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Abstract

A wide range of knowledge discovery and analysis appli-
cations, ranging from business to bilogical, make use of se-
mantic graphs when modeling relationships and concepts.
Most of the semantic graphs used in these applications are
assumed to be static pieces of information, meaning tem-
poral evolution of concepts and relationships are not taken
into account. Guided by the need for more advanced se-
mantic graph queries involving temporal concepts, this pa-
per surveys the existing work involving temporal represen-
tations in semantic graphs.

1 Introduction

The use of graphs to model and represent relationships
between entities is a very popular practice. However, most
of these representations follow the traditional mathemati-
cal description of a graph. The use of semantic graphs
has grown useful for representing relationships between en-
titites in datasets. Semantic graphs differ from the tradi-
tional mathematical definition through the implementation
of node and link types. Thus, semantic graphs are useful
not only for their structural properties, but also for the use-
ful semantic information embedded within them.

Semantic graph representation are used in the Semantic
Web [1], biological applications [35], and multimedia ap-
plications [43], to name a few. Recently, a general push
within each of these semantic graph applications has been
to reliably model temporal attributes. Modeling temporal
data has been an active area of research within the datbase
community for many years [46]. In fact, over forty tem-
poral data models exist in the literature. However, simply
applying one of these models to the case of semantic graphs
is not straighforward due to the type of analysis (and hence
the type of queries) that are posed against a semantic graph.

The purpose of this paper is to survey the current re-
search literature with a focus on temporal representations

in semantic graphs. Through this survey, we hope to delin-
eate and classify the exhisting models and techniques used
for querying temporal information in semantic graphs.

1.1 Semantic Graphs and Ontologies

At the core, a semantic graph follows the basic structure
of a directed graph consisting of nodes and directed edges.
However, whereas nodes and edges in a generic directed
graph may be homogeneous nodes, semantic graphs imply
the notion of typed nodes and edges. Specifically, nodes in
a semantic graph each have a specific type (e.g., city or per-
son); each type is sometimes referred to as a concept. Fur-
thermore, each node may contain one or more attributes.
At the very least, a single-attribute node contains an identi-
fier, or referent (e.g., name of person). Other attributes give
extra information about a node (e.g., a person’s eye color).

The edges, or links, in a semantic graph imply a semantic
or conceptual relation between nodes. Like nodes, links can
also have types. For instance, the link person → city may
imply a person lives in the city referenced by the link. In
some semantic graph representations, a link between node
types implicitly defines a relation; such a graph is termed
homogeneous. In homogeneous semantic graphs, only one
link type is allowed between nodes. For example, in a
semantic graph representing communication networks, the
link person → person implies one person has contacted an-
other person. In homogeneous semantic graphs, edges are
usually not labeled. Examples of homogeneous semantic
graphs are social networks (i.e., person to person relation-
ships) or communication networks (i.e., a person contact-
ing another person through email or phone). When more
link types are allowed in a semantic graph, such a graph
is termed heterogeneous. In this scenario, the semantic re-
lationship between nodes is explicity labeled. For exam-
ple, in the multi-link setting the semantic relationship per-
son → city may mean a person lives in or works in the spec-
ified city.
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Figure 1. Semantic Graph Ontology

1.1.1 Ontologies

An important structure that explicity defines valid relation-
ships between nodes in a semantic graph is an ontology. An
ontology, also referred to as a schema, is generally defined
as an auxillary graph that gives the valid edge types (rela-
tions) between node types. An example of a small ontology
is given in Figure 1, that defines the valid relationships be-
tween three node types: person, city, and company. In this
ontology, a person can: (1) know another person, (2) live in
a city, and (3) work for a company. Furthermore, a company
can be located in a city.

Given a set of relational data, the design of an ontology
is reliant on the type of analysis that will be done on the
graph. Thus, the amount of detail (number of node and edge
types) captured in the graph can span from simple (e.g., a
single node and link type) to complex (e.g., multiple node
and link types). An example of a simple ontology is a so-
cial communication network involving only people (nodes),
where connections imply communication between two peo-
ple. An example of a more granular ontology is that of a
movie database involving movies and actors. In the movie
graph, actors could be connected to movies by either hav-
ing a lead role or supporting role. Naturally, coarser on-
tologies lose information (i.e., detail) present in the finer
models. Application domains also determine the amount of
detail needed in the graph. For instance, graph analysis in-
volving outlier detection calls for a high degree of granular-
ity [5]. On the other hand, social network analysis may only
be concerned with coarse relations, such as communication
between people.

1.1.2 Semantic Graph Instances

Naturally, all instances of a semantic graph must conform
to the structure defined by its ontology. A specific instance
of the simple person - city - company ontology presented
in Figure 1 is given in Figure 2. In this instance, a person
Dave works for company Oracle (located in San Jose) and
lives in San Rafael. Also, Dave knows another person John.
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John
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Figure 2. Semantic Graph Instance

1.2 Temporal DBMS Modeling

Within the database research world, much work has been
done on modeling temporal attributes. One of the most im-
portant semantic property differences concerning time are
that of valid and transaction time. Valid time refers to
the real-world time in which an event occured or was ob-
served. Transaction time refers to the time when a change
was recorded (e.g., stored) in a database. For example, a
mythical concert event could have a valid time of June 10th,
2007 from 1:00pm to 4:00pm, meaning the concert oc-
cured on this day between the given time period. However,
the concert could have a different transaction time of June
20th, 2007, 5:00pm, representing the time that the event was
stored in the database. In general, semantic graphs are used
to model real-world relationships. Thus, throughout this
survey we will be generally concerned with how valid time
is represented in a semantic graphs. Discussion of transac-
tion time will be explicitly denoted.

The database research literature contains many tempo-
ral data models; roughly forty at last count. Güting et
al. [29] classify these models as extensions to the core
DBMS model. In general, database tuples are represented
as facts associated with a specific timestamp that describe
when the fact is valid. The existing models can be classified
within the following four categories:

1. Data Model Extended: examples are relational or
object-oriented

2. Granularity of Facts: examples are a tuple or relation

3. Type of timestam: a chronon (i.e. instant), time inter-
val, or a set of time intervals.

4. Time dimension: support for valid time, transaction
time, or bitemporal (i.e., both valid and transaction
time).

In general, a review of these temporal data models is outside
the scope of this paper. Thorough overviews of these mod-
els, however, can be found in works by Zaniolo et al. [52]
and Özsoyoglu et al. [37].



Taking a step outside of the temporal modeling universe,
query languages for temporal DBMS systems have been
proposed in the literature. The most prominent example
is TSQL2 [46], an extension to the SQL-92 standard pro-
posed specifically to query temporal attributes of data. The
TSQL2 standard is bitemporal, satisfying queries on both
valid and transaction time.

1.3 Focus of this Paper

The semantic graph model can be thought of as an ab-
straction from specific DBMS models and implementations.
Thus, the work in this paper may overlap with specific con-
cepts proposed for temporal DBMS modeling and lanu-
gages. However, this paper focuses on temporal representa-
tions found in graph structures, where graph manipulations
and analysis are a main factor in modeling and query pro-
cessing.

To elaborate on these differences, consider the follow-
ing queries where query 1 is an example of a generic
spatio-temporal query, and query 2 represents a spatio-
temporal query involving spatio-temporal information as
well as other semantic relationships.

Query 1 Find all vehicle tracks that go within 1 km of Fa-
cility X between time interval t1:t2

Query 2 Extract all vehicle and communication activity for
Facility X for time period t1:t2; Find other facilities
with similar vehicle/communication activity.

Here, we see that query 1 asks about spatio-temporal as-
pects of vehicle tracks surrounding Facility X. Meanwhile,
query 2 asks not only for vehicle track location during a
specific time period, but also for communication activity for
Facitility X. Furthermore, query 2 also requests a similarity
search for other Facilities with similar vehicle and commu-
nication activity. Thus, query 2 goes beyond generic spatio-
temporal query structure and uses analytical attributes re-
garding communication information as well as similarity
measures. In this case, semantic relationships play a crucial
role in answering query 2, and such relationships can natu-
rally be represented as a semantic graph. Furthermore, the
semantic graph representation is appropriate for semantic
similarity queries, as graph matching algorithms can natu-
rally be used to extract these similarities.

This paper will mainly focus on temporal representations
in semantic graph with an eye toward efficiently answering
queries similar to query 2 in the example above. However,
discussions of temporal extensions to the ER model or spe-
cific temporal database implementations are certainly ap-
plicable. In fact, much existing work in temporal database
modeling or query language extensions may overlap with
query processing for semantic graphs. Where applicable,
such work will be mentioned.
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Figure 3. Sequential Representation

The outline and main organization of this paper is as
follows. Section 2 will survey three temporal representa-
tions for semantic graphs. Specifically, we survey the Se-
quential Representation (Section 2.1), the Snapshote Repre-
sentation (Section 2.2), and the Valid Edge Representation
(Section 2.3). Next, Section ?? will introduce a set of tem-
poral benchmark queries for semantic graphs, and evaluate
each of the surveyed representations with respect to these
queries. Finally, Section 4 will conclude this survey.

1.4 Targeted Queries

1.5 Targeted Ontologies

2 Temporal Representations

‘ This section surveys temporal representations for se-
mantic graphs along with their application domains. Three
main representations exist, namely: (1) Sequential, where
time is modeled as a logical sequence in the graph.
(2) Snapshot, where a version of the complete graph is
stored at a specified time period. (3) Valid-Edge, where each
edge (i.e., semantic relationship) is associated with an inter-
val specifiying when it was valid in the modeled world. The
goal of this section is to give the reader a technical overview
of each representation by first introducing the model. Next,
we will survey the different application domains as well as
the developed information extraction methods for the rep-
resentation. Finally, we will discuss database implementa-
tions that exist for the representation where appropriate.

2.1 Sequential Representation

Time in the sequential temporal representation is mod-
eled primarily by a directed graph, where the graph itself
represents a logical sequence. In the basic sense, the se-
quential model represents a timeline of events, usually with
an absolute start and end point. Because of this constraint,
the semantic relation between nodes in such a graph are
constrained to model logical order. As an example, Fig-
ure 3 gives a graph representing a schedule of events at



a database conference. In this example, the nodes of the
graph represent sessions (e.g., presentations, workshops, or
demonstrations), while the edges represent possible transi-
tions between events (i.e., schedules) an attendee can fol-
low. For instance, one possible schedule would be to at-
tend the workshop on data privacy, denoted as: {Data Pri-
vacy}. Another possible schedule in this example involves
presentations: {Location Privacy, Join Reordering, Spatial
Databases, Closing Remarks}. Each of these schedules is a
valid temporal sequence for the graph in Figure 3.

The temporal properties in the sequential representation
are explicit in the graph, i.e., the graph itself is a model of
time. Therefore, the structure of a sequantial graph lends
itself to any application that depends on analyzing or mod-
eling order of events. Such applications are querying multi-
media information [43], biological networks [35], sequence
processing [41, 42, 40], and business intelligence [31].
These applications will be discussed in detail later in this
section.

Queries against graphs using this representation usually
involve extracting information about temporal sequences.
As an example, a simple query against the graph given in
Figure 3 is: Find a graph (schedule) that contains presen-
tations on location privacy and join ordering, and possibly
other presentations. The answer, in this case, would in-
volve the subgraphs: (1) {Location Privacy, Join Reorder-
ing, Sensor Network DBs, Closing Remarks} (2) {Location
Privacy, Join Reordering, Spatial Databases, Closing Re-
marks}. Both subgraphs represent a temporal sequence that
satisfy the constraints of the query.

In addition to explicit temporal order, the sequential
model can be expanded to contain information relating to
a specific timescale (i.e., date and/or time). This is done by
simply adding attributes to the nodes (events, in this case)
that represent a temporal value. In the field of temporal
modeling, two straightforward methods apply for represent-
ing time values as attributes: timestamp or interval [27]. In
timestamping, a single time value is added to the event rep-
resenting either its start time or length (in units). As an
example, in Figure 3 the presentation “Query Processing”
can have a timestamp of {45 mins} representing its dura-
tion, or {9:00 AM} representing the time that it began. On
the other hand, an interval contains the begin and end in-
formation for the event. For instance, “Query Processing”
can have interval attributes of {Begin: 9:00 AM} and {End:
9:45 AM}. Similarly, edges can contain temporal informa-
tion, represented by timestamps or intervals, representing
transition time.

2.1.1 Applications

This section will highlight several application areas where
the sequential temporal model is used. It should be noted
that the applications highlighted here are by no means a

comprehensive list, and serve the purppose of emphasizing
the importance and applicability of the sequential tempo-
ral representation. In the subsequent section, we will cover
specific methods for querying such graphs that model se-
quential temporal events.
Multimedia The area of multimedia retrieval and min-
ing naturally uses the sequential representation in order to
model text, video, audio, and image presentations. Sheng et
al. [43] uses sequential semantic graphs in order to model
transitions in multimedia presentation graphs. A multi-
media presentation graph is tantamount to the conference
schedule graph given in Figure 3, except it models valid
transistions in a multimedia presentation. The nodes in the
multimedia graph can have different types (video, text, au-
dio, image), much like the conference schedule (presenta-
tion, demonstration, workshop).

The work by Chen et al. [12] uses Augmented Transi-
tion Networks (ATN) in order to model timelines of various
multimedia presentations. In this representation, nodes in
the graph represent arbitrary states in a multimedia presen-
tation where multiple presentations may be streaming si-
multaneously. Edges in the graph represent both the dura-
tion between states and the valid presentations playing dur-
ing that time period. This Multimedia Augmented Transi-
tion Network (MATN) model was created in order to allow
fast multimedia search in databases. Later work used the
MATM model as a data mining framework in order to ex-
tract information from traffic video sequences [13]. Much
like the MATM model, the work of Day et al. [17] proprosed
an object-oriented approach to semantic modeling of video
data, where a state in the transition network is represented
by multiple nodes that represent objects in a video clip. In
such a representation, queries posed on the graph deal with
temporal interaction between objects in a video stream.
Bioinformatics While not strictly temporal in nature, the
sequential model is relevant to bioinformatic applications
where directed graphs are used to model concepts in molec-
ular biology. Such examples are metabolic pathways sig-
naling transduction pathways, or gene regulation [35]. In
this graph representation, researchers often want to analyze
whole graphs searching for specific sequences (e.g., for pro-
tein pathway homology searches) [44]. Such queries are
tantamount to the database conference schedule query given
earlier in Figure 3.
Sequence Processing At the core, a linear sequence of
events is modeled as a directed graph. Thus, many appli-
cations in sequence processing either implicity or explicity
operate on graphs using the sequential temporal representa-
tion. For instance, the work of Harada et al. [31] formulated
the problem of detecting sequential patterns of events for
supporting business applications. Also, sequence process-
ing has been studied extensively in the realm of database
management systems [40, 41, 42]. Such work was a pre-



cursor to the multiple stream management systems built to
handle real-time data [3].
Graph Mining A subdiscipline of the graph mining re-
search area is very relevant to the sequential representa-
tion. Specifically, algorithms have been developed to find
“interesting” substructures in large graphs. The SUBDUE
system [32] was built specifically to search for similar sub-
structures in large graphs. This work is based on the min-
imum description length and optional background knowl-
edge [16]. Such work has been applied to chemical com-
pound analysis and CAD circuit analysis. However, sub-
structure discovery can translate directly to finding interest-
ing temporal patterns in semantic graphs using the sequen-
tial representation.

2.1.2 Information Extraction Methods

The sequential temporal representatiassdafon lends itself to
many general querying and graph matching methods be-
cause of its inherent representation as a directded graph.
Thus, many general graph-based query and pattern match-
ing algorithms may be used to extract information from this
model [25]. One categorization of graph-matching algo-
rithms is that of structural vs. semantic matching. For
temporal sequences, both query types apply. Structural
matching is based solely on the physical structure of the
graph [48, 50]. An example of a structural query using
Figure 3 could be: Find all conference schedules that con-
tain nodes with only two incident edges. Semantic matching
combines both node and edge attributes as well as physical
graph structure to answer queries for conceptually similar
graphs [15]. In the case of the sequential temporal repre-
sentation, this type of query translates into finding similar
conceptual temporal transitions. For example, a semantic
query on the graph given in Figure 3 is: Find all possible
schedules involving only presentations, where each presen-
tation has two possible transitions. Here, both semantic at-
tributes (e.g., presentation) and structure (e.g., two possible
transitions) are used to query the graph. Other general query
and matching methods that apply are the concept of exact
and inexact matching, as well as optimal and approximate
solutions. A comprehensive overview of graph matching
algorithms can be found in [25].

Multiple language prototypes exist for querying tempo-
ral concepts embedded in graphs using sequential represen-
tation. One such language, GOQL, is based on the Ob-
ject Query Language (OQL), a standardized object-oriented
database query language [10]. GOQL extends the standard
OQL framework in order to efficiently query temporal in-
formation in multimedia graphs [43]. Specifically, GOQL
extends the OQL sequence operators in order to create the
temporal operators next, until, and connected so queries in-
volving relative order and sequences can be efficiently an-
swered. The use of such a language can be seen in the fol-

A = L-Glutamate B ISA ‘Gene’
Length = *

Figure 4. Biological Query

lowing example query using the graph from Figure 3. The
first query involves the connected operator by asking for all
conference events schedlued before “Sensor Network DBs”

Select s
FROM g in Graph, sB, s, sE in g.Nodes p in paths(g,s,sB,sE)
WHERE g.name=’’Conference Graph’’,
sb.type=’’Begin’’ sE.name=’’Sensor Network DBs’’
p:sB connected s connected swl

In this code example, the where clause defines the specific
stucture of the subgraph necessary to answer the query:
a begin node, followed by all intermediate nodes eventu-
ally connected to the specific node “Sensor Network DBs”.
Sheng et al. [43] defined GOQL and presented theoretical
analysis for query processing. However, no implementation
was discussed. The theoretical basis for GOQL is found in
Computational Tree Logic [23] and the temporal operators
for Propositional Lineary Temporal Logic [40].

In the area of bioinformatics, PSQL extends SQL in or-
der to efficiently query sequential subgraphs in biological
networks [35]. PSQL was implemented on top of a purely
relational database using simple Node an Edge tables to
represent directed acyclic graphs for protien interactions.
Specifically, the nodes in the PQL database represent typed
biological entities (molecules or interations), e.g., genes,
enzymes, etc. Homogeneous edges connect (1) molecules
to interactions; meaning the molecule is necessary for an in-
teraction to occur (2) interactions to molecules; meaning the
molecule is a product of an interaction, and (3) interactions
to other interactions. PSQL enriches standard SQL mainly
by implementing path expressions. A very relevant and use-
ful example of a PSQL query is find all genes whose expres-
sion is directly or indirectly affected by a given compound
L-Glutamate. The visual version of this query is given in
Figure 4, and the corresponding SQL-like query is as fol-
lows:

SELECT B
FROM A, B
WHERE A.name=’L-Glutamate AND
A[-*]B and B ISA ’Gene’

The path expression [-*] in this example represents an
acylic path of any length between nodes A and B. Similarly,
a numeric value can be specified to find a path of a specific
length.

While not strictly developed to query temporal se-
quences, QGraph is a full visual graph query language used
to return subgraphs that match desired query patterns and
semantics [6]. To query the graph, a QGraph user draws
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a query graph, specifying both structure and semantics.
QGraph then returns all matching subgraphs that match the
user’s query.

Several more languages exist that can be used to reliably
query the sequential temporal representation. However, the
graph query languages just mentioned serve as a good sam-
ple, as a comlete review of these graph languages is outside
the scope of this paper. The important point to note is that
since temporal information is inherent in the graph struc-
ture, many exisiting graphical query languages and graph
matching algorithms can be used on the sequential repre-
sentation.
2.1.3 Implementations

While a significant number of query methods exist for
graphs representing temporal sequences, very few of the
methods surveyed here have been implemented and tested
in an actual prototype. No work surved in this section men-
tions experimental evaluations with regard to efficiency or
runtime. Furthermore, with the exception of PSQL [35] and
QGraph [6], no work surveyed in this section mentions an
implementation of a query method.

2.2 Snapshot Representation

As the name suggests, time in the snapshot representa-
tion of semantic graphs is modeled by historical chronons,
or “snapshots” instances, of a graph over a period of time.
Thus, historical information about a particular semantic
graph is available for analysis. Figure 5 gives an example of
the snapshot temporal representation for a semantic graph
involving a person “John”. In the first snapshot T1, “John”
has three different semantic connections to other graph en-
tities: (1) He is the father of another person “James”, (2) He
works in the city of Livermore, and (3) He lives in the city
of San Francisco.

The snapshot representation lends itself well to discov-
erying dynamic entities of a graph over time [11, 21]. In
the realm of semantic graphs, the dynamic entities involve
semantic relationships that can change over time. For in-
stance, in snapshot T1 in Figure 5, the semantic relation-

ships Works In and Lives In can be considered dynamic, as
the person “John” can live and work in different cities dur-
ing his lifetime. In Figure 5 gives an example of such a
change; between snapshot T1 and T2, a new semantic re-
lationship was formed, showing that “John” now lives in
“Oakland” instead of “San Francisco”. On the other hand,
the semantic relationship Father Of between “John” and
“James” is static, and will not change over time. Of course,
the amount of dynamic and static elements in a semantic
graph is a property of the domain being modeled.

Due to dynamic elements in a semantic graph, the snap-
shot representation is mostly applied to instances or prob-
lems involving changes over time to all or part of a graph.
Questions that are posed against this representation gener-
ally involve knowledge discovery applications; a simple ex-
ample of such a query is: Find the largest area of change in
graph A between time periods 1 and 3. Such a query differs
fundamentally from the sequential representation presented
in Section 2.1. In the sequential representation, querying in-
volves matching a specific pattern known beforehand, e.g.,
Find all schedules that follow a pattern P. Querying the
snapshot representation generally assume no specific query
pattern a priori. However, this does not disqualify the use
of the snapshot representation to be used on matching algo-
rithms involving a specific query pattern across one or mul-
tiple graphs in a series. In the subsequent section, we will
cover specific applications for the snapshot representation.

2.2.1 Applications

Since the snapshot representation allows changes of dy-
namic elements of a graph to be analyzed over time, graph
mining is the major application for this representation.
Graph mining, or structural motif finding, involves find-
ing common or “interesting” patterns in a graph [9, 16, 34].
Some mining methods are constructed for finding interest-
ing substructures in a single, static graph [16, ?]. In this
case, the snapshot model does not apply, as such meth-
ods would apply to the sequential method presented in Sec-
tion 2.1. However, many mining methods consider changes
across time [9, 8, 11, 21, 20, 19, 39, 45]; here, the snapshot
representation naturally applies.

The application areas for graph mining on snapshots
span a spectrum of disciplines that model data as a graph,
both semantic and otherwise. For instance, mining of World
Wide Web data alone has multiple subdisciplines, such
as hyperlink analysis over time [21, 19], Web social net-
works [33], and, although not techically the Web, structured
newsgroups [7]. Also, network communication topology
graphs serve as a crucial testbed for mining and knowledge
discovery [11, 20, 39].D

Much like the sequential temporal representation, query
and mining methods for the snapshot representation in the
literature are concerened with structure, or structure and



semantics. In the snapshot representation, a dynamic struc-
tural change is soley based on changes to the physical struc-
ture of all or part of the graph over time. On the other hand,
a structural and semantic change is based on changes to
specific typed or attributed structures, i.e., nodes and se-
mantic relationships in a semantic graph, over time.

2.2.2 Information Extraction Methods

Since the snapshot model can be considered a set of n

graphs observed over Tn observation periods, many graph
matching algorithms that were discussed in Section 2.1.2
can be applied to answer questions about a specific pattern
query over time. An example of such a query is: Does
subgraph P occur in graph G in all snapshots between
time periods 1 and 7?. In this example, the graph match-
ing algorithm for pattern P can ask for a solely structural
change [48, 50], or it can have specific semantic informa-
tion attached [15].

Within the discipline of graph mining, the concept of
mining temporally evolving graphs is becomming a ma-
jor topic within Web analysis. Previous work only con-
sidered static representations of the web, however, Desikan
et al. [21] proposed the evolving graph representation and
defined three levels of analysis for web graphs over time:
(1) Single Node, (2) Subgraphs, and (3) Whole Graphs. Sin-
gle node analysis covers properties of a single web page in
this case. However, the concept can be generalized for a
generic node in any semantic graph. An example of interest-
ing single-node properties changing over time in Web min-
ing are link structure, in-degree, out-degree, hub/authority
score, and PageRank score. These properties model the
“popularity” of a particular node over time. Subgraph anal-
ysis leads to interesting or abnormal patterns of behavior
on the Web, and may lead to insight on upcoming trends
or criminal behavior. Whole graph mining leads to analysis
of basic graph properties such as size and density, and also
derived properties such as hub and authority scores, in the
case of the Web. Another use of temporal analysis on Web
graphs are evolving PageRank scoring [19]. Recently, anal-
ysis Web links with semantic information has been studied
in the area of Web mining [18] without temporal evolution.

In general, pattern mining of temporal changes in a snap-
shot series of graphs is defined as a theoretical framework
by Borwardt et al. [8]. Citing the need to adequately study
interacions in real-world systems, the authors define the
concept of frequent pattern mining on dynamic graphs. The
problem posed in this type of work is the ability to deter-
mine dynamic subgraphs that are (1) topologically similar,
and (2) show similar behavior over time. Semantic rela-
tionships in this framework receive attention, as edge pat-
terns are defined by the type of two nodes that create an
edge. However, analysis of multiple semantic relationships
between two nodes is not covered.
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Figure 6. Snapshot Representation

The snapshot representation has also been used in re-
search on visualizing changes in communication and social
networks over time. Both of these network models are con-
sidered homogeneous semantic graphs. The work of Gloor
et al. [26] developed a visualization browser for analyzing
social links over time. This work was based around changes
to social communication derived through emails and repre-
sented as graph snapshots. A dynamic visualization algo-
rithm, named sliding time frame algoritm, was developed
in order for users to define a valid time period (e.g., 5 days)
where a series of changes in the graph can be visualized.
Users can also choose to view historical data, i.e., the graph
structure before the defined window. Ultimately, the aim
of this work is to distinguish communication patterns over
time in different netowrks by means of visualization.

Other specific mining methods that apply to the snap-
shot temporal representation are abnormality detection [45],
spatio-temporal changes in graphs [11], and recovery algo-
rithms for missing graph information [9]. While each of
these methods is specific to an application, the underlying
theme of detecting changes between a sequence of graphs
is the same. Thus, the snapshot is heavily used by these an
many other graph mining methods.

2.3 Valid Edge Representation

A third and very powerful temporal represenation in se-
mantic graphs is the valid edge representation. The valid
edge model involves attaching a time interval to each se-
mantic relationship in the graph. The interval represents the
time that an relationship is “valid” in the graph. Figure 6
gives an example of the valid edge representation for the
semantic interactions of person “John”, introduced previ-
ously in Section 2.2. Assumming the current time period is
5, we see that John lived in San Francisco from time period
0 to 3, and currently lives in Oakland, where he moved at
time period 4. Similarly, time intervals are attached to all
other semantic relationships in Figure 6.

The valid edge model is a very effective tool as it pre-
serves the spirit of extensibility inherent in most universes
modeled by semantic graphs. Thus, it is very powerful for
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Figure 7. DRER Model

answering queries of the type “Find all instances where X

is valid over time period [t1,t2]”. As a specific example in-
volving Figure 6, we could ask “Find all cities where John
lived between time periods 0 and 5”. Also, the valid edge
model is inherently more efficient in answering the analysis
queries just presented in comparison to the snapshot model.
This efficiency is gained by not having to store an entirely
new version of the graph, as in the snapshot model, every
time an update is made to all or part of a graph. Updates in
the valid edge model only involve the specific entity in the
graph being updated. Also the valid edge model is gener-
ally more robust than the snapshot model, as a snapshot for
a specific time instant can be reconstructed easily for all or
part of a graph in valid-edge format.

2.3.1 Applications

The valid edge representation models time-sensitive seman-
tic relations effectively. Thus, it is present in many different
modeling paradigms spanning many applications.
RDF/Semantic Web Recently, there has been much re-
search and development in the area of Resource Descrip-
tion Framework (RDF), a metadata model and language
proposed by W3C for building machine-readable seman-
tic structures for data on the World Wide Web. Using the
RDF structure, The Semantic Web hopes to effectively in-
tegrate semantics for such web activities as information in-
tegration, search, and analysis. In fact, only recently did
RDF researchers formally define the valid-edge representa-
tion for the semantic Web [28]. Thus, research involving
semantic relations in RDF data that is temporally correlated
is relatively new.

The major application of the valid-edge model in RDF
research falls in the area of geospatial and temporal se-
mantic analytics. Until recently, much research on RDF
semantic analysis applications focused on solely seman-
tic relations. However, geo-spatial and spatiotemporal the-
matic data processing is now a major push for RDF applica-
tions. The underlying theme of this research is to effectively
model the spatial and temporal relationships between enti-
ties in a semantic graph. Several high-level ontologies have
been proposed to accomplish this task [2, 38, 51]
RFID/Mobile Data While not explicity tied to data pro-
cessing and analysis in semantic graphs, data modeling for

Employee

ID
Project

ID

Works_For

Time Period

Begin End

Figure 8. RAKE Temporal Model

RFID data has much in common with the valid-edge rep-
resentation. At a fundamental level, RFID data is tempo-
ral and dynamic. For instance, a very practical use-case
for RFID chips is inventory tracking. Inventory items, with
RFID chips attached, interact with readers that are responsi-
ble for transmitting an item’s information. This information
is eventually stored in a standardized format, and queries
against this data almost always involve temporal qualifiers
(e.g., Find all readers that interacted with item 1 in the last
hour). Thus, interactions in the RFID setting are always as-
sociated with a timestamp, and data modeling in this area
use constructs resembling the valid-edge model [36, 49].

Wang and Liu [49] aimed to create a model for RFID
data such that data management systems can effectively
support large-scale temporal changes. Specifically, the
model aims to help data mangement systems suppor track-
ing and analysis queries over dynamic RFID data. This
model is based on the identification of fundamental entities
and relationships found in RFID systems; of importance in
this survey is the dynamic relationships. Specifically, Wang
and Liu point address dynamic temporal data found in RFID
systems, such as observations, location change, and con-
tainment change of objects. They propose the Dynamic Re-
lationship ER Model (DRER), a simple temporal extension
to the ER model to overcome the constraint that all relation-
ships in the ER model are static and current. The DRER
model employs state-based dynamic relationships that con-
tain two attributes denoting the start and end time of the
state. Figure 7 gives an example of a state-based dynamic
relationship model between a sensor and location. Here,
we see that a sensor is associated with a location between
a valid time interval. Similar to [49], Liu et. al [36] use
the DRER to model the myriad use-case scenarios found in
RFID environments.
Temporal Data Modeling Extending the ER to handle tem-
poral data is not exclusive to RFID environments. In fact,
the valid-edge representation can be found in other general-
purpose temporal models. The Relationships, Attributes,
Keys, and Entities (RAKE) model [24] makes use of begin
and end timestamps in time-varying relationships. Figure 8
gives and example of the RAKE temporal modle, showing a



relationship between an Employee and Project entities. The
RAKE model contains more detailed constructs for other
time-varying scenarios; as we can see, however, at its core
the RAKE model heavily resembles the DRER model for
state-based dynamic relationships. As another example, the
Temporal ER Model (TER) [47], where temporal relation-
ships are associated with a lifetime.

2.3.2 Information Extraction Methods

Within the area of Semantic Web research, information ex-
traction and thematic and temporal analysis is of much in-
terest. While not strictly temporal in nature, Angles et al.
introduce the concept of querying RDF data from a graph
database perspective [1]. This work moves beyond strictly
modeling RDF concepts by discussing and initial definition
of a strict database model and the design of query language
primitives on such a model. Specifically, this work ad-
dresses the second of the three components of a data model
defined by Codd [14]: (1) a collection of data structure
types, (2) a collection of transformation operators and query
lanaguage and (3) a collection of general integrity rules.
Theoretical in nature, the main contribution of Angles et
al. is a review of exisiting graph query lanaugages and a
listing of graph primitives for RDF query languages, e.g.,
paths and connectedness, aggregate functions, and neigh-
borhoods.

Moving into spatial and temporal analysis of RDF data,
the work of Perry et al. [38] defines an semantic ontology
for linking thematic (i.e., semantic), spatial, and temporal
relationships, as shown in Figure 9. Here, the bold ar-
rows represent a sub-class relationship, while the labeled
lines represent non-hiearchichal relationships. We also see
valid-edge intervals on the located at and occured at rela-
tionships. This ontology uses the concept of Continuants,
that represent entities that persist over time (e.g., person
or building), and Occurants, that represent events and pro-
cesses (e.g., battle or concert). In this ontology, a named
place continuant is a spatial entity, meaning its identity is
strongly associated with space (e.g., building), whereas a
dynamic entity is relatively mobile, and not strongly asso-
ciated with space (e.g., person). An occurent, on the other
hand, is always associated with a valid time and space.

The work by Perry et al. [38] also formalizes a set of
spatial and temporal query operators over RDF triples and
theoretically demonstrates their effectiveness. Example of
temporal operators are: (1) temporal intersect, selecting an
interveral where the entire path (i.e., semantic relationship)
is valid, (2) temporal range, selecting an interval where a
specific path unfolds, and (3) temporal restrict, defining the
properties of an entity at a given time period. The authors
then extend these operators to the spatio-temporal domain.

Application prototypes have also been built for spa-
tiotemporal properties found in RDF data. Hakimpour et
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Figure 9. Spatiotemporal Semantic Ontology

al. [30] built the REST web service artifact that gathers dis-
tributed RDF data from multiple web sources. After this
processing, the REST service allows uses to specify sim-
ple requests for events based on time, space, semantics, and
cost (i.e., the cost ratio of time and space). When address-
ing cost, the application gives the user a simple slide scale
to specify preference on the time or space dimension.

In the area of RFID data processing, the ESL-EV query
language [4] was designed as a stream query language with
support for temporal events. ESL-EV is an SQL-like lan-
guage that with syntax for detecting temporal event se-
quences for contiuously-updated RFID readings. The core
of this language is based on a sequence operator SEQ, that
detects a sequence of events from multiple streams. For ex-
ample, the following ESL-EV code demonstrates how to de-
tect if an RFID badge is scanned by a sequence three readers
R1-R3:

Select R1.time, R2.time, R3.time
FROM R1,R2,R3
Where SEQ(R1,R2,R3)
AND R1.tid=R2.tid AND R1.tid=R3.tid

The ESL-EV language has further efficiency features such
as sliding windows for valid time periods and multiple tu-
ple pairing modes in order to cut down on the amount of
historical information needed to detect an RFID sequence.

Similarily, the AUCQL [22] query language was de-
veloped for semistructured data, such as XML that could
be used to represent graph data. The main draw behind
AUCQL that differentiates it from other semi-structured
query languages is its ability to handle properties of link
(edge) models. One of many such properties is time.
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