
UCRL-TR-235752

Leveraging Structure to Improve
Classification Performance in Sparsely
Labeled Networks

B. Gallagher, T. Eliassi-Rad

October 23, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71317091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

 1

Leveraging Structure to Improve Classification Performance in
Sparsely Labeled Networks

Brian Gallagher and Tina Eliassi-Rad
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Box 808, L-560, Livermore, CA 94551

{bgallagher, eliassi}@llnl.gov

Abstract
We address the problem of classification in a partially
labeled network (a.k.a. within-network classification),
with an emphasis on tasks in which we have very few
labeled instances to start with. Recent work has
demonstrated the utility of collective classification
(i.e., simultaneous inferences over class labels of
related instances) in this general problem setting.
However, the performance of collective classification
algorithms can be adversely affected by the sparseness
of labels in real-world networks. We show that on
several real-world data sets, collective classification
appears to offer little advantage in general and hurts
performance in the worst cases. In this paper, we
explore a complimentary approach to within-network
classification that takes advantage of network
structure. Our approach is motivated by the
observation that real-world networks often provide a
great deal more structural information than attribute
information (e.g., class labels). Through experiments
on supervised and semi-supervised classifiers of
network data, we demonstrate that a small number of
structural features can lead to consistent and
sometimes dramatic improvements in classification
performance. We also examine the relative utility of
individual structural features and show that, in many
cases, it is a combination of both local and global
network structure that is most informative.

Keywords
Statistical relational learning, social network analysis,
feature extraction, collective classification.

1. Introduction
Many problem domains are naturally represented as
networks of nodes (representing concepts) and links

(representing relations between concepts). Examples
include communication networks (e.g., phone-call
graphs) and informational networks (e.g., citation
graphs) to name a few. Networks provide a simple, but
powerful representation for many kinds of problems.
In this paper, we address the problem of within-
network classification.

For within-network classification, we are given a
network in which some of the nodes are “labeled” and
others are “unlabeled” (see Figure 1). Here, “labeled”
simply means that a node has been assigned a “class”
from among a set of possible classes. The goal of
within-network classification is to assign the correct
labels to the unlabeled nodes in the network (i.e., to
"classify" them).

Figure 1: A Portion of the MIT Reality Mining Call
Graph. We know the class labels for the black nodes,
but do not have labels for the yellow nodes.

Consider the following example. Suppose we want

to identify fraudulent users in a cell phone network. In
this case, our set of possible classes for users is
{fraudulent, legitimate}. If a user, John, is known to be
involved in fraud, we assign a label of “fraudulent” to

 2

the node representing John. If a user, Jane, is known to
not be involved in fraud, we assign a label of
“legitimate” to the node representing Jane. Otherwise,
we leave the node unlabeled. Our goal then is to
determine the labels (“fraudulent” or “legitimate”) of
these unlabeled users.

Cell phone fraud is an example of an application
where networks are often very sparsely labeled. We
may have a handful of known fraudsters and a handful
of known legitimate users, but for the vast majority of
users, we do not know the correct label. A number of
intelligence applications have this characteristic as
well (e.g., identifying members of a terrorist
organization). For such applications, it is reasonable to
expect that we may have access to labels for fewer
than 10%, 5%, or even 1% of the nodes. Figure 1
shows an example of a sparsely labeled cell phone
network. The pictured network is a subset of the MIT
Reality Mining network [4]. The network contains
~32K phone calls between 1K person nodes, but title
information (e.g., student, non-student) for only those
in the Reality Mining study (~8% of total nodes).

In addition to being sparsely labeled, cell phone
networks are generally anonymized. That is, nodes in
these networks often contain no attributes besides class
labels that could be used to identify them. It is this
kind of sparsely labeled, anonymized network that is
the focus of this work. Put another way, our work
focuses on univariate within-network classification in
sparsely labeled networks.

Relational classifiers have been shown to perform
well on network classification tasks, because of their
ability to make use of dependencies between class
labels (or attributes) of related nodes [24]. However,
because of their dependence on attributes of neighbors,
the performance of relational classifiers can
substantially degrade when a large proportion of
neighboring instances are also unlabeled. In many
cases, collective classification provides a solution to
this problem, by enabling the simultaneous
classification of any number of related instances [22].
However, previous work has shown that the
performance of collective classification also degrades
when there are too few labels available, eventually to
the point where classifiers perform better without it
[17, 18].

In this paper, we explore another source of
information present in networks: the local and global
structural patterns formed by the network's link
structure. As we discuss in Section 4, we are not the
first to make use of structural characteristics in the
context of network classification. Researchers studying
complex and social networks have long made use of
structural network characteristics to provide
information about individuals in a network [19]. To

improve classification performance, recent work has
also used network structure to (1) improve active
inference [21], (2) prune a network down to its ‘most
informative’ links [23], and (3) discover hidden groups
[17]. Some classifiers also make explicit use of local
structure (i.e., degree of a node) as features [15]. Our
main contribution is to explore the use of both local
and global network structure as features for relational
classifiers in order to answer the following questions:
1. Can network structure make up for the lack of

information due to sparsely labeled data?
Answer: Yes.

2. Does structure provide any information above and
beyond that provided by the class labels?
Answer: Yes.

3. How does the benefit of structural features
compare to the benefit of collective classification?
Answer: When labels are sparse, the benefit of
structural features outweighs the benefit of
collective classification.

4. Is there a benefit to combining structural modeling
with collective classification?
Answer: No, not consistently.

5. Which structural features are the most useful? Is
there generally one feature that is the most
predictive or is it a combination of features? Are
local and global features equally informative?
Answer: We found clustering coefficient to be the
least informative. A combination of betweenness
centrality, number of neighboring nodes, and
number of incident links were the most
informative.

Section 2 describes existing approaches for within-
network classification. Section 3 presents our general
approach for extending these methods to incorporate
information about network structure. Section 4 covers
related work. Sections 5 and 6, respectively, present
our experimental design and results. We summarize
the paper in Section 7.

2. Background on Classifiers for Network
Data
In this section, we describe existing techniques for
network classification that we build on in this work.

2.1 Relational Classifiers
There has been a great deal of recent work on
classifiers that make use of the relationships implicit in
structured data such as networks. Relational classifiers
predict the class labels of a set of nodes, U, given the
attributes of the nodes in U and the attributes of
neighboring nodes. There are three general types of
relational classifiers: individual conditional classifiers,
collective conditional classifiers, and joint classifiers

 3

[18, 22]. Figure 2 illustrates a taxonomy for these
relational classifiers.

Figure 2: Taxonomy of relational classifiers for
network data

Individual conditional classfiers (ICCs) are the

simplest type of relational classifier. These classifiers
make predictions about the nodes in U one at a time.
ICCs can make use of any attributes in the graph that
are known at the time classification begins, but they do
not make use of the predicted class labels of nodes in
U. Naturally, the performance of these classifiers can
substantially degrade when a large proportion of
neighboring instances are missing class labels. An
example of ICC is the Relational Probability Tree
[15].

Collective classifiers, on the other hand, make use
of the predicted class labels of some nodes in U to
improve the predictions about other nodes in U. That
is, classifications are made “collectively” over all
nodes in U “at once.” There are two basic types of
collective classifiers: collective conditional classifiers
and joint classifiers.

Collective conditional classifiers (CCC) combine
an ICC with an approximate inference procedure (such
as Gibbs sampling [6]). This procedure can be viewed
as a message passing algorithm, where each iteration
involves a set of messages being passed between a
node and its neighbors. Over many iterations,
messages propagate throughout the network, allowing
even simple relational classifiers to exploit
dependencies between nodes separated by many links.
An example of CCC is the Relational Probability Tree
[15] combined with Gibbs sampling.

Joint classifiers attempt to learn a joint probability
distribution over all known attributes in a network and
then jointly classify missing labels using an
approximate inference procedure (such as loopy belief
propagation). An example of a joint classifier is the
Relational Markov Network [24].

There are many different procedures for performing
collective inference. The most popular include iterative
classification algorithm (ICA), Gibbs sampling, mean-
field relaxation labeling, and loopy belief propagation.

Sen, et al. [22] and Macskassy and Provost [13] both
provide empirical studies of these methods.

As a starting place for our work, we chose two
simple conditional classifiers that have been
demonstrated to perform well on a variety of tasks: the
link-based classifier [11] and the relational neighbor
classifier [12]. Since our work deals with univariate
relational classification (i.e., class labels are the only
attribute), we follow the recent work of Macskassy and
Provost [13] and use their network-only version of the
link-based classifier and their weighted-vote relational
neighbor classifier. Both of these conditional
classifiers can operate as individual classifiers or be
combined with an approximate inference algorithm
(like ICA or Gibbs sampling) to become collective
classifiers.

2.2 The Network-Only Link-Based Classifier
The network-only link-based classifier (nLB) [13] uses
logistic regression to build a discriminative model of
node i's class given the class labels of nodes directly
linked to i. Since logistic regression expects a fixed-
length feature vector, the set of neighboring class
labels is summarized by a statistic such as the count or
proportion of neighboring nodes of each class.

Our nLB implementation uses the count of unique
neighbors of each class as features. We also
experimented with using normalized counts (i.e.,
proportion) and with weighting counts by the number
of links between neighbors. However, these variations
had no substantial effect on the results.

In our experiments, we run variations of this basic
nLB classifier that make use of structural features
and/or collective classification. See Section 5.3 for
additional algorithmic details.

2.3 The Weighted-Vote Relational Neighbor
Classifier
The weighted-vote relational neighbor classifier
(wvRN) [12] is a simple non-learning classifier. It does
not need to be trained. The wvRN simply estimates the
probability that node i is of class c as the weighted
mean of the probabilities that each of node i's
neighbors is of class c:

() ()∑
∈

=⋅==
Nj

jjii cCPw
Z

NcCP ,
1|

Here, N is the set of node i's neighbors, wi,j is a

weight between node i and its neighbor j, and Z is a
normalizer.

Since we do not use collective classification
techniques that make use of uncertainty in class label
assignments (e.g., relaxation labeling), P(Cj=c) is 1 iff

Relational Classifiers

Individual
Conditional
Classifiers

Collective
Classifiers

Joint
Classifiers

Collective
Conditional
Classifiers

 4

Cj=c (based on current class label assignments) and
P(Cj=c) is 0 otherwise. For all of our classification
tasks, we set wi,j to the number of links between nodes
i and j. So, the weights loosely represent the strength
of the relationship between two nodes.

In our experiments, we run variations of this basic
wvRN classifier that make use of structural features
and/or collective classification. See Section 5.3 for
additional algorithmic details.

2.4 Semi-supervised Classifiers
Although our focus is on supervised approaches for
relational learning, the problem of within-network
classification can also be thought of as a semi-
supervised learning problem, since we have both
labeled and unlabeled data available at training time.
Therefore, in addition to the supervised methods
described above, we examined the semi-supervised
Gaussian random field (GRF) approach of Zhu et al.
[26]. This is a graph-based semi-supervised learning
approach where networks are generally constructed by
linking instances with similar attributes. However, the
general method can also be applied to networks such
as ours where links are based on observed
relationships (e.g., person A calls person B).

The GRF method uses a Gaussian random field
model to derive a harmonic function f, which assigns a
real value to each node in the network (i.e., a label).
The function f is derived by minimizing the weighted
squared difference between labels of neighboring
nodes. The harmonic constraint means that f returns the
true value of the label for each labeled node and a
weighted average of f over all neighboring nodes for
each unlabeled node.

3. Modeling Network Structure
In this section, we describe our approach to modeling
characteristics of network structure for use in network
classifiers.

3.1 A Taxonomy of Network Features
When classifying a node, i, relational classifiers make
use of attributes of node i itself, as well as attributes of
nodes in i's relational neighborhood. In addition, some
classifiers make use of local network structure (e.g.,
node degree) [15]. For our work, we would like to
incorporate additional network structural information.
Eventually, we require all of this information to be
packaged into a feature vector so that it may be used as
input to a conditional classifier.

If we loosely define a feature to be a function of
network observables (i.e., known or predicted attribute
values and network structure), we can construct a
taxonomy of feature types to capture all of the

information of interest to us. Figure 3 presents such a
taxonomy.

Figure 3: Taxonomy of network features

At the top level, we separate features into attribute-

based and structural. Attribute-based features are
further divided into: (1) local features, which are
intrinsic attributes of a node (e.g., Person.name) and
(2) relational features, which are calculated by
applying aggregation functions to the set of attribute
values of neighboring nodes (e.g.,
count(NeighborPerson. jobTitle = 'executive')).
Structural features are further divided into: (1)
neighbor-based features that provide information about
the structure of the immediate neighborhood (e.g.,
neighborCount(Person)), and (2) graph-based features,
which leverage information on the structure of a more
extended neighborhood, which may even include the
entire network (e.g., betweenness(Person)).

Since our work addresses the problem of univariate
relational classification, we have no local attribute-
based features. Our baseline relational models, nLB
and wvRN, both make use of attribute-based relational
features (i.e., the count of neighboring nodes of each
class). In the remainder of this section, we discuss the
extraction of structural features from a network and
explain how we extend the nLB and wvRN models to
make use of these features.

3.2 Network Structural Features
The success of network structural characteristics as
predictors of class relies on two basic assumptions: (1)
members of different classes play different roles in a
network and (2) these roles can be differentiated by
measurable structural characteristics. We know from
Social Network Analysis that assumption (2) is met in
many cases. For instance, popular nodes can be
identified by measures such as degree (i.e., the number
of connections) and nodes that are “central” to a
network can be identified by measures such as
betweenness centrality. Whether assumption (1) is met
depends on the nature of the class label of interest. For
example, suppose that executives tend to be more
popular and more central than the average employee in
a company communication network. Further suppose
that managers of different departments tend to be

Attribute-based Structural

Features

Relational Neighbor-
based

Graph-
based

Local

 5

similar to one another in terms of popularity and
centrality. Then, in this example, we would expect
structural features to be more useful for indentifying
executives than members of a particular department.
The remainder of this section describes the individual
structural features we use in our study.

The neighbor-based structural features we use are
the degree features used by Neville et al. [15]: (1) the
number of neighboring nodes and (2) number of
incident links. Note that in multigraphs, these two
values are generally different.

Graph-based structural features have never before
been explicitly used as features in a conditional
classifier. For these features, we use (1) betweenness
centrality (which identifies nodes that occur along
many paths) and (2) clustering coefficient (which
measures neighborhood strength in terms of how
connected nodes in a neighborhood are to one
another). We formally define betweenness centrality
and clustering coefficient next. For more details, we
refer the reader to a study by Mark Newman [19].

Betweenness centrality can be defined for nodes or
links. For node betweenness, we compute the
following function:

where gi(s; t) is the number of shortest paths from
node s to node t that pass through node i. Nst is the total
number of geodesic paths from s to t. V is the set of
nodes in the network and N is the total number of
nodes (i.e., N = |V|). A node with high betweenness has
great influence over what information flows in the
network.

Clustering coefficient for a node i is defined as

where ki is the number of neighbors of node i and Ei is
the number of edges between the ki nodes. Within
social networks, the clustering coefficient captures the
common belief that a friend of a friend is also a friend.

3.3 Modeling Structure with nLB, wvRN, and
GRF
This section describes our general approach to
extending the nLB, wvRN, and GRF classifiers to make
use of structural features. For a more detailed
description of our implementation, see the nLBStruct,
wvRNStruct, and GRFStruct classifier descriptions in
Section 5.2.

Link-based models, as originally described by Lu
and Getoor [11], consist of two separate logistic
regression models: one for local attributes and the
other for relational attributes. When classifying a node
i, each of these models will output a probability for

each class. The two probabilities for each class are
then combined into a single probability for that class
by taking their product. We take a similar approach to
modeling structural features with the nLB. Since we
have no local attributes, we replace the local attribute
model with a logistic regression model that takes our
structural features as input, logStruct. Then we
combine the probabilities output by the relational
feature model and the structural feature model, as in
the original link-based classifier.

The original link-based classifier aggregates
probabilities from the two constituent classifiers by
taking their product. We opted to use a weighted sum
instead to allow us to control the amount we rely on
attribute-based vs. structural features. Using a fixed
weight of 0.5 (i.e., equal weights for attributes and
structure), our experiments showed no substantial
difference in performance due to the use of sum vs.
product as a probability aggregator. However, for the
experiments presented in this paper, we actually learn
the weight w as described below. We then calculate the
probability of each class as:

() () () ()CPwCPwCP logStructnLB ⋅−+⋅= 1

Since the wvRN model is not a learning method, it

cannot take advantage of structural features directly.
Therefore, we take the same basic approach as for nLB
and use a logistic regression model of the structural
features. Then we take a weighted sum of the
probabilities returned by the wvRN model and the
structural feature model, as in the nLB case.

Like wvRN, the semi-supervised GRF approach is
not feature-based. So, again, we take the same basic
approach as for nLB and use a logistic regression
model of the structural features. Then we take a
weighted sum the probabilities returned by the GRF
model and the structural feature model. In addition to
our weighted sum approach, we also tried the approach
suggested by Zhu et al. for incorporating external
classifiers into their method. Their approach is to
attach a “dongle” node to each unlabeled node in the
graph that is given the label assigned by the external
(e.g., structural) classifier. The transition from node i
to its dongle is assigned a probability of η and all other
transitions from i are discounted by 1 - η. This
“dongle” approach did not yield any improvements
over the weighted sum approach. So, we use the
weighted sum approach for consistency with the other
classifiers.

For all approaches, we calculate w based on the
relative performance of attribute-only classifier
(attrOnly) and logStruct on the training data. More
specifically, we perform 10-fold cross validation on

 6

the training set using each of attrOnly and logStruct
separately. We calculate AUC for each fold and then
obtain an average AUC score for each classifier,
AUCattr and AUCstruct. We then set w as follows:

structattr

attr

AUCAUC
AUCw
+

=

Thus, we put weight on each feature type (attribute-

based vs. structural) proportional to the estimated
predictiveness of that feature type, based on the
training data for a particular task. Note that AUC is our
performance measure of choice for this work. See
Section 5.4 for further information on AUC.

4. Related Work
In recent years, there has been a great deal of work on
models for learning and inference in relational data [7,
11, 12, 15, 16, 18]. Many use some sort of feature
construction to incorporate attribute-based relational
information. However, to our knowledge, no previous
approach uses structural information from the extended
neighborhood as features for classification. As we
discuss below, several researchers have made use of
network structure indirectly for network classification.

Note that most of these models use only a single
relational feature at a time. Relational Probability
Trees (RPTs) [15] use several features concurrently.
However, they construct only binary features. RPTs
also use neighbor-based structural features (i.e.,
neighboring node and link counts), but they do not use
graph-based structural features such as betweenness or
clustering coefficient. In addition, their work does not
specifically consider the impact of using structural
features on classifier performance.

In order to make simultaneous use of multiple
feature types (e.g., attribute-based, structural,
temporal), Gallagher and Eliassi-Rad [5] advocate the
use of random forests [1], which are well suited to
making sense of large feature sets.

Perlich and Provost [20] provide a nice study on
aggregation of relational attributes, based on a
hierarchy of relational concepts. They do not consider
structural features.

Singh et al. [23] use descriptive attributes and
structural properties (i.e., node degree and
betweenness centrality) to prune a network down to its
‘most informative’ affiliations and relationships for the
task of attribute prediction. They do not use the
structural properties as input to their classifiers.

Rattigan et al. [21] use network structure to decide
which nodes to label in an active learning setting. In
addition, they utilize fast, approximate calculations for
network measures such as betweenness.

Neville and Jensen [17] use spectral clustering to
group instances based on their link structure (where
link density within a group is high and between groups
is low). This group information is subsequently used in
conjunction with attribute information to learn
classifiers on network data.

There are many recent papers on collective
classification [2, 8, 13, 14, 16, 18, 22, 24]. Sen et al.
[22] provide a careful empirical study of the various
procedures for collective inference. Macskassy and
Provost [13] provide a nice case-study of previous
work in learning attributes of networked data.
McDowell et al. [14] demonstrate that “cautious”
collective classification procedures produce better
classification performance than “aggressive” ones.
They recommend only propagating information about
the top-k most confident predicted labels. Lastly,
previous work confirms our observation that collective
classification’s performance suffers when labeled data
is very sparse [17, 18].

As discussed in Section 2.4, the problem of within-
network classification can also be thought of as a semi-
supervised learning problem. The graph-based
approaches to semi-supervised learning are particularly
relevant here. For more on semi-supervised learning,
we refer the reader to an excellent survey by Zhu [26].

5. Experimental Design
We have designed our experiments to answer the
following questions:

1. Can network structure make up for the lack of

information due to sparsely labeled data?
2. Does structure provide any information above and

beyond that provided by the class labels?
3. How does the benefit of structural features

compare to the benefit of collective classification?
4. Is there a benefit to combining structural modeling

with collective classification?
5. Which structural features are the most useful? Is

there generally one feature that is the most
predictive or is it a combination of features? Are
local and global features equally informative?

To avoid confounding effects as much as possible,

we focus on univariate binary-classification problems,
and extend simple existing classifiers to incorporate
structural information.

5.1 Data Sets
We present results on four real-world data sets:
political book purchases [10], Enron emails [3],
Reality Mining cell phone calls [4], and theoretical
high-energy physics publications (HEP-TH) from
arXiv [9].

 7

The political books data set consists of 105 books
labeled as liberal, conservative, or neutral. Links
between books indicate that both books were
purchased by the same customer. There are 441 co-
purchase links in this data set. Our task is to identify
the neutral books (Pr(neutral) ≈ 0.12). This is our only
data set that is fully labeled to begin with.

From the Enron data set, we use a subset containing
all data collected during a 32 day period, from
6/8/2001 to 7/10/2001. This subset consists of
approximately 9K people nodes and 50K email links.
We explore the task of identifying executives among
Enron employees (Pr(exec) ≈ 0.018). For this task, we
only have ground truth for a subset of 1.6K nodes
(~18% of total nodes). So, our training and test sets are
drawn from among these 1.6K nodes. However, we
can still use the remainder of the graph (i.e., the
unlabeled neighboring nodes) to calculate structural
features of the labeled nodes.

For the Reality Mining data set, we use a connected
subgraph of the full graph, obtained via breadth-first
sampling. The subgraph was obtained by starting from
a random node in the graph and expanding out in a
breadth-first fashion until 1000 nodes had been
touched. The final subgraph includes all nodes and
links touched during the breadth-first search. The
sampled subgraph consists of approximately 1K people
nodes and 32K phone call links. We explore two
classification tasks using the Reality Mining data set.
The first task is to identify which people nodes
represent study participants (Pr(study) ≈ 0.08). For this
task, we have labels for all 1K nodes. The second task
is to identify which of the 84 study participants are
students (Pr(student) ≈ 0.62). For this task, we know
the labels for each participant, but the remaining nodes
are unlabeled. As in the Enron graph, we can still use
the unlabeled nodes to calculate structural features of
labeled nodes.

Our final data set is a network of theoretical high-
energy physics publications (HEP-TH) from arXiv.
Our test network was obtained via the BFS sampling
method described above and contains 3K articles
connected by 36K citation links. The task is to identify
papers with the topic "Differential Geometry" (Pr(DG)
≈ 0.055). Again, this is a data set for which only a
small number of nodes are labeled to begin with. In
our subgraph, we have 342 labeled nodes (~11% of
total nodes) from which to construct our training and
test sets. Again, the unlabeled nodes may still be used
to calculate structural features of the labeled nodes.

5.2 Classifiers
On each classification task, we ran ten individual
classifiers: four variations of nLB, four variations of

wvRN, and two variation of GRF. We describe each of
these classifiers in detail here.

nLB is the network-only link-based classifier
described previously. It is a logistic regression
classifier that takes two features as input: the count of
unique neighbors of the positive class and the count of
unique neighbors of the negative class. Our base nLB
classifier does not use collective classification.
Therefore, any neighbors with missing class labels are
simply ignored.

nLBStruct is a classifier composed of two separate
logistic regression models. The first model is the nLB
described above. The second model, logStruct, is a
logistic regression classifier that takes our four
structural features as input. The nLBStruct classifier
calculates the probability of each class as:

() () () ()CPwCPwCP logStructnLB ⋅−+⋅= 1

where w is calculated as described in Section 3.3. Like
nLB, nLBStruct does not use collective classification.

nLBCol uses the base nLB classifier, but performs
collective classification using the ICA algorithm
described in Section 5.3.

nLBStructCol uses the base nLBStruct classifier, but
performs collective classification using the ICA
algorithm described in Section 5.3.

wvRN is the weighted-vote relational neighbor
classifier described previously. Given a node i and a
set of neighboring nodes, N, the wvRN classifier
calculates the probability of each class for node i as:

() ∑
∈ ⎩
⎨
⎧ =

==
Nj

iji

i
i

cCw
L

NcCP
otherwise 0

 if 1| ,

where wi,j is the number of links between nodes i and j
and Lj is the number of links connecting node i to
labeled nodes. Note that in cases where a node has no
labeled neighbors, we will end up with P(Ci=c)=0 for
all c. In such cases, we simply assign probabilities to
each class based on priors observed in the training
data. Our base wvRN classifier does not use collective
classification. Therefore, any neighbors with missing
class labels are simply ignored.

wvRNStruct is a classifier composed of two separate
classifiers. The first classifier is the wvRN described
above. The second classifier, logStruct, is a logistic
regression classifier that takes our four structural

 8

features as input. We use logistic regression here to
model structure because wvRN is not a learning
method and cannot model the structural features
directly. The wvRNStruct classifier calculates the
probability of each class as:

() () () ()CPwCPwCP logStructwvRN ⋅−+⋅= 1

where w is calculated as described in Section 3.3. Like
wvRN, wvRNStruct does not use collective
classification.

wvRNCol uses the base wvRN classifier, but performs
collective classification using the ICA algorithm
described in Section 5.3.

wvRNStructCol uses the base wvRNStruct classifier,
but performs collective classification using the ICA
algorithm described in Section 5.3.

GRF uses the Gaussian random field approach of Zhu
et al. [26] described in Section 2.4 above. We ported
Zhu’s MATLAB code1 for use in our experimental
framework and double checked our results with the
original MATLAB code. We made one small
modification to Zhu’s original code to allow it to
handle disconnected graphs. Zhu computes the graph
Laplacian as L = D – cW, where c=1. We set c=0.9 to
ensure that L is diagonally dominant and thus
invertible. We found that this change had no
substantial impact on classification performance.

GRFStruct combines graph structure with GRF in the
same way as nLBStruct and wvRNStruct. That is,
GRFStruct calculates the probability of each class as:

() () () ()CPwCPwCP logStructGRF ⋅−+⋅= 1

where w is calculated as described in Section 3.3.

Note that we do not use the GRF classifiers with
collective classification since the GRF method
performs label propagation implicitly.

5.3 Collective Classification
To perform collective classification, we use the basic
iterative classification algorithm described by
Macskassy and Provost [13], with one modification.
Macskassy and Provost allow nodes to be temporarily
classified as null if all of their neighbors are unlabeled.

1 Zhu’s original MATLAB code is available at
http://pages.cs.wisc.edu/~jerryzhu/pub/harmonic_funct
ion.m.

Instead, we use our relational classifier to assign a
label to these nodes, just as any other node. For
relational classifiers that do not make use of network
structure, these nodes end up being assigned the most
prevalent class, based on the training data. In cases
where the relational classifier takes network structure
into account, these assigned labels are based on
structure as well. We found that this approach
achieved better overall classification performance,
regardless of whether structural features were used. In
addition, this approach generally converged quickly
(i.e., within 10 trials), whereas the “null classification”
approach often took the full 1000 trials. Figure 4
shows pseudo-code for our ICA algorithm, using the
notation of Macskassy and Provost [13].

Figure 4: Pseudo-code for Iterative Classification
Algorithm (ICA)

We chose iterative the classification algorithm
because (1) it is simple, (2) it has been shown to have
consistently good performance on a variety of
collective classification tasks, and (3) it converges
more quickly than other approaches. We also ran
preliminary experiments using Gibbs sampling [6],
which yielded comparable results. This is consistent
with experiments done by other researchers [13, 22].

5.4 Experimental Methodology
For all results presented here, the basic experimental
setup is the same. Each data set contains a set of core
nodes for which we have ground truth (i.e., we know
the true class labels). In all cases, classifiers have
access to the entire data graph during both training and
testing. However, not all of the core nodes are labeled.
We vary the proportion of labeled core nodes from
10% to 90%. Classifiers are trained on all labeled core
nodes and evaluated on all unlabeled core nodes.

Let VU be the set of unlabeled nodes in our graph.

Repeat
1. Generate a random order, O, of nodes in VU.
2. For each node vi ∈ O:

a. Apply the relational classifier to vi,
using all currently assigned labels.
Note: during the first iteration, some
nodes will have no label. Thereafter,
all nodes will have a label assigned.

b. Assign vi the class label with the
highest probability according to the
relational model.

Until 1000 iterations have elapsed or no node
receives a new class label.

 9

Our methodology is essentially the same as the one
used by Macskassy and Provost [13] for their study of
within-network classification, except that we ensure
that each instance in the data set is given equal weight
in the overall evaluation. For each proportion labeled,
we run 30 trials. For each trial and proportion labeled,
we choose a class-stratified random sample containing
(1.0 – proportion labeled)% of the core instances as the
test set and the remaining core instances become the
training set. Note that for proportion labeled less than
0.9 (or greater than 10 trials), this means that a single
instance will necessarily appear in multiple test sets.
As Macskassy and Provost note, the test sets cannot be
made to be independent because of this overlap.
However, we carefully choose the test sets to ensure
that each instance in our data set occurs in the same
number of test sets over the course of our experiments.
This ensures that each instance carries the same weight
in the overall evaluation regardless of the proportion
labeled. Labels are kept on the training instances and
removed from the test instances. We use identical
train/test splits for each classifier.

Our experimental framework sits on top of the open
source Weka system [25]. We implement our own
network data representation and experimental code,
which handles tasks such as splitting the data into
training and test sets, calculation of network structural
features, labeling and unlabeling of data, and
converting network fragments into a Weka-compatible
form. We rely on Weka for the implementation of
logistic regression and for measuring classifier
performance on individual training/test trials.

We use the area under the Receiver Operating
Characteristic (ROC) curve (AUC) as a performance
measure to compare classifiers. We chose AUC
because it is more discriminating than accuracy. Since
most of our tasks have a class-skew problem, accuracy
cannot adequately differentiate between the classifiers.

6. Experimental Results and Discussion
In this section, we describe and discuss the results of
our experiments. We assessed significance of the
results using paired t-tests. When we use the term
"significant" in the text, we mean a p-value ≤ 0.05.

6.1 Effects of Learning Label Dependencies
The nLB classifier is a supervised-learning based
approach. It uses labeled nodes as training examples to
build a model of the dependencies between class labels
of neighboring nodes. The wvRN and GRF classifiers,
on the other hand, do not attempt to learn these
dependencies, but simply assume that class labels of
neighboring nodes will tend to be the same. In cases
where this assumption is met, non-learning methods
can perform well. For example, GRF performs very

well on the Enron and Reality Mining position tasks
(Figure 5), both of which have a high positive
correlation between class labels of neighboring nodes.
However, in cases where there are more complex
dependencies between neighboring class labels, non-
learning methods can perform poorly. For instance, on
the Reality Mining study participant task, both wvRN
and GRF perform extremely poorly and actually
perform worse with more known labels than fewer
known labels. This is because there is actually a
negative relationship between neighboring class labels
in this task (i.e., non-participants never communicate
directly with each other in this network). The nLB
classifier performs well on this task because it is able
to learn the correct dependencies by using available
labeled nodes as training data.

6.2 Effects of Network Structure
Figure 5 shows the results of our core experiments on
the effects of network structure. There are several
interesting observations to note regarding Figure 5. In
general, the performance of the structural classifiers
degrades more slowly than that of the corresponding
base classifiers as fewer instances are labeled. The
exception to this is on the Enron task, in which GRF
and GRFStruct are statistically tied, except at 0.1
labeled. This indicates that in general the information
provided by the network structure is able to make up,
at least in part, for the information lost due to missing
attributes. Note that there are three separate effects that
lead to performance degradation as the number of
labeled instances decreases: (1) There are fewer
labeled instances available for inference. This factor
impacts the quality of the attribute-based features
available at inference time, but has no impact on the
quality of the structural features. (2) Fewer labels at
training time mean that (labeled) training examples
have fewer labeled neighbors. This impacts the quality
of the attribute-based features available at training time
and, hence, the quality of the resulting model. Again,
there is no impact on the quality of the structural
features. (3) Fewer labeled instances means less
training data. This impacts model quality regardless of
the type of features used. Note that wvRN and GRF are
affected only by the first factor, since these methods do
not make use of training data.

With only a few exceptions, the structural models
outperform the corresponding base models.
Differences are significant for nLB/wvRN/GRF on
political books ≤ 0.7/0.9/0.7 labeled, Enron ≤ 0.5/0.5/--
, Reality Mining position ≤ 0.3/≥ 0.3/≥ 0.3, Reality
Mining participants ≤ 0.7/0.9/0.9, and HEP-TH ≤
0.5/0.7/0.5. There is only one case where the use of
structure significantly

 10

Figure 5: Classification results on political books, Enron, Reality Mining, and HEP-TH data sets. The classifiers are:
nLB, nLBStruct, nLBCol, nLBStructCol, wvRN, wvRNStruct, wvRNCol, wvRNStructCol, GRF, and GRFStruct. See
Section 5.2 for a detailed description of these classifiers.

Political Books

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.1 0.3 0.5 0.7 0.9

A
U

C

nLB
nLBStruct
nLBCol
nLBStructCol

Enron Executives

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

A
UC

nLB
nLBStruct
nLBCol
nLBStructCol

Reality Mining Position

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.1 0.3 0.5 0.7 0.9

A
U

C

nLB
nLBStruct
nLBCol
nLBStructCol

Political Books

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.1 0.3 0.5 0.7 0.9

wvRN
wvRNStruct
wvRNCol
wvRNStructCol

Enron Executives

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

wvRN
wvRNStruct
wvRNCol
wvRNStructCol

Reality Mining Position

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.1 0.3 0.5 0.7 0.9

wvRN
wvRNStruct
wvRNCol
wvRNStructCol

Political Books

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.1 0.3 0.5 0.7 0.9

GRF
GRFStruct

Enron Executives

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

GRF
GRFStruct

Reality Mining Position

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.1 0.3 0.5 0.7 0.9

GRF
GRFStruct

HEP-TH

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.1 0.3 0.5 0.7 0.9

Proportion of Core Nodes Labeled

A
UC

nLB
nLBStruct
nLBCol
nLBStructCol

HEP-TH

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.1 0.3 0.5 0.7 0.9

Proportion of Core Nodes Labeled

wvRN
wvRNStruct
wvRNCol
wvRNStructCol

HEP-TH

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.1 0.3 0.5 0.7 0.9

Proportion of Core Nodes Labeled

GRF
GRFStruct

Reality Mining Study Participants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

A
U

C

nLB
nLBStruct
nLBCol
nLBStructCol

Reality Mining Study Participants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

wvRN
wvRNStruct
wvRNCol
wvRNStructCol

Reality Mining Study Participants

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.3 0.5 0.7 0.9

GRF
GRFStruct

 11

degrades performance. That is using GRF on the Enron
task at 0.1 labeled. The GRF classifier does so well on
this task on its own that adding the additional
(structural) information simply adds complexity
without adding additional predictive information.
However, even here, the performance decrease is small
compared to the gains on other tasks

The fact that structure improves performance on
several tasks, including political books, up to 90%
labeled suggests that the structural features may
provide information above and beyond that provided
by neighboring class labels. Recall that the political
books network is the one data set that is fully labeled
to begin with. This indicates structural features may
have more general applicability beyond sparsely
labeled data. In particular, there may be tasks (similar
to political books) for which both (1) network structure
is informative and (2) collective classification is
helpful. In such cases, there may be an increased
benefit to combining the two approaches.

In the next section, we discuss the effects of
collective classification in our experiments.

6.3 Effects of Collective Classification
As described previously, the Enron, Reality Mining,
and HEP-TH data sets all have large amounts of
unlabeled data due to the fact that we simply do not
have ground truth available for many of the nodes. In
these cases, there are two reasonable approaches to
collective classification: (1) performing collective
classification over the entire graph and (2) performing
collective classification over the core set of nodes only
(i.e., the training and test sets).

In our experiments, the first approach produced
results that were often dramatically worse that the non-
collective base classifier, even when we utilized 90%
of the available class labels. We hypothesize that this
is due to an insufficient quantity of labeled instances to
effectively seed the collective classification process.
Remember that for most of our networks, there are
large amounts of unlabeled data outside of the training
and test sets. Other researchers have also reported
cases where collective classification hurts performance
due to a lack of labeled data [17, 18]. We found that
the second approach (i.e., collectively classifying the
core nodes only) consistently and often dramatically
outperformed the first approach. Therefore, we report
results using the second approach. Note that because
we remove nodes from the network in the second
approach, the network may become disconnected,
which can adversely affect the performance of
techniques that propagate labels (e.g., collective
classification and SSL). However, we still found that
this approach performed better than trying to perform

inference over the entire network, due to the large
amount of unlabeled data in many of these networks.

Figure 5 shows the effects of collective
classification on our tasks. On its own, collective
classification appears to have only a small effect on
these tasks. For some tasks, we see a small, but
significant improvement over the base classifiers due
to collective classification at the higher proportions of
labeled instances. For the Reality Mining study
participant task, we see larger improvements due to
collective classification. However, there are several
cases, generally at the lower proportions of labeled
instances, where we see performance degradation due
to collective classification. The nLB model
significantly outperforms nLBCol at some proportion
labeled on Enron and wvRN significantly outperforms
wvRNCol for some proportion labeled on all tasks,
except identifying Reality Mining study participants.

Due to the relatively poor performance of collective
classification, the comparison between the xxCol and
xxStruct classifiers is not particularly illuminating.
There are only two cases where the xxCol classifier
significantly outperforms the xxStruct classifier (i.e.,
wvRN at 0.7 and 0.9 on Enron). There are 30 cases
where xxStruct significantly outperforms xxCol.

Another effect demonstrated by Figure 5 is the
interaction between the use of network structure and
collective classification. Although there are a few
cases where the collective structural model
significantly outperforms the simple structural model,
the results do not demonstrate a consistent
improvement due to collective classification over and
above the use of network structure on its own.

6.4 Effects of Local and Global Network
Structure
Since our classifiers model a number of structural
network characteristics, we want to understand which
of these characteristics contribute to the observed
performance gains and to what extent. To shed some
light onto these issues, we ran a series of experiments
on the same classification tasks described above, but
using different subsets of structural features.
Specifically, we ran logistic regression models with
different combinations of the four structural features:
each feature on its own, leave-one-feature out for each
feature, neighbor-based features only, graph-based
features only, and all features. This gives us 11
classifiers in all. Each classifier uses structural features
only (i.e., no neighboring class labels). We ran
experiments varying the amounts of labeled data
available, as we had done previously. However, since
the results demonstrate the same effects regardless of
the proportion of labeled data, we present results only
for 50% labeled.

 12

Figures 6 and 7 show the results of these
experiments. Figure 6 shows AUC results for models
using each structural feature on its own as well as a
model using all features combined. This demonstrates
the predictive power of each feature in the absence of
any other information. The model using all features
serves as a reference point. Figure 7 shows the increase
in AUC due to adding the specified feature to a
classifier that already has access to all of the other
structural features. In other words, the y-axis of this
plot represents the AUC of a classifier that uses all
structural features minus the AUC of a classifier that
uses all features except for the specified one. This
demonstrates the power of each feature when
combined with the other features.

Individual Structural Features at 50% Labeled

0.4

0.5

0.6

0.7

0.8

0.9

Enron HEP-TH P. Books RM Pos. RM Study

Data Set

A
U

C

All
Node count
Link count
Betweenness
Clust. coef.

Figure 6: Comparison of the performance of
structural features in isolation: node count, link count,
betweenness centrality, clustering coefficient, and a
combination of all four features (All).

There are several interesting observations to note

here. First, all of the features appear to be useful for at
least some of the tasks. Clustering coefficient is the
least useful overall, improving AUC only slightly on
two of the tasks and degrading AUC slightly on the
other three. Second, in all cases, it is a combination of
at least three features that is most informative, rather
than a single feature or a pair of features. Third,
features that are not informative on their own can
combine to provide powerful predictive information.
For instance, on the Reality Mining position task, node
count, betweenness, and clustering coefficient produce
AUCs of 0.57, 0.49, and 0.48 on their own,
respectively. However, when combined, these three
produce an overall AUC of 0.78. Just betweenness,
which performs worse than random (i.e., AUC = 0.5)
on its own, provides a boost of 0.32 AUC when added
to a classifier using node count and clustering
coefficient.

For the Enron and political books tasks, the local
(i.e., neighbor-based) structural features provide more

predictive power than the global (i.e., graph-based)
structural features. For HEP-TH, global features,
specifically betweenness, are more important. For the
Reality Mining tasks, classification performance
suffers roughly equally in the absence of local or
global structural features. For the HEP-TH and
political book tasks, node count and edge count are
identical since there is no more than one link between
any pair of nodes. Therefore, in these cases, either
feature can be removed without hurting performance.
However, if both features are removed, this has a
major effect on performance in the political books
task. For the Enron and Reality Mining tasks, node
count provides more of a boost than edge count when
combined with the global features.

Combined Structural Features at 50% Labeled

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Enron HEP-TH P. Books RM Pos. RM Study

Data Set

In
cr

ea
se

 in
 A

U
C Neighbor-based

Graph-based
Node count
Link count
Betweenness
Clust. coef.

Figure 7: Comparison of the performance of
structural features in combination: node count, link
count, betweenness centrality, clustering coefficient,
both neighbor-based features (node count and link
count), and both graph-based features (betweenness
centrality, clustering coefficient).

On all tasks besides Enron, performance improves

or else degrades only slightly due to the inclusion of all
four structural features. In the Enron case, clustering
coefficient appears to mislead the classifier to the point
where it is better to use either node count or edge
count individually than to use all features. This is one
case where it appears that we might benefit from a
more selective base classifier. Figure 8 shows a
performance comparison between a logistic regression
classifier using all four structural features and a
random forest classifier [1] using the same features.
We see that the random forest is able to make use of
the informative features without being misled by the
uninformative ones to the extent that we see with
logistic regression. Gallagher and Eliassi-Rad [5]
present additional results on random forests with a
variety of relational features and compare them to
several relational classifiers on different tasks.

 13

7. Conclusion
In this paper, we addressed the problem of within-
network classification in sparsely labeled networks.
We presented a novel approach for modeling structural
characteristics of networks as features for classification
and demonstrated the value of our approach
empirically. Our experiments revealed a number of
interesting findings.

Enron Executives

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.1 0.3 0.5 0.7 0.9

Proportion of Core Nodes Labeled

A
U

C Logistic

Rand Forest

Figure 8: Comparison of logistic regression and
random forest classifiers using four structural
features: node count, link count, betweenness
centrality, and clustering coefficient.

We discovered that network structural information

can make up for vast amounts of missing class labels.
We observed that structure can also provide
information above and beyond that provided by class
labels alone. We found that when class labels are
sparse, the benefits of structural features can far
outweigh the benefits of collective classification. We
did not observe a consistent benefit to combining
structural features with collective classification.
However, we expect that in data sets where labels are
less sparse, a combination of structural features and
collective classification may provide an additional
benefit over either technique on its own. Finally, we
found that there is a benefit to combining a number of
local and global structural features.

Although many of our networks have a temporal
component, we have not yet made use of this
information. Future work includes exploration of the
dynamics of network structure in time-evolving
networks. We conjecture that time-dependent
structural features will further improve classification
performance.

Acknowledgments
We would like to thank Luke McDowell for his
insightful comments. This work was performed under
the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under

contract No. DE-AC52-07NA27344. UCRL-TR-
235752.

References

[1] L. Breiman, “Random forests,” Machine Learning,
45(1), 2001, pp. 5-32.

[2] S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced
hypertext categorization using hyperlinks,” In Proc. of ACM
SIGMOD Int’l Conf. on Management of Data, 1998, pp. 307-
318.

[3] W.W. Cohen, “Enron email data set,”
http://www.cs.cmu.edu/~enron/.

[4] N. Eagle and A. Pentland, "Reality mining: sensing
complex social systems," Journal of Personal and
Ubiquitous Computing, 10(4), 2006, pp. 255-268.

[5] B. Gallagher and T. Eliassi-Rad, “Leveraging network
structure to infer missing values in relational data,”
Technical Report UCRL-TR-231993, Lawrence Livermore
National Laboratory, June 2007.

[6] S. Geman and D. Geman, “Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images,” IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 6, 1984. pp. 721-741.

[7] L. Getoor, N. Friedman, D. Koller, and B. Taskar,
“Learning probabilistic models of link structure,” Journal of
Machine Learning Research, 3, 2002, pp. 679-707.

[8] D. Jensen, J. Neville, and B. Gallagher, “Why collective
inference improves relational classification,” In Proc. of the
10th ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), 2004, pp. 593-598.

[9] D. Jensen, “Proximity HEP-TH database,”
http://kdl.cs.umass.edu/data/hepth/hepth-info.html.

[10] V. Krebs, “Books about U.S. Politics,”
http://www.orgnet.com/, 2004.

[11] Q. Lu and L. Getoor, “Link-based classification,” In
Proc. of the 20th Int’l Conf. on Machine Learning (ICML),
2003, pp. 496-503.

[12] S. Macskassy and F. Provost, “A simple relational
classifier,” In Notes of the 2nd Workshop on Multi-relational
Data Mining at KDD, 2003.

[13] S. Macskassy and F. Provost, “Classification in
networked data: a toolkit and a univariate case study,”
Journal of Machine Learning Research, 2007 (to appear).

[14] L. McDowell, K.M. Gupta, D.W. Aha, “Cautious
inference in collective classification,” In Proc. of the 22nd
AAAI Conference on Artificial Intelligence, 2007, pp. 596-
601.

[15] J. Neville, D. Jensen, L. Friedland, and M. Hay,
“Learning relational probability trees,” In Proc. of the 9th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), (2003), pp. 625-630.

 14

[16] J. Neville, D. Jensen, and B. Gallagher, “Simple
estimators for relational Bayesian classifiers,” In Proc. of the
3rd IEEE Int’l Conf. on Data Mining (ICDM), 2003, pp.
609-612.

[17] J. Neville and D. Jensen, “Leveraging relational
autocorrelation with latent group models,” In Proc. of the 5th
IEEE Int’l Conf. on Data Mining (ICDM), 2005, pp. 322-
329.

[18] J. Neville and D. Jensen, “Relational dependency
networks,” Journal of Machine Learning Research, 8, 2007,
pp. 653-692.

[19] M.E.J. Newman, “The structure and function of
complex networks,” SIAM Review, 45, 2003, pp. 167-256.

[20] C. Perlich and F. Provost, "Aggregation-based feature
invention and relational concept classes." In Proc. of the 9th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining (KDD), 2003, pp. 167 – 176.

[21] M. Rattigan, M. Maier and D. Jensen, “Exploiting
network structure for active inference in collective
classification,” Technical Report 07-22, University of
Massachusetts, Amherst, MA, 2007.

[22] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher,
and T. Eliassi-Rad, “Collective classification in network
data,” AI Magazine, Special Issue on AI and Networks,
forthcoming.

[23] L. Singh, L. Getoor, and L. Licamele, “Pruning social
networks using structural properties and descriptive
attributes,” In Proc. of the 5th IEEE Int’l Conf. on Data
Mining (ICDM), 2005, pp. 773-776 .

[24] B. Taskar, P. Abbeel, and D. Koller, “Discriminative
probabilistic models for relational data,” In Proc. of the 18th
Conf. on Uncertainty in AI (UAI), 2002, pp. 485-492.

[25] I.H. Witten and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques, 2nd edition,
Morgan Kaufmann, San Francisco, 2005.

[26] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-
Supervised Learning Using Gaussian Fields and Harmonic
Functions.” In proc. of the 20th Int’l Conf. on Machine
Learning (ICML), 2003.

