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Abstract 

A Bayesian inference methodology using a Markov Chain Monte Carlo (MCMC) sampling 

procedure is presented for estimating the parameters of computational structural models.  This 

methodology combines prior information, measured data, and forward models to produce a 

posterior distribution for the system parameters of structural models that is most consistent with 

all available data.  The MCMC procedure is based upon a Metropolis-Hastings algorithm that is 

shown to function effectively with noisy data, incomplete data sets, and mismatched 

computational nodes/measurement points.  A series of numerical test cases based upon a 

cantilever beam is presented.  The results demonstrate that the algorithm is able to estimate 

model parameters utilizing experimental data for the nodal displacements resulting from 

specified forces.  

 

CE Database subject headings 

Markov chains, Monte Carlo method, Bayesian analysis, structural models, damage assessment, 

cantilevers 

                                                 
1
 Electronics Engineering Technology Division, Lawrence Livermore National Laboratory, Livermore, CA. 

2
 Assistant Professor of Mechanical Engineering, Franklin W. Olin College of Engineering, Needham, MA. 

3
 Energy & Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA. 

4
 Deputy Division Leader, Electronics Engineering Technology Division, Lawrence Livermore National Laboratory, 

Box 808, L-130, Livermore, CA 94551 (corresponding author) E-mail: hanley3@llnl.gov. 

 



 

 4 

Introduction 
The identification of system parameters of computational models of mechanical systems and 

structures based upon measured data is a fundamental problem related to health monitoring of 

structures, finite-element model updating, and damage detection (Doebling et. al. 1996; Friswell 

and Mottershead 1995).  Parameter identification based upon system output can be classified as 

an inverse problem, often significantly complicated by issues such as non-linearity, state-space 

dimensionality, under/over-determined systems, and noisy or dependent data.  The severity of 

these issues often makes classical optimization/inversion algorithms ineffective for estimating 

system parameters, suggesting that a statistical approach may be more appropriate.  

 

Bayesian inference, an inference methodology in which observed data can be used to update our 

belief in a particular outcome, has previously been applied to structural systems (Collins et. al. 

1974; Beck 1989; Sohn and Law 1997; Vanik et. al. 2000; Beck and Au 2002; Yuen and 

Katafygiotis 2002; and Beck and Yuen 2004).  In our work, we apply Bayesian inference by 

employing a Markov Chain Monte Carlo (MCMC) sampling scheme to generate posterior 

distributions over the space of potential system states.  Specifically, through the use of a 

Metropolis-Hastings (M-H) algorithm (Metropolis et. al. 1953; Hastings 1970), plausible system 

states are proposed and used to generate predictions via a finite element-based forward model 

that are compared with available observed data.  This process yields a sample that allows 

posterior distributions of system parameters and states to be constructed.  The resulting 

distributions provide quantitative measures of estimation uncertainty, allow for the objective 

assessment of competing estimates when the available information is insufficient to definitively 

identify the system state, and provide a reasonable basis for follow-on predictions of structural 

behavior.  This methodology has been successfully applied in the geophysical domain (Aines et. 

al. 2002; Newmark et. al. 2003; Ramirez et. al. 2005). 

 

System (Forward) Model: Fixed-Free Cantilever Beam 

We demonstrate our approach by considering a fixed-free linearly elastic cantilever beam, 

discretized as dictated by its mesh into n elements of equal size.  Each element in the model is 

homogeneous with respect to its bending stiffness as parameterized by Young’s modulus (E), 

whose prior probability distributions for the flawed and unflawed conditions are defined as 

shown in Figure 1.  E values of ‘unflawed’ elements fall within the interval [a
(0)

, b
(0)

]  = [1.8e11, 

2.05e11], while ‘flawed’ elements have known E values defined over the interval [a
(1)

, b
(1)

) = 

[0.8e11, 1.8e11).  Additionally, we will model the frequency of flaw occurrence by placing a 

prior probability distribution on the number of flawed elements in the beam, i.e., its level, 

assuming no prior knowledge of their locations.   

 

The beam is characterized through the application of η  (eta) independent static nodal forces at 

some subset of its n nodes.  These forces deflect the beam, and the resulting displacement is 

measured at each node in d degrees-of-freedom.  The equation of static deflection for the j
th

 

applied force is KX
0

j=Fj, where K is the nd × nd  stiffness matrix (each element is a function of 

E), and X
0

j is the nd ×1 theoretical (i.e., mean) displacement vector induced by the nd ×1 force 

vector Fj.  

 

The system state is identified by specification of the Young’s modulus, E, for each of its flawed 

elements, along with their number, location (i.e., i = 1, …, n), and severity.  For this purpose we 
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Figure 1:  Trapezoidal priors for a beam element’s Young’s modulus (E).  Elements with a modulus in the interval [0.8e11, 

1.8e11) are “flawed”, while those having a modulus in the interval [1.8e11, 2.05e11] are “unflawed”. 

 

introduce the notion of a configuration, which is a subset of possible states of nature of the 

system identified by these parameters.  In defining a configuration, we do not specify the 

modulus values of the known unflawed elements.  For example, the k-flaw configuration, s, 

having flawed elements at locations   i1,K, ik  with respective moduli 
kii EE

~
...,,

~
1

, consists of the 

class of possible states ( ){ }kjiiiin iijbaEEEEEEE
kk

...,,],,[
~

,
~

...,,
~

:...,, 1
)0()0(

1 11
≠∈===s .  It is 

convenient, however, to represent a configuration in terms of quantiles of the prior distribution 

for the flawed condition where the modulus 
jiE

~
 is the 

jiu -quantile defined by the equation 

 

 

 ( )
jj ii EEPu

~
1 ≤= ,       (1) 

 

 

where the subscript “1” refers to the flawed condition.  Thus we can represent s using the 

alternative representation ( )m,,υωs = , where ( )kii ,,(omega) 1 K=ω  is the naturally ordered 

set of flawed element locations, ( )
kii uu ,,(upsilon)

1
K=υ  is the set of quantiles ordered such 

that the flawed element at jω  has the modulus value corresponding to the quantile jυ , and m  is 

the mesh of the finite-element model associated with configuration s. 

 

It is over this space of configurations that we will generate a posterior distribution by applying 

Bayesian inference via the MCMC sampling scheme.  Bayesian inference is rooted in Bayes' 

Rule, which may be expressed as ( ) ( ) sss π|| DPDP ∝ .  Conceptually, this means that our 

posterior belief, ( )DP |s , that s is the "true" beam configuration given the data, D, is 

proportional to the likelihood, ( )s|DP , of observing the data given the configuration s weighted 

by our prior belief, sπ , that s is the true configuration.  It is within this paradigm that we employ 

MCMC sampling to estimate the posterior distribution. 

 

The Posterior Sampler 
By design, the sampler traverses the space of configurations, rather than all states of nature.  To 

accomplish this, a conditional density, ( )ss'|p , is introduced for each pair of configurations, 
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( )s's, .  We typically refer to ( )ss'|p  as the proposal transition density, ( )s's,q , and we define 

q such that ( ) 1, =∫ s's's dq .  These proposal densities dictate the manner in which the sampler 

explores the configuration space.  A transition from configuration s to s'  is proposed (randomly 

sampled) according to the proposal density, and the sampler accepts the proposed transition with 

probability equal to the min (1, r ( )s's, ), with r given by 

 

 

 ( ) ( ) ( )
( ) ( )DLq

DLq
r

ss

s's'

s's

ss'
s's

,

,
,

π

π
= ,      (2) 

 

 

where ( )DLs  is the likelihood of the measured displacement data, D, given s, and sπ  is the prior 

distribution.  If the proposal is rejected, the Markov chain remains at state s for that step.   

 

The resulting Markov chain, known as the M-H sampler, can be shown to sample the space of 

configurations according to the posterior distribution once it has achieved equilibrium 

(Metropolis et. al. 1953; Hastings 1970).  In general, to guarantee that equilibrium is achieved, 

the Markov chain must be irreducible and ergodic (Karlin and Taylor 1975).  Moreover, the 

sampling process must “warm up” so as to forget the initial starting state (usually selected at 

random) to ensure that the drawn samples are indeed taken from the equilibrium distribution.  

Specifically, in order to “warm up”, MCMC implementations must specify a burn-in period, 

which stipulates the number of samples at the beginning of the process to be discarded.  The 

ensuing samples are then taken to be sampled from the posterior distribution.  Note that if 

1]),()[,(),( 1== −s'sss's's ss' qqh ππ , then the decision to accept the proposal s'  is based entirely 

upon the likelihood ratio.  A chain for which ( ) s'ss's ,1, ∀=h  is said to be reversible. 

  

Prior Densities 
In the upcoming discussion, we consider two discretizations of the beam model; a fine mesh 

model of fn  elements versus a coarse mesh model of cn elements (Figure 2).  We allocate the 

prior probabilities of configurations in a quasi-uniform fashion throughout each level.  In 

particular, the prior, sπ , for a configuration s in mesh { }c,f∈m  at level k ≥ 1 is given by  

 

 

 ( ) 0,
~

;
1

1

1

00 ≠







== ∏

=

−

ss

k

j

m

k

m

j
Ef

k

n
ωλππλπ ,    (3) 

 

 

where mπ  is the prior probability of mesh m , kλ  is the prior probability of level k, and  f1 

denotes the flawed modulus density.  The prior probability for the sole level 0 (zero-flaw) 

configuration is given by 0π , where the associated mesh is, by default, that of the data. 
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Figure 2:  Two finite-element representations for the cantilever beam with fixed end at location 0.  The fine mesh has fn  = 10 

elements with nodes at 1, 2, 3, …, 10, and the coarse mesh has cn  = 8 elements with nodes at 1.25, 2.50, 3.75, …, 10. 

 

Proposal Density 
The proposal function is defined explicitly for all configuration transition pairs.  The basic 

strategy is to consider, in turn, independent configuration changes in level, mesh, modulus, 

and/or flaw location.  The four possible transition types are discussed below, and corresponding 

proposal densities are presented in the Appendix. 

 

Transition Type 1.  s and s'  are of the same level and mesh.  

With the level and mesh held constant, we may propose the relocation of exactly one flaw in the 

current beam configuration to a randomly selected location with a new modulus value that is 

randomly proposed according to 1f .  For a configuration with level k > 1, we select, at random, 

one of the flawed elements in s to be replaced.  When there is exactly one flaw in the system, 

however, we enable a greater degree of control in the generation of a proposal configuration by 

introducing the proposal probability, β , that a neighbor will be selected as the new flaw location 

and modulus.  Flaws are considered to be neighbors if they are physically adjacent in the finite-

element model and if their moduli are within distance δ  of each other in terms of probability.  If 

this property holds for any two moduli, 
aiE

~
 and  

biE
~

, i.e., ( )5.,0where ∈<− δδba υυ , we say 

that they satisfy the δ-criterion.  Smaller values for the parameter δ  will, in general, allow a 

more fine-grained investigation of the state space, and when β  is relatively large, the sampler 

will more frequently linger in a local neighborhood around the current single-flaw configuration. 

 

The transition from configuration s to s'  may also, with probability kθ , exhibit a modulus-only 

change, where the mesh, level, and flaw locations are held constant.  Such a transition is 

implemented by independently proposing a new modulus for each of the system's k flaws 

according to the δ-criterion.  Like the neighbor-only transition probability, β , large values of 

kθ  encourage the sampler to remain within a local neighborhood of the current configuration. 

 

Transition Type 2.  s and s'  are of different levels but of the same mesh.  

We require our algorithm to vary the level of a configuration by only one flaw, if a level change 

is proposed.  In this scenario, the proposal probability for transitioning from level i to level j is 
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specified by the probability ,0>ija  for 1=− ji , { }Kji ,,1,0, K∈ .  When the configuration 

level is decreased, a single flaw in the current state is randomly selected for removal, while all 

remaining flaw locations and moduli remain constant.  If a flaw is added to the system, an 

unflawed element in the current state is randomly selected and assigned a random modulus 

according to the flawed modulus density, 1f . 

 

Transition Type 3.  s and s'  are of the same level but of different meshes.  

The proposal probability of transitioning from a mesh m to a mesh 'm  is given by the parameter 

'mmp .  If m and 'm  are different meshes, we say that a position sequence, ω' ,  of s'  is viable with 

respect to the current state s if elements jω  and jω'  overlap for kj ,,1 K=  as shown in Figure 

3.  The configuration s'  is itself a viable proposal with respect to s if and only if its position 

sequence is viable and, moreover, the corresponding moduli satisfy the δ-criterion.  We enforce 

the overlap constraint by weighting the proposal probability for each viable position sequence by 

the extent of its overlap with the position sequence of the current system state.  If we denote the 

overlap of elements jω  and jω'  by Oj (uppercase oh), a measure of this overall overlap is the 

product, ∏ =
k
j jO1 .  Let sΩ  be the set of viable position sequences in the opposite mesh generated 

by s.  Then we select the sequence s'ω Ω∈ˆ  with probability 
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so that sequence pairs with a higher degree of overlap are afforded higher proposal probabilities.   

 

 
 

Figure 3:  An example of a viable proposal configuration in the mesh-change scenario.  The heavy black boundaries identify the 

set of proposed flaws with the greatest overlap with the current state. 

 

In Figure 3, the elements in s'  with a heavy black border exhibit the greatest degree of overlap 

with s and comprise the location sequence with the highest proposal probability.  The associated  

moduli, 'υ̂ , are proposed independently for each location j'ω̂  according to the δ-criterion. 

 

Transition Type 4.  s and s'  are of different levels and different meshes.  

The proposal algorithm for varying both the level and mesh is the combination of operations 
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developed in transition scenarios 2 and 3.  The mesh change is always performed at the lower 

level (e.g., a mesh change is followed by a level increase).  Since two operations take place  

 

 

 
 

Figure 4:  An example of a viable proposal configuration with a mesh change and level increase.  Two possible intermediate 

configurations are shown. 

 

serially in this scenario, there may frequently be multiple intermediate configurations that can 

produce a specific proposal configuration.  Figure 4 illustrates this, where the mesh change is 

implemented prior to increasing the configuration level.  Because the leftmost flaw in the current 

state, s, overlaps two flaws in the proposal configuration, s' , there are actually two intermediate 

configurations that can ultimately lead to the same proposal.  This potential for multiple 

intermediate states demands that we sum the transition probability over all of these states. 

 

In the above transitions, the Young’s modulus value frequently changes stochastically and 

independently at a flawed element according to the parameter δ .  Now we will present this 

concept more formally.  Suppose the modulus at a particular flawed element of s is E, which is 

the u-quantile of the prior distribution for the flawed condition.  We wish to transform ( )1,0∈u  

to a value 'u  distributed uniformly within the range ( )δδ +− uu , .  Under circumstances where 

these intervals only partially overlap, any portion of ( )δδ +− uu ,  lying outside (0, 1) is 

reflected back into (0, 1), doubling the density for values sufficiently close to the reflection 

points.  The resulting density for movement to u'  from u is as follows: 

 

 

 ( )








<−−<+

−−−<<−

=

otherwise0

'2or    'if

11'if  
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1

δδ

δδ

δ

δ

uuuu

uuu

ug u .    (5) 

 

 

It can be easily shown that ug  is symmetric with respect to u  and 'u , i.e., we have the general 

relationship ( ) ( )ugug uu '' = .  The proposal modulus 'E  is obtained from 'u  by transformation 

(1) and hence the density for this proposal is ( ) ( ) ( )''' 1
* EfugEg uE = .  Note that the key ratio 

r ( )s's,  of (2) depends upon *
Eg  only through gu.  User selection of the modulus step size δ  

plays a critical role in mixing efficiency, as appropriately small or large modulus changes can 

help the sampler better explore and characterize few or many modes of the likelihood surface. 
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The Likelihood Function 
The likelihood for a configuration is a measure of the discrepancy between the set of observed 

beam displacements and the corresponding set of expected (fitted or forward model) 

displacements, taking into account the finite-element model fit variation with respect to the 

variability in unflawed element moduli and measurement error.  The total number of these 

displacements, T, is the product of the number of nodes (n), the number of displacement 

measurements per node (d), and the number of applied forces (η ).  

 

The finite-element model variation for a particular configuration that is induced by varying the 

unflawed moduli can be estimated by a discretized representation that approximates the 

configuration according to a binning of the flawed moduli.  We partition the range of flawed 

modulus values into M equally probable ranges according to the prior density f1; e.g., if M = 5, 

bin 2 represents the 20
th

 to the 40
th

 percentiles of the distribution.  Then for every possible 

configuration defined by some combination of mesh, level, flawed element locations, and the M 
k
 

modulus bin assignments for the given location set, we characterize the model variation by 

executing a finite element code (NIKE3D, a 3D nonlinear, implicit code) forward model random 

sample: fix the flawed moduli at nominal values (medians within the respective bins) and vary 

the moduli for the unflawed elements according to the unflawed modulus prior density, f0.  The 

sample runs generate expected displacement components.  Summary statistics of the runs 

generate an estimated bias and variance for each configuration bin, whose correspondence with a 

configuration is determined by the set of modulus bins containing the flawed element moduli.  

 

To minimize the time and storage restrictions caused by combinatoric expansion, we limit k to 2. 

A feasible alternative for k > 2 is to average the biases and variances for all 2)1( −kk  flaw 

pairs.  Specifically, consider a configuration s at level k > 2, and let sµ  denote the forward model 

fit for the nominal state of nature defined by using the unflawed modulus median, E0, for each 

unflawed element, along with the flawed moduli 
jiE , kj .,..,1= , of s.  Furthermore, for each 

displacement t, Tt .,..,1= , let ( )2, tt SB ss  denote the averaged pairwise (bias, variance) described 

above for appropriate modulus bins and flawed element location pairs.  Then the measured tht  

displacement for an arbitrary state of nature (based upon a random set of unflawed moduli) 

within configuration s has estimated mean and variance 

 

 

 ξ st = µst + Bst τ st

2 = Sst

2 + σ t

2 ,    (6) 

 

 

where 2
tσ  denotes the measurement error variance (assumed known in applications).  Based on 

normality assumptions and displacement independence, the likelihood function for s is given by 

 

 

 ( ) ( )( )2

2

1

1
2

1
2exp tt

T

t

DDL
tt

ss
ss

ξ
ττπ

−−= ∏
=

.    (7) 
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Example Simulations  
We carried out a number of simulations in order to assess the performance of our algorithms, and 

in every case the posterior distribution of the location and stiffness of flaws concentrated at the 

truth.  As an example, data were simulated from the fine mesh model (10 elements), with 

Young’s modulus values (1.895453e+11, 1.955167e+11, 1.379704e+11, 1.077513e+11, 

1.934691e+11, 1.336336e+11, 1.839496e+11, 1.996551e+11, 1.979272e+11, 1.820129e+11), 

respectively.  We use the trapezoidal priors of Figure 1, which assume a stiffness threshold of 

1.80e+11; thus our example is a configuration with 3 flaws, in positions 3, 4, and 6.  Expressed 

as percentiles of the prior distribution, these flawed element moduli are 63.96, 23.67, and 58.18, 

respectively.  The data consisted of vertical and angular displacements measured at the nodes, 

based upon three static forces independently applied at the beam center and/or free end.  (Note 

that we assume that both vertical and angular measurements are available.  However, in practice, 

angular displacements may be difficult to obtain.  Under these circumstances, forces can be 

incrementally applied with small changes to the linearly elastic model in the tangential direction, 

resulting in primarily normal displacements that can then be easily measured.)  Random 

Gaussian measurement error (noise) with noise-to-signal ratio 01.0=σ  was added to the finite-

element model displacements to create the simulated data.  The M-H sampler was initialized at a 

random configuration and proceeded to sample the posterior distribution of flaw locations and 

moduli.  Both the fine and coarse meshes were assigned prior probability 0.5. 

 

The results for a representative run of 5000 iterations are summarized in Figures 5 and 6.  We 

have conservatively used 1000 as the burn-in length; therefore the figures pertain to the last 4000 

iterations.  Figure 5 shows that accurate configurations, with respect to the mesh, level, and flaw 

locations, account for 95.4% of the posterior probability.  The remaining 4.6% is distributed 

among fine mesh configurations that include the truth and coarse mesh configurations that 

heavily overlap the truth.   

 

 
 

Figure 5:  Performance of the posterior sampler in locating the flaws in a three-flaw configuration simulated from the fine mesh, 

assuming equal priors for the fine and coarse meshes. 

 

Figure 6 summarizes the distribution of sampled flawed modulus values for the 3816 samples 

that correctly identified the flaw locations.  As a precision metric, we use the average modulus 

error for the 3 flaws, as measured in percentile points of the prior distribution of flaw modulus. 

The figure shows that the sampler concentrated around the true stiffness values, such that the 

average stiffness error never exceeded 15 percentile points, and approximately 30% of the 

samples had absolute stiffness errors of only one percentile point.  Clearly the sampler has 

succeeded in discovering not only the flaw locations, but also the degree of severity of the flaws. 
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Figure 6:  Distribution of the average modulus error for the samples that correctly identified the flaw locations in the scenario 

presented in Figure 5. 

 

Issues Regarding Sampler Performance   
To analyze sampler performance more efficiently, we limit the set of possible configurations to 

2n
2
 + 1 by allowing, at most, two flaws in a configuration and by restricting the Young’s 

modulus of an element to one of the three values, e0, e1, e2, where e0 is an unflawed modulus 

value, and e1 and e2 are flawed modulus values.  The proposal function used in these simulations 

is not quite the discrete analog of those outlined above for the continuous parameterization.  We 

use a function (Glaser et. al. 2003) which effects a reversible Markov chain sampler of the prior, 

in the spirit of Mosegaard (Mosegaard 1998), so that the posterior sampler depends entirely upon 

the likelihood ratio for its acceptance of proposals.  

 

Convergence of the Sampler 

For the discretized setting induced by three possible moduli, the posterior probability for a 

configuration s may be expressed according to Bayes’ rule as 

 

 

 ( )
∑ =

==
N

j jj DL

DL
DP

1
)(

)(
|

π

π
ρ ss

s s  ,     (8) 

 

 

where N is the number of configurations.  Thus the posterior distribution can be evaluated 

analytically given the prior distribution and likelihood function parameters.  As a result, we may 

compare sampled versions of sρ  (rho) with their analytic counterparts of (8).  Our simulations 

have clearly demonstrated that we are sampling the posterior.  We have typically used 

simulations of ten million Markov chain steps, following a burn-in period of ten thousand steps. 

Without exception, we have observed agreement to four significant figures between empirical 

simulated relative frequencies and corresponding theoretical posterior probabilities as defined by 

(8). 

 

Noise in the Data and Selection of the Prior  
The ability of the sampler to identify the underlying configuration depends primarily upon the 

degree of variation in the observed measurements relative to the theoretical values predicted by 

the equations of motion.  To effect an easily interpreted noise relationship, we modify the 
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additive measurement error model implicit in (7) to a multiplicative version 

( ) ndtZXX jtjtjt ...,,1,10 =+= σ , where 0X  represents the mean displacement in the equation of 

static deflection, X is the measured displacement, and j is the applied force index.  The Z’s are 

independent standard normal variates, where the scalar parameter, σ , is effectively the noise-to-

signal ratio.  A value of 10.0=σ  implies that the standard deviation of the measured 

displacement for a given component is 10% of the mean displacement as given by the equations 

of motion.  The parameter σ  is propagated in the likelihood function and becomes crucial in 

defining the posterior distribution, ρ , as well as its exploration by the sampler.  In effect, σ  

competes with the prior distribution π  in characterizing the posterior distribution.  For 

sufficiently small σ , the observed data outweigh prior considerations, and the posterior 

probability is concentrated at the actual configuration, whereas, by the Bayesian paradigm, prior 

beliefs must carry increased weight if the observed data is sufficiently noisy to induce ambiguity. 

In such noisy scenarios the resulting posterior is a blend of the prior and the data that may 

suggest a number of plausible configurations. 

 

Three noise levels for measured displacements are considered for the following examples, which 

use only the fine mesh beam model: low noise ( 01.0=σ ); medium noise  ( 05.0=σ ); and high 

noise ( 10.0=σ ).  The possible modulus values are (e0, e1, e2) = (2.0e+11, 7.0e+10, 1.0e+10).  

For brevity, we refer to flawed modulus values e1 and e2 as type 1 and type 2, respectively, and 

specific flaws will be expressed by the ordered pair (flaw location, flaw type).  

 

The subsequent figures combine contributions from both flaw types in summary three-

dimensional portrayals of the posterior distribution.  Recall that there are 20112 2
f =+= nN  

possible configurations for a fine mesh beam with two flaw types, assuming there are at most 

two flawed elements in the beam.  There are 56 coordinates in each graph, where the leftmost 

corner position represents the zero-flaw case, the 10 points along the diagonal represent the 

various flaw locations for the one-flaw case, and the remaining 45 points represent the different 

flaw location pairs for the two-flaw case.  At each coordinate is a cone whose height equals the 

total posterior probability, expressed as a percentage, for the configuration associated with the 

designated flaw location(s).  

 

We illustrate the effects of noise in Figures 7 and 8.  In Figure 7, the actual simulated 

configuration has a single flawed element, namely (3, 2).  For low noise, we see a cone with 

height 100 at the coordinate representing a single flaw at element number 3.  This tells us that the 

posterior distribution has apportioned probability 1 between the configurations (3,1) and (3, 2). 

In fact, though not shown in the graph, the posterior has correctly placed probability 1 at (3, 2) 

and probability zero at (3, 1).  We have observed that, in low-noise conditions, any significant 

posterior probability is concentrated at only one of the flaw type possibilities for a given flaw 

location description.  However, in high-noise scenarios, we have observed cases in which 

significant posterior probability has been spread between two different stiffness combinations.  

 

The simulation results displayed in the top row of Figure 7 show the overwhelming effectiveness 

of the sampler, regardless of the degree of noise, when the prior favors the truth, in this case, the 

fact that the beam contains exactly one flawed element.  This prior is characterized by 

( ) ( )1.0,8.0,1.0,, 210 =λλλ .  In the bottom row of Figure 7, however, we see the effect of a prior 
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Figure 7:  The effects of noise on the posterior distribution for a one-flaw scenario in which the prior favors one flaw (top) and 

two flaws (bottom).  The flawed element is at position 3.  The noise levels are σ  = 0.01, 0.05, and 0.10. 

 

which favors configurations contrary to truth.  Once again the one-flaw configuration (3, 2) 

represents truth, but now the assumed prior distribution, ( ) ( )75.0,23.0,02.0,, 210 =λλλ , favors 

configurations of two flaws.  The observed data in this scenario are not sufficiently compelling to 

dismiss some two-flaw configurations.  The Bayesian paradigm conducts a competition between 

observed data and prior beliefs; i.e. noisier data is less influential in amending the prior.  At each 

noise level in this example, the greatest probability is placed at the actual configuration, (3, 2).  

In addition, there is significant probability placed at a number of two-flaw configurations which 

include (3, 2).  If this were a real-life application, we would conclude that there is clearly a flaw 

of type 2 at element 3.  Moreover, there could be an additional flaw at a location near the end of 

the beam that might warrant further investigation. 

 

Figure 8 presents examples based upon the configuration {(3, 2), (4, 1)}.  The results are similar 

to those of the single-flaw scenarios shown in Figure 7.  In the low-noise setting, the data 

overwhelms the prior and the actual configuration is discovered, while for increased noise, there 

exists greater posterior uncertainty.  The effect of a prior contrary to truth, in this case a prior 

favoring a single flaw, is to put significant posterior probability at a single-flaw subset of the 

truth, (3, 2) in the high-noise case.  

 

The preceding examples demonstrate that the M-H sampler can readily determine the actual flaw 

configuration in the low-noise environment.  In noisy situations, it will formulate a posterior 

distribution that heavily supports the actual configuration while allowing for some alternative 

plausible configurations, motivated to some extent by prior beliefs. 

 

Missing Data  

In practice, whether by accident or design, data may not be collected or available at each node.  

For the M-H sampler, missing data does not, in general, present an impasse.  The posterior 

distribution can still be sampled or calculated, but it tends to display increased uncertainty as the 

amount of missing data increases.  The calculation of the posterior by MCMC sampling, or by 

analytic means, merely requires a modification of the likelihood function to include only those 

terms jt for which measured data Djt is available. 

 

We have examined the relationship between the quantity of observed data and the quality of 

prediction, as measured by the spread of the posterior distribution, for the examples depicted 

with complete data in Figure 8 of the previous section.  We now consider incomplete data in 
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Figure 8:  The effects of noise on the posterior distribution for a two-flaw scenario in which the prior favors two flaws (top) and 

one flaw (bottom).  The flawed elements are at positions 3 and 4.  The noise levels are σ = 0.01, 0.05, and 0.10. 

 

which all 6=ηd  measurements are absent for each node within a selected subset of nodes.  Our 

results are shown in Figures 9, 10, and 11 for low, medium, and high noise, respectively.  In the 

low-noise setting there is negligible loss of precision when up to 4 of the 10 available nodes 

 

 
 
Figure 9:  The effect of missing data on the posterior distribution for a low-noise (σ = 0.01) two-flaw scenario in which the prior 

favors two flaws.  The flawed elements are at positions 3 and 4. The nodes without data are as noted. 

 

 
 

Figure 10:  The effect of missing data on the posterior distribution for a medium-noise (σ = 0.05) two-flaw scenario in which the 

prior favors two flaws.  The flawed elements are at positions 3 and 4.  The nodes without data are as noted. 
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Figure 11:  The effect of missing data on the posterior distribution for a high-noise  (σ = 0.10) two-flaw scenario in which the 

prior favors two flaws.  The flawed elements are at positions 3 and 4.  The nodes without data are as noted. 

 

remain unmeasured, and respectable performance when 6 nodes are not measured.  In the 

medium- and high-noise settings, however, there is an immediate degradation in the ability to 

correctly identify both flaws: although flaw (3, 2) is correctly identified, significant posterior 

probability is placed at configurations away from the other actual flaw, (4, 1).  We have 

conducted alternative simulations with the same amounts of missing data, but with different 

selections of missing nodes.  The results are nearly identical to those shown here, indicating that 

the number of missing nodes is more important than their specific locations. 
 

Mesh Coarseness 
The accuracy of a finite-element model depends heavily upon mesh selection, since homogeneity 

is assumed within each element.  In the following examples, we examine simulation results from 

samplers pitting the fine and coarse meshes, each with prior probability 0.5.  The coarse mesh 

model has N = 2nc
2
 + 1 = 129 possible configurations if we assume, as in the fine mesh case, that 

there can be no more than two flawed elements.  We assume the measured displacements are at 

nodes of the model generating the data.  If, for example, the data are generated from the fine 

mesh model, in order to evaluate the coarse likelihood we must obtain coarse mean 

displacements at nodes of the fine mesh.  Our approach is to linearly interpolate the coarse model 

mean displacements, while selecting applied forces for the simulated data that are restricted to 

the common nodes, namely locations 5 and 10 (see Figure 2). 

 

We have engaged the competing mesh sampler in a variety of scenarios with the previous noise 

levels and discovered that the posterior probability distribution concentrates itself almost entirely 

on the mesh that generates the simulated data.  This is not terribly surprising, because the data is 

fitted best by the mesh geometry upon which it was created, and any configuration of the 

opposite mesh suffers from the drawback that it is necessarily an incorrect model.  Moreover, the 

fact that the opposite mesh stiffness matrices produce mean displacements at nodes that coincide 

with the data nodes in only two places require us to interpolate these displacements to estimate 

mean displacements at a majority of the data mesh nodes.  This (linear) interpolation may be 

sufficiently poor that no opposing mesh configuration can realistically compete with the data 

mesh configurations.  A fair competition would be to simulate data from a model that is not 

correctly represented by any configuration in either mesh.  

 

To see how the coarse mesh estimates the flaw properties of the beam, we ran the sampler 

restricted to the 129 coarse mesh configurations, invoking the bounding case 1c =π . The results 
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are displayed in Figure 12, using the underlying one- and two-flaw models of Figures 7 and 8.  It 

is noteworthy that the coarse posterior places essentially all of its probability on a single 

configuration for each noise level.  In the left-hand figure, we have in truth a fine mesh with a 

 

 
 

Figure 12:  Coarse mesh posteriors for the one-flaw scenario of Figure 7 (left) and the two-flaw scenario of Figure 8 (right) in 

which the data are simulated from the fine mesh.  The results are the same for all the noise levels, σ = 0.01, 0.05, and 0.10. 

 

single flaw at (fine 3, 2).  The coarse posterior places all its probability at the two-flaw 

configuration, {(coarse 2, 1), (coarse 3, 2)}, because fine element 3 is bisected by coarse 

elements 2 and 3.  In the right-hand figure, we have a fine mesh with two flawed elements, 

namely {(fine 3, 2), (fine 4, 1)}.  The coarse posterior puts all its probability in this case at the 

two-flaw configuration, {(coarse 2, 1), (coarse 3, 2)}.  This pairing is closest to the truth in terms 

of mesh overlap, and the flaw types seem to have been adjusted in some compensatory fashion. 

 

Violation of Prior Assumptions 

The M-H sampler is a Bayesian algorithm that characterizes the posterior distribution, a 

synthesis of the prior distribution and the data.  It is mathematically impossible for the posterior 

to place positive probability on a configuration that has been given zero probability in the prior.  

Hence if we postulate a prior that puts all its probability on configurations with no more than two 

flawed elements, the posterior will necessarily put all its probability on configurations with no 

more than two flawed elements, despite any evidence in the data that supports the case for more 

than two flaws.  

 

True Flaw Configuration Mesh Posterior Mode 

(3,1), (5,1), (10,2) fine (3,1), (5,1) 

(3,2), (5,2), (9,1), (10,2) fine (3,2), (5,2) 

(1,2), (5,1), (8,1), (9,1), (10,2) fine (1,2), (5,1) 

(5,1), (6,2), (7,1) coarse (5,1), (6,2) 

(4,1), (5,1), (7,1), (8,1) coarse (4,1), (5,1) 

(4,2), (5,1), (6,1), (7,2), (8,1) coarse (4,2), (7,2) 

 
Table A.  Posterior distribution for six examples of a prior that does not include the true configuration. 
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In Table A, we investigate six examples of the effect of a prior that does not include the truth.  In 

each case we simulate displacement data for a beam with more than two flawed elements and see 

what posterior distribution the sampler develops, given the prior assumption that there can be no 

more than two flaws.  Interestingly, the posterior distribution in each case puts probability 

essentially 1 at a single two-flaw configuration. 

 

In reviewing the results in the Table A, we see that for all but the last case, the posterior selects 

the two flaws nearest the fixed end from among the actual flawed elements.  This makes intuitive 

sense because a flawed element affects displacements of elements to its right (toward the free 

end) more than elements to its left (toward the fixed end).  The exception is the last case, which 

opts for the leftmost flawed element but skips two type 1 flaws and selects a type 2 flaw.  This 

may be explained by the fact that the type 2 modulus suggests a more severe flaw. 

 

It is perhaps most noteworthy that the posteriors are virtually degenerate, placing probability 

nearly 1 at a single configuration.  This may be explained by the nature of the likelihood 

function, whose quadratic term penalizes large deviations from the truth.  As a consequence, in 

our scenario in which each candidate configuration is incorrect, we have a collection of widely 

varying but tiny likelihoods, of which one dominates.  In general, a degenerate posterior is cause 

for elation, because it indicates the true state of nature has been discovered.  However, as we see 

in these examples, such an assertion is meaningless if we undermine the Bayesian paradigm by 

positing a prior that excludes the truth. 

 

Conclusions 

A stochastic simulation methodology for the identification of mechanical and structural systems 

has been presented.  The methodology is a M-H implementation of a Bayesian MCMC 

algorithm.  Using a finite-element model of a uniform fixed-free linearly elastic cantilever beam 

as the forward model, the algorithm is shown to identify probable configurations of the beam by 

estimating the stiffness of each beam element through an identification of its elastic modulus.  

System inputs are static forces applied to the nodes of the beam; associated measured deflections 

constitute the data.  Each beam element may have a modulus value within a range, including 

flawed and unflawed sub-ranges.  Results show that the methodology successfully calculates 

posterior probability distributions across the possible configurations of elastic moduli of the 

beam elements.  The distributional information in turn effectively identifies flaws and their 

severity by providing a probability measure for plausible configurations of flawed elements and 

their modulus values.  Furthermore, the methodology is shown, in the simpler, discretized (three 

possible modulus values) example cases, to be robust to the presence of noise in the data, 

missing data, and competing mesh model descriptions. 

 
This work was performed under the auspices of the U.S. Department of Energy by University 
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
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Notation 

ija  = prob. of changing level i to j, )1,0[∈iia ; )1,0(∈ija  if 1=− ji , ;,0 Kji ≤≤  

tBs  = average bias for all flaw pairs in configuration s for the tht  displacement; 

', bb  = probability of state transition in neighbor-only setting (see Appendix); 

tD  = tht  displacement measurement of T total displacements;  

d  = number of displacement measurements per node; 

jj EE '
~

,
~

 = Young’s modulus value at element j in a configuration s's , ; 

jF  = j
th

 force vector applied to the beam; 

1f  = modulus density for the flawed condition; 

K  = ndnd ×  stiffness matrix for the equation of static deflection; 

k = configuration level, Kk ,,1 K= ,  },{min fc nnK ≤ ; 

( )DL s  = likelihood of the data, D, given configuration s as truth; 

', mm  = mesh associated with a configuration s's , , },{', fc nnmm ∈ ; 

fnn ,c  = number of elements in the coarse / fine mesh beam model; 

jO  = overlap of elements jω  and jω'  when mesh change is proposed; 

'mmp  = proposal probability of moving from mesh m  to mesh 'm , ]1,0[' ∈mmp ; 
2

tSs  = average variance for all flaw pairs in configuration s for the tht  displacement; 

s's,  = configurations, defined by a 3-tuple ( )m,,υωs = ; s' is proposed by ),( s'sq ; 

( )ls'  = configuration s'  following removal of the flaw at location l; 

jj uu ',  = quantile at modulus value jj EE '
~

,
~

; 

0

jX  = 1×nd  theoretical displacement vector induced by applied force jF ; 

),'ˆ( jx ω  = location of s'  that matches up with the j
th

 element of 'ω̂ ; 

', αα  = unshared flawed element location in s's , ; 

β  = proposal probability of neighbor-only location change at level 1, ]1,0[∈β ; 
s

'ω̂γ  = probability of selecting sequence 'ω̂  from the set sΩ ; 

δ  = maximum modulus step size, measured in probability, ),0( 2
1∈δ ; 

η  = number of independent static nodal forces applied to the beam; 

kθ  = proposal probability of a modulus-only change at level k, )1,0[∈kθ ; 

kλ  = prior probability of level k, )1,0(∈kλ ; 

sµ  = forward model fit for s, using modulus median for each unflawed element; 

tsξ  = estimated mean of the tht  displacement for a random state of nature within s;  
mπ  = prior probability of mesh m, ]1,0[∈mπ ; 

sπ  = prior density for configuration s; 

sρ  = posterior probability for configuration s; 
2

tσ  = measurement error variance for tht  displacement; 
2

tsτ  = estimated variance of the tht  displacement for a random state of nature within s;  
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υ'υ ,   = set of quantiles jj ',υυ  corresponding to moduli at flaw locations jj ωω ', ;   

'υ̂  = vector of moduli corresponding the flaw locations in the proposed sequence 'ω̂ ; 

sΩ  = set of viable position sequences in the opposite mesh generated by s; 

ω'ω ,   = naturally ordered set of flawed element locations in configuration s's , ; 

ω'ω ˆ,ˆ  = proposed flaw location sequence from the set s's ΩΩ , . 
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Appendix 

Transition Type 1.  s and s'  are of the same level and mesh.  

The proposal density for the modulus-only transition is given by   
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The proposal density for a single flaw location change when k > 1 is given in Eq. (10).  It can be 

shown that the proposals described by equations (9) and (10) are both reversible, i.e., 1)',( =ssh . 
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When k = 1, the proposal density for relocating the single flaw is given in Eq. (11), where b, 

given in Eq. (12), is the neighbor selection probability, and 'α  (alpha) denotes the flaw location 

in s'  which is not shared by s.  Note that β , the probability of a neighbor-only transition, is used 

as a mixing parameter to control the magnitude of the change in proposal state, so we have 
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It can be shown that 1)',( =ssh  if and only if the flaw is an interior element of s and s' . 

 

Transition Type 2.  s and s'  are of different levels but of the same mesh.  

The proposal densities for transitions with a level change are given by 
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Transition Type 3.  s and s'  are of the same level but of different meshes.  

The proposal density for a transition with a mesh change is given by 
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where s

ω 'ˆγ  is the probability that 'ω̂  will be selected from the set of all viable sequences. 

 

Transition Type 4.  s and s'  are of different levels and different meshes.  

The proposal density for a transition including a mesh change and an increase in level is given by  
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where ( )jx ,ˆ 'ω  denotes the location of s'  which corresponds to the j
th

 element of the proposed 

location sequence 'ω̂ , and 'ωω' ˆ\  is a set difference operation referring to the flawed element 

location added during the level increase.  Since there may be multiple intermediate states (after 

the mesh change) which can yield s'  following the level increase, we sum over the viable 

location sequences which can ultimately lead to this successful transition.  The proposal density 

for a transition including both a mesh change and a decrease in level is given in Eq. (16), where 

)(ls'  denotes the configuration s'  with flaw l (ell) removed.  Since there may be multiple 

elements which, when removed, can yield s'  upon completion of the mesh change, we sum the 

proposal probability over these elements, which gives 
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