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INTRODUCTION 

Energetic materials are unique for having a strong exothermic reactivity, which 

has made them desirable for both military and commercial applications. Energetic 

materials are commonly divided into high explosives, propellants, and pyrotechnics.  We 

will focus on high explosive (HE) materials here, although there is a great deal of 

commonality between the classes of energetic materials.  Although the history of HE 

materials is long, their condensed-phase properties are poorly understood. 

 Understanding the condensed-phase properties of HE materials is important for 

determining stability and performance. Information regarding HE material properties (for 

example, the physical, chemical, and mechanical behaviors of the constituents in plastic-

bonded explosive, or PBX, formulations) is necessary for efficiently building the next 

generation of explosives as the quest for more powerful energetic materials (in terms of 

energy per volume) moves forward.1 

In modeling HE materials there is a need to better understand the physical, 

chemical, and mechanical behaviors from fundamental theoretical principles. Among the 

quantities of interest in plastic-bonded explosives (PBXs), for example, are 

thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, 

mechanical moduli, and interfacial properties between HE materials and the polymeric 

binders. These properties are needed (as functions of stress state and temperature) for the 

development of improved micro-mechanical models,2 which represent the composite at 

the level of grains and binder.3 Improved micro-mechanical models are needed to 

describe the responses of PBXs to dynamic stress or thermal loading, thus yielding 

information for use in developing continuum models.  
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Detailed descriptions of the chemical reaction mechanisms of condensed 

energetic materials at high densities and temperatures are essential for understanding 

events that occur at the reactive front under combustion or detonation conditions. Under 

shock conditions, for example, energetic materials undergo rapid heating to a few 

thousand degrees and are subjected to a compression of hundreds of kilobars,4 resulting 

in almost 30% volume reduction. Complex chemical reactions are thus initiated, in turn 

releasing large amounts of energy to sustain the detonation process. Clearly, 

understanding of the various chemical events at these extreme conditions is essential in 

order to build predictive material models. Scientific investigations into the reactive 

process have been undertaken over the past two decades. However, the sub-μs time scale 

of explosive reactions, in addition to the highly exothermic conditions of an explosion, 

make experimental investigation of the decomposition pathways difficult at best. 

More recently, new computational approaches to investigate condensed-phase 

reactivity in energetic materials have been developed. Here we focus on two different 

approaches to condensed-phase reaction modeling: chemical equilibrium methods and 

atomistic modeling of condensed-phase reactions. These are complementary approaches 

to understanding the chemical reactions of high explosives. Chemical equilibrium 

modeling uses a highly simplified thermodynamic picture of the reaction process, leading 

to a convenient and predictive model of detonation and other decomposition processes. 

Chemical equilibrium codes are often used in the design of new materials, both at the 

level of synthesis chemistry and formulation.  

Atomistic modeling is a rapidly emerging area. The doubling of computational 

power approximately every 18 months has made atomistic condensed-phase modeling 
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more feasible. Atomistic calculations employ far fewer empirical parameters than 

chemical equilibrium calculations. Nevertheless, the atomistic modeling of chemical 

reactions requires an accurate global Born-Oppenheimer potential energy surface. 

Traditionally, such a surface is constructed by representing the potential energy surface 

with an analytical fit.  This approach is only feasible for simple chemical reactions 

involving a small number of atoms.  More recently, first principles molecular dynamics, 

where the electronic Schrödinger equation is solved numerically at each configuration in 

a molecular dynamics simulation, has become the method of choice for treating 

complicated chemical reactions.  

 

CHEMICAL EQUILIBRIUM 

The energy content of an HE material often determines its practical utility. Accurate 

estimates of the energy content are essential in the design of new materials1 and for 

understanding quantitative detonation tests.5 The useful energy content is determined by 

the anticipated release mechanism. Since detonation events occur on a μs timeframe, 

chemical reactions significantly faster than this may be considered to be in an 

instantaneous chemical equilibrium.  It is generally believed that reactions involving the 

production of small gaseous molecules (CO2, H2O, etc.) are fast enough to be treated in 

chemical equilibrium for most energetic materials.  This belief is based partly on success 

in modeling a wide range of materials with the assumption of chemical equilibrium6-8,9 .

 Unfortunately, direct measurements of chemical species the detonation of a 

condensed are difficult to perform.  Blaise et al10 have measured some of the species 

produced in detonating NM using a special mass spectroscopic apparatus.  These 
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measurements pointed to the importance of condensation reactions in detonation.  The 

authors estimate that the hydrodynamic reaction zone of detonating base sensitized liquid 

nitromethane is 50 μ in thickness, with a reaction time of 7 ns.   The hydrodynamic 

reaction zone dictates the point of which the material ceases to release enough energy to 

drive the detonation wave forward.  Reactions may continue to proceed behind the 

reaction zone, but the timescales for such reactions are harder to estimate.  Typical 

explosive experiments are performed on parts with dimensions on the order of 1-10 cm.  

In this case, hydrodynamic confinement is expected to last for roughly a μs, based on a 

high-pressure sound speed of a several cm/μs.  Thus, chemical equilibrium is expected to 

be a valid assumption for nitromethane, based on the timescale separation between the 7 

ns reaction zone and the μs timescale of confinement. The formation of solids, such as 

carbon, or the combustion of metallic fuels, such as Al, is believed to yield significantly 

longer timescales of reaction11.  In this case chemical equilibrium is a rough, although 

useful, approximation to the state of matter of a detonating material.  

Thermodynamic cycles are a useful way to understand energy release 

mechanisms. Detonation can be thought of as a cycle that transforms the unreacted 

explosive into stable product molecules at the Chapman-Jouguet (C-J) state12 (see Fig. 1). 

This is simply described as the slowest steady-state shock state that conserves mass, 

momentum, and energy. Similarly, the deflagration of a propellant converts the unreacted 

material into product molecules at constant enthalpy and pressure. The nature of the C-J 

state and other special thermodynamic states important to energetic materials is 

determined by the equation of state of the stable detonation products. 
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Figure 1: A thermodynamic picture of detonation: the unreacted material is 

compressed by the shock front and reaches the Chapman-Jouguet point.  From 

there adiabatic expansion occurs, leading to a high volume state.  Finally, detonation 

products may mix in air and combust. 

A purely thermodynamic treatment of detonation ignores the important question 

of reaction time scales.  The finite time scale of reaction leads to strong deviations in 

detonation velocities from values based on the Chapman-Jouguet theory13.  The kinetics 

of even simple molecules under high-pressure conditions is not well understood.  

High-pressure experiments promise to provide insight into chemical reactivity 

under extreme conditions. For instance, chemical equilibrium analysis of shocked 

hydrocarbons predicts the formation of condensed carbon and molecular hydrogen14.  

Similar mechanisms are at play when detonating energetic materials form condensed 

carbon8.  Diamond anvil cell experiments have been used to determine the equation of 

state of methanol under high pressures15.  We can then use a thermodynamic model to 

estimate the amount of methanol formed under detonation conditions16.   
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Despite the importance of chemical kinetic rates, chemical equilibrium is often 

nearly achieved when energetic materials react.  As discussed above, this is a useful 

working approximation, although it has not been established through direct measurement.  

Chemical equilibrium can be rapidly reached under high temperature (up to 6000 K) 

conditions produced by detonating energetic materials17. We begin our discussion by 

examining thermodynamic cycle theory as applied to high explosive detonation. This is a 

current research topic because high explosives produce detonation products at extreme 

pressures and temperatures: up to 40 GPa and 6000 K. These conditions make it 

extremely difficult to probe chemical speciation.  Relatively little is known about the 

equations of state under these conditions. Nonetheless, shock experiments on a wide 

range of materials have generated sufficient information to allow reliable thermodynamic 

modeling to proceed.  

One of the attractive features of thermodynamic modeling is that it requires very 

little information regarding the unreacted energetic material. The elemental composition, 

density, and heat of formation of the material are the only information needed. Since 

elemental composition is known once the material is specified, only density and heat of 

formation need to be predicted.  

The C-J detonation theory12 implies that the performance of an explosive is 

determined by thermodynamic states, the C-J state, and the connected expansion adiabat 

as illustrated in Fig. 1. The adiabatic expansion of the detonation products releases 

energy in the form of PV work and heat.  Subsequent turbulent mixing of the detonation 

products in air surrounding the energetic material leads to combustion processes that 

release more energy.  
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Thermochemical codes use thermodynamics to calculate states illustrated in Fig. 

1, and thus predict explosive performance. The allowed thermodynamic states behind a 

shock are intersections of the Rayleigh line (expressing conservation of mass and 

momentum) and the shock Hugoniot (expressing conservation of energy). The C-J theory 

assumes that a stable detonation occurs when the Rayleigh line is tangent to the shock 

Hugoniot, as shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Allowed thermodynamic stated in detonation are constrained to the 

shock Hugoniot. Steady-state shock waves follow the Rayleigh line.  

This point of tangency can be determined, assuming that the equation of state P = 

P(V,E) of the products is known. The chemical composition of the products changes with 

the thermodynamic state, so thermochemical codes must simultaneously solve for state 
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variables and chemical concentrations. This problem is relatively straightforward, given 

that the equations of state (EOS) of the fluid and solid products are known.  

One of the most difficult parts of this problem is accurately describing the EOS of 

the fluid components. Because of its simplicity, the Becker-Kistiakowski-Wilson 

(BKW)18 EOS is used in many practical energetic material applications. There have been 

a number of different parameter sets proposed for the BKW EOS.19 Kury and Souers5 

have critically reviewed these by comparing their predictions to a database of detonation 

tests. They concluded that BKW EOS does not adequately model the detonation of a 

copper-lined cylindrical charge. The BKWC parameter set20 partially overcomes this 

deficiency through multivariate parameterization techniques. However, the BKWC 

parameter set is not reliable when applied to explosives very high in hydrogen content.  

It has long been recognized that validity of the BKW EOS is questionable9.  This 

is particularly important when designing new materials that may have unusual elemental 

compositions. Efforts to develop better EOS have largely been based on the concept of 

model potentials. With model potentials, molecules interact via idealized spherical pair 

potentials. Statistical mechanics is then employed to calculate the EOS of the interacting 

mixture of effective spherical particles. Most often, the exponential-6 (exp-6) potential is 

used for the pair interactions:  

[ ]6)/()/exp(6
6

)( rrrrrV mm ααα
α
ε

−−
−

=  

Here, r is the distance between particles, rm is the minimum of the potential well, ε is the 

well depth, and α is the softness of the potential well.  

The JCZ3 (Jacobs-Cowperthwaite-Zwissler)  EOS was the first successful model 

based on a pair potential that was applied to detonation.21 This EOS was based on fitting 
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Monte Carlo simulation data to an analytic functional form.  Ross, Ree, and others 

successfully applied a soft-sphere EOS based on perturbation theory to detonation and 

shock problems.8,22,23 Computational cost is a significant difficulty with EOS based on 

fluid perturbation theory. Brown24 developed an analytic representation of Kang et al.'s 

EOS using Chebyshev polynomials. The accuracy of the above EOS has been recently 

evaluated by Charlet et al9.; these authors concluded that Ross's approach is the most 

reliable. More recently, Fried and Howard25 have used a combination of integral equation 

theory and Monte Carlo simulations to generate a highly accurate EOS for the exp-6 

fluid.   

 The exp-6 model is not well suited to molecules with large dipole moments. Ree7 

has used a temperature-dependent well depth ε(T) in the exp-6 potential to model polar 

fluids and fluid phase separations. Fried and Howard have developed an effective cluster 

model for HF.26 The effective cluster model is valid for temperatures lower than the 

variable well-depth model, but it employs two more adjustable parameters than does the 

latter. Jones et al.27 have applied thermodynamic perturbation theory to polar detonation-

product molecules. However, more progress needs to be made in the treatment of polar 

detonation-product molecules.  

Efforts have been made to develop EOS for detonation products based on direct 

Monte Carlo simulations instead of analytical approaches.28 This approach is promising 

given the recent increases in computational capabilities. One of the greatest advantages of 

direct simulation is the ability to go beyond van der Waals 1-fluid theory, which 

approximately maps the equation of state of a mixture onto that of a single component 

fluid.29  
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In most cases, interactions between unlike molecules are treated with Lorentz-

Berthelot combination rules.30 These rules specify the interactions between unlike 

molecules as arithmetic or geometric averages of single molecule pair-interactions. Non-

additive pair interactions have been used for N2 and O2.23 The resulting N2 model 

accurately matches double-shock data, but is not accurate at lower temperatures and 

densities.25 A combination of experiments on mixtures and theoretical developments is 

needed to develop reliable unlike-pair interaction potentials.  

The exp-6 potential has also proved successful in modeling chemical equilibrium 

at the high pressures and temperatures characteristic of detonation. However, in order to 

calibrate the parameters for such models, it is necessary to have experimental data for 

product molecules and mixtures of molecular species at high temperature and pressure. 

Static compression and sound-speed measurements provide important data for these 

models.  

Exp-6 potential models can be validated through several independent means. 

Fried and Howard26 have considered the shock Hugoniots of liquids and solids in the 

"decomposition regime" where thermochemical equilibrium is established.  As an 

example of a typical thermochemical implementation, we consider the Cheetah 

thermochemical code25. Cheetah is used to predict detonation performance for solid and 

liquid explosives. Cheetah solves thermodynamic equations between product species to 

find chemical equilibrium for a given pressure and temperature. From these properties 

and elementary detonation theory the detonation velocity and other performance 

indicators are computed.  
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Thermodynamic equilibrium is found by balancing chemical potentials, where the 

chemical potentials of condensed species are functions of only pressure and temperature, 

while the potentials of gaseous species also depend on concentrations. In order to solve 

for the chemical potentials, it is necessary to know the pressure-volume relations for 

species that are important products in detonation. It is also necessary to know these 

relations at the high pressures and temperatures that typically characterize the C-J state. 

Thus, there is a need for improved high-pressure equations of state for fluids, particularly 

for molecular fluid mixtures.  

In addition to the intermolecular potential, there is an intramolecular portion of 

the Helmholtz free energy. Cheetah uses a polyatomic model including electronic, 

vibrational, and rotational states. Such a model can be conveniently expressed in terms of 

the heat of formation, standard entropy, and constant-pressure heat capacity of each 

species.  

We now consider how the EOS described above predicts the detonation behavior 

of condensed explosives. The overdriven shock Hugoniot of an explosive is an 

appropriate EOS test, since it accesses a wide range of high pressures.  Overdriven states 

lie on the shock Hugoniot at pressures above the C-J point (see Fig. 2). The Hugoniot of 

PETN (penta-erythritol tetranitrate) is shown in Fig. 3. Fried and Howard31 have 

calculated the Hugoniot with the exp-6 model and also with the JCZS32 product library. 

Good agreement with experiment is found.  Since the exp-6 model is not calibrated to 

condensed explosives, such agreement is a strong indication of the validity of the 

chemical equilibrium approximation to detonation. 
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Figure 3. The shock Hugoniot of PETN as calculated with exp-6 (solid line) 

and the JCZS library (dotted line) vs. experiment (error bars).  

 

Despite the many successes in the thermochemical modeling of energetic 

materials, there are several significant limitations. One such limitation is that real systems 

do not always obtain chemical equilibrium during the relatively short (ns-μs) timescales 

of detonation. When this occurs, quantities such as the energy of detonation and the 

detonation velocity are commonly predicted to be higher than experiment by a 

thermochemical calculation.  

Chemical kinetic modeling is another possible way to treat detonation.  There are 

several well-developed chemical kinetic mechanisms for highly studied materials such as 

RDX and HMX33,34. Unfortunately, detailed chemical kinetic mechanisms are not 
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available for high-pressure conditions. Some workers have applied simplified chemical 

kinetics to detonation processes.13 The primary difficulty in high-pressure chemical 

kinetic models is a lack of experimental data on speciation. First principles simulations, 

discussed below, have the potential to provide chemical kinetic information on fast 

processes. This information could then conceivably be applied to longer timescales and 

lower temperatures using high-pressure chemical kinetics. 

Finally, there are several issues to be addressed in determining the EOS of 

detonation products. While convenient, the exp-6 model does not adequately treat 

electrostatic interactions. In a condensed phase, effects such as dielectric screening and 

charge-induced dipoles need to be considered.  Non-molecular phases are possible under 

high pressure and temperature conditions.  Molecular shape is also neglected in exp-6 

models. While the small size of most detonation product molecules limits the importance 

of molecular shape, lower temperature conditions could yield long-chain molecules, 

where molecular shape is more important.   

The possible occurrence of ionized species as detonation products is a further 

complication that cannot be modeled using the exp-6 representation alone. Recent results 

on the superionic behavior of water at high pressures (see discussion below) provide 

compelling evidence for a high pressure ionization scenario. These results suggest for 

example that polar and ionic species interactions may account for approximately 10% of 

the Chapman-Jouguet (C-J) pressure of PETN. In addition, we note that thermo-chemical 

calculations of high explosive formulations rich in highly electronegative elements – such 

as F and Cl, typically have substantially higher errors than calculations performed on 
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formulations containing only the elements H, C, N, and O.  The difficulty in successfully 

modeling the C-J states of these formulations may be due to the neglect of ionic species. 

Bastea et al.35 have recently extended the exponential-6 free energy approach to 

include the explicit thermodynamic contributions of the dipolar and ionic interactions.   

The main task of the new theory is the calculation of the Helmholtz free energy (per 

particle) of the detonation products – f. The theory starts with a mixture of molecular 

species whose short range interactions are well described by isotropic, exp-6 potentials. 

This includes for example all molecules commonly encountered as detonation products, 

e.g. N2, H2O, CO2, CO, NH3, CH4, etc. As previously documented 36, a one-fluid 

representation of this system, i.e. replacing the different exp-6 interactions between 

species by a single one depending on both individual interactions and mixture 

composition, is a very good approximation. The authors therefore chose this equivalent 

system to be the reference, non-polar and neutral one-component exp-6 fluid. If the 

mixture components possesses no charge or permanent dipole moments the calculation of 

the corresponding free energy (per particle) fexp-6 suffices to yield the mixture 

thermodynamics and all desired detonation properties. This has been in fact the physical 

model previously used in many thermo-chemical codes for the calculation of high 

explosives behavior. 

It is worth noting that at the high pressures and temperatures of interest for detonation 

the behavior of the exp-6 fluid so introduced is dominated by short range repulsions and 

is largely similar to that of a hard sphere fluid. In fact, the variational theory treatment 37 

of the exp-6 thermodynamics employs a reference hard sphere system with an effective, 

optimal diameter σeff dependent on density and temperature. Bastea et al. pursued this 
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connection to the hard sphere fluid by considering first a fluid of equi-sized hard spheres 

of diameter σ with dipole moments μ. For this simple model of a polar liquid, Stell et. al 

38,39 have suggested a Padé approximation approach for the free energy fd, 
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The first order term f1 can be shown to be identically zero, while f2 and f3 have been 
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where ρ is the (number) density and T is the temperature. The same Padé approximation 

also holds for a mixture of identical hard spheres with different dipole moments μi 
40. We 
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note that under this approximation it is easy to show that the mixture thermodynamics is 

equivalent with that of a simple hard spheres polar fluid with an effective dipole moment 

μ given by 

 

∑=
i

iix 22 μμ      

 

where xi=ρi/ρ is the concentration of particles with dipole moment μi.  

We also adopt the above combination rule for the general case of exp-6 mixtures that 

include polar species. Moreover, in this case we calculate the polar free energy 

contribution Δfd using the effective hard sphere diameter σeff  of the variational theory.  

 

 

Figure 4:  Comparison of pressure results for a model of polar water at T = 

2000K: MD simulations (symbols), newly developed theory for polar fluids (red line) 

and exp-6 calculations alone (black line). 
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We show in Figs. 4 and 5 a comparison of this procedure with MD simulation results 

for an exp-6 model of polar water. (We also show the results of exp-6 thermodynamics 

alone.) For both the pressure and energy the agreement is very good and the dipole 

moment contribution is sizeable. 

 

 

Figure 5: Same as Fig. 1 for energy per particle. 

 

 

We implemented the thermodynamic theory for exp-6 mixtures of polar in the 

thermo-chemical code Cheetah25. We considered first the major polar detonation products 

H2O, NH3, CO and HF. We determined the optimal exp-6 parameters and dipole moment 

values for these species by fitting to a variety of available experimental data. For water 

we find for example that a dipole moment of 2.2 Debye reproduces very well all available 
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experiments. Incidentally, this value is in very good agreement with values typically used 

to model supercritical water 41. 

We show in Fig. 6 a comparison of our Cheetah polar water model predictions with 

both high pressure Hugoniot data 42, and low density (steam at 800K) experimental data 

43. The agreement is very good for both cases. 

 

 

 

Figure 6: Comparison of theory for polar water: experimental data (Hugoniot – 

circles and steam at T=800 K – diamonds) and theory (lines). 

 

We applied the newly developed equation of state to the calculation of detonation 

properties. In this context, one stringent test of any equation of state is the prediction of 

detonation velocities as a function of initial densities. We choose for this purpose PETN. 

The results of Cheetah calculations are shown in Fig. 7 along with the experimental data 

44. The agreement is again very good.  
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Figure 7: PETN detonation velocity as a function of initial density; experiments 

(symbols) and CHEETAH calculation (red line). 

 

Advances are continuing in the treatment of detonation mixtures that includes explicit 

polar and ionic contributions. The new formalism places on a solid footing the modeling 

of polar species, opens the possibility of realistic multiple fluid phase chemical 

equilibrium calculations (polar – non-polar phase segregation), extends the validity 

domain of the previously introduced EXP6 library, and opens the possibility of 

applications in a wider regime of pressures and temperatures. Predictions of high 

explosive detonation based on the new approach yield excellent results. A similar theory 

for ionic species model compares very well with MD simulations, but high explosive 

chemical equilibrium calculations that include ionization are difficult, due to the presence 

of multiple minima in the free energy surface. Such calculations will require additional 

algorithmic developments that we plan to address in the future.  
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ATOMISTIC MODELING OF CONDENSED-PHASE REACTIONS 

Chemical equilibrium methods provide useful predictions of macroscopic 

detonation processes resultant product molecules. However, no details of the atomistic 

mechanisms in the detonation are revealed. We now discuss condensed-phase detonation 

simulations using atomistic modeling techniques. Such simulations are quite useful for 

understanding the condensed-phase reaction mechanisms on the microscopic level.  

Numerous experimental studies have investigated the atomistic details of HE 

decomposition by examining the net products after thermal (low pressure) decomposition 

(for example, see Ref.45).  More specifically for RDX and HMX, the rate limiting 

reaction is most likely NO2 dissociation and a plethora of final products in the 

decomposition process have been isolated.  Several theoretical studies have also been 

reported on the energetics of gas-phase decomposition pathways for HE materials using a 

variety of methods. For example, we point to work on RDX and HMX where both 

quantum chemistry46 and classical simulations of unimolecular dissociation47 were used.  

The gas-phase results provide much insight into the reaction pathways for isolated 

HE molecules; however, the absence of the condensed-phase environment is believed to 

strongly affect reaction pathways. Some of the key questions related to condensed-phase 

decomposition are 1). How do the temperature and pressure affect the reaction pathways? 

2). Are there temperature or pressure-induced phase-transitions which play a role in the 

reaction pathways that may occur? 3). What happens to the reaction profiles in a shock-

induced detonation? These questions can be answered with condensed-phase simulations, 
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but would require large-scale reactive chemical systems (1000s of atoms). Here we 

present very recent results of condensed-phase atomistic simulations, which are pushing 

the envelope towards reaching the required simulation goal.  

In our group, we are considering whether non-molecular phases of such species could 

be formed at conditions approaching those of detonation.  Condensed phase explosives 

typically have Chapman-Jouguet pressures in the neighborhood of 20-40 GPa in pressure 

and 2500-4000K in temperature.  Early in the reaction zone, energetic materials are 

thought to be cooler but more compressed.  The Zeldovich-Von Neumann-Doring48 

(ZND) state is defined by the Hugoniot of the unreacted material.  This can be probed by 

shock experiments carefully designed to avoid HE initiation.  Estimates of the 

temperature at the ZND state are in the neighborhood of 1500K, while pressures as high 

as 60 GPa are possible. 

One possible non-molecular phase is a superionic solid.  Superionic solids are 

compounds that exhibit exceptionally high ionic conductivity, where one ion type 

diffuses through a crystalline lattice of the remaining types. This is a unique phase of 

matter in which chemical bonds are breaking and reforming very rapidly. Since their 

discovery in 1836, a fundamental understanding of superionic conductors has been one of 

the major challenges in condensed matter physics49. In general, it has been difficult to 

create a simple set of rules governing superionic phases. Studies have mostly been 

limited to metal based compounds, such as metal halides like AgI and PbF2
49. However, 

the existence of superionic solid phases of hydrogen bonded compounds had been 

theorized previously50,51.  
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Recent experimental and computational results indicate the presence of a high 

pressure triple point in the H2O phase diagram52-54, including a so-called superionic solid 

phase with fast hydrogen diffusion54,55. Goldman et al. have recently described the 

emergence of symmetric hydrogen bonding in superionic water at 2000 K and 95 GPa55. 

In symmetric hydrogen bonding, the intramolecular X-H bond becomes identical to the 

intermolecular X-H bond, where X is an electronegative element. It has been suggested 

that for superionic solids a mixed ionic/covalent bonding character stabilizes the mobile 

ion during the diffusion process49. Symmetric hydrogen bonding provides mixed 

ionic/covalent bonding, and thus could be a key factor in superionic diffusion in 

hydrogen bonding systems. This represents an entirely novel approach for creating a 

simple physical description of superionic solids. Due to current limitations in diamond 

anvil cell techniques, the temperatures and pressures that can be investigated 

experimentally are too low to probe the role of hydrogen bonding in previously studied 

hydrides (i.e., H2O and NH3). On the other hand, current shock compression experiments 

have difficulty resolving transient chemical species.  

The density profiles of large planets, such as Uranus and Neptune, suggest that there 

exists within a thick layer of “hot ice”, which is thought to be 56% H2O, 36% CH4, and 

8% NH3
56. This has lead to theoretical investigations of the water phase diagram50, in 

which Car-Parrinello Molecular Dynamics (CPMD) simulations57 were conducted at 

temperature and pressures ranging from 300 to 7000 K and 30-300 GPa51. In these first 

principles molecular dynamics simulations, the electronic degrees of freedom are treated 

explicitly at each time step, effectively solving the electronic Schrodinger equation at 

each step.  At temperatures above 2000 K and pressures above 30 GPa, there was 
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observed a superionic phase in which the oxygen atoms had formed a bcc lattice, and the 

hydrogen atoms diffused extremely rapidly (ca.10-4 cm2/s) via a hopping mechanism 

between oxygen lattice sites. Experimental results for the ionic conductivity of water at 

similar state conditions58,59 agree well with the results from Ref. 3, confirming the idea of 

a superionic phase, and indicating a complete atomic ionization of water molecules under 

extreme conditions (P > 75GPa, T > 4000 K)59.  

More recent ab initio MD simulations were performed at temperatures up to 2000 K 

and pressures up to 30 GPa60. Under these conditions the authors found that the 

molecular ions H3O+ and OH- are the major charge carriers in a fluid phase, in contrast to 

the bcc crystal predicted for the superionic phase. The fluid high pressure phase has been 

recently confirmed by X-ray diffraction results of water melting at ca. 1000 K and up to 

40 GPa pressure52,61. In addition, extrapolations of the proton diffusion constant of ice 

into the superionic region were found to be far lower than a superionic criteria of 10-4 

cm2/s.62. Thus, it is clear there is great need for further work to resolve the apparently 

conflicting data.  

We have investigated the superionic phase with more extensive first principles Car-

Parrinello molecular dynamics simulations55. Calculated power spectra (i.e., the 

vibrational density of states, or VDOS) have recently been compared to measured 

experimental Raman spectra54 at pressures up to 55 GPa and temperatures of 1500 K. The 

agreement between theory and experiment was very good. In particular, weakening and 

broadening of the OH stretch mode at 55 GPa was found both theoretically and 

experimentally.  
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A summary of our results on the phase diagram of water is shown in Figure 8.  We 

find that the molecular to non-molecular transition in water occurs in the neighborhood of 

the estimated ZND state of HMX.  This shows that the detonation of typical energetic 

materials occurs in the neighborhood of the molecular to non-molecular transition. 

 

Figure 8:  The phase diagram of H2O as measured experimentally54 (black) and 

through first principles simulations (red and green colored)54,55.  The estimated ZND 

state of HMX is shown as a colored square for reference. 

 

For our simulations, we used the CPMD code v.3.91, with the BLYP exchange-

correlation functional63, and Troullier-Martins pseudo-potentials64 for both oxygen and 

hydrogen. A plane wave cutoff of 120 Ry was employed to insure convergence of the 

pressure, although all other properties were seen to converge with a much lower cutoff 

(85 Ry). The system size was 54 H2O molecules. The temperature was controlled by 

using Nosé-Hoover thermostats65 for all nuclear degrees of freedom. We chose a 

conservative value of 200 au, and a time step of 0.048 fs. 
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 Initial conditions were generated in two ways: 1) a liquid configuration at 2000 K 

was compressed from 1.0 g/cc to the desired density in sequential steps of 0.2 g/cc from 

an equilibrated sample. 2) An ice VII configuration was relaxed at the density of interest, 

then heated to 2000 K in steps of 300 degrees each, for a duration of 0.5 - 1 ps. While 

heating, the temperature was controlled via velocity scaling. We will refer to the first set 

of simulations as the “L” set, and the second as the “S” set. Unless stated otherwise, the 

results (including the pressures) from the “S” initial configurations are those reported. 

Once the desired density and/or temperature were achieved, all simulations were 

equilibrated for a minimum of 2 ps. Data collection simulations were run from 5-10 ps.  

The calculated diffusion constants of hydrogen and oxygen atoms are shown in 

Figure 9, and the inset plot shows the equation of state for this isotherm for both “L” and 

“S” simulations. The two results are virtually identical up until 2.6 g/cc. At 34 GPa 

(2.0 g/cc), the hydrogen atom diffusion constant has achieved values associated with 

superionic conductivity (greater than 10-4 cm2/s). The diffusion constant remains 

relatively constant with increasing density, in qualitative agreement with the 

experimental results of Chau et al.59 for the ionic conductivity.  
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Figure 9: Diffusion constants for O and H atoms at 2000 K as a function of 

density. The lines with circles correspond to hydrogen and the lines with squares to 

oxygen. The solid lines correspond to a liquid (“L”) initial configuration, and the 

dashed lines to an ice VII (“S”) initial configuration. The inset plot shows the 

pressure as a function of density at 2000 K, where the triangles correspond to “L” 

and the X's to “S”. 

On the other hand, the O diffusion constant drops to zero at 75 GPa (2.6 g/cc) for 

both “L” and “S” initial configurations. The surprisingly small hysteresis in the fluid to 

superionic transition allows us to place the transition point between 70 GPa (2.5 g/cc) and 

77 GPa (2.6 g/cc). The small hysteresis is most likely due to the weak O-H bonds at the 

conditions studied, which have free energy barriers to dissociation comparable to kBT 

(see below). Simulations which start from the “L” initial configurations are found to 

quench to an amorphous solid upon compression to 2.6 g/cc.  

Our transition pressure of 75 GPa is much higher than the value of 30 GPa predicted 

earlier51. This is likely due to their use of a much smaller basis set (70 Ry). Our results 

are in disagreement with simple extrapolations of the proton diffusion constant to high 

temperatures62.  

Radial distribution functions (RDFs) for the “S” simulations are shown in Figure 10. 

Analysis of the oxygen-oxygen RDF for all pressures yields a coordination number of the 

first peak of just over 14, consistent with a high density bcc lattice in which the first two 

peaks are broadened due to thermal fluctuations. The RDF was further analyzed by 

calculating an “average position” RDF in which the position of each oxygen was 

averaged over the course of the trajectory. The results for 75 - 115 GPa indicate the 
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presence of bcc lattice undergoing large amplitude vibrations, even though the RDF's in 

Figure 10 have width similar to that of a liquid or a glass. The RDFs for the amorphous 

phase (not shown) are similar to those of the solid phase obtained in the “S” simulations.  

 

Figure 10: O-H radial distribution function as a function of density at 2000K. At 

34 GPa we find a fluid state. At 75 GPa we show a “covalent” solid phase. At 

115 GPa, we find a “network” phase with symmetric hydrogen bonding. 

The O-O and H-H RDFs (not shown) indicate that no O-O or H-H covalent bonds are 

formed during the simulations at all densities. The g(ROH) shows a lattice-like structure at 

115 GPa, which is consistent with proton diffusion via a hopping mechanism between 

lattice sites51. At 34 GPa, the coordination number for the first peak in g(ROH) is 2, 

indicating molecular H2O. At 95 - 115 GPa, however, the coordination number for the 

first peak in g(ROH) becomes four, indicating that water has formed symmetric hydrogen 

bonds where each oxygen has four nearest neighbor hydrogens. 

Concomitant with this is a shift of the first minimum of the O-H RDF from 1.30Å at 

34 GPa to 1.70Å at 115 GPa. We observe a similar structural change in the H-H RDF in 
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which the first peak lengthens from 1.63Å (close to the result for ambient conditions) to 

1.85Å. These observations bear a strong resemblance to the ice VII to ice X transition in 

which the covalent O-H bond distance of ice becomes equivalent to the hydrogen bond 

distance as pressure is increased66. However, the superionic phase differs from ice X, in 

that the position of the first peak in g(ROH) is not half the distance of the first O-O peak66. 

We analyze the effect of the change in g(ROH) below in terms of the molecular speciation 

in the simulations.  

We have determined the free energy barrier for dissociation by defining a free energy 

surface for the oxygen-hydrogen distances, viz. W(r) = -kBT ln [g(ROH)] where W(r) is 

the free energy surface (potential of mean force). The results are shown in Figure 11.  

 

Figure 11: ROH free energy surface at 2000K. The lines are spaced by a factor of 4 

kcal/mol for clarity.   

The free energy barrier can then be defined as the difference in height between the first 

minimum and second maximum in the free energy surface. The free energy barrier is 11 
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kcal/mol at 34 GPa, and 8 kcal/mol at 115 GPa. The remainder of the results discussed 

below are for the “S” simulations.  

We now analyze the chemical species prevalent in water at these conditions. We 

define instantaneous species based on the O-H bond distance. If the bond distance is less 

than a value rc, we count the atom pair as bonded. Determining all the bonds in the 

system gives the chemical species at each point in time. Species with lifetimes less than 

an O-H bond vibrational period (10 fs) are “transient”, and do not represent bound 

molecules. The optimal cutoff rc between bonded and non-bonded species is given by the 

location of the maximum in the free energy surface67.  

The use of the free energy maximum to define a bond cutoff provides a clear picture 

of qualitative trends. As expected from the g(ROH), at 34 GPa, the free energy peak is 

found at 1.30Å, which is approximately the same value obtained from simulations of 

ambient water. At 75 GPa, the free energy peak maintains almost the same position, but 

broadens considerably. At 115 GPa, the peak has sharpened once again, and the 

maximum is now at 1.70Å.  

Given the above definition of a bond distance, we have analyzed species lifetimes. 

Above 2.6 g/cc, the lifetime of all species is less than 12 fs, which is roughly the period 

of an O-H bond vibration (ca. 10 fs). Hence, water above 75 GPa and at 2000 K does not 

contain any molecular states, but instead forms a collection of short-lived “transient” 

states. The “L” simulations at 2.6 g/cc (77 GPa) and 2000 K yield lifetimes nearly 

identical to that found in the “S” simulations described above (within 0.5 fs). This 

indicates that the amorphous states formed from the “L” simulations are closely related to 

the superionic bcc crystal states found in the “S” simulations.  
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Species concentrations are shown in Figure 12. At 34 GPa (2.0 g/cc), H2O is the 

predominant species, with H3O+ and OH- having mole fractions of ca. 5%. In addition, 

some aggregation has occurred in which neutral and ionic clusters containing up to six 

oxygens have formed. The concentrations of OH- and H3O+ are low for all densities 

investigated, and non-existent at 95 and 115 GPa (2.8 and 3.0 g/cc). The calculated 

lifetimes for these species is well below 10 fs for the same thermodynamic conditions 

(less than 8 fs at 34 GPa). At pressures of 95 and 115 GPa, the increase in the O-H bond 

distance leads to the formation of extensive bond networks (Figure 13). These networks 

consist entirely of O-H bonds, while O-O and H-H bonds were not found to be present at 

any point.  

 

Figure 12: Mole fraction of species found at 34 - 115 GPa and 2000K. The filled 

circles correspond to H3O+, while the open circles to OH-. 
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Figure 13: Snapshots of the simulations at 75 GPa and 115 GPa and 2000K. At 

75 GPa, the water molecules are starting to cluster, and at 115 GPa, a well defined 

network has been formed. The protons dissociate very rapidly and form new 

clusters (at 75 GPa) or networks of bonds (at 115 GPa). 

We used Wannier center analysis 68 to compute the percentage of O-H bonds with a 

Wannier center along the bond axis. Surprisingly, the results for pressures of 34 - 75 GPa 

consistently showed that 85-95% of the O-H bonds are covalent. For 95 and 115 GPa, we 

find about 50 - 55% of the bonds are covalent. This is consistent with symmetric 

hydrogen bonding, for which the split between ionic and covalent bonds would be 50/50. 

The above simulations show that the molecular to non-molecular transition in H2O lies 

just above the operating range of most typical condensed explosives – about 50 GPa.  

This presents a considerable challenge for thermochemical calculations, since a simple 

statistical mechanical treatment of non-molecular phases such as superionic water does 

not yet exist. 

 

FIRST PRINCIPLES SIMULATIONS OF HIGH EXPLOSIVES  
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Recently, quantum mechanical methods have been applied to systems with up to 

1,000 atoms. This is due not only to advances in computer technology, but also 

improvements in algorithms. A wide range of approximations can also be made to yield a 

variety of methods; each able to address a different range of questions based on the 

accuracy of the method chosen. We now discuss a range of quantum mechanical based 

methods used to answer specific questions regarding shock-induced detonation 

conditions.  

Atomistic simulations have recently been performed on condensed-phase HMX 

(1,3,5, 7-tetranitro-1, 3,5,7-tetraazacyclooctane). This material is widely used as an 

ingredient in various explosives and propellants. A molecular solid at standard state, it 

has four known polymorphs.  δ-HMX is believed to be the most highly reactive 

polymorph.  In fact, β-HMX often transforms into δ-HMX before reacting violently69.  In 

recent studies, Manaa et al.17 have conducted quantum-based molecular dynamics 

simulations of the chemistry of HMX and nitromethane70 under extreme conditions, 

similar to those encountered at the C-J detonation state.. They studied the reactivity of 

dense (1.9 g/cm3) fluid HMX at 3500 K for reaction times up to 55 ps, using the self-

consistent charge density-functional tight-binding method (SCC-DFTB).   Stable product 

molecules are formed very rapidly (in a less than one ps) in these simulations.  Plots of 

chemical speciation, however, indicate a time greater than 100 ps is needed to reach 

chemical equilibrium.  Reactions occur very rapidly in these simulations because the 

system is “pre-heated” to 3500K.In a detonation, on the other hand, a temperature close 

to 3500K would only be found after stable product molecules had been formed.  The 

initial temperature of unreacted nitromethane after being shocked has been estimated to 
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be 1800K10.  HMX likely has a similar initial temperature.  Nonetheless, the simulations 

of Manaa et al. provide useful insight into the chemistry of dense, hot energetic materials. 

They are a useful complement to more traditional gas phase calculations. 

There are numerous experimental characterizations at low temperatures (i.e. < 

1000 K, well below detonation temperature) of the decomposition products of condensed-

phase HMX.45,71 These studies tend to identify final gas products (such as H2O, N2, H2, 

CO, CO2, etc.) from the surface burn, and the authors aspire to establish a global 

decomposition mechanism. However, similar experimental observations at detonation 

conditions (temperatures 2000-5000 K, and pressure 10-30 GPa) have not been realized 

to date.  Computer simulations provide the best access to the short time scale processes 

occurring in these regions of extreme conditions of pressure and temperature.72 In 

particular, simulations employing many-body potentials,73 or tight-binding models have 

emerged as viable computational tools, the latter has been successfully demonstrated in 

the studies of shocked hydrocarbons.74 

Lewis et al.75 calculated four possible decomposition pathways of the α-HMX 

polymorph: N-NO2 bond dissociation, HONO elimination, C-N bond scission, and the 

concerted ring fission. Based on the energetics, it was determined that N-NO2 

dissociation was the initial mechanism of decomposition in the gas phase, while they 

proposed HONO elimination and C-N bond scission to be favorable in the condensed 

phase. The more recent study of Chakraborty et al.34 using the density-functional theory 

(DFT) with B3LYP functionals, reported detailed decomposition pathways of the β-

HMX, the stable polymorph at room temperature. It was concluded that consecutive 

HONO elimination (4HONO) and subsequent decomposition into HCN, OH and NO are 
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energetically the most favorable pathways in the gas phase. The results also showed that 

the formation of CH2O and N2O could occur preferably from secondary decomposition of 

methylenenitramine.  

 The computational approach employed by Manaa et al.17 to simulate the 

condensed-phase chemical reactivity of HMX is based on implementing the self-

consistent charge density-functional tight-binding (SCC-DFTB) scheme.76 This is an 

extension of the standard tight-binding approach in the context of DFT that describes 

total energies, atomic forces, and charge transfer in a self-consistent manner. The initial 

condition of the simulation included six HMX molecules, corresponding to a single unit 

cell of the δ phase, with a total of 168 atoms. The density was 1.9 g/cm3 and the 

temperature 3500 K in the simulations. These thermodynamic quantities place the 

simulation in the neighborhood of the C-J state of δ-HMX (3800 K, 2.0g/ cm3) as 

predicted through thermochemical calculations. The closest experimental condition 

corresponding to this simulation would be a sample of HMX, which is suddenly heated 

under constant volume conditions, such as in a diamond anvil cell. A molecular dynamics 

simulation was conducted at constant volume and constant temperature. Periodic 

boundary conditions, whereby a particle exiting the super cell on one side is reintroduced 

on the opposite side with the same velocity, were imposed.  

Under the simulation conditions the HMX was in a highly reactive dense fluid. 

There are important differences between the dense fluid (supercritical) phase and the 

solid phase, which is stable at standard conditions. Namely, the dense fluid phase cannot 

accommodate long-lived voids, bubbles, or other static defects. On the contrary, 

numerous fluctuations in the local environment occur within a timescale of tens of 
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femtoseconds (fs). The fast reactivity of the dense fluid phase and the short spatial 

coherence length make it well suited for molecular dynamics study with a finite system 

for a limited period of time. Under the simulation conditions chemical reactions occurred 

within 50 fs. Stable molecular species were formed in less than one ps. 

Figure 14 displays the product formation of H2O, N2, CO2 and CO. The 

concentration, C(t), is represented by the actual number of product molecules formed at 

time t. Each point on the graphs (open circles) represents an average over a 250 fs 

interval. The number of the molecules in the simulation was sufficient to capture clear 

trends in the chemical composition of the species studied. It is not surprising that the rate 

of H2O formation is much faster than that of N2. Fewer reaction steps are required to 

produce a triatomic species like water, while the formation of N2 involves a much more 

complicated mechanism.33 Further, the formation of water starts around 0.5 ps and seems 

to have reached a steady state at 10 ps, with oscillatory behavior of decomposition and 

formation clearly visible. The formation of N2, on the other hand, starts around 1.5 ps and 

is still progressing (the slope of the graph is slightly positive) after 55 ps of simulation 

time, albeit at small variation.  
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Figure 14: Product particle-number formations as a function of time of H2O, 

N2, CO2, and CO. 

Due to the lack of high-pressure experimental reaction rate data for HMX and 

other explosives with which to compare, we produce in Fig. 15 a comparison of dominant 

species formation for decomposing HMX obtained from entirely different theoretical 

approach. The concentration of species at chemical equilibrium can be estimated through 

thermodynamic calculations with the Cheetah thermochemical code.25,77 

As shown in Fig. 15, the results of the MD simulation compare very well with the 

formation of H2O, N2, and HNCO predicted by Cheetah was predicted by the 

thermochemical calculations. The relative concentration of CO and CO2, however, is 
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reversed, possibly due to the limited time of the simulation. In addition, Cheetah predicts 

that carbon in the diamond phase is in equilibrium with the other species at a 

concentration of 4.9 mol/kg HMX. No condensed carbon was observed in the simulation. 

Several other products and intermediates with lower concentrations, common to the two 

methods, have also been identified. These include HCN, NH3, N2O, CH3OH, and CH2O. 

It is hoped that a comparison between the two vastly different approaches can be 

established at much longer simulation times. In the future, the product-molecule set of the 

thermochemical code could be expanded with important species determined from ab 

initio based simulations.  It should also be noted that the accuracy of DFT calculations for 

chemistry under extreme conditions needs further experimental validation.   

 

Figure 15: Comparison of relative composition of dominant species found in 

the MD simulation and in a thermodynamic calculation.  
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One expects more CO2 than CO as final products as predicted by Cheetah (Fig.  

15), since disproportionation of CO to condensed C + CO2 is energetically favorable. 

The results displayed in Fig. 15 show that at simulation time of 40 ps the system is still in 

the second stage of reaction chemistry. At this stage the CO concentration is rising and 

has not yet undergone the water gas shift reaction (CO + H2O → CO2 + H2) conversion. 

Interestingly, this shift seems to occur at around 50 ps in the simulation, with CO2 

molecules are being formed while the CO concentration is correspondingly diminishing.  

Although the simulation sheds light on the chemistry of HMX under extreme 

conditions, there are methodological shortcomings that need to be overcome in the future.  

The demanding computational requirements of the present method limit its applicability 

to short times and high-temperature conditions. A second issue is that the SCC-DFTB 

method is not as accurate as high-level ab initio methods. Nonetheless, the present 

approach could still be considered as a promising direction for future research on the 

chemistry of energetic materials. 

 

CONCLUSIONS 

The ability to model chemical reaction processes in condensed phase energetic materials 

at the extreme conditions typified by a detonation is progressing. Chemical equilibrium 

modeling is a mature technique with some limitations. Progress in this area continues, but 

is hampered by a lack of knowledge of condensed phase reaction mechanisms and rates.   

A useful theory of the EOS of ionic and highly polar molecular species needs to be more 

fully developed.  The role of unconventional molecular species in detonation needs to be 

investigated.  Finally, high pressure chemical kinetics needs to develop further as a field. 



 40

Atomistic modeling is much more computationally intensive, and is currently 

limited to picosecond time scales. Nonetheless, this methodology promises to yield the 

first reliable insights into the condensed phase processes responsible for high explosive 

detonation. Further work is necessary to extend the timescales involved in atomistic 

simulations. Advanced empirical force fields may offer the ability to model the reactions 

of energetic materials for periods of many picoseconds.  Recent work in implementing 

thermostat methods appropriate to shocks78 may promise to overcome timescale 

limitations in the non-equilibrium molecular dynamics method itself, and allow the 

reactions of energetic materials to be determined for up to several nanoseconds. 
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