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Abstract 

 
A Plesset-type treatment [J. Appl. Phys. 25, 96 (1954)] is used to 
assess the effects of contiguous density gradients at an accelerating 
spherical classical interface on Rayleigh-Taylor and Bell-Plesset 
perturbation growth. Analytic expressions are obtained that describe 
enhanced Rayleigh-Taylor instability growth from contiguous density 
gradients aligned with the acceleration and which increase the 
effective Atwood number of the perturbed interface. A new pathway 
for geometric amplification of surface perturbations on an 
accelerating interface with contiguous density gradients is identified. 
A resonance condition between the density-gradient scalelength and 
the radius of the interface is also predicted based on a linearized 
analysis of Bernoulli’s equation, potentially leading to enhanced 
perturbation growth. Comparison of the analytic treatment with 
detailed two-dimensional single-mode growth-factor simulations 
shows good agreement for low-mode numbers where the effects of 
spherical geometry are most manifested. 

 
 

I. Introduction 
 
The problem of hydrodynamic stability control on accelerating interfaces is key to the 

successful demonstration of inertial confinement fusion (ICF) [1]. In this scheme a low-Z 

capsule containing deuterium-tritium (DT) fuel is ablatively driven by x rays in the 

indirect-drive (hohlraum) configuration [2], or by ≈1/3 µm laser light in the direct-drive 

scheme [3]. As the compressed fuel responds to the imploding shell, the interface 

between the fuel and pusher decelerates and becomes Rayleigh-Taylor (RT) unstable. In 

cryogenic ICF schemes the pusher consists of DT ice, and the fuel-pusher interface is no 

longer localized to a surface but over a region with a finite density gradient. Much 

analytical and computational effort [4-8] as well as experimental work [9-10] has 

established that the presence of finite density gradients has a stabilizing effect on RT 

instability, increasing as the perturbation wavelength decreases in relation to the gradient 

scalelength. However, this stabilizing effect does not hold true for the DT ice-ablator 

interface in indirect-drive approaches where a material and density (ρ) mismatch persist 
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in the fluid limit. On this interface near classical RT growth can be expected: 

    

! 

"
RT ,c

= At # kg , where 
    

! 

At = "2 # "1( ) / "2 + "1( )  is the Atwood number between the 

outer (“2”) and inner (“1”) fluids, g is the acceleration, k is the perturbation wavenumber 
and    

! 

At " g > 0. A similar instability scenario applies to non-cryogenic double-shell 

ignition schemes [11]. For this proposed type of target, the high-Z inner shell contains the 

room-temperature, high-pressure DT fuel and is generally characterized by a high-

Atwood number inner interface [12]. The same holds true in studies of cavitating bubbles 

in laser medicine [13] and sonoluminescence research [14] where the liquid-vapor 

interface is classically RT unstable. 

 
In all these physical systems one or both sides of the classically RT unstable interface 

often have a contiguous nonzero density gradient. For example in the case of an 

imploding compressible shell, self-consistent interior pressure and density profiles are 

necessary to maintain a uniform acceleration of the shell [2]. For a cavitating bubble, a 

density profile in the vapor will be established as the bubble successively expands and 

collapses. The question that this paper addresses is to what extent the presence of 

contiguous density profiles affects RT growth in a converging geometry with a finite 

Atwood number on a classical interface. A related and coupled issue is to what degree, if 

any, will Bell-Plesset (BP) geometric growth [15] be affected by contiguous density 

profiles. Previous work by Bernstein and Book [16] and Lezzo and Prosperetti [17] has 

considered the RT question, though only in a slab geometry. Physically, the effect of 

contiguous density profiles on a classical (discontinuous) interface (At≠0) should be 

manifested most at wavelengths on the order of the density-gradient scalelength or 

greater, not less as in the converse case of a finite density gradient on the interface [4-8]. 

In the latter case, the RT growth rate in the planar limit obeys [8]: 

 

                      
    

! 

"
RT

=
At # kg

1+ At # kL$
 ,       (1a) 

 
where 

  

! 

L"  is the density-gradient scalelength 
    

! 

d ln " / dr( )
#1. For the example of 

contiguous density profiles in a spherical geometry, a slab approximation may not suffice 

since the behavior of the important low-order Legendre modes will likely be 
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misrepresented. Thus, capturing the essential influence of contiguous density profiles on 

a classical interface in an imploding shell is best suited to a spherical treatment.  

 
As a starting point we adopt a Plesset-type velocity potential framework [12] for 

describing the compressible fluid dynamics of an accelerating shell. The perturbed 

velocity potential 

! 

"# will necessarily satisfy Poisson’s equation   

! 

("2#$ % 0) in the 

presence of contiguous density gradients, implying what is understood in the literature as 

a compressible perturbed fluid response. However, we will distinguish between two 

physical regimes for the perturbed fluid response under these conditions, depending on 

whether the fluid density can adjust to the perturbed interface over a RT growth time 

    

! 

"RT , c
#1 , or not. The representative timescale for adjustment of the perturbed density is the 

reciprocal of the Laplacian of the perturbed velocity potential. Both perturbed fluid 

responses will be compressible according to the traditional standard that   

! 

"
2#$ be 

nonzero, but the former case will more intuitively reflect our notion of compressible 

response. Thus, we will label the first response as “compressible” and the latter as 

“incompressible” for this purpose. 

 

In this paper we derive the RT dispersion relation and describe BP effects in the presence 

of contiguous density profiles on both sides of a discontinuous, accelerated spherical 

interface separating two compressible fluids [See Fig. (1)]. For the simple case of equal 

density-gradient scalelengths and identical polytropes on each side of such an interface, 

the RT dispersion relation in the planar limit is analytically obtained: 

 

                           

    

! 

"RT = At # kg #
2k | L$ |

1+ 4k 2L$
2

± At

% 

& 

' 
' 
' 

( 

) 

* 
* 
* 
,         (1b) 

 

where the plus (minus) sign denotes 
    

! 

L" < 0 (L" > 0). The small wavelength limit 

recovers the classical RT growth rate, while for very long wavelengths (or low mode 

numbers in spherical geometry) the growth is strongly reduced by density-gradient 

stabilization. For moderately long wavelengths 
    

! 

1" At << 2k
2
L#

2
<< 1, Eq. (1b) recovers 
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the familiar limit 
    

! 

"RT = g / L#  with 
    

! 

L" > 0. In ICF applications, thermal conduction 

from the nearly isobaric fuel to the imploding shell generally establishes a positive 

density gradient (
    

! 

L" > 0), resulting in increased RT growth after deceleration onset. The 

maximum increase in RT growth occurs for wavenumbers in the vicinity of 

    

! 

1" At
2

2L# At( ) , leading to an enhanced growth rate: 
    

! 

"RT , c # 1$ At
2( )
$1/ 4

.  Physically, 

the increased perturbation growth results from an effectively larger Atwood number 

when averaged over a distance across the classical interface on the order of the 

wavelength 2π/k. 

 

Analysis of Bernoulli’s integral predicts the occurrence of two resonances between the 

density-gradient scalelength and the radius of the interface for sufficiently large 

contiguous density gradients. These resonances may generally lead to enhanced density 

fluctuations for an imploding compressible shell during acceleration. 

 

The effect of contiguous density gradients on classical BP effects is studied. A new 

pathway for BP growth is shown for an accelerating shell with contiguous density 

gradients on the inner interface. 

 

Direct comparison of the analytic model with two-dimensional (2-D) single-mode 

growth-factor simulations of an ICF capsule implosion is also made. Good agreement for 

the lowest-order modes where BP effects are important is found. For higher-order modes 

the effect of thermal transport along a perturbation wavelength in reducing classical RT 

growth becomes significant. A heuristic adaptation of the model to include thermal 

diffusivity is largely successful in suppressing classical RT growth to levels seen in the 2-

D simulations.  

 

The paper is organized as follows. Section II develops analytic estimates for contiguous 

density-gradient scalelengths and derives the governing equations for BP and RT growth. 

Section III applies the model to some general cases of interest in ICF. A specific 

comparison of the model with simulated growth factors for an indirectly-driven capsule 

implosion is presented in Section IV.  We summarize in Section V. 
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II. Analysis 
 

a) Density-gradient scalelengths 
 

Figure (1) shows the geometry of the problem under consideration: an imploding shell or 

pusher of fluid type “2” compressing a fluid or fuel of type “1”. On either side of the 

interface at     

! 

r = R(t) we define a dimensionless parameter 
    

! 

"i (t) # R / L$, i , where 

 

                      
    

! 

L" ,i # d ln"i,0 / dr( )
$1

r =R
. (2) 

 
is the local density-gradient scalelength at the interface. We introduce trial density 

profiles in the fuel and pusher regions: 

 

    
    

! 

"i,0 (r,t) = " i,0 (t) #
r

R

$ 

% 
& 

' 

( 
) 

* i

,     (3) 

 

where     

! 

" 
i,0 (t) is the density of the unperturbed i-th material at the interface. This generic 

density profile has the preferred property that the planar limit recovers the exponential 

profile:  

 

           
    

! 

"i,0 = lim
# i ,R$%

" i0 &
r

R

' 

( 
) 

* 

+ 
, 

# i

= lim
# i$%

" i,0 & 1-
x

L" ,i# i

' 

( 
) ) 

* 

+ 
, , 

# i

= " i,0 & e
-x L" ,i

   (4)  

 

where   

! 

x " R# r. In this limit, 
    

! 

L", i  for the density-gradient scalelength applies over the 

entire half-space, not just at the interface. For the simple case of an isothermal 

atmosphere one can readily show [16]:  

                                                     
    

! 

    L", i =
Cs, i

2
r=R

g
,        (5) 
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where 
    

! 

Cs, i = "Pi0 /"#i0( ) s  is the adiabatic sound speed. For the spherical case, we 

refer to Eqs. (2,3) to generally define 
    

! 

L", i (r) = L", i (R) # r / R away from the interface. 

The importance of a radially varying, density-gradient scalelength is that the growth of 

long wavelength perturbation modes whose spatial extent is a significant fraction of the 

interface radius may be significantly affected. We address this issue further in Section II-

d. 

 

In ICF applications, uniformly accelerating shells are typically considered for analytically 

assessing hydrodynamic stability [2]. For this class of equilibrium, we can deduce a 

relation between 
  

! 

"i  and the polytropic index 
  

! 

" i . Applying force balance in a comoving 

frame:     

! 

dPi,0 / dr = "g # $i,0 , and using a polytropic equation-of-state: 
    

! 

Pi,0"i,0

#$i = Ci, we 

obtain in place of Eq. (3): 

        
    

! 

"i,0 (r,t) = " i,0 (t) # 1$
g # % i $ 1( ) r$ R( )

Cs,i
2

& 

' 

( 
( 

) 

* 

+ 
+ 

1

% i $1

.    (6). 

 

This density profile agrees with Eq. (3) only in the limit as 
    

! 

"
i
# 1, reducing to Eq. (4) in 

the end. Thus, standard planar treatments that use a uniformly accelerating shell will 

differ from Eq. (3) when 
    

! 

"
i

> 1, which defines the regime of interest in this work. 

Incidentally, we can also obtain a simple relation between 
  

! 

"1and 
  

! 

"2  for this particular 

profile. By imposing pressure balance at   

! 

r = R and using Eq. (2) together with the 

definition of 
  

! 

"i , we straightforwardly obtain:  

            
  

! 

"2

"1

=
# 2,0

# 1,0

$
%1

%2

.      (7) 

 

 

Figure 2a shows examples from a radiation-hydrodynamic simulation of a proposed 

ignition double-shell design [11] for the shell density profile at several times following 

deceleration onset. Two classes of density-gradient scalelength are apparent. First, 

establishment of the isothermal atmospheric profile described above [See Eqs. (4-5)] is 
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seen to occur in the outer half of the Au shell, particularly at later times relative to 

deceleration onset. By itself, this density profile would help suppress RT growth because 

the spatially averaged Atwood number decreases with increasing perturbation 

wavelength. However, a second density feature is evident near the inner surface of the 

shell.  The associated density gradients are large and positive just outside the interface 

within the shell, potentially giving rise to increased instability growth. The origin of this 

second density feature is due to heat conduction from the hotter fuel to the shell and is 

independent of the sign of the shell acceleration. We can estimate the expected size of the 

density gradient as follows. Assuming Spitzer conductivity the thermal energy flux Q 

from the fuel to the shell at the interface satisfies [18]:       

! 

r 

Q = S1T1
5/ 2

r 
" T1 = S2T2

5/ 2
r 
" T2 , 

where 

 

                  
    

! 

Si " #
4

Zi + 3.3( )e
4
me

1 / 2 ln$ i

,                   (8a) 

 

  

! 

Zi  is the ion charge state in region i and 
  

! 

Ti  is in units of eV. From Eq. (8a) we can 

readily form the ratio of the temperature-gradient scalelengths 
    

! 

LT , i " 1/(d lnTi / d ln r) at 

the interface: 

 

            
    

! 

LT ,1

LT ,2

=
S1

S2

"
# 2,0

# 1,0

"
Z2 +1

Z1 +1
"

A1

A2

$ 

% 
& 

' 

( 
) 

7 / 2

,      (8b) 

 

where ideal equations-of-state are assumed,   

! 

ln"1 # ln"2, and   

! 

Ai  is the average number 

of nucleons per ion. At deceleration onset 
      

! 

r 
" Pi,0 # 0, and we find from the definition of 

  

! 

"i [See above Eq. (2)] and Eqs. (8a-b): 

 

               
    

! 

"2

"1

#
1+ At

1$ At

% 

& 
' 

( 

) 
* 

7 / 2
Z2 + 3.3

Z1 + 3.3

% 

& 
' 

( 

) 
* +

Z2 +1

Z1 +1
+

A1

A2

, 

- 
. 

/ 

0 
1 

7 / 2

.             (8c) 

 

For a gold pusher and DT fuel with     

! 

Z2 / Z1 " 25# 50 and At≈0.7-0.5 after deceleration 
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onset, Eq. (8c) gives 
    

! 

"2 /"1 = L#,1 / L#, 2 $ 10% 30. Furthermore, with 
    

! 

L",1 on the order 

of the fuel radius or less, we expect that 
    

! 

L", 2 should lie in the range of 1-10 microns. 

 

The time-dependence of 
  

! 

"1  can be obtained from mass conservation. Using Eq. (3) we 

have:     

! 

"1 + 3 = 4#$ 1,0 %R
3

/ M1  where 
    

! 

M1 is the conserved fuel mass. If 

    

! 

d ln(3+"1)/ dt << 3d ln R / dt  is satisfied, then     

! 

" 1,0 #1/ R
3 and 

  

! 

"1≈ const. For example, 

this condition holds exactly when 
    

! 

L",1≈  

! 

R. For 
    

! 

"2 # R / L$, 2 we find from Eq. (8c) with 

    

! 

Z2 >> 1 that 
    

! 

L" ,2 # L" ,1 $Z2
%9 / 2 $ " 1,0 /" 2,0( )

7 / 2
. For radiation temperatures up to several 

hundred eV, we apply the following scaling for gold [2]:     

! 

Z2 "TR

0.45. The radiation flux 

in the fuel scales as     

! 

R
"3, giving 

    

! 

T
R
" R

#3/ 4. Using that     

! 

" 1,0 /" 2,0 #1/ R and 
    

! 

L",1≈  

! 

R 

from above, we finally obtain 
    

! 

L", 2 #1/ R and 
    

! 

"2 # R
2 . Figure 2b shows the time history 

of 
  

! 

"1  and 
  

! 

"2  between deceleration onset and the instant of minimum fuel volume. 

Indeed, 
  

! 

"1  is found to remain nearly constant throughout the deceleration stage except 

for brief instances when a shock transits the interface. We find also that 
  

! 

"2  varies 

strongly with fuel radius, in qualitative agreement with the above scaling. 

 

Another example of an ICF-relevant target is an indirectly-driven, germanium-doped, 

plastic (CHGe0.02), Omega-scale, single-shell capsule containing 10 atm of deuterium fuel 

[19]. Figure 2c shows the simulated density-gradient scalelengths after deceleration 

onset. Throughout the deceleration stage we notice that 
    

! 

L",1 / L", 2 # 2$ 3, in fair 

agreement with Eq. (8c) for     

! 

Z2 " 3.5, Z1 " 1. 

 

In summary, Eqs. (5, 8c) represent two candidate sources of contiguous density-gradient 

scalelengths for input to a Plesset-type fluid model. In the following we adapt such a fluid 

formulation to accommodate contiguous density-gradient scalelengths on a classical 

interface. 

 

 
b) Unperturbed potential flow 



 9 

 
To find the unperturbed flow within the two regions of interest we introduce a velocity 

potential     

! 

"
i,0  that satisfies [15]: 

      

! 

r 
v 

i,0 = "
r 
# $

i,0 , where the “0” subscript denotes the 

unperturbed flow. We insert the trial solution for the fluid density from Eq. (3) in the 

mass continuity equation 
      

! 

"
t
#

i,0 +
r 
$ % #

i,0

r 
v 

i,0( ) = 0 to obtain:  

 
 

 
    

! 

d ln" i,0

dt
# $ i

d ln R

dt
+

d$ i

dt
ln r / R( ) #

$ i

r
%r&i,0 # '

2&i,0 = 0.    (9) 

 
 
The solution to Eq. (9) in region 1 satisfies regularity at the origin and is given by: 

     
  

        
    

! 

"1,0 =
F 1r

2

6
+

d#1

dt
$

r
2

2(#1 + 3)
ln

r

R

% 

& 
' 

( 

) 
* +

#1 + 5

2 #1 + 3( )

, 

- 
. 
. 

/ 

0 
1 
1 
,    (10a) 

 
where 
    

                   

    

! 

    F 1 "

d ln# 1,0

dt
$ %1

d ln R

dt

1+
%1

3

= F1 +
d%1

dt
&

3

%1 + 3( )
2

 ,   (10b) 

 
 

    

! 

F1 " d ln# 1,0 / dt = $3d ln R / dt , and the final identity in Eq. (10b) follows from applying 

mass conservation to the enclosed fluid. Note that the flow is self-similar 
    

! 

"1 # r
2$ 

% 
& ' 

( 
)  as a 

result.  For region 2 we similarly obtain: 

 

 

    

! 

"2,0 =
F 2r

2

6
+

R

r

# 

$ 
% 

& 

' 
( 

1+) 2

*
R

2

1+)2

*
F 2 + F 1( )

3
+

d)1

dt
*

1

3+)1( )
2
+

d)2

dt
*

1

3+)2( )
2

, 

- 

. 

. 

/ 

0 

1 
1 
+

           
d)2

dt
*

r
2

2 )2 + 3( )
* ln

r

R

# 

$ 
% 

& 

' 
( +

)2 + 5( )
2 )2 + 3( )

, 

- 
. 
. 

/ 

0 
1 
1 
,                                      (11a)

 

 
where  
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! 

F 2 "

d ln# 2,0

dt
$ %2

d ln R

dt

1+
%2

3

.   (11b) 

 
 
In deriving Eq. (11a) we have imposed the condition that the fluid velocity normal to the 

unperturbed interface be continuous. The solutions embodied in Eqs. (10-11) constitute a 

potential-density pair 
    

! 

"
i,0 ,#

i,0{ }  that determines the unperturbed flow on either side of 

the interface. The occurrence of density gradients in each region is characterized by the 

parameter 
  

! 

"i , which in turn is related to the value of the density gradient at the interface, 

cf., Eq. (2). For the case of homogeneous fluids     

! 

(" i = 0), Eqs. (10-11) recover former 

results [12]. We note also that the flow in region 2 is generally not self-similar, in 

contrast to region 1. 

 
 
c) Perturbed potential flow 
 
Out main interest is the study of perturbation growth where the associated wavelength is 

on the order of a density-gradient scalelength or larger. In this regime the Rayleigh-

Taylor growth rate scales as 
    

! 

g / L" . Using Eq. (5) for the density-gradient scalelength 

as an example, we obtain that an e-folding time is on the order of an acoustic transit time 

across the perturbation wavelength. Thus, compressible perturbation growth needs to be 

considered in this regime of interest. 

 

We now perturb the density and velocity potential in each region as follows: 

    

! 

"
i
= "

i,0 +#"
i
,     

! 

"
i
= "0,i +#"

i
, giving for the linearized continuity equation: 

 

         
      

! 

d

dt
"#i $"#i%

2&i,0 = #i,0%
2"&i +

r 
% "&i '

r 
% #i,0.      (12)   

 
 

In both Bell’s and Plesset’s original analysis for homogeneous incompressible fluids [15], 

the perturbed density was neglected     

! 

("#i = 0) and the perturbed continuity equation (12) 

reduced to Laplace’s equation:     

! 

"
2#$i = 0. In Amendt et al. [12], the bulk flow was 
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assumed compressible 
    

! 

"
2
#

i,0 $ 0( ) , but the perturbations were also taken as 

incompressible (    

! 

"
2#$i = 0). In this present work the fluid perturbations are assumed to 

be generally compressible in the presence of background density gradients     

! 

(" i # 0). To 

clarify our assumptions we introduce an expansion parameter     

! 

"
i
# $%

i
/%

i,0 << 1 and 

expand the perturbed potential: 
    

! 

"#i = "#
i

(0)
$ i

0
+"#

i

(1)
$ i

1
+ ... . In order      

! 

"i

0 and 
    

! 

"i

1 we 

obtain from Eq. (12): 

 
          

      

! 

"2#$
i

(0)
+

r 
" #$

i

(0) %
r 
" ln &

i,0 = 0,         (13a) 
 

        
      

! 

d

dt
"#i $"#i%

2&i,0 =
r 
% "&

i

(1) '
r 
% #i,0 + #i,0%

2"&
i

(1)
.             (13b) 

 
 
Thus, if 
 
       

      

! 

"2#$
i
+

r 
" #$

i
%
r 
" ln &

i,0 = 0          (14a) 
 
 
holds to order 

    

! 

"i

1 as well, then we obtain in addition the closure relation: 
 
 

          
    

! 

d

dt
"#i = "#i$

2%i,0.       (14b) 

 
 

Equation (14a) relates the compressibility of the perturbation to the compressibility of the 

background flow, i.e.,     

! 

"i # 0 , and serves as the foundation for the following analysis of 

perturbation growth.   

 

The solution of Eq. (14a) is obtained by first substituting the following trial solution: 

    

! 

"#i (r,$ ) % "&i (r) '( i ($ ), giving 

 

             
      

! 

r " (2+#
i
)
$

r
%&

i

%&
i

+ r
2 "
$

rr

2%&
i

%&
i

= '
$( sin( "$() i( )

)
i
sin(

* l(l +1).     (15) 
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The solution to Eq. (15) then readily follows: 
 
                

! 

"#i = Pl (cos$ ) % r
ni± ,     (16a) 

 
where     

! 

Pl is the Legendre polynomial of order   

! 

l and 
 

  
      

! 

ni± =
" (1+# i )

2
±

1

2
$ 2l +1( )

2
+# i (2+# i ).      (16b) 

 

Two limiting cases are of interest. For  
      

! 

" i 2+"i( ) << 2l +1( )
2
, we obtain: 

 

    

      

! 

        ni+ " l# $ i / 2+
$ i $ i + 2( )

2 2l +1( )
2

,       (17a) 

     ni# " #l# 1# $ i / 2#
$ i $ i + 2( )

2 2l +1( )
2

,       (17b)

 

 

and for 
      

! 

" i 2+"i( ) >> 2l +1( )
2
 we have: 

 

                                                 

      

! 

      ni+ "
2l +1( )

2

4# i

,            (18a)

  ni$ " $# i $
2l +1( )

2

4# i

.      (18b)

 

 
 
We are mainly interested in surface-type perturbation solutions, e.g., RT, that remain 

localized near the interface. This requirement leads to the following conditions for the 

eigenfunctions of Eq. (15):     

! 

n1 " max(n1± ) > 0 in region 1 and     

! 

n2 " min(n2± ) < 0 in 

region 2. A further set of conditions on our solution consists of (1) imposing continuity of 

the normal component of the fluid velocity across the interface and (2) ensuring that the 

transverse fluid motion matches the interface motion. These two conditions take the 

following form: 

  

   
      

! 

"
#$1

#r

% 

& 
' 

( 

) 
* 
r=rs

= "
#$2

#r

% 

& 
' 

( 

) 
* 
r=rs

=
dR

dt
+

dal

dt
+Pl (cos, ),    (19) 
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where the radius of the perturbed interface 
  

! 

rs satisfies:       

! 

rs = R + alPl (cos" ). Applying 

Eqs. (19) to Eq. (16a) for the perturbed solutions and including for completeness the 

unperturbed solutions from Eqs. (10a, 11a), we obtain for the full potential solutions in 

regions 1, 2: 

 

    

      

! 

"1 =
F 1r

2

6
+

d#1

dt
$

r
2

2(#1 + 3)
ln

r

R

% 

& 
' 

( 

) 
* +

#1 + 5

2 #1 + 3( )

, 

- 
. 
. 

/ 

0 
1 
1 
+

R
1+n1

n1

$
dal

dt
+

F 1

3
al

% 

& 
' 

( 

) 
* $ r

n1Pl (cos2 )  

                                                                                                                               (20a)

 

and  
 

 

      

! 

"2 =
F 2r

2

6
+

R

r

# 

$ 
% 

& 

' 
( 

1+) 2

*
R

2

1+)2

*
F 2 + F 1( )

3
+

d)1

dt
*

1

3+)1( )
2
+

d)2

dt
*

1

3+)2( )
2

, 

- 

. 

. 

/ 

0 

1 
1 
+

         
d)2

dt
*

r
2

2 3+)2( )
* ln

r

R

# 

$ 
% 

& 

' 
( +

)2 + 5( )
2 3+)2( )

, 

- 
. 
. 

/ 

0 
1 
1 
+

        
r

R

# 

$ 
% 

& 

' 
( 

n2

*
R

n2

*
dal

dt
+

F 2

3
al +

(2+)2 )

3
F 2 + F 1( )al

, 

- 
. 

/ 

0 
1 Pl (cos2 ).                     (20b)

 

 
 
 
At this point we address to what extent a low-order mode is potentially affected by a 

spatially varying density-gradient scalelength. We focus the discussion on the case of 

positive 
  

! 

"i  which generally holds in the case of ICF implosions where thermal 

conduction from the hot fuel to the cooler pusher establishes a positive density gradient 

[See Fig. 2a]. From the discussion below Eq. (5) we have that 
    

! 

L", i  varies linearly with 

radius away from the interface independent of the nature of the density gradient. Thus, a 

lowest-order mode will sample an appreciable variation in density between the interface 

position and the origin, cf., Eq. (18a). However, in a density-weighted sense the variation 

of 
    

! 

L",1 from its interface value is generally small: 
    

! 

L",1 "
= L",1(R) # ($1 + 4)/($1 + 5), 

leading only to a 20% difference at most. Therefore, we expect only a modest effect from 

a power-law density variation [Eq. (3)] on the perturbation profile inside the interface. 

Outside the interface in region 2, we find from Eq. (18b) that the effective radial extent of 
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the perturbation is greatly reduced, falling off as     

! 

r
"# 2  where 

  

! 

"2 >> 1 typically holds. 

Consequently, the perturbation profile effectively samples a distance into the outer 

density profile at most a small fraction of 
    

! 

L", 2(R). We stress that the linearized solutions 

represented by Eqs. (16a-b) implicitly include the effect of a spatially varying density-

gradient scalelength and hold exactly over any distance from the interface, modulo the 

usual limits of a linear analysis. 

 
 
 
 
d) Bernoulli’s equation 
 
The evolution of the perturbation amplitude     

! 

al  in Eqs. (20a,b) is found by applying 

momentum balance and then imposing pressure balance across the interface with use of 

Bernoulli’s equation. Assuming that the two fluids are polytropes 
    

! 

(Pi"i

#$ i = Ci ) we find 

that Bernoulli’s equation takes the form: 

 

                 

    

! 

"#i

"t
$
% #i

2

2

& 

' 

( 
( 

) 

* 

+ 
+ 

r =rs

$  
, i

, i $ 1
-

Pi (rs )

.i (rs )
$

Pi (ri )

.i (ri )

& 

' 
( 

) 

* 
+ = 0,    (21)  

 
 
where     

! 

P1 (r1 ) " P1 (0), P2 (r2 ) " P2 (r > rs ) for the interior and exterior pressures, and 
    

! 

" i > 1. 

Because of the adopted form of the density profile [Eq. (3)], necessarily    

! 

P1(0) = 0. In 

region 2, the density is monotone increasing or decreasing depending on the sign of 
  

! 

"2 .  

We need only consider 
    

! 

r2 several wavelengths at most removed from the interface in 

order to adequately capture the behavior of a given surface perturbation; indeed, as we 

show below, the external pressure     

! 

P2 (r2 ) cancels out exactly in a linearized analysis. The 

unperturbed motion of the interface naturally depends on the specified pressure 

difference between 
    

! 

r2 and the origin. 

 

The underlying assumption in our above analysis is that the fluid is ideal, i.e., viscosity 

and thermal conduction may be neglected.  For a compressible, adiabatic, ideal fluid we 

identify 
  

! 

"
i
 above with the usual ratio of specific heats     

! 

cP / cV . The assumption of a 
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polytropic fluid is also convenient as an analytic device for recovering incompressible 

fluid behavior as 
  

! 

"
i
#$ , allowing for direct comparison with previous work [15]. 

 

We next derive the linearized form of Eq. (21) on the perturbed interface. Using the 

unperturbed solution for Eq. (21) and the total perturbed density variation on the 

displaced boundary [16] 

 

    
      

! 

"#i = $ i# i,0 %
al

R

& 

' 
( 

) 

* 
+ %Pl (cos, )+

"Pi

Cs,i
2

,           (22) 

 

we straightforwardly obtain:  

 

       
      

! 

"P1 = # $ 1,0 % "D1 +&1 %D1 %
al

R

' 

( 
) 

* 

+ 
, Pl (cos- )

' 

( 
) 

* 

+ 
, ,     (23a) 

 

       

      

! 

"P2 = # $ 2,0 %"D2 +&2 % # $ 1,0 %D1 %
al

R

' 

( 
) 

* 

+ 
, %

1-
D1

Cs,1
2
%
.1 - 1( )
.1

1-
D1

Cs,1
2
%
.1 - 1( )
.2

' 

( 

) 
) 
) 
) 
) 

* 

+ 

, 
, 
, 
, 
, 

Pl (cos/ ),     (23b) 

where 

                                     

         
    

! 

D1 "
#$1,0

#t
% & $1,0 ' & $1,0

( 

) 
* 

+ 

, 
- 

r =R

= %
Rg

2
%

d

dt

d.1

dt
'

R2

4 .1 + 3( )

( 

) 
* 
* 

+ 

, 
- 
- 
,    (24a)  

 

       
    

! 

"Di #
$"%i

$t
& ' "%i ( ' %i,0

) 

* 
+ 

, 

- 
. 

r =rs

,      (24b) 

and 

           

    

! 

" # 1,0 $ # 1,0 %
&1 ' 1( )
&1

%
1

1'
&1 ' 1( )
&1

%
D1

Cs,1
2

( 

) 

* 
* 

+ 

, 

- 
- 

,       (25a) 
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! 

" # 2,0 $ # 2,0 %
&2 ' 1( )
&2

%
1

1'
&1 ' 1( )
&2

%
D1

Cs,1
2

( 

) 

* 
* 

+ 

, 

- 
- 

      (25b) 

 

for the renormalized densities. In obtaining Eqs. (23b, 25b) we have made use of the 

identity: 
    

! 

"2# 1,0Cs,1
2

= "1# 2,0Cs,2
2 , which follows from applying pressure balance across 

the unperturbed interface. We point out that the external pressure     

! 

P2 (r2 ) conveniently 

cancels out in the above linearized analysis. The general dispersion relation follows from 

imposing pressure balance across the perturbed interface in Eqs. (23a-b), i.e., 
    

! 

"P1 = "P2. 

We note the occurrence of two resonances in Eqs. (25a-b) for     

! 

D1 > 0, e.g.,  when g<0 

and     

! 

d"1 / dt # 0 . For the illustrative example of a uniformly accelerating shell [See Eq. 

(6)] we can write for the location of the pair of resonances: 

 

             
    

! 

"
i
= #

2$
i

$1 # 1
.     (25) 

 

Thus, the existence of a resonance between the interface radius and density-gradient 

scalelength requires suitably large density gradients such that 
    

! 

"
i
< #2 for 

    

! 

1< " i <# . We 

note that the potential existence of this pair of resonances is entirely derived from 

Bernoulli’s Equation with no recourse to the continuity equation or closure hypothesis 

[Eqs. (14a-b)].  

 

By virtue of the sign of 
    

! 

D1
 in general, potential resonance effects in a spherical 

implosion are manifested only during acceleration 
    

! 

g < 0 dR / dt < 0( )  of the fuel/pusher 

interface. This condition precludes the occurrence of RT instability, leaving only 

Richtmyer-Meshkov (RM) instability [20] as a possible venue for resonance phenomena. 

However, the growth rate for this instability is proportional to the Atwood number, which 

depends on the density ratio   

! 

" # 2 / " # 1 . Using Eqs. (25a-b) to evaluate this ratio, the 

resonant denominators are seen to cancel out only if 
  

! 

"1 = "2
. Thus, differing values of the 
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adiabatic index across an accelerating fuel/pusher interface may potentially lead to 

enhanced RM growth according to a linearized analysis of the Bernoulli equation. 

 

 

Applying Eq. (21) to both sides of the interface leads to an interesting issue when we 

enforce pressure equilibrium. How will the density profiles adjust to the perturbed 

interface? In other words, will the density stratify along the perturbed interface or the 

unperturbed interface [See Fig. 3]? This distinction will lead to two distinct physical 

regimes of interest as follows. The time-scale for the perturbed density to change 

significantly is defined as [21]: 

 

     
    

! 

"# ,i $ d ln%#i / dt( )
&1

r =R

= '2(i,0
r =R

&1

,   (26)  

 
 

where the last identity follows directly from Eq. (14b).  Using Eqs. (10a, 11a) we can 

readily evaluate Eq. (26): 

 

                                
    

! 

"#, i = Fi

$1
 (27) 

 
 
where 

    

! 

Fi " d ln# i, 0 / dt . With     

! 

F1 = "3d ln R / dt  from conservation of fuel mass and 

    

! 

F2 " #2d ln R / dt  for a compressible shell [12], 
    

! 

min("#, i ) $ d ln R / dt % 1/ 3. For classical 

RT growth we define the threshold for an “incompressible” perturbation response when 

    

! 

min("#, i ) $%
RT ,c

> 1 or: 

 

         

      

! 

l > l c " 9 #
dR / dt( )

2

At # g #R

$ 

% 

& 
& 

' 

( 

) 
) 
.     (28) 

 
For typical ICF conditions with     

! 

g " 10
3µm/ns2,     

! 

dR / dt " v0 # 10
2 µm/ns, and     

! 

R " 10-

100 µm, we find a threshold mode number from Eq. (28)     

! 

l " 1# 10. Thus, for mode 

numbers on the order of   

! 

" 10 or greater, the RT perturbation response is essentially 
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incompressible for most ICF applications and leads to stratification of the density parallel 

to the perturbed interface. In the following we distinguish between these two regimes.  

 
 
e) Incompressible regime 
 
We now evaluate Eq. (21) with constant density on the perturbed interface, i.e., 

    

! 

"i (rs) # "i (R). For the unperturbed motion of the interface we obtain the fairly 

complicated relation: 

 

    

! 

" # 1,0

1

2

F1R

3

$ 

% 
& 

' 

( 
) 

2

*
dF 1

dt

R
2

6
+

d

dt

R
2

4 +1 + 3( )
,

d+1

dt

$ 

% 

& 
& 

' 

( 

) 
) 

- 

. 

/ 
/ 

0 

1 

2 
2 

=

           " # 2,0

1

2

F1R

3

$ 

% 
& 

' 

( 
) 

2

*
dF 2

dt

R
2

6
+

dR

dt
,

3++2( )
1++2( )

,
F 2 * F 1

3
+

d+1

dt
,

1

3++1( )
2
*

d+2

dt
,

1

3++2( )
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
,R +

- 

. 

/ 
/ 
/ 

           
R

2

1++2

,
d

dt

F 2 * F 1( )
3

+
d+1

dt
,

1

3++1( )
2
*

d+2

dt
,

1

3++2( )
2

$ 

% 

& 
& & 

' 

( 

) 
) ) 
*

R
2 5++2( )

4 3++2( )
,

d

dt

d+2

dt
,

1

3++2( )

$ 

% 

& 
& 

' 

( 

) 
) *     

            
R

2 3++2( )
,

dR

dt
,

d+2

dt
+

R
2

2 3++2( )
3
,

d+2

dt

$ 

% 
& 

' 

( 
) 

2

+
P(r2 )

#2 (r2 )

0 

1 

2 
2 
.                                             (29)

  
  
 
We will not make further use of Eq. (29) here; rather, we concentrate on the companion 

perturbation equation that we now derive. Upon enforcing pressure balance on the 

perturbed interface with use of Eq. (21), collecting terms proportional to     

! 

al , and then 

carrying through some straightforward algebra, we find 

 

      

! 

d2al

dt2
+

dal

dt
" #12 "

d ln n1

dt
$

d ln(3+%1 )

dt

& 

' 
( 

) 

* 
+ $ #21 "

d ln n2

dt
+ (,$ 3) "

d ln R

dt

& 

' 
( 

) 

* 
+ 

- 

. 
/ 

0 

1 
2 $

             al "
g

R
" l$ 1( ) Al $ #21 2$ ,( ) $

3#22

3+%1

& 

' 
( 

) 

* 
+ + #21 "

d ln R

dt
"
d,

dt
+ #12 "G1 $ #21 "G2

- 

. 
/ 

0 

1 
2 = 0,    (30)

 

 
where 
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! 

"ij =
# $ i,0n j

# $ 2,0n1 % # $ 1,0n2

,              (31) 

 

            
    

! 

" # $
d ln% 2,0

d ln R
          (32) 

 
as in Ref. 12, 
 

                                           
      

! 

Al "
#12 $ #22( )

l$ 1
% n1 $

3

3+&1

' 

( 
) 

* 

+ 
,       (33)  

 
is a generalized modal Atwood number, and 
 
 

         
    

! 

G1 " n1 #
d ln$1

dt
#

d

dt

$1

n1 3+$1( )

% 

& 

' 
' 

( 

) 

* 
* +

d ln R

dt
#

d ln n1

dt
+

$1

3+$1( )R
#

d

dt
R

d ln L,,1

dt

% 

& 
' ' 

( 

) 
* *   (34) 

 
and 
 
 

     
    

! 

G2 "
d#2

dt
$

F 2 % F1

3

& 

' 
( 

) 

* 
+ %

d ln n2

dt
$

F 2 + 2+#2( ) F 2 % F1( )( )
3

%
d ln R

dt
$

d#2

dt
$, $ 3% ,( ) ,   (35) 

 
          
 

include explicit acceleration-free, density-gradient terms that vanish as     

! 

"i # 0 . Equation 

(30) is only modestly more complicated than former results in the absence of density 

gradients     

! 

(" i = 0) [12]. We highlight some of the differences. The term in Eq. (30) 

proportional to       

! 

dal / dt  is traditionally identified as a source of classical BP growth due to 

geometrical convergence (or divergence) effects. We see from Eq. (30) that this term is 

significantly changed from the homogeneous result with the addition of several terms 

    

! 

(" d# i / dt) having a mild mode number dependence. These terms go generally in the 

direction of increasing BP growth - more so for the lowest mode numbers. Further 

geometric effects are found in the expression proportional to 
    

! 

al"ij  in Eq. (30). These 

latter terms are identified as intrinsically geometric due to the fact that they vanish in the 
planar limit [22]:       

! 

l,R "# $ l / R % k <#. The lone term that does survive in the planar 
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limit is proportional to     

! 

g " Al and is identified as the source term for RT and RM growth. 

The definition of modal Atwood number [See Eq. (33)] was chosen to isolate and 

maintain the intrinsic 
  

! 

"2 # "1 dependence even at low mode numbers. Still, this term 

retains some geometric character, particularly at the lowest mode numbers. Only in the 

limit of large   

! 

l does this term recover a pure Atwood number dependence. It is 

worthwhile mentioning that recent work by Epstein [23], using a judicious 

renormalization of the perturbation amplitudes, succeeds in distinguishing pure RT 

behavior from BP growth in the case of like-compressible, homogeneous fluids. 

 

Equation (30) simplifies greatly when     

! 

d"i / dt = 0 , giving 

 

      

! 

0 =
d2al

dt2
+

dal

dt
"
d ln R

dt
" 3# $( )%21 +

      
al

R & ' 2,0n1 # & ' 1,0n2( )
" g & ' 2,0 # & ' 1,0( )n1n2 + & ' 2,0 2# $( )n1 + & ' 1,0n2[ ]#

d ln R

dt
"
d$

dt

( 
) 
* 

+ 
, 
- 

   (36)

 

 
We note that Eq. (36) is formally identical to the     

! 

"i = 0  case [12], apart from a 

remaining dependence of 
  

! 

ni  on 
  

! 

"i  through Eq. (16b). 

 
 
f) Compressible regime 
 
We now derive the compressible analog of Eq. (30). Returning to Eq. (3), the stratified 

density at the modulated interface follows the prescription: 

 

          
      

! 

"i (rs ) # " i,0 (t) $ 1+% i

al

R
Pl (cos& )

' 

( 
) 

* 

+ 
, .     (37) 

 
 
Using Eq. (37) in Eq. (21) reproduces Eq. (30) except for an addition to the term 

responsible for RT growth: 

 

                         
      

! 

         
gAl

R
"

gAl

R
+
#12

R
2
$ %2 & %1( ) $ n1D1.     (38) 
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For typical ICF conditions we can establish that the effect of compressible perturbations 

helps to reduce RT growth rates after deceleration onset. In general, 

    

! 

"12 < 0, D1 < 0, #2 > #1 > 0, and we quite reasonably assume that 

      

! 

" i 2+"i( ) >> 2l +1( )
2
 holds in the compressible regime, cf., Eq. (28). Using Eqs. (17a-

b, 24a, 31, 38) along with the assumption     

! 

d"1 / dt # 0 , we obtain the condition for 

suppressing (compressible) RT instability       

! 

(1" l < l c ): 

 

               
  

! 

"2 > "1 + 2
# $ 2,0

# $ 1,0

% 1
& 

' 
( 

) 

* 
+ +

8"1

3 3+"1( )
.    (39) 

 

     

Finally, our heuristic argument for delineating the compressible and incompressible 

regimes can be put on firmer footing by solving Eq. (22) for 
  

! 

"#i . For the simpler example 

of 
  

! 

"#1, we obtain: 

 

         

      

! 

"#1

# 0,1

=

$1 %
al

R

& 

' 
( 

) 

* 
+ ,

1

Cs,1
2
%
-1 , 1

-1

& 

' 
( 

) 

* 
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R

n1

d2al

dt2
+ alg % 1,

1

n1

& 

' 
( 

) 

* 
+ 

& 

' 
( 
( 

) 

* 
+ 
+ 

. 

/ 

0 
0 

1 

2 

3 
3 
Pl (cos4 )

1+
-1 , 1

-1

& 

' 
( 

) 

* 
+ 

Rg

2Cs,1
2

,     (40) 

 

where     

! 

"1 # const. by assumption. For 
  

! 

"1 # 1 we recover the compressible regime with 

the stratified perturbed density varying along the displaced interface in agreement with 

Eq. (37). For the incompressible limit 
  

! 

"1 #$ , we use that 
    

! 

Cs,1
2 " #1Ci,1

2 , where 
    

! 

C
i,1

 is 

the isothermal sound speed in region 1. For the usual example [See Eq. (6)], we obtain: 

    

! 

"#1 /# 1,0 $ %1n1( )
&1
' 0 as 

  

! 

"1 #$ . Thus, the perturbed density is shown in the 

incompressible limit to be constant on the perturbed interface as expected. A further limit 

of interest is     

! 

R "# : 
      

! 

"#1 /# 0,1 $%2 d2al / dt2( ) / n1g. Using that       

! 

d2al / dt2
" allg # At / R  

for classical RT growth with     

! 

l >> 1, we obtain 
      

! 

"# /# 0,1 $%2At & al / R $ 0  as     

! 

R "#. 
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III. Results 
 

We analyze in some detail the influence of contiguous density gradients on BP growth 

and the RT instability. With the compressible regime being restricted to relatively low 

mode numbers     

! 

l < 10, we concentrate on the incompressible case [Sec. IIe] which enjoys 

wider applicability for typical ICF conditions. In any case, if 
  

! 

"1 # "2 $ "  the distinction 

between the two regimes is rendered moot, cf., Eq. (38). 

 

 

a) Planar limit 
 
Before delving into the spherical and density-gradient effects predicted by our model, it is 

worth exploring the planar limit to compare with previous relevant work. Applying the 

planar limit to Eq. (30) in the usual manner results in 

 

       
      

! 

d2al

dt2
" al # kg # Ak = 0,             (41) 

where 

    

! 

Ak =

" # 1,0 $ " # 2,0( ) 1$ 1+ 4k
2
L# ,1

2% 

& 
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( 

) 
* 1+ 1+ 4k

2
L# ,2

2% 

& 
' 

( 

) 
* 

2k " # 1,0L# ,1 1+ 4k
2
L# ,2

2 + " # 2,0L# ,2 1+ 4k
2
L# ,1

2 + " # 1,0L# ,1 $ " # 2,0L# ,2

+ 

, - 
. 

/ 0 

.     (42) 

  

For 
  

! 

"1 = "2
 and in the large wavenumber limit 

    

! 

4k
2
L", i

2
>> 1

# 
$ 
% & 

' 
(  Eqs. (41-42) recover the 

classical Rayleigh-Taylor growth rate. We mention that for 
  

! 

"1 # "2
, instability persists 

even for equal densities 
  

! 

"1,0 = "2,0( )  and is driven by a pure entropy change across the 

interface [24]. In the small wavenumber limit, we obtain with aid of Eqs. (24a, 25a-b): 

 

                            
    

! 

"RT = kC
s,1
#

$ % 2,0

$ % 1,0

& 1 ' kC
s,1
#

Cs,1
2

Cs,2
2
& 1          (43)  
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as  
    

! 

D1 "#. Equation (43) is very similar to the fully compressible 
    

! 

" i = 1( ) , planar result 

of Bernstein and Book [16], despite being strictly valid only in the incompressible regime 

    

! 

"#, i $%RT , c > 1( ) . We note that the threshold mode number for compressibility onset     

! 

l c 

vanishes in the planar limit for classical RT growth [See Eq. (28)], but remains finite in 

the large wavelength limit of incompressible RT growth [Eq. (43)]: 

 

                           

      

! 

l c =

3
dR

dt

Cs,1

" # 2,0

" # 1,0

$ 1

.         (44) 

 

Accordingly, we apply     

! 

R,  " i #$ with     

! 

l < l c to define the planar limit of compressible 

RT growth [Eq. (38)]: 

 

    
      

! 

"RT #
2l +1( )Cs,1

2R

gR

2
$

1

Cs,1
2
%

1

Cs,2
2
$
"2

"1

& 

' 

( 
( 

) 

* 

+ 
+ 
,                 (45) 

 

vanishing as     

! 

R
"1/ 2. Thus, truly compressible RT growth survives only in an intrinsically 

spherical geometry. 

 

It is important to point out some key differences between the planar limit of an 

intrinsically spherical analysis such as ours and a pure slab treatment [16]. First, the 

interior solution of our spherical problem was manifestly constructed to conserve mass 

and behave regularly at the origin [12, 25, 26]. Such a construction implies that the 

problem is no longer symmetric upon interchange of the region indices (  

! 

1" 2) - in 

contrast to a pure planar treatment [16]. Second, our choice for the unperturbed density 

profile [Eq. (3)] in a uniformly accelerating shell agrees with previous planar treatments 

only when 
    

! 

" i = 1, which is precisely where our perturbation analysis breaks down [See 

Eq. (21)]. Third, previous planar treatments considered only a static geometry with no 
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unperturbed fluid flows. However, such flows serve to physically delineate the perturbed 

compressible and incompressible regimes in our analysis - which would otherwise not be 

possible [See Eq. (28)]. Fourth, the form of Bernoulli’s Equation (21) appropriate for a 

polytrope requires that the flow be isentropic (or characterized by constant entropy in 

space), in contrast to an intrinsically Lagrangian treatment [16] where the entropy is 

taken to be invariant along the trajectory of any fluid element. If, as usually happens, the 

entropy is uniform throughout the fluid volume at an initial time, the fluid maintains 

everywhere the same value of entropy for all subsequent times [27]. This isentropic 

assumption serves as the distinguishing feature of an analysis based on Bernoulli’s 

Equation [See also Ref. 28] compared with prior Lagrangian-based analyses that obtained 

self-similar solutions with homogeneous deformation [29]. 

 

    

b) BP effects  
 
We return to Eqs. (30-35) and assess the effect of density gradients on classical BP 

geometric growth. Two contributions from density gradients arise in the expression 

responsible for classical BP growth, i.e., the terms proportional to       

! 

dal / dt  in Eq. (30). 

First, the occurrence of 
  

! 

"ij  includes the effect of density gradients through the 

dependence of 
  

! 

nj  on 
  

! 

" j [See Eq. (16b)]. We point out that this overall factor on BP 

growth (
  

! 

" #ij ) arises solely because of the physical requirement that the velocity 

potential remain regular at the origin, cf., Eq. (10a). Such a requirement of self-similar 

flow within the interior fluid (fuel) leads to a linearly increasing radial velocity profile 

within the fuel, in agreement with radiation-hydrodynamics simulations [12]. Second, 

several of the terms are proportional to 
    

! 

d" i / dt = " i # d ln(R / L$ ,i )/ dt  and represent an 

additional source for density-gradient effects. Figure 4 shows the cumulative change in 

classic BP growth due to nonzero density gradients (
  

! 

"1 = "2 # " ) compared to the 

homogeneous case, where     

! 

Bl is defined as the overall coefficient of       

! 

dal / dt " d ln R / dt  in 

Eq. (30) [See Eq. (47) below]. Here, we have momentarily neglected the time 

dependence of 
  

! 

L"  for simplicity and used   

! 

" # 2 for a compressible shell [12]. We find 
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that the classical BP growth rate is enhanced by the addition of positive density gradients, 

particularly for the lowest modes.  

 

Continuing with our heuristic description of modified BP growth, we can carry through 

an analytical estimate by integrating the first two terms of Eq. (30) and assuming 

    

! 

R(t) = R0 " (t / t0)µ  over a time interval     

! 

t" t0: 
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al (t) = al (t0 )+
dal
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where                      
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! 

"1 = "2 and 
    

! 

d ln(L" / R)/ dt << 1 are taken, and the unperturbed subscript on the density 

  

! 

"
i
 is now dropped for simplicity. We note that in the limit       

! 

µBl " 1, Eq. (46) leads to 

logarithmic BP growth [12].  

 

This initial discussion of geometric or BP growth only includes what is traditionally 

understood to form the basis of a classical BP analysis, namely, the middle term in Eq. 

(30). However, the last term 
    

! 

" al( )  in Eq. (30) may also significantly contribute strictly 

geometric effects as we now consider some further examples.  

 

We return to Eq. (30) and consider the behavior of low-order modes under strong density 

gradients such that 
    

! 

2l +1( )"2 /"1 << 4#1#2. In this limit, taking   

! 

" = 2 and again 

assuming 
    

! 

d ln L"i / R( ) / dt << 1, i.e.,     

! 

d"i / dt # " i $ d ln R / dt , we find in leading order: 
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Using Eqs. (18a-b) for 
  

! 

ni , Eq. (48) becomes: 
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We note that in the limit 
  

! 

"1 #$ , the solution to Eq. (49) reduces to Eq. (46) with 

      

! 

Bl = 2. For large but finite 
  

! 

"1  the solution to Eq. (49) is facilitated by treating the term 

in square brackets as a perturbation proportional to the small parameter 

    

! 

"# $ 1/#1(t0) << 1. Upon expanding 
      

! 

al = a
l

(0)
"#

0
+ a

l

(1)
"#

1
+ ... we trivially recover Eq. 

(46) in order   

! 

"#
0  with       

! 

Bl = 2. To order 
  

! 

"#
1  we straightforwardly find for 

      

! 

a
l

(1) using 

    

! 

R(t) = R0 " (t / t0)µ : 

 

      

! 

a
l

(1) = "#
1

a
l

(0) +
da

l

(0)
(t0 )

dt
$

t0H

3µ % 1( ) 2µ % 1( )
$

t

t0

& 

' 
( 

) 

* 
+ 

1%3µ

+
t

t0

& 

' 
( 

) 

* 
+ 

%µ

H $

a
l

(0)
(t0 )+

t0

2µ % 1( )
$

da
l

(0)
(t0 )

dt

& 

' 

( 
( 

) 

* 

+ 
+ 

1% µ

, 

- 

. 

. 

. 

. 

. 

/ 

0 

1 
1 
1 
1 
1 

,

                                                                                                                                             (50)

 

where 
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Equations (46, 50, 51) describe combined BP and RT growth (for constant 
  

! 

L"i ) in the 

low mode regime such that 
    

! 

2l +1( )"2 /"1 << 4#1#2 is satisfied. For large 
  

! 

"1  the low-

mode growth is dominated by BP effects [Eq. (46)] with RT growth entering only in 

order 
  

! 

"#
1  [Eq. (51)]. 

 

We now consider the complementary case of 
  

! 

L"i # R  such that 
  

! 

"i = constant. Defining 

      

! 

"21 = #2n1 #1n2 = #2 /#1( ) 2l +1( ) 4$1$2( ) << 1 with the aid of Eqs. (18a-b), we rewrite 

Eq. (36) as follows: 
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To zeroth order in 

  

! 

"21  we obtain 
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where the last term is presumed to be of order unity for sufficiently large 

    

! 

"2 # $2 /$1( ) 2l +1( ) / 4. To isolate the purely geometric behavior we set 
  

! 

"1 = "2, 

thereby manifesting a new source of BP growth in the presence of large (contiguous) 

density gradients. Assuming     

! 

R(t) = R0 " (t / t0)µ  as before, we find purely acceleration-

driven geometric growth 
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al (t) = al (t0 ) "
t

t0
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)

     (54) 
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where   

! 

" = µ ,1# µ . Geometric growth occurs for   

! 

µ < 0 during the deceleration or 

stagnation phase of an implosion     

! 

(g > 0), while an accelerating unstable interface 

requires  

! 

µ > 0.  

 

The general solution of Eq. (52) can be readily found for the case of nearly constant 

  

! 

"1 /"2 as follows: 

                                            

! 

al (t)" t
#± ,                                           (55a) 

 

where 
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Secular growth ensues for 
  

! 

max "±( ) > 0. Note that Eqs. (55a-b) provide a clear example 

of the commonly encountered coupling between geometric and RT growth for finite 

radius R. 

 

 

 

 

 
c) RT and RM growth  
 

The term proportional to     

! 

g " Al in Eq. (30) is identified as the source for RT growth. The 

explicit effect of contiguous density gradients on RT growth is entirely contained in the 

modal Atwood number as defined in Eq. (33). In Figs. (5a-b) we plot the ratio of the RT 

source term normalized to the homogeneous case 
      

! 

Al (" )/ Al (0)  as a convenient 

measure of the effect of contiguous density gradients. Compared with the homogeneous 

case, we find an enhancement in the RT growth rate over a particular range of mode 

numbers. This effective increase in modal Atwood number is attributed to the sampling 

of larger density changes by the perturbation over a spatial scale on the order of a 

wavelength. Larger wavelengths sample more of the density profile away from the 
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interface which leads to an effectively larger density jump for   

! 

" > 0 and increased 

growth. We can analytically estimate the location     

! 

l max  of the maximally enhanced 

growth with use of Eq. (33), assuming     

! 

" ,l >> 1 and 
  

! 

"1 = "2
: 
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# 1$ At
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2At
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Using Eqs. (33, 56a) we find for the enhanced growth  
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Thus, high Atwood number RT growth with contiguous density gradients exhibits the 

largest deviations from classical growth at the lowest mode numbers. This conclusion is 

not particularly dire since RT growth is generally secular in spherical systems - not 

exponential - unless the trajectory of the interface varies exponentially with time [30]. 

The transition from spherical to planar geometry for a given mode depends on the change 

in effective wavelength       

! 

2"R / l  with spherical radius. A nearly constant perturbation 

wavelength occurs if     

! 

l >> 2" , leading to near exponential growth [See Eq. (41)]. Thus, 

mode numbers between 50 and 100 roughly define the transition to planar behavior.  

 

In the planar limit, RT growth is generally described by Eq. (42). Figure (6) illustrates the 

growth for the simpler but still useful case: 
  

! 

"1 = "2 # "  [See Eq. (1b)]. A maximum 

occurs in the RT growth rate spectrum at a wavenumber   

! 

kc such that: 

 

                                
    

! 

kcL" =
1# At

2

2At
,      (57) 

 

with the maximum growth rate given by Eq. (56b). A maximum occurs for 
    

! 

L" > 0 

because the co-alignment of the density gradients supports an increase in the effective 

Atwood number of a perturbation. At longer wavelengths density-gradient stabilization 
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sets in to depress RT growth. In the regime 
    

! 

1" At << 2k
2
L#

2
<< 1 Eq. (1b) reduces to: 

    

! 

"RT = g / L# , which interestingly enough coincides with the expression for density-

gradient stabilization from a continuous density profile in the short wavelength limit, cf., 

Eq. (1a). For yet larger wavelengths such that 
    

! 

2k
2
L"

2
<< 1# At we obtain: 

    

! 

"RT = k 2At #L$g /(1% At)  which vanished with k. 

   

For impulsive acceleration, i.e.,     

! 

g(t) = "v0 #$ (t% t0), Eq. (42) applies as well to the 

description of RM growth [20]. Integrating Eq. (41) yields for the RM growth rate: 
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where     

! 

dak (t < t0)/ dt = 0. By virtue of the linear dependence of RM growth rate on   

! 

Ak  at 

early times compared with the RT growth rate 
  

! 

" Ak( ) , contiguous density-gradient 

effects can be comparatively larger. For 
  

! 

L">0 increased growth results according to: 

                   

            

    

! 

"
RM

=
At # k # $v0

1+ At # k # $v0 # t% t0( ) #
2kL&

1+ 4k
2
L&

2 % At

' 

( 

) 
) ) 

* 

+ 

, 
, , 

#
2kL&

1+ 4k
2
L&

2 % At

' 

( 

) 
) ) 

* 

+ 

, 
, , 
.     (59) 

 

Finally we note that for first-shock passage across the interface, Eq. (5) or Eq. (8c) for 
  

! 

L"  

may not apply and other arguments are required. For example, x-ray preheat of a low-Z 

shell can lead to volumetric expansion of the shell and the initial establishment of 

contiguous density gradients on the inner interface well before shock transit. It must also 

be mentioned that Eq. (59) is valid only in the limit of weak shocks, lest our model 

assumptions of small     

! 

"#i /#i  become violated [See below Eq. (12)]. 

 

 

IV. Application to an ICF implosion 
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We apply the model to a particular example of an Omega-scale ICF implosion briefly 

mentioned in Section IIa [See Fig. (2c)]. A challenging exercise towards the goal of 

understanding the hydrodynamic stability of an imploding shell is carrying out a suite of 

2-D single-mode growth-factor calculations. To maintain perturbation growth in the 

linear regime an infinitesimally small, single-mode perturbation amplitude is imposed. A 

suite of simulations over a range of mode numbers is undertaken to generate a spectrum 

of growth factors on a chosen interface at a given time – usually taken as the instant of 

peak neutron production. This spectrum is then convolved with an initial surface 

spectrum and summed in quadrature to estimate the annular extent of interface mix.  

 

In practice the generation of a linear growth-factor spectrum is time-consuming and 

fraught with numerical challenges in controlling mesh instabilities. Various numerical 

filters are often employed to suppress such instabilities, but at the risk of possibly 

compromising the integrity of the calculation. An alternative approach is the combined 

use of analytical models as developed in this work with 1-D simulations to estimate 2-D 

growth factors. For example, the various time-dependent outputs from a highly resolved 

1-D simulation of the imploding shell can be directly used in the governing equation for 

perturbation growth, Eq. (30).  

 

It is worth noting that an important physical effect not explicitly included in our Plesset-

type analysis is the diffusion of thermal energy along a perturbed interface. This feature 

is particularly important for short wavelength perturbations where classical Rayleigh-

Taylor growth can be drastically moderated. Bychkov et al. [31] have derived an 

appropriate expression for ablatively-driven RT growth valid in the limit of short 

wavelengths compared with the temperature gradient scalelength 
    

! 

kLT >> 1( ) : 

 

                    
    

! 

"RT = kg +
k 4#2

4
$

k 2#

2
,      (60) 

 

where 
    

! 

" # $ /%cp  is the thermal diffusivity and κ is the thermal conductivity. A similar 

behavior is well known for the case of momentum diffusion or ion viscosity [32]. 
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However, thermal diffusivity typically dominates over viscosity since electron transport 

is far faster than ion transport [33]. For the longer wavelengths of interest in this work the 

effects of thermal diffusion are relatively modest in practice. Still, it is useful to try to 

consider its effect in the present analysis for comparison with 2-D growth-factor 

simulations that generally include thermal transport. 

 

Although the current treatment as it stands does not include thermal transport, 

phenomenological modifications to include the short-wavelenth behavior depicted in Eq. 

(60) can be carried through. First, we assert that the gradient-temperature scalelength is 

on the order of a density-gradient scalelength. This assertion follows from an assumed 

ideal equation-of-state [See Eq. (8b)] and the fact that RT growth begins at deceleration 

onset:       

! 

r 
" P = 0. Second, we trigger the effects of thermal diffusivity by establishing a 

hard cutoff in   

! 

kLT  above which thermal transport will be included in the 1-D calculation 

in a form similar to Eq. (60):  
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Equation  (61) is an attempt to satisfy the requirement for validity of Eq. (60) 
    

! 

kLT >> 1[ ] 

while employing an average of 
  

! 

LTi  across the classical interface. Likewise, the effective 

thermal diffusivity for the interface is appropriately written as a sum: 
  

! 

" = "1 + "2. 

 

In the example under consideration we will focus on RT growth following deceleration 

onset. The influence of RM growth is often small compared with RT, and we choose to 

ignore the effects of thermal transport during the earlier episodes of RM growth in an ICF 

implosion. The reason for this choice is that the influence of thermal transport on RM 

growth has not been worked out to our knowledge, although asymptotic studies of the 

Navier-Stokes equation have succeeded in including the related effects of viscosity [34]. 

A further assumption is that the terms proportional to 
  

! 

"i  and     

! 

d"i / dt  be dropped in Eq. 

(30) prior to deceleration onset. The reason for this simplification is that the 

characteristically strong shocks found in an ICF implosion lead to large density 
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perturbations and exceedingly small density-gradient scalelengths which violate the 

underlying assumptions of the model: 
    

! 

"i << 1 [See Section IIC].                

 

Figure 7 shows the predicted 2-D growth factors up to peak neutron production according 

to our 1-D model (with and without thermal transport) and compared with the results of 

detailed 2-D single-mode simulations. For this exercise we have assumed equal 

polytropes 
  

! 

"1 = "2( )  in applying the analytical model [Eq. (30)]. The points that are 

labeled 1-D with   

! 

" ,# = 0 represent classical RT growth including BP growth as obtained 

from directly integrating Eq. (30). Compared with the 2-D simulation results, a 

conventional treatment of RT and BP growth is seen to significantly underestimate the 

growth of the lowest-order modes. In this regime the results are rather insensitive to 

thermal diffusivity and its manner of implementation [Eq. (61)].  Beyond     

! 

l " 20 the 

classical description deviates greatly from the 2-D results, strongly suggesting that 
thermal transport is critically important. The points labeled 1-D with finite   

! 

" ,#  now 

include all terms in Eq. (30) following deceleration onset - though with one exception. 

We have taken   

! 

" = 2 [See Eq. (32)] for the imploding shell in order to avoid large 

density changes in time that invalidate the model assumptions as discussed above. This 

assumption follows from applying mass conservation to an imploding, fully compressible 

shell and is consistent with previously reported numerical results [12].  

 

Figure (7) shows that the 1-D model complete with density-gradient and thermal effects 

tracks the 2-D growth-factor spectrum fairly well. Beyond     

! 

l " 10 some sensitivity to the 

way in which thermal transport has been implemented is found, particularly for the 
intermediate mode numbers     

! 

(l " 30). A first-principles analysis that includes thermal 

transport in a spherical geometry would overcome this element of arbitrariness in the 

current model. However, the main focus and interest of this work resides in the lowest-

order modes which are largely immune to thermal transport. 

 

 
V. Summary 
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A Plesset-type analysis has been applied to the study of the effects of contiguous density 

gradients on an accelerating, spherical, classical interface. In contrast to previous work 

with smoothly varying density profiles on an unstable interface, reduced RT growth on a 

classical interface with contiguous density gradients is predicted to occur for long 

wavelength perturbations. Intermediate wavelength perturbations are shown to exhibit 

enhanced growth compared with classical RT due to an effective increase in the Atwood 

number (At>0) from a co-alignment of the contiguous density gradients (
    

! 

L" > 0) with the 

acceleration (g>0). The short wavelength limit is shown to recover classical RT growth. 

A convenient analytic expression describing RT growth for all wavelengths in the planar 

limit is given by Eq. (1b). 

 

The effects of contiguous density gradients on classical BP growth are shown to be 

generally modest but destabilizing for ICF-relevant conditions. A new pathway for 

geometric growth is predicted for an accelerating spherical shell in the presence of strong 
and contiguous density gradients   

! 

(" >> 1). This instability is found to occur only for the 

lowest order modes and is independent of the classical Atwood number (At). 
 

A linearized analysis of Bernoulli’s equation has shown a potential resonance condition 

between the interface radius   

! 

R and the interior fluid density-gradient scalelength 
    

! 

L" ,1, 

provided the converging (fuel-pusher) interface undergoes acceleration 
    

! 

g < 0( ) . This 

resonance cannot occur during RT instability growth that follows deceleration onset, 

although RM growth may be enhanced in the neighborhood of the resonance condition 

prior to stagnation – but only when the adiabatic indices are distinct 
  

! 

"1 # "2( ) .  

 

The analysis has made a physical distinction between compressible and incompressible 

perturbation response in the presence of contiguous density gradients despite satisfying 

the standard mathematical requirement for compressibility:   

! 

"
2#$ % 0. We have argued 

that the physical criterion for compressible perturbation behavior is whether the 

associated density response can occur over a representative timescale of instability 

growth. In this sense, the boundary mode number for compressible response will be a 

function of the instability in question. We have shown that the RT instability with 
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contiguous density gradient profiles generally behaves in an incompressible manner for 

conditions of interest in most ICF applications. 

 

A comparison of the 1-D analytic model [Eq. (30)] with detailed 2-D single-mode 

growth-factor simulations of an Omega-class ICF implosion [19] has been carried out. 

The anomalously high perturbation growth of the higher-order modes shows clearly the 

need to implement thermal transport in the current analytical model. A heuristic attempt 

to include thermal diffusivity is largely successful at suppressing classical RT growth at 

high mode numbers. The lowest-order modes are unaffected by thermal diffusivity and 

are well described by the analytic model according to direct comparisons with the 2-D 

single-mode growth-factor simulations. The focus of this work in spherical geometry has 

been to understand the growth of low-order modes where BP effects are expected to be 

important and thermal transport plays essentially no role. Still, the formal inclusion of 

thermal transport in our Plesset-type treatment should help to redress the current 

deficiency at high mode numbers. 
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VII. Figures 
 
Fig. 1: Schematic of ICF geometry showing generic mass density (

! 

" ) profiles versus 

spherical radius coordinate     

! 

(r) with density discontinuity at interface   

! 

r = R. 

 

Fig. 2a-c (color): (a) Density profiles versus radius normalized to minimum fuel radius 

in fuel (solid line) and Au (thick solid line) at deceleration onset (
  

! 

t = tD ) and indicated 
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later times for ignition double-shell design [Ref. 11]; (b) 
  

! 

"i versus time for ignition 

double-shell design from deceleration onset to time of minimum fuel radius; (c) density-

gradient scalelengths versus time for Omega-class, hohlraum-driven, single-shell 

implosion [See Ref. 19] after deceleration onset on fuel-side of interface (red) and 

pusher-side of interface (green) . 

 

Fig. 3 (color): Schematic of (a) incompressible and (b) compressible perturbed density 

response to modulated interface. 

 

Fig. 4 (color): Normalized β-factor for BP growth [Eq. (45)] versus Legendre mode 

number and dimensionless gradient-scalelength parameter σ for density mismatch 

  

! 

"1 /"2 = 0.3 and shell compressibility parameter   

! 

" = 2. 

 

Fig. 5a-b (color): (a) Normalized RT growth rate versus Legendre mode number and 

dimensionless gradient-scalelength parameter σ for   

! 

"1 /"2 = 0.3 and shell 

compressibility parameter   

! 

" = 2; (b) versus Legendre mode number and   

! 

"1 /"2 for 

σ=50. 

 
Fig. 6 (color): Planar limit of RT growth rate [See Eq. (1b)] normalized to classical RT 

versus 
  

! 

kL"  and Atwood number At for 
  

! 

"1 = "2 # " . Solid lines denote 
    

! 

L" > 0; dotted 

lines correspond to 
    

! 

L" < 0. 

 

Fig. 7 (color): Simulated perturbation growth factors versus Legendre mode number an 

Omega-scale implosion [See Fig. (2c)] from 2-D single-mode simulations (green), 1-D 

simulations based on Eq. (30) without density-gradient 

! 

"  effects and thermal diffusivity 

! 

"  (red), and 1-D simulations based on Eq. (30) including finite 

! 

" ,

! 

"  effects (blue). Open 

red squares denote rescaled growth factors at higher mode numbers. 
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