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Abstract 

 

The elemental (non-volatile) composition of five Stardust impact tracks and terminal 

particles left from capture of Comet 81P/Wild 2 dust were mapped in a synchrotron x-ray 

scanning microprobe with full fluorescence spectra at each pixel. Because aerogel 

includes background levels of several elements of interest, we employ a novel “dual 

threshold” approach to discriminate against background contaminants: an upper 

threshold, above which a spectrum contains cometary material plus aerogel and a lower 

threshold below which it contains only aerogel.  The difference between normalized 

cometary-plus-background and background-only spectra is attributable to cometary 

material. The few spectra inbetween are discarded since misallocation is detrimental:  

cometary material incorrectly placed in the background spectrum is later subtracted from 

the cometary spectrum, doubling the loss of reportable cometary material. This approach 

improves precision of composition quantification.  We present the refined whole impact 

track and terminal particle elemental abundances for the five impact tracks. One track 

shows mass increases in Cr and Mn (1.4x), Cu, As and K (2x), Zn (4x) and total mass 

(13%) by dual thresholds compared to a single threshold.  Major elements Fe and Ni are 

not significantly affected. The additional Cr arises from cometary material containing 

little Fe.  We exclude Au intermixed with cometary material because it is found to be a 

localized surface contaminant carried by comet dust into an impact track. The dual 

threshold technique can be used in other situations where elements of interest in a small 

sample embedded in a matrix are also present in the matrix itself. 

 

Introduction and Motivation 

 

Stardust, a NASA Discovery class mission, returned to Earth nearly one year ago with 

dust captured from the coma of Comet 81P/Wild 2 (or simply Wild 2) [Brownlee et al. 

2003, Brownlee et al. 2006a].  Microscopic dust grains were captured at a relative 

velocity of 6.1 km/s in passive collectors comprised of low-density silica aerogel tiles and 

aluminum foils covering the aerogel holder frame [Tsou et al. 2003].  These Stardust 

samples have a unique status in our collections of extraterrestrial materials:  They are the 

first samples returned from a known parent body that originated in the Kuiper belt 

beyond the gas giants.  Prior to 1974, Wild 2 orbited at heliocentric distances beyond 

Jupiter, but a gravitational encounter with that planet sent it into a short-period orbit in 

the inner solar system [Sekanina et al. 1985, Królikowska et al. 2006] and allowed the 

Stardust spacecraft to intercept the comet’s coma within the orbit of Mars. Since Comet 

Wild 2 is a newcomer to the inner solar system and not yet altered by repeated exposure 

to the Sun’s heat and radiation, the collected dust offers an historic view into the nature 

of Kuiper belt objects.  It is expected that most small bodies in the frozen Kuiper belt 

have experienced little thermal or aqueous processing since formation and are therefore 

relatively unaltered since the solar system formed ~4.6 billion years ago [Irvine et al. 

2004].   

 

Stardust particles can now be compared in terms of elemental and isotopic composition, 

organics and mineralogy with other primitive extraterrestrial materials available on Earth 

including meteorites, micrometeorites and interplanetary dust particles.  Our focus is on 



the elemental chemistry of Stardust particles measured by synchrotron x-ray 

fluorescence.  Prior to the Stardust mission, cometary (non-volatile) elemental 

compositions were inferred from remote infrared spectroscopy and impact ionization 

mass spectrometry at Comet P/Halley [Jessberger et al. 1999] where spaceflight 

restrictions on instrumentation limited resolution and sensitivity.  Stardust samples are 

now available for study by highly sensitive and accurate ground-based instruments – e.g. 

synchrotrons – greatly improving the quality of composition analysis possible. 

 

We have analyzed 5 Stardust impact tracks produced by Wild 2 dust captured in aerogel 

using micro-focused synchrotron x-ray fluorescence measurements (micro-SXRF).  A 

key advantage of micro-SXRF is the ability to measure the composition of the comet 

sample while it is still embedded in the aerogel capture medium for reduced risk of 

contamination and minimal to no effect on the sample itself.  This composition data may 

then be compared with that of other extraterrestrial samples, meteorites and interplanetary 

dust particles.  The 5 samples presented here were among 23 analyzed by the Preliminary 

Examination (PE) Team, an international collaboration in which we participated.  The PE 

Team was tasked with providing a first look at the Stardust samples within one year of 

the return as a baseline for subsequent research.  Initial results have been presented in 

several publications by the PE Team [Brownlee et al. 2006b, Flynn et al. 2006, Hörz et 

al. 2006, Keller et al. 2006, McKeegan et al. 2006, Sandford et al. 2006, Zolensky et al. 

2006]. The initial composition data from 23 Stardust impact tracks were collected and 

analyzed at several synchrotron sources using a variety of protocols and analysis methods 

with varying precisions. We present here, in detail, the refined bulk elemental chemistry 

results from synchrotron x-ray microprobe micro-SXRF measurements of the 5 entire 

impact tracks and their terminal particles analyzed at the Stanford Synchrotron Radiation 

Laboratory.  We also demonstrate the analytical approach we have developed in order to 

more effectively distinguish cometary material from aerogel matrix background for 

improved precision of composition measurements. We propose that this approach be used 

in future composition measurements for improved average compositions. Using this new 

approach, examination of one impact track revealed localized gold contamination and 

enabled its exclusion from cometary abundance estimates.  This approach is applicable to 

other cases in which some elements of interest in a small sample embedded in a matrix 

are also present in the matrix itself. 

 

 

Samples and Experimental Methods 

 

The five Stardust impact tracks in this study were provided through NASA Curation as 

part of the Stardust Preliminary Examination.  All were extracted from the same aerogel 

tile, Cell 44, in the form of individual aerogel “keystones” [Westphal et al. 2004].  Figure 

1 shows optical micrographs of the keystones after extraction (scaled approximately to 

each other).  Each keystone contains a single impact track, a cavity in the silica aerogel 

formed by the hypervelocity capture of an impacting unit or impactor.  Some impactors 

disaggregated on impact generating multiple sub-tracks from a single entry hole, and 

some remained relatively intact.  In either case, debris measurable by micro-SXRF is left 

along the track.  The tracks presented here vary from approximately 0.3 to 3.3 mm in 



length and from conical, “carrot” shapes to more bulbous shapes.  All of these tracks 

were found to contain terminal particles, a portion of the original impacting unit lodged at 

the terminus of the track. Table 1 provides a listing of the official NASA Curation sample 

numbers, track names as referred to in this paper, details of track length and shape and 

the total and Fe mass determined by the methodology described below. 

 
Table 1.  The five Stardust impact tracks analyzed by micro-synchrotron x-ray fluorescence. 

 

NASA 

Sample # nickname 

track 

length 

(mm)* shape 

total 

measured 

mass (ng) 

total Fe 

mass 

(ng) 

terminal particle/ 

whole track             

(Fe mass %) 

C2044,0,39 Track 5 0.3 bulb 0.046 0.012 2.05% 

C2044,0,42 Track 9 0.5 bulb 0.135 0.112 6.12% 

C2044,0,52 Track 12 1.6 carrot 0.404 0.298 29.99% 

C2044,0,43 Track 10 2.8 bulb 2.347 2.142 9.28% 

C2044,0,38 Track 4 3.3 carrot 1.375 1.228 32.65% 

* approximate, determined optically 4.307 3.793  
 

*Each comet dust impact track is identified by NASA Curation sample number, nickname used in the 

present work, approximate length, shape, measured total and Fe masses and the percent of Fe mass in the 

terminal particle.  While this final value may be an indication of the differences in dispersion of mass along 

the impact track with track shape, it is important to note that the micro-SXRF measurements do not include 

the mass of Si, O, Mg, Al or C in the cometary material, and forsterite and enstatite terminal particles 

dominated by Si and O have frequently been found in Stardust impacts [Zolensky et al. 2006]. 
 

Each impact track was mapped in the hard x-ray scanning fluorescence microprobe 

[Luening et al.], an endstation of wiggler Beam Line 6-2 at the Stanford Synchrotron 

Radiation Laboratory.  The microprobe uses Kirkpatrick-Baez final focusing optics and 

adjustable virtual source slits for a beam size of 2 x 2 microns2 with 109 photons/second 

(ph/s).  For efficient mapping of Stardust impact tracks, the focused spot size was 

increased to 15 x 19 microns2 with 4x1010 ph/s (and 6 x 15 microns2 with 2x1010 ph/s for 

Track 12).  Si (111) monochromator crystals selected 14 keV incident x-rays for easy 

access to the K absorption edges of elements from Si through Br.  The microprobe is 

equipped with a Leica optical microscope and aluminum-coated low-Z mirror for x-ray 

line-of-sight viewing and positioning of the sample in the x-ray beam.  Helium is flowed 

over the x-ray – sample interaction region to reduce air absorption, ozone generation and 

Ar fluorescence.  Each keystone was translated in the beam in steps matched to the 

FWHM of the focused spot size with dwell times of 500 seconds/pixel for Track 5, 60 

seconds/pixel for Track 9, and 30 seconds/pixel for all other tracks.  Full fluorescence 

spectra were collected at each pixel.  Terminal particles and other particles along tracks 

were located primarily by high Fe fluorescence and scatter count rates.  For consistency, 

terminal particle data reported here were isolated from whole track maps.  (Higher 

sensitivity particle compositions will be reported in a future publication.)  An ultraclean 

Si(Li) detector with ~150 eV resolution (Mn K!) collected the fluorescent x-rays in a 

geometry perpendicular to the incident beam in the plane of the storage ring.  PIN diodes 

provided pre- and post-sample intensity measurements. 

 

Micro-SXRF cometary and background spectra were fit using PyMca, a program 

developed by Dr. Armando Solé at the European Synchrotron Radiation Facility (ESRF) 



and available for public use [Solé et al. 2007].  Whole track and terminal particle masses 

were derived from the difference between the sum of the on-track spectra containing 

cometary material and the normalized aerogel matrix background spectrum.  Details of 

isolating pixels containing cometary material from background are discussed below.  We 

note that large Si and significant Ar fluorescence intensities (from aerogel and air) 

combined with frequent high Fe fluorescence intensities from the samples produce a 

variety of detector-related sum peaks (for example, Ar K! + Si K! and Si K! + Si K!) 

and escape peaks (Fe K! – Si K!) that complicate peak-fitting of low intensity peaks in 

the low atomic number (Z) element range between S and Ti.  The effect on fitted peak 

area can be significant:  For Ca, neglecting to fit sum and escape peaks may introduce an 

error of as much as 20%. 

 

We note that other sources of error include background subtraction under the spectra, 

both cometary material spectra and aerogel matrix spectra.  A variety of effects, including 

incomplete charge collection, lead to a spectral background with composition-dependent 

shape.  We have used PyMCA algorithms; however, it is not possible to subtract an exact 

background without full iterative modeling of fluorescence and detector response.  Errors 

from this source will impact most strongly those elements with low abundance in the 

cometary material relative to the aerogel.  No attempt has been made to quantify this 

error source at present. 

 

Two reference standards were employed in quantifying element masses: a thin (200 nm) 

Fe film acted as an absolute reference standard, and a USGS basaltic glass microprobe 

standard1 NKT-1G thin section (200 nm) was used to determine the energy-dependent 

correction for elements below Fe.  Typical thin film standards contain ~1 wt% Fe; 

however, bulk average extraterrestrial materials can be expected to contain Fe levels near 

solar levels of ~18 wt%.  Because the NKT-1G basaltic glass standard contains ~9.5 wt% 

Fe, this correction provides partial compensation for self-absorption of low-Z 

fluorescence x-rays (for example, sulfur) and corrects for detector response.  Without 

detailed knowledge of sample geometry, densities and composition, this self-absorption 

correction is necessarily coarse; however, we find that particle sizes in these tracks, 

measured by the Fe fluorescence, are always less than or equal to 5 microns.  As a result, 

self-absorption will be small for elements above Ca, and mass precisions are generally 

20% or better for elements above Ca.  Statistical uncertainty is !10% (by mass) for all 

elements except as noted in the composition results discussed below.  Exceptions are 

elements present in low abundance: Ti, V, Ga, As and Se and occasionally Mn.  Due to 

reduced total counts, the statistical error tends to be higher for low abundance elements in 

terminal particles.  For higher abundance elements, measured mass uncertainty is 

dominated by the 7% uncertainty in the illuminated beam area estimated from 

measurements of the Fe thin film standard at different spot sizes (determined by vertical 

and horizontal scans of an absorbing edge through the focus spot).  Error in Fe mass is 

dominated by uncertainty in the standard thickness and is at most a few percent. 

 

                                                
1 Results of the G-Probe-2 proficiency test on the USGS NKT-1G iron basaltic glass 

microprobe standard by 64 laboratories are to be published by P. Potts et al. 



 

Impact Track Mapping and Isolation of Cometary Material from Background by 

Thresholding 

 

Early optical microscopy on the Stardust impact tracks in aerogel during the Preliminary 

Examination period indicated that many of the comet dust particles were aggregates that 

broke apart into their constituents on impact.  From a single entry hole in the aerogel, 

fine-grained particles were observed dispersed along some impact tracks, sometimes with 

multiple branches.  Larger particles, denser, more mechanically-robust and presumably 

comprised of larger grains, were located at the termini of these tracks.  Subsequent 

studies [Hörz et al. 2006] have confirmed the aggregate nature of the dust.  Due to the 

disaggregation of particles during hypervelocity capture, bulk composition measurements 

require measurement of material dispersed along entire impact tracks.  As a result, we 

have collected full fluorescence spectra at each pixel in a map covering the impact track 

and surrounding aerogel for each keystone as did several of the synchrotron groups 

studying Stardust impact tracks.  Even these whole-track maps may not fully include the 

total initial impactor mass since some vaporized and finely-condensed material may be 

widely dispersed around the impact track and thus not entirely included in the width of 

the keystone and/or lost via sublimation from the entrance hole.  By selecting energy 

windows about the fluorescence peak of a single element, for example, the Fe K! peak, 

qualitative maps showing locations with high Fe abundance can be produced.  Figure 2 

shows such maps for Tracks 10 and 4 in the elements Fe, Ni and Cr with warmer colors 

indicating greater fluorescence signal.  In this manner, particles can be located by 

concentrated elemental abundances.  The terminal end of Track 4, for example, contains 

two particles readily visible in the Fe map, each ~5 microns in diameter (FWHM in Fe 

signal) and separated by ~50 microns.  Caution must be exercised, however, in generating 

simple energy-windowed element maps because of peak overlaps.  For example, binning 

of signal in an energy window about the Mn K! fluorescence peak at each map pixel will 

instead produce a map of the sum of the Mn K! and Cr K" fluorescence plus 

contributions from the low-energy tail of the Fe K! fluorescence. 

 

Spectra from pixels containing cometary material may be summed to give a total 

spectrum from the entire impact track.  Figure 3 shows an example of the total cometary 

material spectrum for Track 4.  Note that the micro-SXRF spectra are plotted with 

fluorescence x-ray counts (intensity) on a logarithmic scale as a function of the emitted x-

ray energy to allow the peaks associated with low abundance elements to be visible.  

Elements present in the cometary material spectrum include contributions from the 

aerogel subsequently removed via background subtraction.  Spectra from pixels covering 

the terminal particle are then summed for a total spectrum from the terminal particle as 

well. 

 

Silica aerogel has proven to be an excellent medium in many regards for the capture of 

particles at hypervelocity; however, it poses several challenges for SXRM fluorescence 

analysis.  Foremost is that Si and O are primary rock-forming elements, and their 

overwhelming contribution to the aerogel background makes quantification of Si and O 

impossible in the cometary material in aerogel keystones.  The large amount of Si is also 



an absorber of Al and Mg fluorescence preventing meaningful quantification of these 

low-Z elements also important in silicate minerals.  Two additional challenges affect the 

removal of the aerogel fluorescence background from spectra of cometary material in 

aerogel:  First, the Stardust aerogel is density-graded with depth from ~5 to 50 mg/cc to 

allow capture of both small and large particles. Second, there is significant contamination 

in the aerogel [Tsou et al. 2003] some of which has been observed to be non-uniformly 

distributed in aerogel tiles [Flynn et al. 2006, Supporting Online Material].  Figure 4 

shows aerogel background spectra obtained away from the impact track in several of the 

aerogel keystones analyzed here. All of these keystones were extracted from a single 

aerogel tile, Cell 44.  The variability of the contamination background with location is 

evident in the spectra. (Zn and Fe contamination as measured by ICP-MS [Tsou et al. 

2003] are near 1.5-2.0 ppm by weight.)  Zn is present in all the Stardust aerogel samples 

we have measured to date.  This large background Zn contribution greatly reduces the 

sensitivity to Zn (increases the minimum detection limits) in the cometary material.  Br is 

also present in large quantities in the aerogel but is not expected to be present in high 

abundance in average solar system materials.  The Track 5 aerogel background spectra 

show anomalously high levels of Cr, Mn, Fe, Ni, Cu and As, many elements typically 

associated with steels, as well as Pb. These spectra were collected several hundreds of 

microns below the original aerogel surface and away from the impact track itself. The 

cause of the high background levels seen in Track 5 is unclear. It could be highly non-

uniform pre-existing contamination from aerogel tile manufacture or contamination 

during keystone preparation, handling or storage after track extraction. 

 

Accurate subtraction of the aerogel background is critical to precise comet dust 

composition measurements.  The standard approach for background subtraction is to 

measure the background spectrum in a region containing no sample and subtract it from 

the total spectrum from the region of interest, in our case, the map of the comet dust 

impact track. One concern is the effectiveness of aerogel background removal for 

material embedded in melted and compacted aerogel in track walls.  For measurement of 

compositions of complete impact tracks, we must make the assumption that the volume 

of aerogel, although melted and compacted in track walls, is conserved.  We also assume 

that, locally, the contaminant distribution in the aerogel is uniform so that there is no loss 

or concentration of aerogel contaminants over the entire volume mapped. Terminal 

particles normally have compacted and melted aerogel associated with them, so pixels in 

isolated terminal particle maps may include more aerogel than pixels off the impact track.  

Compacted and/or melted aerogel will also contain higher levels of aerogel contaminant 

species per pixel.  To account for these effects, we normalize the aerogel background 

spectrum to have equivalent elastically scattered signal to the cometary material spectrum 

rather than normalizing by the number of pixels.  This is intended to minimize any 

apparent, but artificial, increase in the measured abundance of those elements that are 

present as contaminants in the aerogel and also as trace or minor elements in the 

cometary material. 

 

Although aerogel background spectra can be obtained far from the comet dust impact 

track in nominally pristine aerogel and subtracted from the summed spectra in the impact 

track map, it is highly desirable to instead isolate those map pixels containing cometary 



material from those containing only aerogel.  The near-track aerogel pixels may then be 

summed to generate a local aerogel background spectrum which can be subtracted from 

the summed cometary material spectrum.  There are three primary advantages to this 

approach: 

1) The aerogel has a non-uniform contaminant distribution so that a local aerogel 

sample is most accurate for background subtraction, 

2) The aerogel has gradual variations in density due to manufacture and in thickness 

due to sample preparation, and 

3) Inclusion of aerogel-only pixels in the total spectrum with cometary material 

pixels dilutes the total spectrum decreasing sensitivity to elements present in the 

cometary material. 

 

The simplest implementation of this approach is to establish a single threshold level with 

which to divide map pixels into two categories: above the threshold, a pixel is considered 

cometary material, and below, it is considered aerogel.  This “single threshold” approach 

has been used to analyze much of the Stardust impact track data previously presented in 

Flynn et al. 2006, including those that were measured at SSRL. Threshold levels based on 

the scatter peak area and the Fe fluorescence peak area have been explored and generally 

give nearly identical results. Synchrotron x-ray microprobes are highly sensitive to 

transition elements, and Fe is commonly found in the Stardust samples. Of all the 

quantifiable elements, Fe shows the strongest signal in all the tracks we measured.   

Based on our observations by transmission electron microscopy (TEM) [see also 

Zolensky et al. 2006], it is readily dispersed down impact tracks in the form of beads of 

Fe(Ni)-sulfides and –metal encased in aerogel and surrounding other cometary mineral 

components.  Even around silicate terminal particles, these Fe-containing beads, typically 

nanometers to tens of nanometers in diameter, are present and closely associated with the 

silicate mineral grains. Given the relatively large pixel sizes used in these SXRF maps 

(approximately 10 to 15 microns) and high sensitivity to Fe, these silicate-dominated 

impact tracks are traceable by Fe. As such, the Fe signal is a reasonable choice for 

identification of cometary material, and the Fe fluorescence peak area has been used most 

frequently in our work. To account for expected variations in aerogel density and 

keystone thickness, we have selected map locations in the aerogel and defined a threshold 

surface.  This surface is adjustable by a scaling factor to fine-tune the boundary between 

the aerogel and the cometary material. 

 

There is a significant risk associated with this “single threshold” technique however: 

inadvertent inclusion of some cometary material in the background. Due in part to the 

relatively large map pixel sizes used for efficient data collection, there are border pixels 

on the edges of the two-dimensional map which can be considered to contain dirty 

aerogel contaminated by a bit of cometary material:  They contain large amounts of 

aerogel as well as some cometary material.  The map pixel sizes used are near the size of 

typical “large” particles seen in Stardust, on the order of 10 microns, so most, if not all, 

of this comet dust debris in a track is much smaller than the pixel size. (All of the map 

pixels in a keystone include some aerogel that contains no cometary material.  In a pixel 

that includes a comet particle, for example, this aerogel lies above and below the particle 

in the keystone along the x-ray beam path.)  As a result, there is no single threshold value 



that can neatly separate aerogel background from cometary material.  If a sufficient 

number of these border pixels are included in the aerogel background, then significant 

amounts of cometary material may be included in the aerogel background spectrum.  This 

inadvertent inclusion of some cometary material in the background results in subtracting 

it from the cometary material twice, first by not including it in the cometary material 

spectrum and again by subtracting it from the cometary material spectrum during 

background subtraction. The outcome is an underestimation of the abundances of 

elements in the cometary material. Inclusion of cometary material in the aerogel 

background category can be caused by a poorly set threshold or simply by cometary 

material that is not strongly associated with Fe.  To address this risk, we have developed 

a “dual threshold” approach that we propose as a single analysis protocol to produce 

more precise average composition results from Stardust comet dust samples in the future. 

 

The “dual threshold” approach involves establishing two thresholds, an upper threshold 

above which a pixel is considered to contain cometary material and a lower threshold 

below which it is considered to contain only aerogel.  Between the lower and upper 

thresholds is the third category:  pixels to be discarded due to uncertainty. The spectra 

from pixels in the three categories are summed to generate total cometary material, 

discarded material and aerogel spectra.  The primary advantage of this approach is the 

ability to observe and assess the material in the border pixels that contain mostly aerogel 

but, cumulatively, potentially significant amounts of cometary material as well.  The 

lower threshold is set by decreasing it stepwise in steps corresponding to approximately 

3-5% of the total range and observing the intensities of elements in the resulting aerogel 

background sum spectra.  Below a certain lower threshold level, the area of the Fe peak 

relative to the Si peak stops decreasing in the aerogel background sum spectrum, and this 

lower threshold level is selected. (The Fe/Si peak area ratio can be plotted with 

decreasing lower threshold level to determine the lower threshold level at which the ratio 

stabilizes to the aerogel background level.) The local aerogel background spectrum 

obtained is compared with spectra collected away from the impact track to make sure it is 

similar.  It is generally not identical due to variations in aerogel composition in the 

aerogel tile.  The upper threshold is then set in a similar manner by watching the 

discarded sum spectrum.  The ideal upper threshold is chosen where the discarded sum 

spectrum has similar relative intensities for those elements present in the cometary 

spectrum but not present in the aerogel spectrum, and the total Fe mass in the discarded 

sum spectrum is small relative to the cometary material sum spectrum.  Ideally, the 

discarded sum spectrum equals a fraction of the cometary sum spectrum, and this ensures 

that the discarded pixels contain the same average composition as the cometary pixels 

and will not significantly impact the total composition results. If the upper threshold 

value is lowered until the total Fe mass in the discarded sum spectrum is <1% of the total 

cometary Fe, and the discarded sum spectrum does not have similar relative intensities 

for those elements present in the cometary spectrum, that is, it does not show the same 

average composition, then closer inspection is warranted to determine if material not 

associated with Fe is present.  The following section gives two examples of such cases, 

one an aerogel contaminant in the discarded sum spectrum and the other non-Fe-

associated cometary material subsequently included in the cometary spectrum. In Track 

10, the only track without aerogel contaminants or non-Fe-associated cometary material, 



adding the discarded material and cometary material spectra together give increases in the 

cometary material of <1% in Fe, Ni and Cu mass abundances, 2-4% for Mn, Zn and Ca 

and 14% for Se which is present near its detection limit.  It should be noted that the 

discarded pixels, a small fraction of the projected two-dimensional map area containing 

cometary material, are an even smaller fraction of the three-dimensional volume in the 

keystone containing cometary material.  In this manner, conservative lower thresholds 

can be established to insure aerogel backgrounds clean of cometary material, and upper 

thresholds can be set to minimize inclusion of background aerogel while making certain 

that large amounts of cometary material are not discarded. 

 

Figure 5 a) contains the resulting total sum spectra (on a log scale) for cometary material 

(magenta), normalized aerogel background (blue) and discarded material (black) for 

Track 4.  The aerogel background is scaled to have the same intensity in the elastically-

scattered x-ray peak at 14 keV.  The discarded material spectrum is displayed on the 

same scale as the cometary material spectrum to illustrate the relatively small amount of 

material discarded.  Note that the amplitudes of peaks in the discarded material spectrum 

are ~100x smaller than those in the cometary material spectrum for the elements Fe and 

Ni.  Figure 5 b) shows the Fe signal in the dual thresholded map. The light blue region 

contains those pixels categorized as containing only aerogel, the black region contains 

those pixels discarded, and the yellow through red region contains those pixels 

categorized as containing cometary material with red indicating the highest fluorescent 

intensities.  The shape and size of the cometary material region matches the optically-

visible impact track.  As one would expect, the discarded pixels lie at the outline of the 

impact track – the so-called border pixels discussed above.  The discarded pixels do not 

include pixels located within the surrounding aerogel-only region, so any inherent aerogel 

contamination “hot spots” [Flynn et al. 2006, Supporting Online Material] are included in 

the resulting aerogel background spectrum.  (This might not be the case were we to 

generate the x-ray maps with finer spatial resolution.) 

 

To illustrate the potential impact of dual threshold versus a single threshold analysis, 

Table 2 contains the element mass abundances for Stardust impact Track 12 obtained 

using each approach and the fractional change in mass abundance in changing from 

single threshold analysis to dual threshold analysis.  The changes in this case are due 

primarily to a more conservative lower threshold established by the procedures given 

above and the inclusion of Cr not strongly associated with Fe (discussed below).  Ca and 

Ga, elements previously measurable above background using the single threshold 

analysis, are no longer measurable by dual threshold analysis due to changes in minimum 

detection limits.  13% more total mass is found to be cometary using the dual threshold 

analysis due to cometary material no longer being incorrectly added into the aerogel 

background spectrum.  The most abundant elements, i.e. Fe and Ni, are not significantly 

impacted since Fe is used to establish the threshold level(s) in both the single and dual 

threshold analyses.  The Cr and Mn abundances increase by ~40%.  The trace elements, 

Cu, As and K, increase 2-fold, and the Zn abundance increases 4-fold.  As a rule, slight 

variations in threshold levels have a larger impact on trace and minor element 

abundances than on major element abundances using either single or dual threshold 

analysis.  Trace element abundances are especially sensitive to the exact details of the 



analysis.  This is a strong motivation for an established analysis approach uniformly 

applied to Stardust track composition analysis. 

 
Table 2. Element abundances by mass for Stardust impact Track 12 by single and dual threshold analysis. 

 

  single threshold dual threshold fractional 

  mass (g) mass (g) change 

Cl 3.05E-11 5.78E-11 1.89 

K 6.19E-12 1.27E-11 2.04 

Ca 2.07E-13    

Cr 5.92E-12 8.51E-12 1.44 

Mn 4.37E-14 6.17E-14 1.41 

Fe 2.89E-10 2.98E-10 1.03 

Ni 2.48E-11 2.58E-11 1.04 

Cu 1.52E-13 3.10E-13 2.04 

Zn 2.15E-13 8.83E-13 4.11 

Ga 2.12E-14    

As 1.39E-13 2.48E-13 1.78 

Se 2.09E-13 2.05E-13 0.98 

total 3.57E-10 4.04E-10 1.13 

* Measured masses above minimum detection limits are reported here. 

 

The possibility that the upper threshold might exclude some cometary particles of 

atypical composition is a concern that is addressed to some extent by close examination 

of the discarded material sum spectrum (next section).  We mention here another 

potential approach for analysis that involves generating thresholds based on each of the 

elements present in the impact track and cross-correlating multiple elements. The formal 

method of principle component analysis (PCA) can be quite effective in extracting the 

most significant clusters of components in certain classes of datasets.  PCA would be 

ideal for extracting mineral phases in most analyses of mixed mineral assemblages; 

however, the case of Stardust impact tracks is strongly hampered by the inability to 

measure Si and O, majority species in many relevant minerals, above the aerogel 

background. 

  

Four of the five Stardust tracks were analyzed with dual threshold analysis.  The fifth, 

Track 5, was not mapped with sufficient surrounding aerogel to produce a reliable 

aerogel background.  Since this keystone is small such that all of the aerogel is near the 

track, several off-track aerogel spectra were summed and used as the background 

spectrum. In practice, typically less than 1% of the total Fe mass is discarded from an 

impact track.  In Track 9, ~1.5% of the Fe mass was discarded due to the presence of 

localized contamination discussed below.  The impact track and terminal particle 

composition results are discussed below in more detail. 

 

 

Dual Threshold Analysis as a Diagnostic Tool 

 



The “dual threshold” approach allows a close examination of the summed spectra in the 

discard category.  This is important for locating high concentrations of elements that are 

not strongly associated with Fe. As one example, close examination of Track 12 showed 

that there were map pixels with significant Cr not strongly associated with Fe, and these 

pixels were mistakenly placed in the discard category in the early analyses.  By lowering 

the upper threshold to include more pixels with lower Fe intensities, the Cr-containing 

pixels were included in the cometary material. Because measurements in silica aerogel 

are effectively blind to Si, and there are a lot of silicates in the Stardust sample, we are 

including and measuring those silicates primarily based on other heavier elements present 

such as Fe, Cr and Mn.  Including pixels with minor elements, potentially 

underrepresented by other analysis methods that rely on the Fe fluorescence signal, helps 

to ensure analysis of the majority of the cometary material.  These minor elements are 

critical for eventually obtaining a valid measurement of the Wild 2 average composition. 

 

Another example of “dual threshold” analysis as a diagnostic tool illustrates a discovery 

also of significance for other Stardust impact track studies. Early analysis of a few of the 

impact tracks we studied showed the presence of a significant amount of gold.  This was 

a very unexpected and suspicious result because the average solar abundance (assumed to 

be representative of the material from which all solar system objects formed) [Lodders 

2003] for the element Au is 2-3 orders of magnitude below the experimental minimum 

detection limits for the samples and data collection parameters used in this work. In 

Track 5, the Au level was measured to be 5 orders of magnitude greater than solar 

abundance. Mapping of the Au L" line in this track is difficult due to peak overlaps with 

Zn and Br, and the Au appears to be mixed with cometary material in the track at the size 

scale of the x-ray beam spot. After bemused speculation regarding future gold mining on 

comets, dual threshold analysis of another track revealed the Au to be a contaminant 

rather than indigenous to the cometary material. The discard spectrum of Track 9 

revealed the presence of additional Au contamination without significant Fe present.  

Mapping of the Au signal showed it to be localized at the aerogel surface, possibly flakes 

from an autoclave used in aerogel processing. Figure 6 contains the Fe K! and Au L" 

fluorescence maps. The Au contamination location is offset from the impact track 

entrance hole and thus not associated with the original cometary particle.  When the Fe 

signal alone is used to set the threshold for cometary material, several pixels including 

Au from this surface contamination are included in the cometary material.  Figure 7 a) 

shows the whole impact track cometary material and aerogel background spectra 

resulting from applying dual thresholds first based on Fe fluorescence and then an 

additional single threshold based on Au fluorescence to remove contaminated pixels.  

Figure 7 b) shows the spectrum of the pixels containing with high Au fluorescence 

unambiguously identified by both the L! and L" lines.  Together these pixels contain 

~0.45 nanograms of Au which, if included in the cometary material for all five tracks 

measured in this work would have been ~150,000 times solar abundance levels.  Other 

elements present most likely arise from some cometary material present in the pixels 

containing Au; however, it is not possible to say for certain at this time if the 

contamination is pure elemental Au.  The Au contamination may be present only in the 

batch of aerogel cells to which Cell 44 belongs, or it may be more widespread.  Because 

Au was found well-separated from Track 9, it is most probable that the Au intermixed 



with cometary material in other tracks is also due to surface contamination that has been 

entrained during the hypervelocity capture process and carried down the track with 

cometary particles.  

 

 

Composition Results and Discussion 

 

Cometary material containing approximately 3.8 nanograms of Fe is found in the five 

Stardust impact tracks analyzed in this work.  (Should solar system abundances prove 

appropriate for this portion of the Stardust sample, the approximate total mass analyzed is 

>20 nanograms.)  In many tracks, the total mass deposited along an impact track is 

dominated by the terminal particle; however, in others, a significant fraction of the 

cometary material is fine-grained and distributed along the length of the impact track 

embedded in the aerogel glass forming the track walls. In sulfide-dominated particles 

(and sub-particles), fine beads of Fe(Ni)-sulfides and Fe(Ni) metal/oxide are found 

deposited along the entire track. This is evident in other tracks studied by optical 

microscopy followed by particle extraction and electron microscopy, and although we 

present a very limited sample set, we see similar results in our micro-SXRF mass 

measurements.  Table 1 shows that carrot-shaped, conical tracks tend to have large 

percentages of their Fe mass located in the terminal particle while tracks with more bulb-

like shapes near the impact surface tend to have lower percentages of Fe mass in the 

terminal particle. All of the terminal particles of the 5 Stardust tracks measured were <5 

microns in diameter as measured by Fe fluorescence signal.  It is important to note that 

due to the combined effects of large amounts of Si in the aerogel and measurements 

carried out with some Ar from air in the beam path to the detector, the micro-SXRF mass 

measurements are effectively blind to Fo-rich olivine and En-rich, low-Ca pyroxene, both 

dominated by Mg, Si and O.  Particles dominated by these minerals have been found 

frequently in Stardust samples [Zolensky et al. 2006].  It is common, however, that these 

particles have glass with beads of Fe(Ni)-sulfide and Fe(Ni)-metal adhered on them, so 

the micro-SXRF technique can locate such a terminal particle, but it may underestimate 

the true particle size and will certainly underestimate the true particle mass since Si, O, 

Mg, Al, C and H are not quantifiable with any certainty and are not reported here. 

 

The compositions of each of the 5 Stardust impact tracks and their terminal particles are 

given in Table 3 in mass and in Table 4 in moles.  (Whole impact tracks include the 

terminal particle.)  For elements not detected, the detection limit (specific to each element 

in each sample and the data collection parameters) is listed in italics. Si, O, Mg, Al, C and 

H are not quantified due to the aerogel background and absorption.  The high levels of Br 

present in the aerogel and Ar due to air scatter are also not quantified in this work.  

Levels of Pb low enough that the Pb L" line is not strongly excited are indistinguishable 

from low levels of As under the experimental conditions for these measurements.  Since 

Pb is present in the Track 5 aerogel background, it is possible that As abundances are 

overestimated in these tables due to the presence of contaminant Pb.  Note that minimum 

detection limits are affected by surrounding element abundances as well as x-ray count 

time per pixel and thus are not fixed for a given element. Minimum and maximum mean 

abundances for the impact tracks and terminal particles in Table 4 were calculated by 



taking the abundances of elements not detected (non-detects) as zero and as the minimum 

detection limit respectively. 

 

In seeking to narrow the uncertainties in bulk composition measurements of the Wild 2 

comet dust, improved precision in composition measurements is highly relevant.  Due to 

the very limited number of Stardust tracks analyzed thus far since the sample return, there 

are large uncertainties associated with the Wild 2 element abundances currently available 

in the study by [Flynn et al. 2006]. Replacing the initial composition results for these five 

Stardust tracks in the above study with the refined dual threshold values reported here in 

Tables 3 and 4 results in a shift of up to 9% in the average abundances of some elements 

reported in [Flynn et al. 2006].  These five tracks comprise only 20% of the tracks 

included in that study.  The shifts in average abundance fall within the current uncertainty 

levels; however, with greater number of analyses added in the future, such shifts will 

become significant. The data in Table 4 can be combined with additional composition 

measurements in the future to develop more robust statistical mean elemental abundances 

for the Stardust comet sample than are currently available.  Such data will allow closer 

comparisons with other classes of extraterrestrial materials typically via normalization by 

Fe and the solar abundance [Lodders 2003].  (The current sample size of five keystones is 

insufficient to provide a meaningful average composition and thus normalization by solar 

abundance is not useful.) 

 

Interestingly, Zn is measured in most of the impact tracks but in none of the terminal 

particles even though the detection limits are generally 2 to 3 orders of magnitude lower 

for terminal particles.  Since there is a lot of background Zn in the aerogel, this raises the 

question of whether contaminant Zn might be concentrated in the impact track walls.  

Sulfur from the cometary material is a possible getter for Zn, and a close look at Zn-

containing sulfides is warranted.  Other mobile contaminants in the aerogel such as Sn, 

which has also been observed in some sulfides in TEM studies of other samples, may be 

subject to gettering in the same manner.  Another possibility is that most of the Zn from 

impacting comet dust particles is volatilized during impact and lost to the surrounding 

aerogel.  This process would have to be efficient to explain the non-detection of Zn in the 

terminal particles in tracks that show Zn abundances.  If this is the case, then it is likely 

that not all Zn originally present in the cometary material has been included in these 

measurements.  It is also noteworthy that, even for grain sizes of a few microns, the S 

abundance in Fe-sulfides is almost certainly underestimated in this work due to 

incomplete correction of absorption effects from Fe (and/or Ni) and S volatilization 

during impact.  However, the S/Fe ratio may also be expected to be lower than in the 

original impacting particle due to sublimation on impact and during the spacecraft’s 

return trip. 

 

Each of the 5 Stardust tracks and their terminal particles is discussed in more detail 

below.  Table 5 contains the abundances (in moles) of the measured elements normalized 

by Fe for each impact track and terminal particle.  (Solar abundances [Lodders 2003] 

similarly normalized are also given for completeness; however, such comparisons are 

best made with the average composition of many particles.)  The element/Fe 

stoichiometric ratios are only given for quantified elements for simplicity and to facilitate 



discussion of each track and terminal particle. In some cases, it is straightforward to 

recognize the dominant mineralogy in a terminal particle while in others, the inability to 

quantify Si, a major rock-forming element, combined with a likely cocktail of minerals 

makes even educated guesswork impossible.  From TEM results [Zolensky et al. 2006], it 

is known that the Stardust sample includes large single-mineral grains of sulfides and 

silicates and more exotic minerals as well as aggregates of many mineral phases, more 

fine-grained crystal grains with coatings of glass containing beads of Fe(Ni)-sulfides and 

Fe(Ni)-metal. Large single mineral grains are frequently not isolated but have 

neighboring smaller grains of other, different mineral phases and glassy material 

containing sulfide alteration products.  In general, Zn and Se tend to reside in the Fe-

sulfides, and high Ni content in the sulfides has also been reported widely, probably a 

result of heating and preferential Fe loss over Ni.  As the sulfides melt at lower 

temperatures than the silicates, tiny beads of sulfides are found distributed along tracks 

and around other particles in many Stardust impacts. Because we are blind to Si and O, it 

is not possible to distinguish with certainty between silicates and spinels; however, 

silicates are known from TEM studies to be present in much greater quantities in the 

Stardust sample. High Cr and Mn have been reported in Stardust silicates, so a particle 

with low Fe levels for its size (measured based on the Fe signal) and containing Cr and 

Mn might be dominated by silicate(s). 

 

Track 12 

Track 12 is a narrow, carrot-shaped track 1.6 mm in length with significant mass in the 

terminal particle.  As the only track studied at multiple synchrotron x-ray microprobes 

during the PE period, Track 12 received extra scrutiny [Flynn et al. 2006, Supporting 

Online Material].  The total mass measured (dominated by Fe) is equivalent between the 

dual threshold results in Table 2 obtained at SSRL and the results reported from the 

National Synchrotron Light Source (NSLS).  The Mn abundance in Track 12 is at the 

minimum detection limit, and the statistical error is 70%.  For the terminal particle, the 

statistical error is 15% for As and 25% for Ca.  (Other statistical errors are !10% by mass 

unless stated otherwise.)  Based on the lack of measured S in Track 12 or its terminal 

particle and the presence of Cr and some Mn and Ca, it is likely that the Track 12 

terminal particle is predominantly silicate material, olivine and pyroxene. 

  

Track 10 

Track 10 is 2.8 mm in length and is shown mapped in several elements in Figure 2 a)-c).  

It has a bulb-shaped entrance with hot-spots of cometary material deposited in the bulb.  

The whole track Ti abundance has 15% statistical uncertainty, and the terminal particle 

Se abundance, 20% uncertainty. While S is below detection limits in the track, the 

terminal particle contains a S:Fe ratio of ~0.05:1. There is also significant Al (not 

quantified) above the background in the terminal particle.  These suggest the presence of 

a mixture of mineral phases including some likely fine-grained metal-sulfide residues. 

 

Track 9 

Track 9 is a short, bulb-shaped track 0.5 mm in length.  Isolation of the Au fluorescence 

signal in Track 9 led to the conclusion that Au is not indigenous to the Stardust comet 

dust but, instead, a near-surface contaminant in the aerogel collector tile.  Pixels in the 



Track 9 map that contained ~0.45 nanograms of Au are excluded from the cometary 

material spectrum.  In the terminal particle, the Se abundance has a statistical uncertainty 

of 20%; Ca, 23%; and Mn, 70%.  Based on the relatively high S/Fe ratio, the terminal 

particle of Track 9 is likely dominated by Fe-Ni-sulfide.  There is measurable S in the 

impact track also, but differing Ca/Fe, Cr/Fe and Mn/Fe levels between track and 

terminal particle indicate the probable presence of silicates in the track as well as 

sulfides. 

 

Track 5 

Track 5 is also a short, bulb-shaped track 0.3 mm in length.  Since Au is clearly 

associated with the aerogel surface in Track 9, we assume when it is present in other 

impact track maps from the same Cell 44 aerogel tile that is not indigenous to the comet 

particles.  In Track 5, Au contamination appears to have been struck by the impacting 

particle and dispersed down the impact track.  Since it is intimately associated with the 

cometary material, we made no attempt to separate it out by identifying pixels containing 

Au.  Au found in Track 5 is therefore believed to be due to entrainment of Au surface 

contamination in the aerogel rather than from the comet.   As such, it is not reported in 

Tables 3, 4 and 5.  A total of ~1.0 nanogram of Au was measured in the Track 5 impact 

track.  There is no detectable Au associated with the terminal particle alone where the 

minimum detection limit was at the ~0.4 femtogram level.  It is assumed that the Au 

contamination was fully removed from the terminal particle during its transport down the 

track. 

 

Insufficient surrounding aerogel was mapped around Track 5 to permit aerogel 

background isolation.  As a result, we did not apply any thresholds on this track, and we 

used the aerogel background collected away from the track in the same keystone. This is 

a small keystone (<1 mm in length), and these background spectra were collected 

approximately 200-300 microns away from the optically visible track boundary in several 

different locations.  It should be noted, however, that the aerogel background in this 

keystone contains anomalously high levels of Cr, Mn, Fe, Ni, Cu and As, many elements 

typically associated with steels.  Pb is also present in the Track 5 aerogel background and 

is removed from the whole track and terminal particle cometary material spectra by 

background subtraction.  The high S stoichiometry in this track (see Table 5), more than 

two times greater than the sum of the Fe, Ni and Zn present, indicates that the S K! peak 

is likely contaminated with Pb M! fluorescence that was not completely removed by 

background subtraction.  As such, the S abundance in this track should be considered 

especially suspect.  The statistical uncertainty in V in the track is 15%.  The high levels 

of contaminants in the aerogel prevent determination of minerals present. 

 

Track 4 

Track 4 is a carrot-shaped track 3.3 mm in length and is shown mapped in several 

elements in Figure 2 d)-f). The terminal particle spectra from mapping this track were 

replaced with spectra taken with smaller spot size to reduce the impact of incomplete 

charge collection (which is detrimental to the signal-to-noise ratio and, therefore, 

elemental sensitivities). The Ti abundance in the terminal particle has a statistical 

uncertainty of 15%; Mn, 20%; and Ga, 30%.  Mg and Al are well above aerogel 



background levels in the terminal particle, and Mg is above background in the whole 

track. S is below detectable levels for this track, and the presence of Ca and Mn indicate 

silicates are likely the principle component in this track.  There is a total of ~0.14 

nanograms of Au present in the terminal particle (or immediately adjacent to it), but the 

whole track analysis is not sensitive to the level of Au present.  Au levels are low enough 

in this terminal particle that they can be obscured by neighboring peaks preventing 

isolation of Au via thresholds. This is unlike the situation with Track 9 where the Au L" 

line was strong enough to isolate by thresholding. (With future application of principle 

component analysis, we may be better able to isolate known contaminants from impact 

tracks.) As in Track 5 above, the Au is believed to due to entrainment of aerogel surface 

contamination and is not reported in the tables. 

 

 

Conclusions 

 

We have mapped five Stardust impact tracks in aerogel by micro-SXRF at the Stanford 

Synchrotron Radiation Laboratory collecting full fluorescence spectra at each map pixel 

with sufficient dwell times to permit measurement of minor elements at relatively low 

abundances (femtogram levels).  Fe has been used, with good reason, as the marker for 

cometary material by the majority of synchrotron microprobe groups studying Stardust.  

Although the x-ray microprobe measurements cannot measure many low Z elements, 

including Si and O due to aerogel backgrounds and Al, Mg and C due to strong 

absorption, microscopy studies have shown that fine beads of Fe-sulfides are commonly 

distributed down impact tracks and associated with particles.  In this manner, Fe 

elemental maps are generally good means of locating comet debris in aerogel.  Elemental 

maps in other elements have also been generated and show some spatial variation in 

composition within individual impact tracks. 

 

The Stardust aerogel is unfortunately contaminated with elements of interest in the comet 

itself including Fe, Ca, Zn and Cu and possibly Br.  As a result, separation of aerogel and 

cometary material is important for precision and sensitivity of composition 

measurements.  Applying a simple threshold to the Fe fluorescence signal to sort map 

pixels into cometary material and aerogel background categories carries the risk of 

greatly underestimating the abundances of minor elements. 

 

We have presented a dual threshold approach in which a safety margin is established and 

those pixels falling within it are discarded.  This provides more precise composition 

results without significant loss of cometary material in the analysis. Analyses of Track 12 

by both single and dual threshold approaches show the potential impact on mass 

abundances.  13% more total mass was measured by dual threshold analysis with 

increases of 1.4x in Cr and Mn mass, 2x in Cu, As and K, and 4x in Zn.  As expected, 

high abundance elements, Fe and Ni, are not impacted significantly. The dual threshold 

approach has proven to be a useful diagnostic tool for detecting elements not strongly 

associated with Fe.  Additional cometary Cr in Track 12 was located in this manner. 

 



The dual threshold analysis also reveals contamination:  Gold contamination sometimes 

seen intimately associated with cometary material in Stardust impact tracks has been 

excluded from cometary material composition results because it has been found to be a 

localized surface Au contaminant occasionally impacted by comet dust and carried down 

an impact track.  The dual threshold technique can be used in other similar situations 

where elements of interest in a small sample embedded in a matrix are also present in the 

matrix itself. 

 

We have presented the refined whole impact track and terminal particle compositions by 

mass and by atoms for each of the five Stardust impact tracks.  Compositions for all 

tracks except Track 5, which has unusually high levels of background contamination, 

were generated using the dual threshold method.  A total of ~3.8 nanograms of Fe mass 

were measured in these five impact tracks.  From the limited sample analyzed thus far, 

we find that terminal particles in conical tracks tend to contain large percentages of the 

total mass in the terminal particle while those in bulbous tracks contain less.  Based on 

whole impact track and terminal particle compositions, educated guesses of the dominant 

minerals present in the impact track and / or terminal particle have been made. 

 

The composition results presented here will be combined in the future with additional 

data to better constrain the bulk composition of the Comet 81P/Wild 2 sample.  Improved 

precision analyses like the dual threshold approach will become critical to narrowing the 

uncertainty levels on the bulk composition as the number of analyzed impact tracks 

increases and the limited number of samples no longer dominates the uncertainty. X-ray 

microprobe studies will continue to play a major role in non-destructive analysis to better 

understand the effects of impact on the original impacting dust and component minerals 

both by fluorescence and x-ray absorption spectroscopy.  Unraveling the complex 

interactions and relationships between collection media, contaminants and comet dust 

will be a major theme for future Stardust research. 
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Figure Captions 

 

Fig. 1.  Optical microscope images of the 5 Stardust comet dust impact tracks in aerogel 

keystones analyzed by micro-SXRF:  a) Track 4, b) Track 5, c) Track 9, d) Track 10 and 

e) Track 12. Images are scaled to indicate relative sizes of tracks. See Table 1 for details 

of impact track length and mass of cometary debris. 

 

Fig. 2.  X-ray fluorescence maps for two different shapes of Stardust impact tracks 

generated by setting energy windows encompassing relevant K! lines:  Maps of Track 

10, an impact track with a bulbous shape, are shown in a) Fe, b) Ni and c) Cr.  Warmer 

colors indicate higher fluorescent intensity on a logarithmic scale.  Track 10 is 2.8 mm 

from entrance hole to terminal particle. Analogous x-ray fluorescence maps are shown 

for Track 4, a carrot-shaped, conical impact track, in d) Fe, e) Ni and f) Cr. Track 4 is 3.3 

mm in length, and the terminal end of the Track 4 impact track contains two distinct ~3-4 

micron diameter FWHM Fe-rich regions separated by ~50 microns. 

 

Fig. 3.  X-ray fluorescence spectrum (magenta) plotted on a logarithmic scale from the 

cometary material in Stardust Track 4.  Elements present in the cometary material 

spectrum include contributions from the aerogel (spectrum in blue, normalized) that is 

present above and below the cometary material in the x-ray beam path through the 

keystone. 

 

Fig. 4.  Comparison of fluorescence spectra collected away from impact tracks in several 

of the Stardust aerogel keystones extracted from the Cell 44 aerogel tile.  Ar is present 

due to excitation in air, and all keystones contain high Si, Zn and Br contamination levels 

and, typically, some measurable Ca, Fe, Ni, Cu, As and Se. There can be significant 

variation in aerogel background contamination at different locations within the same tile.  

The Track 4 keystone has relatively low contamination levels but exhibits more Mg than 

the others.  The Track 5 keystone contains significant amounts of Pb in addition to much 

higher levels of Cr, Fe, Ni and Cu than the other keystones.  These high contamination 

levels are present in multiple locations on that keystone several hundreds of microns 

below the original aerogel surface and away from the impact track. 

 

Fig. 5.  Results of dual threshold analysis of Stardust Track 4.  a) Sum spectra generated 

by the dual threshold approach for cometary material (magenta), normalized aerogel 

background (blue) and discarded material (black) for Track 4 in its entirety. b) Fe signal 

in the map of Track 4 after applying dual thresholds:  pixels in the light blue region are 

designated aerogel, pixels in the black region are discarded, and pixels in the multi-

colored yellow through red region are designated cometary material.  The spectra in these 

three categories of pixels were summed to produce the fluorescence spectra in a). 

 

Fig. 6.  X-ray fluorescence maps for Track 9 generated by setting energy windows 

encompassing a) the Fe K! and b) the Au L" lines.  Gold contamination is located at the 

aerogel surface and is clearly not associated with the comet dust impact track. 

 



Fig. 7.  Results of dual threshold isolation of cometary material for Track 9.  a) Sum 

spectra for cometary material and normalized aerogel background for Track 9 in its 

entirety, and b) the sum spectrum of those pixels containing Au fluorescence isolated 

from the map of Track 9. 
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