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Abstract.  This study investigates whether probabilistic ozone forecasts from an 

ensemble can be made with skill; i.e., high verification resolution and reliability.  

Twenty-eight ozone forecasts were generated over the Lower Fraser Valley, British 

Columbia, Canada, for the 5-day period 11-15 August 2004, and compared with 1-hour 

averaged measurements of ozone concentrations at five stations.  The forecasts were 

obtained by driving the CMAQ model with four meteorological forecasts and seven 

emission scenarios:  a control run, ± 50% NOx, ± 50% VOC, and ± 50% NOx combined 

with VOC.  Probabilistic forecast quality is verified using relative operating characteristic 

curves, Talagrand diagrams, and a new reliability index. 

Results show that both meteorology and emission perturbations are needed to have a 

skillful probabilistic forecast system -- the meteorology perturbation is important to 

capture the ozone temporal and spatial distribution, and the emission perturbation is 

needed to span the range of ozone-concentration magnitudes.  Emission perturbations are 

more important than meteorology perturbations for capturing the likelihood of high ozone 

concentrations.  Perturbations involving NOx resulted in a more skillful probabilistic 

forecast for the episode analyzed, and therefore the 50% perturbation values appears to 

span much of the emission uncertainty for this case.  All of the ensembles analyzed show 

a high ozone concentration bias in the Talagrand diagrams, even when the biases from 

the unperturbed emissions forecasts are removed from all ensemble members.  This result 

indicates nonlinearity in the ensemble, which arises from both ozone chemistry and its 

interaction with input from particular meteorological models. 
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1. Introduction 

Exposure to ozone concentration in the troposphere may have adverse effects on 

humans [Horvath and McKee, 1994; Brauer and Brook, 1995], vegetation [Runeckles, 

2002] and materials [Brown et al., 2001].  To alert the population about impending air-

quality (AQ) degradation, Dabberdt and Miller [2000] discussed the need for an 

operational AQ forecast system.  Experiences with such numerical forecast systems are 

described in Delle Monache et al. [2004], McHenry et al. [2004] and Vaughan et al. 

[2004].  The U.S. Weather Research Program and its Prospectus Development Team on 

Air-Quality Forecasting [Dabberdt et al., 2003] recommended a probabilistic approach to 

AQ forecasting due to the chaotic nature of the atmosphere and chemistry nonlinearity.  

It has been found for regional, mesoscale numerical weather prediction (NWP) that 

the ensemble mean is more accurate that an individual model realization [e.g. Hou et al., 

1998; Gneiting et al., 2005].  Recent studies have shown that the ensemble average yields 

similar benefits for AQ prediction, because there are similar model complexities and 

constraints [e.g. Delle Monache and Stull, 2003; Delle Monache et al., 2005a; McKeen et 

al., 2005].  Moreover, through probabilistic forecasts, NWP ensembles have been useful 

for providing information about the likelihood of possible future evolutions of the 

atmosphere, an approach that is extended here for AQ forecasts (i.e., ozone).  Similar to 

NWP, AQ ensembles may be able to provide reliable probabilistic information about 

possible AQ scenarios. 

Given the nonlinear nature of both NWP and AQ models, the differences among 

ensemble members of an Ozone Ensemble Forecast System (OEFS) may be able to 

account for some of the uncertainties associated with each component of the modeling 
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process.  It has been observed that NWP ensemble-error growth typically has two distinct 

phases:  an initial period of linear growth, followed by a nonlinear period [Kalnay, 2003] 

that extends to the limits of predictability.  In AQ ensembles the linear growth period 

might be shorter because of the strong nonlinear nature of the chemistry.  Additionally, 

complex interactions between ozone chemistry and a driving meteorological model may 

introduce further nonlinearity in the ensemble error growth.  Therefore, the differences 

among AQ ensemble members may account for the uncertainties associated with each 

component of the AQ process more rapidly than for NWP ensembles.  These effects have 

not been systematically studied.  This work is one step toward better understanding AQ 

forecast uncertainties. 

Delle Monache et al. [2005a] introduced a new OEFS design (12 ensemble 

members), generated by including both meteorology and emission (NOx) perturbations.  

They tested the ensemble mean for a 5-day episode (August 2004) over the Lower Fraser 

Valley (LFV), British Columbia, Canada, and found that the ensemble average is the best 

forecast, having the best timing of maxima and minima values, and predicting the ozone 

magnitude more accurately than any other individual forecast.  These successful 

experiments prompted the work presented here.   

Ainslie [2004] shows that AQ in the LFV depends nearly equally on NOx and 

VOC-emission variations (Figure 1).  If the maximum ozone concentration is plotted as a 

function of NOx and VOC emissions, the state of the LFV is above the ridgeline of ozone 

relative maxima.  Delle Monache et al. [2005a] experimented with emission 

perturbations having 50% more NOx emissions (point A in Figure 1), and 50% less (point 
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B in Figure 1).  In the present study, VOC perturbations are also considered, and the 12-

member ensemble has been expanded to 28 members. 

The different forecasts are grouped in 13 different OEFS categories, as described in 

Section 2.  The performance of these OEFS groups are investigated here by comparing 

their forecast skill as probabilistic forecasts, using the probabilistic forecast skill metrics 

described in Section 3.  The effects of different perturbations, resolutions, and driving 

models on the ensemble skill are analyzed in Section 4.  In Section 5 conclusions are 

summarized. 
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2. Ozone Ensembles 

Here we briefly describe the composition of the ensembles.  For more detailed 

information, the reader is referred to Delle Monache et al. [2005a].  The ensembles used 

four meteorological forecasts and seven emissions scenarios, yielding a total of 28 

members that can be sub-sampled to understand their overall contributions.  

Meteorological forecasts were generated by running two different mesoscale NWP 

models, the Mesoscale Compressible Community (MC2) NWP model [Benoit et al., 

1997] and the Penn State/NCAR mesoscale (MM5) model [Grell et al., 1994], each with 

horizontal grid spacing of four and 12 km.  These models have been running daily for a 

decade at the University of British Columbia (UBC), [http://weather.eos.ubc.ca/wxfcst/].  

Forecasts were initialized at 00 UTC and run for 48 hours, with initial and boundary 

conditions from the NCEP North American Mesoscale (NAM) model.   

The AQ forecasts were produced with the U.S. Environmental Protection Agency 

(EPA) Models-3/Community Multiscale Air Quality Model (CMAQ) Chemistry 

Transport Model (CTM) [Byun and Ching, 1999], which used the NWP model runs and 

the Sparse Matrix Operator Kernel Emission (SMOKE) system [Coats, 1996] emissions 

estimates as input.  Emissions uncertainty is considered by perturbing both NOx and VOC 

emissions.  Each ozone precursor is independently perturbed ± 50% about the control, 

resulting in four additional forecasts (points A-D in Figure 1).  The precursors are also 

perturbed together, resulting in two additional forecasts (points E and F in Figure 1).    

Including the control leads to seven emissions scenarios.  The primary difference 

between the experimental data sets in this study and in Delle Monache et al. [2005a] is 

the addition of VOC perturbations, which were not considered before. 
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The 28 AQ forecasts resulting from the above perturbation combinations are tested 

here for the same AQ episode analyzed in Delle Monache et al. [2005a], with hourly 

observed ozone concentrations from five stations across the LFV: Vancouver 

International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope (Figure 2).  

The study period is 11-15 August 2004, and further details about the data and episode can 

be found in Section 2 of Delle Monache et al. [2005a]. 

The 28 ensemble members are sub-sampled to form 13 different ensembles, as also 

summarized in Table 1: 

(1) All the forecasts available (ALL, 28 members). 

(2) Meteorology and NOx perturbations combined together (MET+NOx, 12 

members). 

(3) Meteorology and VOC perturbations (MET+VOC, 12 members). 

(4) Meteorology and NOx combine with VOC perturbations (MET+NOxVOC, 12 

members). 

(5) All the ensemble members driven by MC2 at 12 km (MC2-12, seven members). 

(6) All the ensemble members driven by MC2 at 4 km (MC2-04, seven members). 

(7) All the ensemble members driven by MM5 at 12 km (MM5-12, seven members). 

(8) All the ensemble members driven by MM5 at 4 km (MM5-04, seven members). 

(9) All the control runs (MET, four members). 

(10) All the ensemble members with 12 km resolution (12-km, 14 members). 

(11) All the ensemble members with 4 km resolution (04-km, 14 members). 

(12) All the ensemble members driven by MC2 (MC2-ALL, 14 members). 

(13) All the ensemble members driven by MM5 (MM5-ALL, 14 members). 
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MET+NOx, MET+VOC, and MET+NOxVOC are ensembles generated with both 

meteorology and emission perturbations, while MC2-12, MC2-04, MM5-12, and MM5-

04 are ensembles where only emission perturbations are considered (i.e., the members in 

each of them are driven by the same meteorological input field).  Ensemble MET, formed 

by the four control runs, takes into account meteorology perturbations from NWP model 

differences alone. 

Ensembles 12-km and 04-km will help to understand the effects of different 

horizontal grid spacing for a region such as the LFV having high mountains.  Finally, 

MC2-ALL and MM5-ALL give insights about the different contributions from different 

NWP models (MC2 and MM5) while including different resolutions. 
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3. Probabilistic-Forecast Verification Statistics 

A probabilistic forecast system (PFS) can be built from a given set of ensemble 

members by estimating the probability of an event occurrence.  This probability can be 

computed as the ratio of the number of the ensemble members that predict the event over 

the total number of members.  For an ozone PFS, the event can be the ozone 

concentration above a certain threshold. 

Probabilistic forecast skill can be evaluated by determining the predictive accuracy of 

a forecast distribution.  With this in mind two important forecast attributes can be 

computed: resolution and reliability.  Both are concerned with the conditional probability 

p(o | f )  of observation (o) given forecast ( f ).  An in depth discussion of those and other 

attributes of probabilistic forecasts can be found in Jolliffe and Stephenson [2003]. 

 

3.1  Reliability 

Reliability measures the capability of the PFS to predict unbiased estimates of the 

observed frequency associated with different forecast frequencies.  In a perfectly reliable 

forecast, the forecasted frequency of the event should be equal to the observed frequency 

of the event for all the cases when that specific event is forecasted.  It can be improved 

with a forecast calibration such as bias correction; e.g., by re-assigning the forecast 

frequency values based on a long series of past forecasts, or by Kalman filtering each 

individual forecast based on recent past bias values, as shown in Delle Monache et al. 

[2005b].  Reliability is necessary but not sufficient to establish whether a PFS produces 

valuable forecasts.  For instance, a system that always forecasts the climatological 

frequency of an event is reliable, but may not prove valuable for decision makers.  
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Reliability can be measured with a Talagrand diagram [Talagrand and Vautard, 

1997], also known as the rank histogram [Hamill and Colucci, 1997].  First, the ensemble 

members are ranked for each prediction.  Then, the frequency of an event occurrence in 

each bin of the rank histogram is computed and plotted against the bins.  The number of 

bins equals the number of members plus one.  A perfectly reliable PFS shows a flat 

Talagrand diagram, where the bins all show the same frequency (“ideal bin count”).  If 

each ensemble member represents an equally-likely time evolution and spatial 

distribution of the ozone concentration, then the ensemble exhibits a perfect spread, and 

the observations are equally likely to fall between any two members. 

In this study a new summary index, called a “reliability index” (RI), is introduced as 

the reliability attribute.  It is computed as follows: 

  

mean bin distance from ideal bin count
ideal bin count

× 100  

=

1
Nbin

counti

N point
−

1
Nbini=1

N bin

∑
1

Nbin

×100 

=
counti

N point
−

1
Nbini=1

N bin

∑ ×100 (1) 

where Nbin  is the Talagrand diagram number of bins (corresponding to the number of 

ensemble members plus one), counti  is the number of times the observed event falls into 

the ith bin, N point is the sum of counti , for i =1, ..., Nbin  (i.e., the sample size). 

Lower RI means that the bins are closer to representing frequencies associated with a 

perfectly reliable forecast.  This index can be useful since the Talagrand diagram of the 

13 PFSs all have similar shapes, as shown in the next section, and can then provide 
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further information to compare their reliability.  The RI does not provide any information 

about the Talagrand diagram shape. 

When the ensembles are drawn from the same distribution, the RI as defined in 

Equation 1 tends to increase with increasing ensemble size following   esize esizemin , 

where esize is the size of the ensemble for which RI is computed, and esizemin is the size 

of the smallest ensemble considered.  This would prevent its application in cases as here, 

where ensembles with different sizes are compared with each other.  For this reason, 

Equation 1 is normalized as follows: 

  

RI =

counti

N point
−

1
Nbini=1

N bin

∑ × 100
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

esize
esizemin

 . (2) 

Hereafter, this normalized expression is used because it makes RI independent of 

ensemble size.  Again, lower RI is better. 

The RI (%) measures the degree of closeness of a Talagrand diagram to its ideal flat 

shape, without distinguishing between ensemble bias and under-dispersion (i.e, when the 

ensemble does not have enough spread, defined as the standard deviation of the ensemble 

members about the ensemble mean, to captures all the observed outcomes).  Recently, a 

similar index (δ) measuring the “deviation of the histogram from flatness” was 

introduced by Candille and Talagrand [2005].  This index also takes into account the 

distance from the ideal bin height, but does so by considering a sum over the squares of 

the differences of counti  minus N point/ Nbin  for i =1, ..., Nbin , and by normalizing this 

quantity.  When used to compare the reliability of different ensemble systems, it gives the 

same relative rankings as RI, but its interpretation differs from RI.  In fact, δ = 1 means a 
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perfectly reliable system, δ >> 1 suggests unreliability, and δ << 1 indicates that 

“successive realizations of the prediction process are not independent”.  For the analysis 

here, the RI is easier to interpret. 

 

3.2 Resolution 

Resolution measures the ability of the forecast to sort a priori the observed events into 

separate groups, when the events considered have a frequency different from the 

climatological frequency.  For an ozone PFS, two different events could be the ozone 

concentrations above two different thresholds.  A PFS with good resolution should be 

able to separate the observed concentrations when the two different probabilities are 

forecasted.  Table 2 shows the concentration threshold values used in this study.  As the 

concentration increases, the number of events decreases.  For threshold values above the 

60 ppbv limit (an event occurring 15% of the time) the low number of observation points 

available yields a large sampling uncertainty.  Nevertheless, these threshold values are 

included in this analysis because of their importance for health-related issues [Horvath 

and McKee, 1994; Brauer and Brook, 1995]. 

Resolution is quantified by the Relative Operating Characteristic (ROC), developed 

in the field of signal-detection theory for discrimination of two alternative outcomes 

[Mason, 1982].  A contingency table of observed versus forecasted event occurrences is 

built separately for individual forecast-probability values.  A hit is scored when the 

ensemble predicts a likelihood of the event is greater than or equal to the given 

probability threshold.  The hit rate is computed as the ratio of the number of correct 

forecasts of the event to the total number of event occurrences, while the false-alarm rate 
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is computed as ratio of the number of non-correct event forecasts to the total number of 

event non-occurrences.  Then, hit rates are plotted on the ordinate against the 

corresponding false-alarm rates on the abscissa to generate the ROC curve. 

For a PFS with good resolution, the ROC curve is close to the upper left hand corner 

of the graph.  The area under the ROC curve quantifies the ability of an ensemble to 

discriminate between events, which can be equated to forecast usefulness, and is known 

also as the ROC score [Mason and Graham, 1999].  The closer the area is to one, the 

more useful is the forecast.  A value of 0.5 indicates that the forecast system has no skill, 

relative to a chance forecast from climatology.  The ROC curve does not depend on the 

forecast bias, hence is independent of reliability.  It represents the PFS intrinsic value, or 

the potential value of an unbiased ensemble. 

Figure 3 shows an example of a ROC curve for the “ALL” ensemble (28 members), 

for observed ozone concentration above 50 ppbv.  The shaded portion of the plot 

represents the ROC area, and the dashed line is the ROC curve for a chance forecast.  

Probability thresholds assume values from 0/28 to 28/28, with increments of 1/28, and 

are labeled adjacent to the data points on the curve.  In this example, a correct forecast of 

the event occurs if the forecasted frequency is above the given probability threshold when 

the observed ozone concentration is above 50 ppbv.  Similar curves can be produced for 

other concentration thresholds. 
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4. Probabilistic Forecast Results 

In this section the resolution and reliability of the 13 PFSs are evaluated and 

discussed.  The PFSs are divided into three groups: ensembles considering both 

perturbations of meteorology and emissions, ensembles based on only emission 

perturbations or only meteorology perturbations, and ensembles formed using the same 

model resolution, or the same model.  A summary of these analyses concludes this 

section. 

 

4.1 Ensembles with both meteorology and emission perturbations 

The following are the ensembles generated by including both meteorology and 

emission perturbations: MET+NOx, MET+VOC, MET+NOxVOC (12 members each), 

and ALL (28 members).  These ensembles will be referred collectively as PERT.  We 

expect ALL to outperform the other ensembles because it includes more sources of 

uncertainty.  Including it here provides context for the individual emission perturbations 

and a measurement of how important each are to bias, ensemble spread, and 

distinguishing specific events. 

Because RI does not distinguish between bias and ensemble spread, further 

refinements can help with interpretation.  To better understand the importance of multiple 

model versus emission perturbations, Talagrand diagrams are plotted for the raw 

ensemble forecasts, for ensembles with constituent forecasts adjusted by removing the 

bias from the associated base runs (i.e., those without perturbations to emissions), and for 

ensembles with constituent forecasts corrected for bias.  The sample-mean error is 

computed for each of the 28 possible members of any ensemble, and can be considered 
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the bias for this experiment.  This is removed from the forecasts before plotting the bias-

free Talagrand diagram (open bars in Figure 4).  The resulting RI score does not include 

any bias-induced ensemble spread.  This step is desirable because ensemble members 

with different biases cannot forecast equally-likely outcomes. 

To help isolate the effects of the emission perturbations, the bias from each of the 

four MET ensemble members is removed from the associated members that also have 

emissions perturbations (gray bars in Figure 4).  For example, the bias from the 12 km 

MC2 run with the base CMAQ emissions is removed from all the members of the MC2-

12 group.  Removing this bias from the emission-perturbed runs shows how the emission 

perturbations, which are equal and opposite, evolve in the forecast.  The resulting 

Talagrand diagram may contain biases that are not linear functions of the emissions 

perturbations, which may arise from nonlinear ozone chemistry and its interactions with 

the driving meteorological model.  We will refer to these ensembles as “MET-bias 

adjusted,” as opposed to “bias-corrected”. 

Figure 4 shows the Talagrand diagram for the PERT ensembles.  The solid horizontal 

lines indicate the ideal shape (for a perfectly reliable diagram).  All the panels show a 

combination of a “U-shape” and an “L-shape”.  The U-shape indicates that spread of the 

ensemble is too small, because the observed event often falls outside the range of values 

sampled by the ensemble.  The left-most bin for the raw ALL, MET+NOx, and 

MET+VOC ensembles (black bars) contains an absolute frequency maximum, while the 

right-most bin contains a relative frequency maximum.  Furthermore, the asymmetric L-

shape (maximum in the first bin) indicates that the ensemble forecasts are biased towards 

over-prediction of ozone concentrations.  Adjusting for the MET bias reduces the overall 



 16

ensemble bias, but does not remove it, showing that the choice of emissions perturbations 

leads to a biased ensemble (gray bars).  Correcting for the biases of all the constituent 

members results in more symmetric diagrams (open bars).  Reasons for the small 

remaining asymmetries could include some dependence between ensemble members and 

sampling error. 

Figure 5 shows the RI values of all the ensembles, and is useful to assess the relative 

reliability, reliability resulting from emissions perturbations, and reliability due to 

unbiased ensemble spread.  Among the PERT ensembles, ALL shows the least deficiency 

(in terms of reliability), followed by similar reliability for MET+NOxVOC and 

MET+VOC.  MET+NOx shows the greatest positive bias among the four ensembles 

analyzed in this section, having the highest maximum in the first bin. 

Adjusting for the MET biases (gray bars) does reduce the overall RI for this group of 

ensembles, but does not result in an unbiased ensemble, again showing that the emissions 

perturbations lead to a biased ensemble.  The unbiased RI (open bars) shows the 

contributions of the emissions perturbations to the ensemble spread.  Perturbed NOx 

demonstrates the most reliable spread of the three smaller ensembles when it is unbiased.  

Rather than promote ensemble spread, combining both NOx and VOC perturbations leads 

to less spread than either precursor individually.  We hypothesize that this is closely 

related to the predominant chemical regimes (i.e., NOx-sensitive or VOC-sensitive).  

The MET+NOx tendency to overestimate ozone concentrations would appear to 

suggest that the ± 50% NOx perturbation is not centered over an optimal estimate, and 

shifting the perturbations toward lower values could improve its forecast skill by 

reducing the positive bias.  MET+VOC and MET+NOxVOC also overestimate the 
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measured ozone concentrations, giving the appearance that the same kind of perturbation 

shifting towards lower values could improve their forecast skill.  But it is impossible to 

say whether such a shift is realistic, or that it simply compensates for other errors in this 

coupled meteorological/AQ ensemble.  Furthermore, if the error growth was linear then 

the MET-bias adjusted ensembles would be unbiased, because the emissions 

perturbations themselves are equal and opposite.  Differences between the gray and open 

bars in Figure 5 show that some bias effects remain, suggesting that nonlinear effects in 

the ozone chemistry, and its interaction with the driving meteorological model, play an 

important role in error growth for this coupled model application. 

Figure 6 shows the area under the ROC curve and its variation using eight different 

concentration thresholds for each ensemble.  The event being forecast is ozone 

concentration above the threshold.  The probabilistic forecasts are best (ROC area larger 

than 0.8) for those threshold values between 40 and 70 ppbv (except MET+NOxVOC 

with 70 ppbv).  For low concentration values (10 and 30 ppbv) almost all the ROC-area 

values are below 0.7.  For the highest threshold (80 ppbv) only ALL is above 0.7, and 

ensembles MET+VOC and MET+NOxVOC have poor skill, with the latter below the 0.5 

line.  ALL and MET+NOx most often outperform the other ensembles. 

Even though MET+NOx is the most biased ensemble in this group, it shows 

probabilistic predictive skill, as indicated by ROC values closest to ALL, and better than 

any other PERT ensemble with a threshold value of 10, 50, and 60 ppbv.  Over the five 

stations, this means that the NOx perturbation is more effective than the VOC (or VOC 

combined with NOx) perturbations in spanning the emission-uncertainty subspace with 
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the least number of ensemble members.  Because of this performance, we expect a bias-

corrected MET+NOx would be the most useful ensemble of this group, excepting ALL. 

The NOx perturbation gives a better prediction of frequency of occurrence than the 

VOC perturbation for ozone above 80 ppbv.  These high concentrations were observed in 

the afternoon mainly at Hope, except on 11 August at Chilliwack when a peak of 89 ppbv 

exceeded for three hours the 82 ppbv Canadian maximum 1-hour average acceptable 

ozone level.  The fact that the NOx perturbations outperform the VOC perturbations for 

ozone values above 80 ppbv suggests that when (afternoon) and where (eastern side of 

the LFV) these values are observed, the predominant chemical regime is NOx-sensitive.  

In this study, NOx-sensitive means that a fixed percent change in NOx results in a 

significantly greater change in ozone concentration relative to the same fixed percent 

change in VOC (similar but different definitions can be used, as discussed in Sillman 

[1999]).  It is beyond the goal of this study to analyze in-depth which are the predominant 

chemical regimes in the region, which would require several runs of a photochemical 

model with different VOC/NOx ratios (here only seven values of this ratio are utilized).  

Other studies using different approaches (i.e., without running complex 3-D CTM 

models, [e.g., Pryor, 1998; Ainslie, 2004]) found the LFV to be VOC-sensitive for the 

daily maximum. 

Nevertheless, the results of this study suggest a NOx-sensitive chemistry regime at 

Hope for this particular 11-15 August 2004 event, which can be explained as follows.  

The aged air mass from the Vancouver urban core (the main NOx source, located in the 

west and central parts of the LFV) is transported eastward by sea breezes.  In the aged air 

mass, NOx concentrations are reduced by the chemistry that produces ozone.  In a NOx-
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sensitive regime, a NOx perturbation is more likely than a VOC one to capture ozone-

concentration variability, and that is why MET+NOx has much higher ROC-area values 

with the threshold of 80 ppbv than MET+VOC or MET+NOxVOC.  Also, the good 

probabilistic skill of MET+NOx suggests that the ± 50% values for NOx are appropriate. 

Based on reliability and resolution metrics, ensemble ALL is the best forecast in this 

group, and MET+NOx shows utility as a small ensemble.  ALL demonstrates more 

reliable spread and less bias, indicated by the flatter Talagrand diagram, and more 

intrinsic value, indicated by the ROC curve.  It is formed by the largest number of 

members (28) and therefore includes many more degrees of freedom than the others.  The 

extra variability is associated with differences in the meteorological component, and can 

be expected.  Ensemble MET+NOx, though biased, shows high ROC scores.  Because the 

bias persists even when the base-case mean error is removed, nonlinearity plays a role.  A 

bias correction on each member of MET+NOx individually improves the reliability 

without compromising the resolution (not shown).  The next two subsections provide 

additional context for interpreting these emissions perturbations.   

 

4.2 Ensembles with only meteorology or emissions perturbations 

In this subsection the following ensembles are considered: MC2-12, MC2-04, MM5-

12, and MM5-04 (all formed by seven members), and MET (four members).  Since each 

of the first four PFSs is driven with the same meteorological input, they can be viewed as 

ensembles where only the emissions are perturbed.  These ensembles are compared with 

MET, where only the meteorology is perturbed.  MET has only four members, while the 

others in this group have seven members, so the comparison with larger ensembles is a 
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more stringent test for the meteorology than for the emission perturbations. 

Figure 7 shows the Talagrand diagrams for these PFSs, where the solid lines have the 

same meaning as in Figure 4.  For interpretation we again present Talagrand diagrams 

produced from the raw forecasts, from MET-bias adjusted forecasts, and from bias-

corrected forecasts.  Similar to Figure 4, U- and L-shaped diagrams are observed here.  

Note the open bars for the MET ensemble show no bias because of this correction, but 

the U-shape indicates a clear under-dispersion (i.e. not enough spread).  A maximum 

frequency is observed for MC2-04 in the fifth bin, and to a lesser extent in the fourth bin 

for MC2-12.  As with the PERT group of ensembles, MET-bias adjusting the forecasts 

does not remove all of the bias (except for MET of course).  Because each of these 

ensembles uses the same meteorological input, the remaining systematic errors result 

from the nonlinear chemistry and its response to the meteorological input.    

Overall, the raw MC2-12 has the third best RI value (29 %), followed by the raw 

MC2-04 (43 %).  The two MM5 and the MET PFSs all have very high RI values (68% 

and 88% respectively), resulting in the worst overall performance in this group.  The 

reason is that they are highly positively biased, as shown by the high frequency in the 

first bin in the Talagrand diagrams.   

The bias-corrected RI scores show that ensemble MC2-04 demonstrates the widest 

spread in this group, and that its raw RI score primarily results from bias.  Its spread is 

within the range of the PERT ensembles.  Conversely, ensembles MC2-12, MM5-12, and 

MM5-04 suffer from both bias and lack of spread.  Bias correcting those ensembles 

results in higher RI scores, and suggests again that systematic behavior of the ozone 

chemistry is important to the raw ensemble results.  
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Turning to the resolution (Figure 8), MET has the best ROC area for concentration 

thresholds of 40, 60 and 70 ppbv, and is very close to the best (MC2-04) for 50 ppbv.  

However, it has the worst performance for 80 ppbv (where the best is again MC2-04) 

because only one of its four ensemble members is predicting concentrations above this 

value. 

Among the ensembles with only the emission perturbations, the one showing the 

highest ROC-area values is MC2-04, and it is the best of this group for ozone thresholds 

from 30 to 80 ppbv.  The MM5 ensembles including only emission perturbations (MM5-

12 and MM5-04) have low ROC area values until 40 ppbv, and improve their 

performance relative to the other ensembles for threshold values above 40 ppbv.  MC2-12 

is the best for 10 and 20 ppbv, and the worst for 60 and 70 ppbv.  At 80 ppbv it has a 

ROC area value of exactly 0.5, because it never predicts concentrations above this 

threshold.  The 12 km runs are worse than the 4 km runs for high ozone values (with the 

thresholds of 70 and 80 ppbv), because the high values are mostly observed at Chilliwack 

and Hope, where the topography is much more complex than at the other locations, 

resulting in an advantage for the finer horizontal-resolution runs. 

By comparing Figures 6 and 8, the utility of the meteorology and emission 

perturbations, and their combination, can be inferred.  The predictive skill of the PERT 

ensembles (generated with both meteorology and emission perturbations) is superior to 

the ensembles with only the meteorology or only the emission perturbations for threshold 

values from 10 to 70 ppbv.  For 80 ppbv, the best among those ensembles is MET+NOx, 

while MC2-04, MM5-04, and MM5-12 are better than MET+VOC and MET+NOxVOC. 
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We can deduce the following from these results: both meteorology and emission 

perturbations are needed to have a skillful PFS, and neither one is sufficient to form a 

reliable PFS with a good resolution for all the threshold values.  Moreover, the emission 

perturbations (particularly with NOx) appear most important for capturing ozone 

concentrations above 80 ppbv.  We next examine specific effects of meteorological 

model differences. 

 

4.3 Ensembles generated with the same model or the same resolution  

Here the PFS resolution and reliability for 12-km, 04-km, MC2-ALL and MM5-ALL 

are analyzed (all formed by 14 members).  The intent is to observe the effect on the PFS 

skill of different horizontal grid resolutions, and different driving meteorological models.  

We do not present the Talagrand diagrams because their attributes can be deduced 

directly from Figures 4 and 7.  RI scores in Figure 5 reinforce the conclusions found 

above.  The MM5-based ensembles suffer from bias and under-dispersion, and the higher 

resolution ensembles show more reliable spread.   

Figure 9 shows the ROC areas for these ensembles.  MM5-ALL has the lowest values 

from 10 to 60 ppbv, and is slightly better than MC2-ALL with the concentration 

thresholds of 70 and 80 ppbv.  12-km is better than 04-km with thresholds of 10 or 20 

ppbv and worse with the others, and 04-km is the best at 60, 70, and 80 ppbv.  This may 

reflect the fact that higher concentrations were observed often in the eastern end of the 

LFV, where the topography becomes more and more complex, giving a clear advantage 

to the finer resolution runs (as discussed in Section 4.2).  Ensembles 04-km and MC2-

ALL have high ROC-area values (above 0.8) between 40 and 70 ppbv, while 12-km is 
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above 0.8 only for 40 ppbv.  MM5-ALL always has a ROC-area below approximately 

0.78. 

Overall, by looking at the resolution and reliability of these ensembles built with 

different resolutions and models, MC2-ALL is the best for observed ozone concentrations 

below 60 ppbv, and 04-km has similar or better skill when higher ozone concentrations 

are measured, because it has better ROC-area values but is less reliable. 

 

4.4 Summary 

Figure 10 shows the ROC areas for all the 13 PFSs, allowing an overall comparison 

of the PFS resolutions.  ALL demonstrates the highest resolution, being the best at 30, 70 

and 80 ppbv, and close to the best with the other thresholds.  Figure 10 shows also that 

MET (with only four ensemble members) has improved resolution relative to the other 

PFSs at 40, 50 and 60 ppbv, while at 80 ppbv is among the worst along with 

MET+NOxVOC.  The subset of ensembles that includes only emission perturbations 

usually have low ROC area values, with the exception of MC2-12 which has the highest 

value (but still well below 0.7) for 10 ppbv.  Perturbing only the meteorology, or only the 

emissions, results in a PFS with lower verification resolution than when both 

perturbations are considered.  However, the emission perturbations appear more 

important than the meteorology perturbations for capturing the highest ozone 

concentrations (above 80 ppbv). 

Excluding ALL from consideration, MET+NOx and 04-km have the highest ROC 

area at 60, 70 and 80 ppbv.  MET+NOx stays among the best even for lower 

concentration thresholds, while 04-km tends to lower verification resolution skill for 
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lower ozone concentrations.  Instead, by looking at the Talagrand diagram, 04-km 

(Figure 9) is more reliable than MET+NOx (Figure 4), which is one of the most positively 

biased PFSs.  However, the MET+NOx bias could be removed by Kalman filtering its 

forecasts (as shown in Delle Monache et al. [2005b]), resulting in a more reliable 

prediction. 

Revisiting the RI scores, the most reliable PFS is MC2-ALL, followed closely by ALL 

and then MC2-12.  The small difference between them is likely within the noise level of 

this experiment.  ALL benefits from the highest number of ensemble members, possibly 

making the extra computational effort worthwhile.  Using ensemble MET as the baseline, 

ensemble spread is generally improved by the addition of ensemble members when the 

forecasts are not bias-corrected.  Conversely, bias-corrected forecasts result in a MET 

ensemble with spread among the most reliable presented here.  Therefore the use of 

different meteorological models produces some variability that is not attributable to 

systematic ozone responses to those models. 

ALL appears to be the most useful probabilistic forecast, particularly because of its 

good resolution for high ozone concentrations, and because of its good reliability.  

Ensembles 04-km and MET+NOx closely follow.  The choice of a particular PFS may be 

dictated by user needs, depending on which events are interesting (rare versus typical), 

the available computer power, and the importance of reliability versus resolution for a 

given situation. 
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5. Conclusions 

This study investigates whether ensemble probabilistic ozone forecasts can be made 

with high verification resolution and reliability.  To do this, 28 forecasts were generated 

over the Lower Fraser Valley (LFV), British Columbia (BC), Canada, for the 5-day 

period 11-15 August 2004, and compared with 1-hour averaged measurements of ozone 

concentrations over five stations.  The different forecasts are obtained by combining four 

driving meteorological input fields with seven emission scenarios:  a control run, ± 50% 

NOx, ± 50% VOC, and ± 50% NOx combined with VOC.  The driving meteorological 

fields are the output of two mesoscale models (run with 12 and 4 km horizontal spatial 

resolution): the Mesoscale Compressible Community (MC2) numerical weather 

prediction (NWP) model [Benoit et al., 1997] and the Penn State/NCAR mesoscale 

(MM5) model [Grell et al., 1994].  The air quality (AQ) forecasts are produced with the 

U.S. Environmental Protection Agency (EPA) Models-3/Community Multiscale Air 

Quality Model (CMAQ) Chemistry Transport Model (CTM) [Byun and Ching, 1999]. 

The following are the main findings for this one case study: 

• Both meteorology and emission perturbations are needed to have a skillful 

probabilistic forecast system (PFS), and neither is sufficient alone to form a 

reliable PFS with a good resolution for the whole range of ozone concentrations. 

• The emission perturbations are more important than the meteorology 

perturbations to capture high (and rarely measured) ozone concentrations, 

typically observed in the afternoon in areas such as the LFV where ozone 

production may be mainly attributed to local sources. 
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• Nonlinear ozone chemistry and its response to different meteorological forcings 

play an important role that is not captured by varying the meteorology alone.  

• Correcting the forecasts for mean error significantly improves the reliability of 

forecasts with good spread characteristics, including the ensemble where 

meteorology is the only source of uncertainty spanned (MET). 

• Among the emission perturbations, NOx perturbations resulted in more skillful 

probabilistic forecasts for the episode analyzed in this study. 

• Since NOx perturbations lead to (positively biased) predictive skill, the ± 50% 

values appear to effectively span the emission uncertainties space for this case. 

• The finer spatial resolution runs have better predictive skill (but similar 

reliability) than the coarser runs, particularly in the eastern end of the LFV where 

the topography progressively becomes more complex. 

• The MC2 model leads to more ozone variability and better predictive skill than 

the MM5 in the 5-day period analyzed in this study. 

• The ALL ensemble (formed by all the 28 ozone forecasts available) is the best 

probabilistic forecast, when considering both reliability and resolution.  

Ensembles 04-km and MET+NOx closely follow. 

The results of this study suggest that future work should focus on ozone ensemble 

forecast systems involving both meteorology and emissions perturbations.  More 

specifically, the above findings suggest that the emission perturbations could be based on 

the time and spatial variability of different regimes.  If (during a particular time of the 

day and in a subset of the spatial domain) a NOx-sensitive regime is dominant, then a 

NOx perturbation would be more useful than a VOC perturbation for capturing the ozone 
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variability.  Conversely, in VOC-sensitive regimes the VOC perturbations could be more 

effective.  In situations where neither of these two regimes is well defined, a combination 

of NOx and VOC perturbations may be the best choice.  These regimes could be 

identified in forecast mode by looking at the control model forecasts, for example by 

evaluating the O3/NOy or H2O2/HNO3 ratios [Sillman and He, 2002]. 

Here we found some indication that nonlinear ozone chemistry can result in 

systematic forecast errors, exposing a complex relationship between perturbations to 

ozone precursors and meteorological drivers.  These relationships should be studied 

further to refine ensemble strategies. 

Ideally, each ensemble member should represent an equally likely time evolution and 

space distribution of the ozone concentration, and they should all be equally good 

estimates of truth.  With this in mind, the ensemble members should be “independent”, in 

the sense that none of them should rely on other members for their realizations.  This is 

not the case when nested grids are used, as for some of the PFSs used here (ALL, 

MET+NOx, MET+VOC, MET+NOxVOC, MC2-ALL, MM5-ALL, and MET).  Namely, 

CMAQ domains are linked using a 1-way nesting approach (similarly for MC2, but MM5 

runs are implemented with 2-way nesting), all the 4 km runs cannot be considered 

independent of the runs where the driving meteorology or chemistry is their 12 km 

coarser domain. 

The dependency among members of the same ensemble (no attempt has been done in 

this study to measure it) would result in an “effective” ensemble size smaller than the 

actual ensemble size.  Moreover, a subset of the dependent members will span 

approximately the same subspace of the AQ modeling uncertainty space (or at least they 



 28

should be closer to each other than to other members), resulting in both probabilistic and 

ensemble-averaged forecasts relying too heavily on the performances of these members 

than on others. 

Finally, ensemble weather forecasts often provide information on the uncertainty of 

the forecasts; if the ensemble members have a large spread, one expects more uncertainty 

in the forecast.  However, similar to Delle Monache et al. [2005a,b], no correlation or 

relationship between ensemble spread and forecast error was found in this study.  Much 

longer experiments, covering many events, would be necessary to evaluate this. 
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Figure Captions 

Figure 1. Isopleths of maximum ozone concentration (ppbv) are given as a function of 

year 2000 VOC and NOx emissions over the Lower Fraser Valley (adapted 

from Ainslie [2004]).  The year 2000 total annual VOC and NOx emissions 

were 111,196 and 99,897 metric tonnes, respectively [Greater Vancouver 

Regional District, 2002].  The vertical bar spans plus (point A) and minus 

(point B) 50% NOx perturbations.  The horizontal bar spans plus (point D) 

and minus (point C) 50% VOC perturbations.  The diagonal bar extends 

from plus 50% NOx and minus 50% VOC perturbation (point E) to the 

minus 50% NOx and plus 50% VOC perturbation (point F). 

Figure 2. The Lower Fraser Valley is a floodplain spanning the ozone stations of 

Vancouver International Airport (CYVR), Langley, Abbotsford, Chilliwack, 

and Hope.  The triangular valley is widest near CYVR along the coast of the 

Georgia Strait, and tapers to a narrow gorge between steep mountain walls 

near Hope.  Shading (vertical bar at right) indicates terrain elevation above 

sea level. 

Figure 3. ROC curve for the “ALL ensemble” (28 members), for observed ozone 

concentration above 50 ppbv.  The better the probabilistic forecast, the 

closer the ROC curve is to the upper left corner.  The shaded portion of the 

plot represents the ROC area (large areas are better), and the dashed line is 

the ROC curve for a chance forecast.  Hit rates are plotted on the ordinate 

against the corresponding false-alarm rates on the abscissa, to generate the 

ROC curve for each frequency threshold (the labels adjacent to the 
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asterisks), where the frequency threshold assumes values from 0/28 to 

28/28, with increments of 1/28. 

Figure 4. Talagrand diagram (rank histogram) for the ensembles generated by 

including both meteorology and emission perturbations (from top to the 

bottom panel): ALL (28 members), MET+NOx, MET+VOC, and 

MET+NOxVOC (all three with 12 members).  The number of bins equals 

the number of ensemble members plus one.  Solid black bars are results for 

the raw forecasts, gray bars are results when the MET biases are removed, 

and open bars are fully bias-corrected results.  The solid horizontal line 

represents the perfect Talagrand diagram shape (flat).   

Figure 5.   Reliability Index (RI) computed as in Equation (2).  Solid bars are scores for 

the raw ensembles, gray bars are scores for the MET-adjusted ensembles, 

and open bars are scores for the bias-corrected ensembles. 

 
Figure 6. ROC-area values for 10 different ozone concentration thresholds (from 10 to 

80 ppbv, with increments of 10) and for the ensembles generated by 

including both meteorology and emission perturbations: ALL (28 members), 

MET+NOx, MET+VOC, and MET+NOxVOC (all three with 12 members). 

Values are within the interval [0, 1], with the perfect ROC-area = 1, and a 

no-skill ROC-area of 0.5 (dashed line). 

Figure 7. Similar to Figure 4, but for the ensembles generated with only emission 

perturbations.  Namely, the ensembles are formed by forecasts driven with 

the same meteorological input (MC2-12, MC2-04, MM5-12, and MM5-04, 
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all with seven members), or with only the meteorology perturbation (MET, 

four members). 

Figure 8. Similar to Figure 6, but with ROC-area values for the ensembles generated 

with only emissions perturbations.  Namely, the ensembles are formed by 

forecasts driven with the same meteorological input (MC2-12, MC2-04, 

MM5-12, and MM5-04, all with seven members), or with only the 

meteorology perturbation (MET, four members). 

Figure 9. Similar to Figure 6, but for the ensembles formed with the same resolution 

runs (12-km and 04-km) or driven by the same numerical weather prediction 

model (MC2-ALL or MM5-ALL). 

Figure 10. Similar to Figure 6, but for all the 13 ensemble groups considered in this 

study: all the forecasts available (ALL, 28 members), meteorology and NOx 

perturbations combined together (MET+NOx, 12 members), meteorology 

and VOC perturbations (MET+VOC, 12 members), meteorology and NOx 

combined with VOC perturbations (MET+NOxVOC, 12 members), all 

members driven by MC2 at 12 km (MC2-12, seven members), all members 

driven by MC2 at 4 km (MC2-04, seven members), all members driven by 

MM5 at 12 km (MM5-12, seven members), all members driven by MM5 at 

4 km (MM5-04, seven members), all the control runs (MET, four members), 

all the 12-km runs (12-km, 14 members), all the 4 km forecasts (04-km, 14 

members), all members driven by MC2 (MC2-ALL, 14 members), and all 

members driven by MM5 (MM5-ALL, 14 members). 



Table 1.  Ensemble members included in each of the 13 ensemble groups.  “Base” is the forecast obtained by running 
CMAQ with the base emissions at one of the two possible resolutions (12 or 4 km) driven by NWP models (MC2 or 
MM5).  NOx indicates runs with perturbations of ± 50% NOx, VOC includes the ± 50% VOC runs, and NOxVOC 
represents the run with plus 50% NOx combined with minus 50% VOC, and the run with minus 50% NOx combined with 
plus 50% VOC.  Last column indicates the size (number of forecasts included in the ensemble) of each of the 13 ensemble 
groups. 

 
MC2-CMAQ MM5-CMAQ 

12 km 4 km 12 km 4 km Ensemble 
Base NOx VOC NOx 

VOC Base NOx VOC NOx 
VOC Base NOx VOC NOx 

VOC Base NOx VOC NOx 
VOC 

Ensemble
Members 

(#) 
ALL • • • • • • • • • • • • • • • • 28 

MET+NOx • •   • •   • •   • •   12 
MET+VOC •  •  •  •  •  •  •  •  12 

MET+NOxVOC •   • •   • •   • •   • 12 
MC2-12 • • • •             7 
MC2-04     • • • •         7 
MM5-12         • • • •     7 
MM5-04             • • • • 7 

MET •    •    •    •    4 
12-km • • • •     • • • •     14 
04-km     • • • •     • • • • 14 

MC2-ALL • • • • • • • •         14 
MM5-ALL         • • • • • • • • 14 



Table 2.  Out of the 549 valid observation points available, this table shows the portion 
of observations with ozone concentration greater than the given threshold. 
 
Ozone Threshold 

(ppbv) 
10 20 30 40 50 60 70 80 

Occurrence (%) 79 63 46 34 25 15 7 3 
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Figure 1.  Isopleths of maximum ozone concentration (ppbv) are given as a function of 

year 2000 VOC and NOx emissions over the Lower Fraser Valley (adapted from Ainslie 

[2004]).  The year 2000 total annual VOC and NOx emissions were 111,196 and 99,897 

metric tonnes, respectively [Greater Vancouver Regional District, 2002].  The vertical 

bar spans plus (point A) and minus (point B) 50% NOx perturbations.  The horizontal bar 

spans plus (point D) and minus (point C) 50% VOC perturbations.  The diagonal bar 

extends from plus 50% NOx and minus 50% VOC perturbation (point E) to the minus 

50% NOx and plus 50% VOC perturbation (point F). 
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Figure 2.  The Lower Fraser Valley is a floodplain spanning the ozone stations of 

Vancouver International Airport (CYVR), Langley, Abbotsford, Chilliwack, and Hope.  

The triangular valley is widest near CYVR along the coast of the Georgia Strait, and 

tapers to a narrow gorge between steep mountain walls near Hope.  Shading (vertical bar 

at right) indicates terrain elevation above sea level. 



 42

 

Figure 3.  ROC curve for the “ALL” ensemble (28 members), for observed ozone 

concentration above 50 ppbv.  The better the probabilistic forecast, the closer the ROC 

curve is to the upper left corner.  The shaded portion of the plot represents the ROC area 

(large areas are better), and the dashed line is the ROC curve for a chance forecast.  Hit 

rates are plotted on the ordinate against the corresponding false-alarm rates on the 

abscissa, to generate the ROC curve for each frequency threshold (the labels adjacent to 

the asterisks), where the frequency threshold assumes values from 0/28 to 28/28, with 

increments of 1/28. 
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Figure 4.  Talagrand diagram (rank histogram) for the ensembles generated by including 

both meteorology and emission perturbations (from top to the bottom panel): ALL (28 

members), MET+NOx, MET+VOC, and MET+NOxVOC (all three with 12 members).  

The number of bins equals the number of ensemble members plus one.  Solid black bars 

are results for the raw forecasts, gray bars are results when the MET biases are removed, 

and open bars are fully bias-corrected results.  The solid horizontal line represents the 

perfect Talagrand diagram shape (flat).   
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Figure 5.  Reliability Index (RI) computed as in Equation (2).  Solid bars are scores for 

the raw ensembles, gray bars are scores for the MET-adjusted ensembles, and open bars 

are scores for the bias-corrected ensembles. 
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Figure 6.  ROC-area values for 10 different ozone concentration thresholds (from 10 to 

80 ppbv, with increments of 10) and for the ensembles generated by including both 

meteorology and emission perturbations: ALL (28 members), MET+NOx, MET+VOC, 

and MET+NOxVOC (all three with 12 members). Values are within the interval [0, 1], 

with the perfect ROC-area = 1, and a no-skill ROC-area of 0.5 (dashed line). 
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Figure 7.  Similar to Figure 4, but for the ensembles generated with only emission 

perturbations.  Namely, the ensembles are formed by forecasts driven with the same 

meteorological input (MC2-12, MC2-04, MM5-12, and MM5-04, all with seven 

members), or with only the meteorology perturbation (MET, four members). 
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Figure 8.  Similar to Figure 6, but with ROC-area values for the ensembles generated 

with only emissions perturbations.  Namely, the ensembles are formed by forecasts 

driven with the same meteorological input (MC2-12, MC2-04, MM5-12, and MM5-04, 

all with seven members), or with only the meteorology perturbation (MET, four 

members). 
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Figure 9.  Similar to Figure 6, but for the ensembles formed with the same resolution 

runs (12-km and 04-km) or driven by the same numerical weather prediction model 

(MC2-ALL or MM5-ALL). 
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Figure 10.  Similar to Figure 6, but for all the 13 ensemble groups considered in this 

study: all the forecasts available (ALL, 28 members), meteorology and NOx 

perturbations combined together (MET+NOx, 12 members), meteorology and VOC 

perturbations (MET+VOC, 12 members), meteorology and NOx combined with VOC 

perturbations (MET+NOxVOC, 12 members), all members driven by MC2 at 12 km 

(MC2-12, seven members), all members driven by MC2 at 4 km (MC2-04, seven 

members), all members driven by MM5 at 12 km (MM5-12, seven members), all 

members driven by MM5 at 4 km (MM5-04, seven members), all the control runs 

(MET, four members), all the 12-km runs (12-km, 14 members), all the 4 km 

forecasts (04-km, 14 members), all members driven by MC2 (MC2-ALL, 14 

members), and all members driven by MM5 (MM5-ALL, 14 members). 

 




