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Abstract 
We address the problem of classification in a partially 
labeled network (a.k.a. within-network classification), 
with an emphasis on tasks in which we have very few 
labeled instances to start with. Recent work has 
demonstrated the utility of collective classification 
(i.e., simultaneous inferences over class labels of 
related instances) in this general problem setting. 
However, the performance of collective classification 
algorithms can be adversely affected by the sparseness 
of labels in real-world networks. We show that on 
several real-world data sets, collective classification 
appears to offer little advantage in general and hurts 
performance in the worst cases. In this paper, we 
explore a complimentary approach to within-network 
classification that takes advantage of network 
structure. Our approach is motivated by the 
observation that real-world networks often provide a 
great deal more structural information than attribute 
information (e.g., class labels). Through experiments 
on supervised and semi-supervised classifiers of 
network data, we demonstrate that a small number of 
structural features can lead to consistent and 
sometimes dramatic improvements in classification 
performance. We also examine the relative utility of 
individual structural features and show that, in many 
cases, it is a combination of both local and global 
network structure that is most informative. 
 
Keywords 
Statistical relational learning, social network analysis, 
feature extraction, collective classification. 
 
 
1. Introduction 
Many problem domains are naturally represented as 
networks of nodes (representing concepts) and links 

(representing relations between concepts). Examples 
include communication networks (e.g., phone-call 
graphs) and informational networks (e.g., citation 
graphs) to name a few. Networks provide a simple, but 
powerful representation for many kinds of problems. 
In this paper, we address the problem of within-
network classification. 

For within-network classification, we are given a 
network in which some of the nodes are “labeled” and 
others are “unlabeled” (see Figure 1). Here, “labeled” 
simply means that a node has been assigned a “class” 
from among a set of possible classes. The goal of 
within-network classification is to assign the correct 
labels to the unlabeled nodes in the network (i.e., to 
"classify" them). 

 
Figure 1: A Portion of the MIT Reality Mining Call 
Graph. We know the class labels for the black nodes, 
but do not have labels for the yellow nodes.  

 
Consider the following example. Suppose we want 

to identify fraudulent users in a cell phone network. In 
this case, our set of possible classes for users is 
{fraudulent, legitimate}. If a user, John, is known to be 
involved in fraud, we assign a label of “fraudulent” to 
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the node representing John. If a user, Jane, is known to 
not be involved in fraud, we assign a label of 
“legitimate” to the node representing Jane. Otherwise, 
we leave the node unlabeled. Our goal then is to 
determine the labels (“fraudulent” or “legitimate”) of 
these unlabeled users. 

Cell phone fraud is an example of an application 
where networks are often very sparsely labeled. We 
may have a handful of known fraudsters and a handful 
of known legitimate users, but for the vast majority of 
users, we do not know the correct label. A number of 
intelligence applications have this characteristic as 
well (e.g., identifying members of a terrorist 
organization). For such applications, it is reasonable to 
expect that we may have access to labels for fewer 
than 10%, 5%, or even 1% of the nodes. Figure 1 
shows an example of a sparsely labeled cell phone 
network. The pictured network is a subset of the MIT 
Reality Mining network [4]. The network contains 
~32K phone calls between 1K person nodes, but title 
information (e.g., student, non-student) for only those 
in the Reality Mining study (~8% of total nodes). 

In addition to being sparsely labeled, cell phone 
networks are generally anonymized. That is, nodes in 
these networks often contain no attributes besides class 
labels that could be used to identify them. It is this 
kind of sparsely labeled, anonymized network that is 
the focus of this work. Put another way, our work 
focuses on univariate within-network classification in 
sparsely labeled networks. 

Relational classifiers have been shown to perform 
well on network classification tasks, because of their 
ability to make use of dependencies between class 
labels (or attributes) of related nodes [24]. However, 
because of their dependence on attributes of neighbors, 
the performance of relational classifiers can 
substantially degrade when a large proportion of 
neighboring instances are also unlabeled. In many 
cases, collective classification provides a solution to 
this problem, by enabling the simultaneous 
classification of any number of related instances [22]. 
However, previous work has shown that the 
performance of collective classification also degrades 
when there are too few labels available, eventually to 
the point where classifiers perform better without it 
[17, 18]. 

In this paper, we explore another source of 
information present in networks: the local and global 
structural patterns formed by the network's link 
structure. As we discuss in Section 4, we are not the 
first to make use of structural characteristics in the 
context of network classification. Researchers studying 
complex and social networks have long made use of 
structural network characteristics to provide 
information about individuals in a network [19]. To 

improve classification performance, recent work has 
also used network structure to (1) improve active 
inference [21], (2) prune a network down to its ‘most 
informative’ links [23], and (3) discover hidden groups 
[17]. Some classifiers also make explicit use of local 
structure (i.e., degree of a node) as features [15]. Our 
main contribution is to explore the use of both local 
and global network structure as features for relational 
classifiers in order to answer the following questions: 
1. Can network structure make up for the lack of 

information due to sparsely labeled data? 
Answer: Yes. 

2. Does structure provide any information above and 
beyond that provided by the class labels? 
Answer: Yes. 

3. How does the benefit of structural features 
compare to the benefit of collective classification? 
Answer: When labels are sparse, the benefit of 
structural features outweighs the benefit of 
collective classification. 

4. Is there a benefit to combining structural modeling 
with collective classification? 
Answer: No, not consistently. 

5. Which structural features are the most useful? Is 
there generally one feature that is the most 
predictive or is it a combination of features? Are 
local and global features equally informative? 
Answer: We found clustering coefficient to be the 
least informative. A combination of betweenness 
centrality, number of neighboring nodes, and 
number of incident links were the most 
informative. 

Section 2 describes existing approaches for within-
network classification. Section 3 presents our general 
approach for extending these methods to incorporate 
information about network structure. Section 4 covers 
related work. Sections 5 and 6, respectively, present 
our experimental design and results. We summarize 
the paper in Section 7. 
 
2. Background on Classifiers for Network 
Data 
In this section, we describe existing techniques for 
network classification that we build on in this work. 
 
2.1 Relational Classifiers 
There has been a great deal of recent work on 
classifiers that make use of the relationships implicit in 
structured data such as networks. Relational classifiers 
predict the class labels of a set of nodes, U, given the 
attributes of the nodes in U and the attributes of 
neighboring nodes. There are three general types of 
relational classifiers: individual conditional classifiers, 
collective conditional classifiers, and joint classifiers 
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[18, 22]. Figure 2 illustrates a taxonomy for these 
relational classifiers. 

 

 
Figure 2: Taxonomy of relational classifiers for 
network data 

 
Individual conditional classfiers (ICCs) are the 

simplest type of relational classifier. These classifiers 
make predictions about the nodes in U one at a time. 
ICCs can make use of any attributes in the graph that 
are known at the time classification begins, but they do 
not make use of the predicted class labels of nodes in 
U. Naturally, the performance of these classifiers can 
substantially degrade when a large proportion of 
neighboring instances are missing class labels. An 
example of ICC is the Relational Probability Tree 
[15]. 

Collective classifiers, on the other hand, make use 
of the predicted class labels of some nodes in U to 
improve the predictions about other nodes in U. That 
is, classifications are made “collectively” over all 
nodes in U “at once.” There are two basic types of 
collective classifiers: collective conditional classifiers 
and joint classifiers. 

Collective conditional classifiers (CCC) combine 
an ICC with an approximate inference procedure (such 
as Gibbs sampling [6]). This procedure can be viewed 
as a message passing algorithm, where each iteration 
involves a set of messages being passed between a 
node and its neighbors. Over many iterations, 
messages propagate throughout the network, allowing 
even simple relational classifiers to exploit 
dependencies between nodes separated by many links. 
An example of CCC is the Relational Probability Tree 
[15] combined with Gibbs sampling. 

Joint classifiers attempt to learn a joint probability 
distribution over all known attributes in a network and 
then jointly classify missing labels using an 
approximate inference procedure (such as loopy belief 
propagation). An example of a joint classifier is the 
Relational Markov Network [24]. 

There are many different procedures for performing 
collective inference. The most popular include iterative 
classification algorithm (ICA), Gibbs sampling, mean-
field relaxation labeling, and loopy belief propagation. 

Sen, et al. [22] and Macskassy and Provost [13] both 
provide empirical studies of these methods. 

As a starting place for our work, we chose two 
simple conditional classifiers that have been 
demonstrated to perform well on a variety of tasks: the 
link-based classifier [11] and the relational neighbor 
classifier [12]. Since our work deals with univariate 
relational classification (i.e., class labels are the only 
attribute), we follow the recent work of Macskassy and 
Provost [13] and use their network-only version of the 
link-based classifier and their weighted-vote relational 
neighbor classifier. Both of these conditional 
classifiers can operate as individual classifiers or be 
combined with an approximate inference algorithm 
(like ICA or Gibbs sampling) to become collective 
classifiers. 
 
2.2 The Network-Only Link-Based Classifier 
The network-only link-based classifier (nLB) [13] uses 
logistic regression to build a discriminative model of 
node i's class given the class labels of nodes directly 
linked to i. Since logistic regression expects a fixed-
length feature vector, the set of neighboring class 
labels is summarized by a statistic such as the count or 
proportion of neighboring nodes of each class. 

Our nLB implementation uses the count of unique 
neighbors of each class as features. We also 
experimented with using normalized counts (i.e., 
proportion) and with weighting counts by the number 
of links between neighbors. However, these variations 
had no substantial effect on the results. 

In our experiments, we run variations of this basic 
nLB classifier that make use of structural features 
and/or collective classification. See Section 5.3 for 
additional algorithmic details. 
 
2.3 The Weighted-Vote Relational Neighbor 
Classifier 
The weighted-vote relational neighbor classifier 
(wvRN) [12] is a simple non-learning classifier. It does 
not need to be trained. The wvRN simply estimates the 
probability that node i is of class c as the weighted 
mean of the probabilities that each of node i's 
neighbors is of class c: 
 

( ) ( )∑
∈

=⋅==
Nj

jjii cCPw
Z

NcCP ,
1|  

 
Here, N is the set of node i's neighbors, wi,j is a 

weight between node i and its neighbor j, and Z is a 
normalizer. 

Since we do not use collective classification 
techniques that make use of uncertainty in class label 
assignments (e.g., relaxation labeling), P(Cj=c) is 1 iff 

Relational Classifiers 

Individual 
Conditional 
Classifiers 

Collective 
Classifiers 

Joint 
Classifiers 

Collective 
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Cj=c (based on current class label assignments) and 
P(Cj=c) is 0 otherwise. For all of our classification 
tasks, we set wi,j to the number of links between nodes 
i and j. So, the weights loosely represent the strength 
of the relationship between two nodes. 

In our experiments, we run variations of this basic 
wvRN classifier that make use of structural features 
and/or collective classification. See Section 5.3 for 
additional algorithmic details. 

 
2.4 Semi-supervised Classifiers 
Although our focus is on supervised approaches for 
relational learning, the problem of within-network 
classification can also be thought of as a semi-
supervised learning problem, since we have both 
labeled and unlabeled data available at training time. 
Therefore, in addition to the supervised methods 
described above, we examined the semi-supervised 
Gaussian random field (GRF) approach of Zhu et al. 
[26]. This is a graph-based semi-supervised learning 
approach where networks are generally constructed by 
linking instances with similar attributes. However, the 
general method can also be applied to networks such 
as ours where links are based on observed 
relationships (e.g., person A calls person B). 

The GRF method uses a Gaussian random field 
model to derive a harmonic function f, which assigns a 
real value to each node in the network (i.e., a label). 
The function f is derived by minimizing the weighted 
squared difference between labels of neighboring 
nodes. The harmonic constraint means that f returns the 
true value of the label for each labeled node and a 
weighted average of f over all neighboring nodes for 
each unlabeled node.  
 
3. Modeling Network Structure 
In this section, we describe our approach to modeling 
characteristics of network structure for use in network 
classifiers. 
 
3.1 A Taxonomy of Network Features 
When classifying a node, i, relational classifiers make 
use of attributes of node i itself, as well as attributes of 
nodes in i's relational neighborhood. In addition, some 
classifiers make use of local network structure (e.g., 
node degree) [15]. For our work, we would like to 
incorporate additional network structural information. 
Eventually, we require all of this information to be 
packaged into a feature vector so that it may be used as 
input to a conditional classifier. 

If we loosely define a feature to be a function of 
network observables (i.e., known or predicted attribute 
values and network structure), we can construct a 
taxonomy of feature types to capture all of the 

information of interest to us. Figure 3 presents such a 
taxonomy.  

 

 
Figure 3: Taxonomy of network features 

 
At the top level, we separate features into attribute-

based and structural. Attribute-based features are 
further divided into: (1) local features, which are 
intrinsic attributes of a node (e.g., Person.name) and 
(2) relational features, which are calculated by 
applying aggregation functions to the set of attribute 
values of neighboring nodes (e.g., 
count(NeighborPerson. jobTitle = 'executive')). 
Structural features are further divided into: (1) 
neighbor-based features that provide information about 
the structure of the immediate neighborhood (e.g., 
neighborCount(Person)), and (2) graph-based features, 
which leverage information on the structure of a more 
extended neighborhood, which may even include the 
entire network (e.g., betweenness(Person)). 

Since our work addresses the problem of univariate 
relational classification, we have no local attribute-
based features. Our baseline relational models, nLB 
and wvRN, both make use of attribute-based relational 
features (i.e., the count of neighboring nodes of each 
class). In the remainder of this section, we discuss the 
extraction of structural features from a network and 
explain how we extend the nLB and wvRN models to 
make use of these features. 

 
3.2 Network Structural Features 
The success of network structural characteristics as 
predictors of class relies on two basic assumptions: (1) 
members of different classes play different roles in a 
network and (2) these roles can be differentiated by 
measurable structural characteristics. We know from 
Social Network Analysis that assumption (2) is met in 
many cases. For instance, popular nodes can be 
identified by measures such as degree (i.e., the number 
of connections) and nodes that are “central” to a 
network can be identified by measures such as 
betweenness centrality. Whether assumption (1) is met 
depends on the nature of the class label of interest. For 
example, suppose that executives tend to be more 
popular and more central than the average employee in 
a company communication network. Further suppose 
that managers of different departments tend to be 

Attribute-based Structural 

Features 

Relational Neighbor-
based 

Graph-
based 

Local 
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similar to one another in terms of popularity and 
centrality. Then, in this example, we would expect 
structural features to be more useful for indentifying 
executives than members of a particular department. 
The remainder of this section describes the individual 
structural features we use in our study. 

The neighbor-based structural features we use are 
the degree features used by Neville et al. [15]: (1) the 
number of neighboring nodes and (2) number of 
incident links. Note that in multigraphs, these two 
values are generally different. 

Graph-based structural features have never before 
been explicitly used as features in a conditional 
classifier. For these features, we use (1) betweenness 
centrality (which identifies nodes that occur along 
many paths) and (2) clustering coefficient (which 
measures neighborhood strength in terms of how 
connected nodes in a neighborhood are to one 
another). We formally define betweenness centrality 
and clustering coefficient next. For more details, we 
refer the reader to a study by Mark Newman [19]. 

Betweenness centrality can be defined for nodes or 
links. For node betweenness, we compute the 
following function: 

 
where gi(s; t) is the number of shortest paths from 
node s to node t that pass through node i. Nst is the total 
number of geodesic paths from s to t. V is the set of 
nodes in the network and N is the total number of 
nodes (i.e., N = |V|). A node with high betweenness has 
great influence over what information flows in the 
network. 

Clustering coefficient for a node i is defined as 

 
where ki is the number of neighbors of node i and Ei is 
the number of edges between the ki nodes. Within 
social networks, the clustering coefficient captures the 
common belief that a friend of a friend is also a friend. 
 
3.3 Modeling Structure with nLB, wvRN, and 
GRF 
This section describes our general approach to 
extending the nLB, wvRN, and GRF classifiers to make 
use of structural features. For a more detailed 
description of our implementation, see the nLBStruct, 
wvRNStruct, and GRFStruct classifier descriptions in 
Section 5.2. 

Link-based models, as originally described by Lu 
and Getoor [11], consist of two separate logistic 
regression models: one for local attributes and the 
other for relational attributes. When classifying a node 
i, each of these models will output a probability for 

each class. The two probabilities for each class are 
then combined into a single probability for that class 
by taking their product. We take a similar approach to 
modeling structural features with the nLB. Since we 
have no local attributes, we replace the local attribute 
model with a logistic regression model that takes our 
structural features as input, logStruct. Then we 
combine the probabilities output by the relational 
feature model and the structural feature model, as in 
the original link-based classifier. 

The original link-based classifier aggregates 
probabilities from the two constituent classifiers by 
taking their product. We opted to use a weighted sum 
instead to allow us to control the amount we rely on 
attribute-based vs. structural features. Using a fixed 
weight of 0.5 (i.e., equal weights for attributes and 
structure), our experiments showed no substantial 
difference in performance due to the use of sum vs. 
product as a probability aggregator. However, for the 
experiments presented in this paper, we actually learn 
the weight w as described below. We then calculate the 
probability of each class as: 

 
( ) ( ) ( ) ( )CPwCPwCP logStructnLB ⋅−+⋅= 1  

 
Since the wvRN model is not a learning method, it 

cannot take advantage of structural features directly. 
Therefore, we take the same basic approach as for nLB 
and use a logistic regression model of the structural 
features. Then we take a weighted sum of the 
probabilities returned by the wvRN model and the 
structural feature model, as in the nLB case. 

Like wvRN, the semi-supervised GRF approach is 
not feature-based. So, again, we take the same basic 
approach as for nLB and use a logistic regression 
model of the structural features. Then we take a 
weighted sum the probabilities returned by the GRF 
model and the structural feature model. In addition to 
our weighted sum approach, we also tried the approach 
suggested by Zhu et al. for incorporating external 
classifiers into their method. Their approach is to 
attach a “dongle” node to each unlabeled node in the 
graph that is given the label assigned by the external 
(e.g., structural) classifier. The transition from node i 
to its dongle is assigned a probability of η and all other 
transitions from i are discounted by 1 - η. This 
“dongle” approach did not yield any improvements 
over the weighted sum approach. So, we use the 
weighted sum approach for consistency with the other 
classifiers. 

For all approaches, we calculate w based on the 
relative performance of attribute-only classifier 
(attrOnly) and logStruct on the training data. More 
specifically, we perform 10-fold cross validation on 
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the training set using each of attrOnly and logStruct 
separately. We calculate AUC for each fold and then 
obtain an average AUC score for each classifier, 
AUCattr and AUCstruct. We then set w as follows: 

 

structattr

attr

AUCAUC
AUCw
+

=  

 
Thus, we put weight on each feature type (attribute-

based vs. structural) proportional to the estimated 
predictiveness of that feature type, based on the 
training data for a particular task. Note that AUC is our 
performance measure of choice for this work. See 
Section 5.4 for further information on AUC. 

 
4. Related Work 
In recent years, there has been a great deal of work on 
models for learning and inference in relational data [7, 
11, 12, 15, 16, 18]. Many use some sort of feature 
construction to incorporate attribute-based relational 
information. However, to our knowledge, no previous 
approach uses structural information from the extended 
neighborhood as features for classification. As we 
discuss below, several researchers have made use of 
network structure indirectly for network classification.  

Note that most of these models use only a single 
relational feature at a time. Relational Probability 
Trees (RPTs) [15] use several features concurrently. 
However, they construct only binary features. RPTs 
also use neighbor-based structural features (i.e., 
neighboring node and link counts), but they do not use 
graph-based structural features such as betweenness or 
clustering coefficient. In addition, their work does not 
specifically consider the impact of using structural 
features on classifier performance. 

In order to make simultaneous use of multiple 
feature types (e.g., attribute-based, structural, 
temporal), Gallagher and Eliassi-Rad [5] advocate the 
use of random forests [1], which are well suited to 
making sense of large feature sets. 

Perlich and Provost [20] provide a nice study on 
aggregation of relational attributes, based on a 
hierarchy of relational concepts. They do not consider 
structural features. 

Singh et al. [23] use descriptive attributes and 
structural properties (i.e., node degree and 
betweenness centrality) to prune a network down to its 
‘most informative’ affiliations and relationships for the 
task of attribute prediction. They do not use the 
structural properties as input to their classifiers. 

Rattigan et al. [21] use network structure to decide 
which nodes to label in an active learning setting. In 
addition, they utilize fast, approximate calculations for 
network measures such as betweenness. 

Neville and Jensen [17] use spectral clustering to 
group instances based on their link structure (where 
link density within a group is high and between groups 
is low). This group information is subsequently used in 
conjunction with attribute information to learn 
classifiers on network data. 

There are many recent papers on collective 
classification [2, 8, 13, 14, 16, 18, 22, 24]. Sen et al. 
[22] provide a careful empirical study of the various 
procedures for collective inference. Macskassy and 
Provost [13] provide a nice case-study of previous 
work in learning attributes of networked data. 
McDowell et al. [14] demonstrate that “cautious” 
collective classification procedures produce better 
classification performance than “aggressive” ones. 
They recommend only propagating information about 
the top-k most confident predicted labels. Lastly, 
previous work confirms our observation that collective 
classification’s performance suffers when labeled data 
is very sparse [17, 18]. 

As discussed in Section 2.4, the problem of within-
network classification can also be thought of as a semi-
supervised learning problem. The graph-based 
approaches to semi-supervised learning are particularly 
relevant here. For more on semi-supervised learning, 
we refer the reader to an excellent survey by Zhu [26]. 

 
5. Experimental Design 
We have designed our experiments to answer the 
following questions: 

 
1. Can network structure make up for the lack of 

information due to sparsely labeled data? 
2. Does structure provide any information above and 

beyond that provided by the class labels? 
3. How does the benefit of structural features 

compare to the benefit of collective classification? 
4. Is there a benefit to combining structural modeling 

with collective classification? 
5. Which structural features are the most useful? Is 

there generally one feature that is the most 
predictive or is it a combination of features? Are 
local and global features equally informative? 

 
To avoid confounding effects as much as possible, 

we focus on univariate binary-classification problems, 
and extend simple existing classifiers to incorporate 
structural information. 
 
5.1 Data Sets 
We present results on four real-world data sets: 
political book purchases [10], Enron emails [3], 
Reality Mining cell phone calls [4], and theoretical 
high-energy physics publications (HEP-TH) from 
arXiv [9].  
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The political books data set consists of 105 books 
labeled as liberal, conservative, or neutral. Links 
between books indicate that both books were 
purchased by the same customer. There are 441 co-
purchase links in this data set. Our task is to identify 
the neutral books (Pr(neutral) ≈ 0.12). This is our only 
data set that is fully labeled to begin with. 

From the Enron data set, we use a subset containing 
all data collected during a 32 day period, from 
6/8/2001 to 7/10/2001. This subset consists of 
approximately 9K people nodes and 50K email links. 
We explore the task of identifying executives among 
Enron employees (Pr(exec) ≈ 0.018). For this task, we 
only have ground truth for a subset of 1.6K nodes 
(~18% of total nodes). So, our training and test sets are 
drawn from among these 1.6K nodes. However, we 
can still use the remainder of the graph (i.e., the 
unlabeled neighboring nodes) to calculate structural 
features of the labeled nodes. 

For the Reality Mining data set, we use a connected 
subgraph of the full graph, obtained via breadth-first 
sampling. The subgraph was obtained by starting from 
a random node in the graph and expanding out in a 
breadth-first fashion until 1000 nodes had been 
touched. The final subgraph includes all nodes and 
links touched during the breadth-first search. The 
sampled subgraph consists of approximately 1K people 
nodes and 32K phone call links. We explore two 
classification tasks using the Reality Mining data set. 
The first task is to identify which people nodes 
represent study participants (Pr(study) ≈ 0.08). For this 
task, we have labels for all 1K nodes. The second task 
is to identify which of the 84 study participants are 
students (Pr(student) ≈ 0.62). For this task, we know 
the labels for each participant, but the remaining nodes 
are unlabeled. As in the Enron graph, we can still use 
the unlabeled nodes to calculate structural features of 
labeled nodes. 

Our final data set is a network of theoretical high-
energy physics publications (HEP-TH) from arXiv. 
Our test network was obtained via the BFS sampling 
method described above and contains 3K articles 
connected by 36K citation links. The task is to identify 
papers with the topic "Differential Geometry" (Pr(DG) 
≈ 0.055). Again, this is a data set for which only a 
small number of nodes are labeled to begin with. In 
our subgraph, we have 342 labeled nodes (~11% of 
total nodes) from which to construct our training and 
test sets. Again, the unlabeled nodes may still be used 
to calculate structural features of the labeled nodes. 

 
5.2 Classifiers 
On each classification task, we ran ten individual 
classifiers: four variations of nLB, four variations of 

wvRN, and two variation of GRF. We describe each of 
these classifiers in detail here. 

 
nLB is the network-only link-based classifier 
described previously. It is a logistic regression 
classifier that takes two features as input: the count of 
unique neighbors of the positive class and the count of 
unique neighbors of the negative class. Our base nLB 
classifier does not use collective classification. 
Therefore, any neighbors with missing class labels are 
simply ignored. 
 
nLBStruct is a classifier composed of two separate 
logistic regression models. The first model is the nLB 
described above. The second model, logStruct, is a 
logistic regression classifier that takes our four 
structural features as input. The nLBStruct classifier 
calculates the probability of each class as: 
 

( ) ( ) ( ) ( )CPwCPwCP logStructnLB ⋅−+⋅= 1  

 
where w is calculated as described in Section 3.3. Like 
nLB, nLBStruct does not use collective classification. 
 
nLBCol uses the base nLB classifier, but performs 
collective classification using the ICA algorithm 
described in Section 5.3. 
 
nLBStructCol uses the base nLBStruct classifier, but 
performs collective classification using the ICA 
algorithm described in Section 5.3. 
 
wvRN is the weighted-vote relational neighbor 
classifier described previously. Given a node i and a 
set of neighboring nodes, N, the wvRN classifier 
calculates the probability of each class for node i as: 
 

( ) ∑
∈ ⎩
⎨
⎧ =

==
Nj

iji

i
i

cCw
L

NcCP
otherwise 0

 if 1| ,  

 
where wi,j is the number of links between nodes i and j 
and Lj is the number of links connecting node i to 
labeled nodes. Note that in cases where a node has no 
labeled neighbors, we will end up with P(Ci=c)=0 for 
all c. In such cases, we simply assign probabilities to 
each class based on priors observed in the training 
data. Our base wvRN classifier does not use collective 
classification. Therefore, any neighbors with missing 
class labels are simply ignored. 
 
wvRNStruct is a classifier composed of two separate 
classifiers. The first classifier is the wvRN described 
above. The second classifier, logStruct, is a logistic 
regression classifier that takes our four structural 



 8

features as input. We use logistic regression here to 
model structure because wvRN is not a learning 
method and cannot model the structural features 
directly. The wvRNStruct classifier calculates the 
probability of each class as: 
 

( ) ( ) ( ) ( )CPwCPwCP logStructwvRN ⋅−+⋅= 1  

 
where w is calculated as described in Section 3.3. Like 
wvRN, wvRNStruct does not use collective 
classification. 
 
wvRNCol uses the base wvRN classifier, but performs 
collective classification using the ICA algorithm 
described in Section 5.3. 
 
wvRNStructCol uses the base wvRNStruct classifier, 
but performs collective classification using the ICA 
algorithm described in Section 5.3. 
 
GRF uses the Gaussian random field approach of Zhu 
et al. [26] described in Section 2.4 above. We ported 
Zhu’s MATLAB code1 for use in our experimental 
framework and double checked our results with the 
original MATLAB code. We made one small 
modification to Zhu’s original code to allow it to 
handle disconnected graphs. Zhu computes the graph 
Laplacian as L = D – cW, where c=1. We set c=0.9 to 
ensure that L is diagonally dominant and thus 
invertible. We found that this change had no 
substantial impact on classification performance. 
 
GRFStruct combines graph structure with GRF in the 
same way as nLBStruct and wvRNStruct. That is, 
GRFStruct calculates the probability of each class as: 

 
( ) ( ) ( ) ( )CPwCPwCP logStructGRF ⋅−+⋅= 1  

 
where w is calculated as described in Section 3.3. 
 
Note that we do not use the GRF classifiers with 
collective classification since the GRF method 
performs label propagation implicitly. 
 
5.3 Collective Classification 
To perform collective classification, we use the basic 
iterative classification algorithm described by 
Macskassy and Provost [13], with one modification. 
Macskassy and Provost allow nodes to be temporarily 
classified as null if all of their neighbors are unlabeled. 

                                                           
1 Zhu’s original MATLAB code is available at 
http://pages.cs.wisc.edu/~jerryzhu/pub/harmonic_funct
ion.m. 

Instead, we use our relational classifier to assign a 
label to these nodes, just as any other node. For 
relational classifiers that do not make use of network 
structure, these nodes end up being assigned the most 
prevalent class, based on the training data. In cases 
where the relational classifier takes network structure 
into account, these assigned labels are based on 
structure as well. We found that this approach 
achieved better overall classification performance, 
regardless of whether structural features were used. In 
addition, this approach generally converged quickly 
(i.e., within 10 trials), whereas the “null classification” 
approach often took the full 1000 trials. Figure 4 
shows pseudo-code for our ICA algorithm, using the 
notation of Macskassy and Provost [13]. 

 

 
Figure 4: Pseudo-code for Iterative Classification 
Algorithm (ICA) 
 

We chose iterative the classification algorithm 
because (1) it is simple, (2) it has been shown to have 
consistently good performance on a variety of 
collective classification tasks, and (3) it converges 
more quickly than other approaches. We also ran 
preliminary experiments using Gibbs sampling [6], 
which yielded comparable results. This is consistent 
with experiments done by other researchers [13, 22]. 

 
5.4 Experimental Methodology 
For all results presented here, the basic experimental 
setup is the same. Each data set contains a set of core 
nodes for which we have ground truth (i.e., we know 
the true class labels). In all cases, classifiers have 
access to the entire data graph during both training and 
testing. However, not all of the core nodes are labeled. 
We vary the proportion of labeled core nodes from 
10% to 90%. Classifiers are trained on all labeled core 
nodes and evaluated on all unlabeled core nodes. 

Let VU be the set of unlabeled nodes in our graph.  
 
Repeat 
1. Generate a random order, O, of nodes in VU. 
2. For each node vi ∈ O: 

a. Apply the relational classifier to vi, 
using all currently assigned labels. 
Note: during the first iteration, some 
nodes will have no label. Thereafter, 
all nodes will have a label assigned. 

b. Assign vi the class label with the 
highest probability according to the 
relational model. 

Until 1000 iterations have elapsed or no node 
receives a new class label. 
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Our methodology is essentially the same as the one 
used by Macskassy and Provost [13] for their study of 
within-network classification, except that we ensure 
that each instance in the data set is given equal weight 
in the overall evaluation. For each proportion labeled, 
we run 30 trials. For each trial and proportion labeled, 
we choose a class-stratified random sample containing 
(1.0 – proportion labeled)% of the core instances as the 
test set and the remaining core instances become the 
training set. Note that for proportion labeled less than 
0.9 (or greater than 10 trials), this means that a single 
instance will necessarily appear in multiple test sets. 
As Macskassy and Provost note, the test sets cannot be 
made to be independent because of this overlap. 
However, we carefully choose the test sets to ensure 
that each instance in our data set occurs in the same 
number of test sets over the course of our experiments. 
This ensures that each instance carries the same weight 
in the overall evaluation regardless of the proportion 
labeled. Labels are kept on the training instances and 
removed from the test instances. We use identical 
train/test splits for each classifier. 

Our experimental framework sits on top of the open 
source Weka system [25]. We implement our own 
network data representation and experimental code, 
which handles tasks such as splitting the data into 
training and test sets, calculation of network structural 
features, labeling and unlabeling of data, and 
converting network fragments into a Weka-compatible 
form. We rely on Weka for the implementation of 
logistic regression and for measuring classifier 
performance on individual training/test trials. 

We use the area under the Receiver Operating 
Characteristic (ROC) curve (AUC) as a performance 
measure to compare classifiers. We chose AUC 
because it is more discriminating than accuracy. Since 
most of our tasks have a class-skew problem, accuracy 
cannot adequately differentiate between the classifiers. 
 
6. Experimental Results and Discussion 
In this section, we describe and discuss the results of 
our experiments. We assessed significance of the 
results using paired t-tests. When we use the term 
"significant" in the text, we mean a p-value ≤ 0.05. 
 
6.1 Effects of Learning Label Dependencies 
The nLB classifier is a supervised-learning based 
approach. It uses labeled nodes as training examples to 
build a model of the dependencies between class labels 
of neighboring nodes. The wvRN and GRF classifiers, 
on the other hand, do not attempt to learn these 
dependencies, but simply assume that class labels of 
neighboring nodes will tend to be the same. In cases 
where this assumption is met, non-learning methods 
can perform well. For example, GRF performs very 

well on the Enron and Reality Mining position tasks 
(Figure 5), both of which have a high positive 
correlation between class labels of neighboring nodes. 
However, in cases where there are more complex 
dependencies between neighboring class labels, non-
learning methods can perform poorly. For instance, on 
the Reality Mining study participant task, both wvRN 
and GRF perform extremely poorly and actually 
perform worse with more known labels than fewer 
known labels. This is because there is actually a 
negative relationship between neighboring class labels 
in this task (i.e., non-participants never communicate 
directly with each other in this network). The nLB 
classifier performs well on this task because it is able 
to learn the correct dependencies by using available 
labeled nodes as training data. 
 
6.2 Effects of Network Structure 
Figure 5 shows the results of our core experiments on 
the effects of network structure. There are several 
interesting observations to note regarding Figure 5. In 
general, the performance of the structural classifiers 
degrades more slowly than that of the corresponding 
base classifiers as fewer instances are labeled. The 
exception to this is on the Enron task, in which GRF 
and GRFStruct are statistically tied, except at 0.1 
labeled. This indicates that in general the information 
provided by the network structure is able to make up, 
at least in part, for the information lost due to missing 
attributes. Note that there are three separate effects that 
lead to performance degradation as the number of 
labeled instances decreases: (1) There are fewer 
labeled instances available for inference. This factor 
impacts the quality of the attribute-based features 
available at inference time, but has no impact on the 
quality of the structural features. (2) Fewer labels at 
training time mean that (labeled) training examples 
have fewer labeled neighbors. This impacts the quality 
of the attribute-based features available at training time 
and, hence, the quality of the resulting model. Again, 
there is no impact on the quality of the structural 
features. (3) Fewer labeled instances means less 
training data. This impacts model quality regardless of 
the type of features used. Note that wvRN and GRF are 
affected only by the first factor, since these methods do 
not make use of training data. 

With only a few exceptions, the structural models 
outperform the corresponding base models. 
Differences are significant for nLB/wvRN/GRF on 
political books ≤ 0.7/0.9/0.7 labeled, Enron ≤ 0.5/0.5/--
, Reality Mining position ≤ 0.3/≥ 0.3/≥ 0.3, Reality 
Mining participants ≤ 0.7/0.9/0.9, and HEP-TH ≤ 
0.5/0.7/0.5. There is only one case where the use of 
structure significantly 
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Figure 5: Classification results on political books, Enron, Reality Mining, and HEP-TH data sets. The classifiers are: 
nLB, nLBStruct, nLBCol, nLBStructCol, wvRN, wvRNStruct, wvRNCol, wvRNStructCol, GRF, and GRFStruct. See 
Section 5.2 for a detailed description of these classifiers. 
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degrades performance. That is using GRF on the Enron 
task at 0.1 labeled. The GRF classifier does so well on 
this task on its own that adding the additional 
(structural) information simply adds complexity 
without adding additional predictive information. 
However, even here, the performance decrease is small 
compared to the gains on other tasks 

The fact that structure improves performance on 
several tasks, including political books, up to 90% 
labeled suggests that the structural features may 
provide information above and beyond that provided 
by neighboring class labels. Recall that the political 
books network is the one data set that is fully labeled 
to begin with. This indicates structural features may 
have more general applicability beyond sparsely 
labeled data. In particular, there may be tasks (similar 
to political books) for which both (1) network structure 
is informative and (2) collective classification is 
helpful. In such cases, there may be an increased 
benefit to combining the two approaches. 

In the next section, we discuss the effects of 
collective classification in our experiments. 
 
6.3 Effects of Collective Classification 
As described previously, the Enron, Reality Mining, 
and HEP-TH data sets all have large amounts of 
unlabeled data due to the fact that we simply do not 
have ground truth available for many of the nodes. In 
these cases, there are two reasonable approaches to 
collective classification: (1) performing collective 
classification over the entire graph and (2) performing 
collective classification over the core set of nodes only 
(i.e., the training and test sets). 

In our experiments, the first approach produced 
results that were often dramatically worse that the non-
collective base classifier, even when we utilized 90% 
of the available class labels. We hypothesize that this 
is due to an insufficient quantity of labeled instances to 
effectively seed the collective classification process. 
Remember that for most of our networks, there are 
large amounts of unlabeled data outside of the training 
and test sets. Other researchers have also reported 
cases where collective classification hurts performance 
due to a lack of labeled data [17, 18]. We found that 
the second approach (i.e., collectively classifying the 
core nodes only) consistently and often dramatically 
outperformed the first approach. Therefore, we report 
results using the second approach. Note that because 
we remove nodes from the network in the second 
approach, the network may become disconnected, 
which can adversely affect the performance of 
techniques that propagate labels (e.g., collective 
classification and SSL). However, we still found that 
this approach performed better than trying to perform 

inference over the entire network, due to the large 
amount of unlabeled data in many of these networks. 

Figure 5 shows the effects of collective 
classification on our tasks. On its own, collective 
classification appears to have only a small effect on 
these tasks. For some tasks, we see a small, but 
significant improvement over the base classifiers due 
to collective classification at the higher proportions of 
labeled instances. For the Reality Mining study 
participant task, we see larger improvements due to 
collective classification. However, there are several 
cases, generally at the lower proportions of labeled 
instances, where we see performance degradation due 
to collective classification. The nLB model 
significantly outperforms nLBCol at some proportion 
labeled on Enron and wvRN significantly outperforms 
wvRNCol for some proportion labeled on all tasks, 
except identifying Reality Mining study participants. 

Due to the relatively poor performance of collective 
classification, the comparison between the xxCol and 
xxStruct classifiers is not particularly illuminating. 
There are only two cases where the xxCol classifier 
significantly outperforms the xxStruct classifier (i.e., 
wvRN at 0.7 and 0.9 on Enron). There are 30 cases 
where xxStruct significantly outperforms xxCol.  

Another effect demonstrated by Figure 5 is the 
interaction between the use of network structure and 
collective classification. Although there are a few 
cases where the collective structural model 
significantly outperforms the simple structural model, 
the results do not demonstrate a consistent 
improvement due to collective classification over and 
above the use of network structure on its own. 
 
6.4 Effects of Local and Global Network 
Structure 
Since our classifiers model a number of structural 
network characteristics, we want to understand which 
of these characteristics contribute to the observed 
performance gains and to what extent. To shed some 
light onto these issues, we ran a series of experiments 
on the same classification tasks described above, but 
using different subsets of structural features. 
Specifically, we ran logistic regression models with 
different combinations of the four structural features: 
each feature on its own, leave-one-feature out for each 
feature, neighbor-based features only, graph-based 
features only, and all features. This gives us 11 
classifiers in all. Each classifier uses structural features 
only (i.e., no neighboring class labels). We ran 
experiments varying the amounts of labeled data 
available, as we had done previously. However, since 
the results demonstrate the same effects regardless of 
the proportion of labeled data, we present results only 
for 50% labeled. 
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Figures 6 and 7 show the results of these 
experiments. Figure 6 shows AUC results for models 
using each structural feature on its own as well as a 
model using all features combined. This demonstrates 
the predictive power of each feature in the absence of 
any other information. The model using all features 
serves as a reference point. Figure 7 shows the increase 
in AUC due to adding the specified feature to a 
classifier that already has access to all of the other 
structural features. In other words, the y-axis of this 
plot represents the AUC of a classifier that uses all 
structural features minus the AUC of a classifier that 
uses all features except for the specified one. This 
demonstrates the power of each feature when 
combined with the other features. 
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Figure 6: Comparison of the performance of 
structural features in isolation: node count, link count, 
betweenness centrality, clustering coefficient, and a 
combination of all four features (All). 

 
There are several interesting observations to note 

here. First, all of the features appear to be useful for at 
least some of the tasks. Clustering coefficient is the 
least useful overall, improving AUC only slightly on 
two of the tasks and degrading AUC slightly on the 
other three. Second, in all cases, it is a combination of 
at least three features that is most informative, rather 
than a single feature or a pair of features. Third, 
features that are not informative on their own can 
combine to provide powerful predictive information. 
For instance, on the Reality Mining position task, node 
count, betweenness, and clustering coefficient produce 
AUCs of 0.57, 0.49, and 0.48 on their own, 
respectively. However, when combined, these three 
produce an overall AUC of 0.78. Just betweenness, 
which performs worse than random (i.e., AUC = 0.5) 
on its own, provides a boost of 0.32 AUC when added 
to a classifier using node count and clustering 
coefficient. 

For the Enron and political books tasks, the local 
(i.e., neighbor-based) structural features provide more 

predictive power than the global (i.e., graph-based) 
structural features. For HEP-TH, global features, 
specifically betweenness, are more important. For the 
Reality Mining tasks, classification performance 
suffers roughly equally in the absence of local or 
global structural features. For the HEP-TH and 
political book tasks, node count and edge count are 
identical since there is no more than one link between 
any pair of nodes. Therefore, in these cases, either 
feature can be removed without hurting performance. 
However, if both features are removed, this has a 
major effect on performance in the political books 
task. For the Enron and Reality Mining tasks, node 
count provides more of a boost than edge count when 
combined with the global features. 
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Figure 7: Comparison of the performance of 
structural features in combination: node count, link 
count, betweenness centrality, clustering coefficient, 
both neighbor-based features (node count and link 
count), and both graph-based features (betweenness 
centrality, clustering coefficient). 

 
On all tasks besides Enron, performance improves 

or else degrades only slightly due to the inclusion of all 
four structural features. In the Enron case, clustering 
coefficient appears to mislead the classifier to the point 
where it is better to use either node count or edge 
count individually than to use all features. This is one 
case where it appears that we might benefit from a 
more selective base classifier. Figure 8 shows a 
performance comparison between a logistic regression 
classifier using all four structural features and a 
random forest classifier [1] using the same features. 
We see that the random forest is able to make use of 
the informative features without being misled by the 
uninformative ones to the extent that we see with 
logistic regression. Gallagher and Eliassi-Rad [5] 
present additional results on random forests with a 
variety of relational features and compare them to 
several relational classifiers on different tasks. 
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7. Conclusion 
In this paper, we addressed the problem of within-
network classification in sparsely labeled networks. 
We presented a novel approach for modeling structural 
characteristics of networks as features for classification 
and demonstrated the value of our approach 
empirically. Our experiments revealed a number of 
interesting findings. 
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Figure 8: Comparison of logistic regression and 
random forest classifiers using four structural 
features: node count, link count, betweenness 
centrality, and clustering coefficient. 

 
We discovered that network structural information 

can make up for vast amounts of missing class labels. 
We observed that structure can also provide 
information above and beyond that provided by class 
labels alone. We found that when class labels are 
sparse, the benefits of structural features can far 
outweigh the benefits of collective classification. We 
did not observe a consistent benefit to combining 
structural features with collective classification. 
However, we expect that in data sets where labels are 
less sparse, a combination of structural features and 
collective classification may provide an additional 
benefit over either technique on its own. Finally, we 
found that there is a benefit to combining a number of 
local and global structural features. 

Although many of our networks have a temporal 
component, we have not yet made use of this 
information. Future work includes exploration of the 
dynamics of network structure in time-evolving 
networks. We conjecture that time-dependent 
structural features will further improve classification 
performance. 
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