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Abstract
The computational challenge of predicting shock-

turbulence interactions stems from the fundamentally
different physics at play. Shock waves are micro-
scopically thin regions wherein flow properties change
rapidly over a distance roughly equal to the molecular
mean free path; hence, they are essentially strong dis-
continuities in the flow field. Turbulence, on the other
hand, is a chaotic phenomenon with broadband spatial
and temporal scales of motion. Most shock-capturing
methods rely on strong numerical dissipation to arti-
ficially smooth the discontinuity, such that it can be
resolved on the computational grid. Unfortunately,
the artificial dissipation necessary for capturing shocks
has a deleterious effect on turbulence. An additional
problem is the fact that shock-capturing schemes are
typically based on one-dimensional Riemann solutions
that are not strictly valid in multiple dimensions. This
can lead to anisotropy errors and grid-seeded pertur-
bations. Other complications arising from upwinding,
flux limiting, operator splitting etc., can seriously de-
grade performance and generate significant errors, es-
pecially in multiple dimensions. The purpose of this
work is to design improved algorithms, capable of cap-
turing both shocks and turbulence, which also scale to
tens of thousands of processors. We have evaluated
two new hydrodynamic algorithms, in relation to the
widely used WENO method, on a suite of test cases.
The new methods, referred to as the “Compact” and
“Hybrid” schemes, show very promising results.

1 Introduction
The Navier-Stokes equations for compressible

flow of an ideal gas, with constant specific heats, are
(underline denotes tensor):

ρ̇ +∇ · ρu = 0 , (1)

ṁ +∇ · (ρuu + pδ − τ ) = 0 , (2)

Ė +∇ · [Eu + (pδ − τ ) · u + q] = 0 , (3)

p = (γ − 1)ρe , (4)

where ρ is density, u = (u, v, w) is velocity, m = ρu
is momentum p is pressure, δ is the unit tensor, E =

ρ(e + u · u/2) is total energy, e is specific internal
energy and γ = cp/cv is the ratio of specific heats.
The viscous stress tensor, τ , is given by

τ = µ(2S) + (β − 2
3
µ)(∇ · u)δ , (5)

where µ is dynamic (shear) viscosity, β is bulk viscos-
ity and S is the symmetric strain rate tensor

S =
1
2
(∇u + u∇) , (6)

where u∇ denotes the transpose of ∇u. The conduc-
tive heat flux vector, q, is given by Fourier’s law,

q = −σ∇T , (7)

where σ is thermal conductivity and T = (γ−1)e/R is
temperature (with R = cp−cv being the gas constant).
These equations contain all the essential physics of
flows involving both shocks and turbulence. Di-
rect Numerical Simulations (DNS) of turbulent flows
are typically performed by solving (1-7) with spec-
tral (Fourier, Chebyshev or Legendre polynomials) or
spectral-like (compact/Padé) methods, because such
methods are much better able to resolve a wide range
of scales than lower-order finite-difference or finite-
volume schemes (Orszag & Patterson, 1972; Gottlieb
& Orszag, 1977; Vichnevetsky & Bowles, 1982; Lele,
1992). Flows involving shocks however, are most
commonly treated with low-order methods, which ei-
ther take advantage of the eigenstructure of the equa-
tions (Godunov) and/or adjust the local differencing
stencil (ENO) to capture discontinuities with minimal
oscillations. In many applications, ranging from Iner-
tial Confinement Fusion (ICF) to supernovae, shocks
deposit vorticity at material interfaces, which subse-
quently evolve into turbulent mixing zones; secondary
shocks may then pass back through the turbulent re-
gions. Such problems present a formidable challenge
to traditional algorithms, where high order of accu-
racy for turbulent mixing is usually sacrificed in fa-
vor of robustness and monotonicity for the shocks.
The need for accurate predictions of mixing at shock-
accelerated interfaces continues to drive development
of high-resolution shock-capturing schemes.



2 Methods
There are basically two strategies for obtaining

more accurate solutions to flows involving both shocks
and turbulence: a “bottom up” approach, whereby
finite-difference schemes are extended to higher or-
der, and a “top down” approach, wherein hyperviscos-
ity and/or low-pass filtering is introduced to spectral-
like algorithms to increase their robustness. Our “top
down” and “bottom up” approaches here consist of
a “Compact” method and a “Hybrid” method. We
compare the results both to converged reference solu-
tions and to the results of a 7th-order standard WENO
method with Roe flux-splitting (Jiang & Shu, 1996).

The Compact method employs a 10th-order Padé
scheme for spatial derivatives combined with a 4th-
order Runge-Kutta method for temporal integration.
An 8th-order dealiasing filter is applied to the con-
served variables following each Runge-Kutta substep.
Grid-dependent models are used for µ, β and σ. The
artificial fluid properties impart a high-wavenumber
bias to the dissipation, approximating the cusp in the
Heisenberg-Kraichnan spectral viscosity for isotropic
turbulence. Like real fluid properties, the artificial
properties are required to be positive definite, frame
invariant and carry over to the incompressible limit.
Unlike real fluid properties, the artificial properties are
designed to vanish in smooth regions, while providing
strong damping near discontinuities. The method is
described in detail by Cook (2007).

The Hybrid method is based on the idea that broad-
band turbulence and discontinuities represent different
physics and thus should be treated by different numer-
ical methods. It consists of essentially three compo-
nents that can be chosen rather freely: a central finite-
difference scheme for the smooth regions, a shock-
capturing scheme for the regions containing discon-
tinuities, and a solution-adaptive sensor which iden-
tifies these regions. For shock-capturing, a 7th-order
WENO method (Jiang & Shu, 1996) is chosen due to
its ability to capture shocks in a sharp fashion with few
adjustable parameters. Away from the shocks, an 8th-
order central difference scheme is used on a split form
of the convective terms that improves nonlinear sta-
bility. These schemes are coupled in a conservative
manner that preserves stability (Larsson & Gustafs-
son, 2008). The shock sensor is inspired by the ob-
servation that shock waves are associated with large
negative dilatation, whereas turbulence is more typi-
cally associated with large vorticity. Comparing these
quantities then yields an effective shock sensor. In 1D,
where the vorticity is zero, the density-based sensor
by Hill & Pullin, (2004) is used instead. The primary
advantage of the Hybrid approach, as compared to a
‘shock-capturing only’ method, is that numerical dissi-
pation is restricted to the regions flagged by the sensor,
which may improve predictions of turbulence spectra.
Another advantage is a lowered computational cost,
because the more expensive shock-capturing scheme

0 2 4 6 8 100

5

10

15

20

t

Ω
(t)

/Ω
(0

)

 

 

Reference
Compact
Hybrid
WENO

Figure 1: Normalized enstrophy versus time for the
Taylor-Green vortex. Simulations were conducted in a
2π3 periodic box using 643 grid points. The reference
points correspond to the analytical solution.

is used in only small parts of the domain. The main
drawback is the reliance on the sensor to correctly
identify the shocks.

3 Taylor-Green Vortex
As a first point of comparison, we consider the in-

viscid Taylor-Green vortex (Taylor & Green, 1937),
which provides an effective test of each schemes’ abil-
ity to resolve small-scale turbulence. The initial con-
ditions are:

ρ = 1 ,

u = sin(x) cos(y) cos(z) ,

v = − cos(x) sin(y) cos(z) ,

w = 0 ,

p = {[cos(2z) + 2][cos(2x) + cos(2y)]− 2}/16
+ 100 ,

γ = 5/3 .

The constant of 100 is selected to make the Mach
number very low, such that the incompressible solu-
tion (Morf et al., 1980; Brachet et al., 1983) can be
used for comparison. As the flow evolves, the vortex
stretches and bends, thus broadening the spectrum to
include higher wavenumbers. Stretching and bending
of vortex lines constitute key energy cascade mecha-
nisms in turbulent flows. The computational domain
is a triply-periodic (2π)3 box on a 643 grid.

Figure 1 shows normalized total enstrophy, i.e.,
Ω(t)/Ω(0), where

Ω(t) ≡ 1
2

∫

V
ω · ω dV , ω = $× u .

The theoretical result is accurate up to about t =
3.5 and is plotted in order to assess the ability of
each method to resolve small-scale vortex dynamics.



0 2 4 6 8 10

0.5

0.6

0.7

0.8

0.9

1

t

K(
t)/

K(
0)

 

 

Reference
Compact
Hybrid
WENO

Figure 2: Normalized kinetic energy versus time for
the Taylor-Green vortex.

Analysis based on Padé approximants and the behav-
ior of the analyticity strip, predicts Ω(t) will become
far too large to capture on a such a coarse grid (Morf
et al., 1980); nevertheless, the ability of a scheme to
track the enstrophy curve, as well as the maximum en-
strophy that a scheme is able to generate, provide strin-
gent tests of resolving power. The Hybrid and Com-
pact methods are much better at tracking small-scale
vorticity than the WENO method.

In addition to total enstrophy, the evolution of ki-
netic energy provides insight into the resolving power
of numerical algorithms. Normalized kinetic energy,
K(t)/K(0), is plotted for each scheme in Fig. 2,
where

K(t) ≡ 1
2

∫

V
ρu · u dV .

The drop-off in energy for the WENO and Compact
schemes results from transfer to unresolved wavenum-
bers. Energy cascading to scales below 2∆ must be
removed to prevent it from piling up near the Nyquist
limit. If the energy is not removed, then unphys-
ical ringing begins to appear; i.e., strong point-to-
point oscillations propagate throughout the domain
and the spectrum approaches a k2 power law at higher
wavenumbers. This is illustrated in Fig. 3, where
the spectrum of turbulent kinetic energy is plotted for
each method. By t = 5, some of the kinetic energy
has reached unresolved wavenumbers. For the Hy-
brid scheme, the sensor detects no shocks; hence, the
method defaults to purely centered derivatives every-
where. Centered derivatives are non-dissipative; thus,
the method conserves kinetic energy, which causes the
spectrum to curl up at higher wavenumbers. The filter
and artificial viscosity in the Compact scheme remove
high-wavenumber energy in order to reduce aliasing
errors; this causes the tail of the spectrum to drop off.

4 Shu-Osher problem
As a second point of comparison, we consider the
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Figure 3: Energy spectrum for Taylor-Green vortex at
t = 5. The reference spectrum was computed with the
Hybrid method at a resolution of 2563.

Shu-Osher problem (Shu & Osher, 1989), which tests
each schemes’ ability to capture shocks in nonuni-
form fields. This flow is a canonical model of a one-
dimensional shock-turbulence interaction. The nondi-
mensional initial conditions are:

γ = 1.4
for x < −4 :

ρ = 3.857143 , p = 10.33333 , u = 2.629369
for x ≥ −4 :

ρ = 1 + 0.2 sin(5x) , p = 1 , u = 0 .

As the shock propagates into the sinusoidal density
field, it leaves a steeply undulating flow in the post-
shock region. Figures 4 and 5 display the entropy
and density solutions for the shock profile as well as
the post-shock oscillations. In this case, the sensor
in the Hybrid method switches to a more dissipative
WENO scheme at the shock. Dissipation in the Com-
pact scheme is primarily accomplished through an ar-
tificial bulk viscosity. It is instructive to compare the
entropy fields for the Hybrid and pure WENO meth-
ods. At the shock they both rely on the same WENO
scheme, and there the entropy profiles agree. The en-
tropy waves farther to the left in the figure were gener-
ated at earlier times, and there the numerical dissipa-
tion of the WENO scheme causes the waves to decay
rapidly. The Hybrid method switches back to a central
scheme and does not suffer from this effect.

5 Compressible Turbulence
Finally, we consider compressible isotropic tur-

bulence with a turbulent Mach number Mt =√
3urms/c = 0.6, which is high enough for the tur-

bulence to spontaneously produce eddy shocklets. We
note that these eddy shocklets are strong enough to
cause rapid blow-up of the simulations in the absence
of any shock-capturing dissipation. The initial con-
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Figure 4: Entropy curves from the Shu-Osher prob-
lem at t = 1.8. The black line is the converged solu-
tion using the Hybrid method with a grid spacing of
∆ = 10/3200. The other curves were obtained from
simulations using a grid spacing of ∆ = 10/200.
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Figure 5: Density curves from the Shu-Osher prob-
lem at t = 1.8. The black line is the converged solu-
tion using the Hybrid method with a grid spacing of
∆ = 10/3200. The other curves were obtained from
simulations using a grid spacing of ∆ = 10/200.

0 1 2 3 40.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

k(
t)/

k(
0)

 

 

Reference
Compact
Hybrid
WENO

Figure 6: Temporal evolution of normalized velocity
variance on 643 grids compared to the filtered Hybrid
solution on a 2563 grid.
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Figure 7: Temporal evolution of normalized enstrophy
on 643 grids compared to the filtered Hybrid solution
on a 2563 grid.

dition is a randomized velocity field with spectrum
E(k) ∼ k4 exp(−2k/k2

0) with k0 = 4. The tempo-
ral decay of the velocity variance defined by

k(t) ≡ 1
2

∫

V
u · u dV .

is shown in Fig. 6, while that of the enstrophy is shown
in Fig. 7. The dilatation-based shock sensor in the Hy-
brid method is well adapted to this problem, with the
WENO scheme being used in about 1% of the grid
points. This explains the relatively low amount of nu-
merical dissipation for the Hybrid method compared to
pure WENO. The Compact results fall in between the
reference and WENO results. The spectra of vorticity
at the end of the simulations (after 4 eddy turn-over
times) are shown in Fig. 8. The shapes of the WENO
and Compact spectra are slightly different; i.e., dis-
sipation in the Compact method is weighted towards
higher wavenumbers.
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Figure 8: Vorticity spectra at t = 4 from 643 simu-
lations of decaying compressible isotropic turbulence
compared to Hybrid results on a 2563 grid.

Snapshots of instantaneous dilatation and vorticity
are shown in Fig. 9 for the three methods, along with
the reference Hybrid results on a 2563 grid. We first
note that the solutions are broadly similar, despite the
chaotic nature of the problem and the inherent sensi-
tive dependence on initial conditions. The snapshots
of vorticity magnitude illustrate what the previous fig-
ures showed statistically; i.e., that the WENO method
yields an overly smooth solution with too large dis-
sipation of the smallest scales, while the Hybrid and
Compact methods better preserve these finer motions.

The reference snapshot of negative dilatation
shows an eddy shocklet with intense compression near
the center of the frame. This shocklet is visible in
the coarse-grid Hybrid result as well, and to a lesser
degree also in the WENO result. Since the Hybrid
method uses exactly the same WENO scheme around
the shocklet, the difference between these two meth-
ods must stem from differences away from the shock-
let at earlier times. The Compact method at 2563

resolution (not shown) exhibits structures very similar
to the Hybrid results; however, at 643 resolution, the
Compact method yields a very smooth dilatation field.
This behavior is the subject of ongoing investigations.

6 Conclusions
The results presented herein provide a small sam-

ple of the differences between standard WENO, a Hy-
brid method and a Compact scheme applied to prob-
lems involving both shocks and turbulence. While not
shown here, we note that both the Hybrid and Compact
methods are capable of capturing exceedingly strong
shocks, with very little difference in shock thickness.
Overall, the Hybrid and Compact schemes outperform
the standard WENO method, providing lower inherent
numerical dissipation and better resolution of small-
scale vorticity. Hence both methods appear better

suited to detailed studies of shock/turbulence interac-
tion problems.
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Figure 9: Snapshots at t = 4 from 643 simulations of decaying compressible isotropic turbulence. Negative
dilatation (left column) and vorticity magnitude (right column). From top to bottom, using the same gray-scale
maps: 2563 Hybrid, Compact, Hybrid, and WENO.


