network and floating
point unit latencies. Surprisingly, the above code indicates
a wealth of architectural requirements in order to achieve
maximum performance.

Since QCD is defined in a nearest-neighbor lattice of
space-time points, it is naturally mapped on a lattice of
compute nodes connected with nearest-neighbor physical
links. However there are some implementations of QCD
that require local but more distant than nearest-neighbor
communications. This implies that a strict nearest-neighbor
network would be limiting and leads to the requirement for
a more general network.

The above code allows for almost maximal overlap
between computations, communications and memory
accesses. Given the sensitivity to latencies, a machine that
could overlap all three of these activities would offer a
substantial performance advantage. This indicates that the
following hardware features are desirable for QCD:
a) Load/store accesses in “parallel” with computations and
communications.
b) Sophisticated memory pre-fetching that allows block-
strided accesses.
c) Communications that can overlap with computations and
memory accesses. This implies a DMA driven network.

Finally, it should be mentioned that equation (1) is the
inner-most part of a Conjugate Gradient (CG) inverter. This
requires two global sum reductions per iteration. As a
result, fast global sum reduction capability is important,
suggesting that a good part of it should be hardware
supported.

Although BG/L is a general purpose supercomputer, not
designed for optimal QCD performance, many of the above
features are present in its hardware. Here is a short
description of the BG/L hardware. The reader is referred to
[11] for a full description.

The BG/L supercomputer is a massively-parallel machine
comprised of compute nodes that are inter-connected via
nearest-neighbor links arranged in a three-dimensional
torus topology. Each node is an IBM ASIC containing two
IBM PowerPC 440 CPU cores. Each core has a custom
double multiply-add unit capable of performing up to four
floating-point operations per cycle. Therefore each node
can execute up to eight floating-point operations per cycle.
Each core has a 32 KByte L1 data cache memory, but the
two L1 memories are not coherent. Each is fed by a small,
multi-stream, sequential prefetcher (L2) which, in turn
accesses a shared, on-chip, 4 MByte L3 cache memory.
The L3 accesses external DRAM via an on-chip DDR2
controller. The ASIC contains a sophisticated, packet-based
virtual cut-through router. This allows any node to send
packets to any other node without intermediate CPU
intervention. Packets that arrive at a node are kept if they
are destined for that node or are routed to the appropriate
output links in order to reach their final destinations in an
optimal way. The network router is accessed from either
CPU core by writing/reading packets into hardware
addresses that correspond to SRAM-based FIFOs inside the
router. A second, independent collective network is also on

the ASIC and provides fast reduction operations such as
global sums. Two such ASICs (nodes) are assembled on a
small circuit board that also contains the external DRAM
(typically 1 GByte for both nodes). More functionality is
present in the ASIC, but it does not directly relate to the
purposes of this paper.

The 440 core has a separate load/store pipeline and can
have up to three outstanding load instructions. This allows
memory access and computations to overlap. However, the
torus communication network does not allow for overlap of
computations and communications because the CPU has to
prepare the hardware packets and copy them between
memory and the torus FIFOs. Because of this, the earlier
code description should be modified by consolidating step
(2) with step (4) and step (7) with step (5).

Given the above, it is clear that equation (1) must be
carefully coded in a way that is “molded” to the BG/L
hardware in order to achieve high sustained performance.
This is particularly hard since the sensitivity to latencies is
amplified by the large computing capability of the
hardware (8 Flops per CPU cycle). In order to be able to
take full advantage of the hardware, we wrote our code in
inline assembly. The main features of our code are:
i) All floating-point operations use the double multiply-add
instructions by pairing all additions with multiplications in
sets of two wherever possible. The complex numbers used
by QCD make this natural.
ii) All computations are arranged to avoid pipeline
conflicts. These have to do with register access rules.
iii) The storage order of the quark and gluon fields is
chosen to maximize the size of sequential accesses.
iv) Load and store operations are arranged to take
advantage of the cache hierarchy and the three outstanding
load instructions capability of the 440 CPU.
v) Since load and store operations can proceed in parallel
with floating-point computations, we overlapped memory
accesses with computations wherever possible to reduce
memory access latencies.
vi) Since each CG iteration requires two global sums over
the entire machine, we used fast reduction over the global
collective network.
vii) BG/L does not have a network DMA engine and, as
mentioned earlier, the CPUs are responsible for
loading/unloading data from the network, reading and
storing them to memory, as well as preparing and attaching
the hardware packet headers. Since the transfers that need
to complete between calculations are very short, we are
very careful not to introduce any unnecessary latencies. To
this end, we developed a very fast communications layer
directly on the torus hardware. This layer takes advantage
of the nearest-neighbor nature of the communication and
dispenses with control related communications. In addition,
because the communication pattern is ``persistent'', the
packet headers are only calculated once at the beginning of
the program. Furthermore, all communications involve
direct transfers from/to memory without intermediate
copying. Also, although QCD requires a four-dimensional
lattice, while BG/L has a three-dimensional lattice of
nodes, there is a natural way to map QCD onto BG/L. The
two CPU cores in each node can serve as a “fourth”
dimension. The system software has a virtual node mode
of operation where each core is assigned its own memory
footprint, And half the torus FIFOs can be assigned to each
core. In this sense each core is a virtual node.

4/11/20077 5

Communication between cores is possible via a commonly
mapped area of memory. We carefully overlap the
necessary memory copy time with the time it takes for the
network packets to be fully received.

As was mentioned earlier, D-slash is responsible for 90%
of the consumed cycles. The remaining 10% are spent by
the bulk of the QCD code. This code is tens of thousands of
lines long and is written in a high-level language. It
encodes both the physics of QCD as well as ingenious
algorithms. These codes are written by groups of
theoretical physicists and have been developed over many
years. It is interesting that the full QCD code stack involves
two extremes: a short kernel written in assembly together
with a large amount of code written in a high-level
language. In our work, we programmed the D-slash kernel
but used the C++ code base of the CPS physics system that
originated at Columbia University (Columbia Physics
System) [12].

From the above discussion it should be clear that although
BG/L is a general purpose supercomputer, it is also a
natural match for QCD. But now one can also see that
QCD can offer more to computer engineering than just
architectural guidelines. In fact, it can and has been used
during all the steps involved in the development of a
supercomputer.

If one wishes to design hardware that will perform well for
QCD, the design will have to be simple and modular in
order to be able to serve all the concurrent and competing
demands. In particular, tradeoff decisions that affect
latency can be based on the QCD very low latency
performance requirements. For example, this may affect the
depths of various pipelines.

During software design, application related libraries as well
as communications layers are developed. Again, QCD
performance requirements indicate that a very simple, low-
latency communications layer molded directly on the
hardware is important. Such a layer would be useful for any
QCD-type application where the communication pattern is
fixed and small amounts of data (KByte size) are
communicated at one time. This is in contrast to the general
purpose “heavier” type of communication layer, such as
MPI. Furthermore, given the importance of low-latency
memory access, specialized library functions can be
developed for commonly used operations such as the ones
found in QCD.

During verification, the QCD kernel D-slash can serve as a
valuable tool. It can be used to expose “bugs” that may
otherwise be unreachable. This is because QCD uses the
hardware at high efficiencies as well as at high overlap. For
example, the floating point unit can be operating at full
performance while the network is transferring data at high
bandwidth and the memory hierarchy is moving data at
high performance. This type of situation applies pressure
on the hardware from competing as well as concurrent
demands. Furthermore, it is the full kernel of a real
application and it is therefore of direct importance.
Applications tend to be one (but certainly not the only one)
of the best verification tools. There are examples where
bugs “escaped” full verification suites only to appear
during execution of some application. The problem is that
applications tend to be large and therefore not suitable for

hardware simulators. This is not the case for the small-sized
QCD kernel which can execute in only a few thousand
cycles.

During full system validation QCD can serve as a unique
tool for fault isolation. One can program all nodes to
perform identical operations on identical data sets (for
example, by setting the random number generator seed to
be the same on all nodes). This is possible because the
communications are nearest-neighbor, their pattern is fixed
for all nodes, and the application is strictly SIMD. All
nodes will send and receive the same data from their
neighbors. At certain intervals one can check that all nodes
have the same value for some intermediate number (for
example the on-node energy of the gluon field). If a node
differs, then the fault is isolated in the neighborhood of that
node and corresponding links.

Finally, and very importantly, the QCD kernel can serve as
a powerful performance evaluation tool. This can be done
as a paper study even before the computer development
begins. Because the QCD demands are well defined by
equation (1) these studies can be reliable. Equally
important, the performance of D-slash can be measured at
every stage of the development, from verification to a fully
built system performance evaluation.

These considerations are not just theoretical ponderings.
Many of them have been part of the development of several
supercomputers, including IBM’s line of BlueGene
systems.

In closing this section, let us comment on the cryptic
remark we made at the beginning of the section, namely
that the need of lattice theoretical physics for massively-
parallel computing speed and the ability to use it may not
be accidental. One clue is that the four-dimensional local
interaction properties of QCD and other similar theories
allows for a natural map onto the grid of a massively-
parallel supercomputer. To be sure, the size of the BG/L
machine is on the order of 10 meters while the size of a
nuclear particle is about 10-15 meters. That is 16 orders of
magnitude difference. But this gap could, in principle, close
if Moore’s law were to hold down to such small distances.
The point is that in principle there is no obstacle to bringing
the computation close to the size of what is being
simulated, especially when considering quantum
computation. This is certainly a theoretical curiosity.
However, some physicists have arrived at similar
conclusions from quite a different direction. It seems as if
nature can, after all, be described as a massively-parallel
computer computing all the phenomena we observe. The
idea of a cosmic computer has been the stuff of science
fiction, but it may turn out to be a most convenient
description of nature that can unlock our understanding of
some yet unsolved mysteries. That massively-parallel
supercomputers could have something to do with such
ideas is an added bonus.

4. Performance

In this section we present the performance results of our
code on BG/L.

The strong scaling properties of our kernel were measured
early on [13]. Our method is not the usual one since we

4/11/20077 6

simply kept the number of nodes fixed (to two nodes, four-
cores) while we decreased the local problem size. This is
akin to strong scaling which keeps the global size fixed
while increasing the number of nodes and, thereby,
decreasing the local problem size. The results are given in
Table 1.

Table 1: Sustained performance for various local lattice
sizes, akin to strong scaling.

As can be seen, the smallest local lattice (24) without
communications achieves 31.5% of peak. This high
performance is largely due to the fact that the data mostly
fits into the L1 cache resulting in fast memory accesses.
However, such a small local lattice has a large surface to
volume ratio and therefore, a large number of
communications per volume are necessary. Because
communications cannot be overlapped with computations
on BG/L, the communication cost is additive and the
performance drops down dramatically to 12.6% when
communications are included. For the larger 16x43 local
lattice, the performance without communications is less
(27.8%), but the surface to volume ratio is smaller, so the
cost of adding communications is less severe, dropping
performance to 20.3%. This interplay between memory
access and communications is interesting in itself.

Nevertheless, QCD is typically used as a weak scaling
application. The nearest-neighbor nature of the
communications as well as the existence of a fast global
sum collective network in BG/L give perfect speedup as the
number of compute cores is increased. We were able to
increase the number of cores all the way up to the
maximum number present in the fastest supercomputer (as
of the date of this writing), the BG/L 64-rack system at
LLNL. This result [4] is the culmination of our efforts, as
well as of the considerations described in this paper. It
appears here, for the first time in print, in Figure 1, which
shows a maximum of 70.5 TFlop/s sustained on 131,072
CPUs. The local lattice size is 4x4x4x16, resulting in
a.maximum global size of 128x128x256x32 since the grid
of compute nodes of the full machine is 32x32x64x2. The
sustained percent of peak in this figure is 19.3% for the D-
slash kernel and 18.7% for the full Conjugate Gradient
inverter, which includes the global sum reductions.

5. Conclusions

In this article we gave a general description of the physics
of QCD and discussed how massively-parallel
supercomputers are a natural match for this application.
QCD and supercomputing has a long history. The reader
may be interested to know that one of the most popular

theoretical physicists and a Nobel laureate, Richard
Feynman, was involved in the development of the
Connection Machine 2. In fact, he actually coded QCD for
that machine [14].

Furthermore, we discussed how QCD can help in the
development of massively-parallel supercomputers from
architecture to final system performance evaluation.
Indeed, this has been a component of several
supercomputer development efforts, including the
BlueGene series of machines.

Finally, we presented the culmination of our efforts in
Figure 1, showing a perfect speedup of QCD up to 131,072
CPU cores and 70.5 sustained TFlop/s. This result was
obtained with the fastest supercomputer as of the time of
this writing, the 64 rack BG/L system at LLNL.

We hope to have communicated the close ties of QCD with
supercomputing since these ties can serve both fields well
in the very interesting and challenging immediate future,
where new technologies make it possible for dizzying
computing speeds, and new physics experiments generate
new mysteries for lattice QCD to solve.

Acknowledgements

We would like to thank Dr. George Chiu of IBM Research
for his help and support. We would also like to thank IBM
Research and the IBM BlueGene/L team for their support.
We are grateful to the IBM Watson BG/L supercomputing
center and to Lawrence Livermore National Laboratory for
allowing us access to these most precious resources. We
would like to thank the QCDOC collaboration for
providing us with the CPS software. Ron Soltz
acknowledges the Department of Energy for supporting his
research.

References

1. F. Wilczek, “What QCD Tells Us About Nature -- and
Why We Should Listen” In Nucear Physics A 663 3-
20 (2000), proceedings of PANIC 99 conference,
http://xxx.lanl.gov/ps/hep-ph/9907340

2. K.G. Wilson, “Confinement of Quarks”, In Physical
Review D 10, 2445 (1974).

3. K.G. Wilson, “Quarks And Strings On A Lattice”, In
New Phenomena in Subnuclear Physics, ed. A.
Zichichi (Plenum Press, New York), Part A, 69,
(1975).

4. P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara,
M. Giampapa, P. Heidelberger, V. Salapura, J.C.
Sexton, and R. Soltz, “2006 Gordon Bell Special
Achievement Award”, In Proceedings of
Supercomputing 2006, Tampa Florida.

5. P. Vranas, G. Bhanot, M. Blumrich, D. Chen, A. Gara,
P. Heidelberger, V. Salapura, J.C. Sexton, “The
BlueGene/L Supercomputer and Quantum Chromo
Dynamics”, In Proceedings of Supercomputing 2006,
Tampa, FL (2006), http://sc06.supercomputing.org/
schedule/pdf/gb110.pdf

6. Ta-Pei Cheng and Ling-Fong Li, “Gauge theory and
elementary particle physics”, Oxford University Press
(1984).

%of peak 2
4

4x2
3

4
4

8x 4
3

8
2
x4

2
16 x 4

3

D-slash
no comms

31.5 28.2 25.9 27.1 27.1 27.8

D-slash 12.6 15.4 15.6 19.5 19.7 20.3

CG
Inverter

13.1 15.3 15.4 18.7 18.8 19.0

4/11/20077 7

7. M.E. Peskin and D.V. Schroeder, “An introduction to
Quantum Field Theory”, Perseus Books Publishing
(1995).

8. M. Creutz, “Quark, gluons and lattices”, Cambridge
University Press (1983).

9. I. Monvay and G. Munster, “Quantum Fields on a
Lattice”, Cambridge University Press (1994).

10. J. Kogut, “Milestones In Lattice Gauge Theory”,
Kluwer Academic Pub. (2004).

11. The BlueGene/L, In IBM Journal of Research and
Development, Vol 49, 2/3 (2005).

12. CPS: Columbia Physics System,
http://www.epcc.ed.ac.uk/~ukqcd/cps

13. G. Bhanot, D. Chen, A. Gara, J. Sexton, and P.
Vranas, “QCD on the BlueGene/L Supercomputer”, In
Nuclear Physics Proceedings Supplement 140, 823-
825 (2005), http://xxx.lanl.gov/ps/hep-lat/0409042

14. W. Daniel Hillis, “Richard Feynman and the
connection machine”, In http://www.kurzweilai.net/
articles/art0504.html?printable=1

Figure 1: The QCD Dirac operator (D-slash) and Conjugate Gradient inverter speedup on the BG/L supercomputer as the
number of CPU cores is increased up to the full machine size, 131,072. The highest sustained speed in this graph is 70.5 TFlop/s
[4]. The total lattice has size 128x128x256x32, while the CPU cores form a grid with size 32x32x64x2. Therefore the local
lattice on a CPU has size 4x4x4x16.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 20000 40000 60000 80000 100000 120000 140000

Number of CPU cores

Su
st

ai
ne

d
Te

ra
flo

ps

Dirac Operator = 19.3%
CG inverter = 18.7%

