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Abstract. Theoretical and computational investigations are presented of boundary-
plasma microturbulence that take into account important effects of the geometry
of diverted tokamaks – in particular, the effect of x-point magnetic shear and the
termination of field lines on divertor plates. We first generalize our previous “heuristic
boundary condition” which describes, in a lumped model, the closure of currents in
the vicinity of the x-point region to encompass three current-closure mechanisms. We
then use this boundary condition to derive the dispersion relation for low-beta flute-
like modes in the divertor-leg region under the combined drives of curvature, sheath
impedance, and divertor tilt effects. The results indicate the possibility of strongly
growing instabilities, driven by sheath boundary conditions, and localized in either the
private or common flux region of the divertor leg depending on the radial tilt of divertor
plates. We re-visit the issue of x-point effects on blobs, examining the transition from
blobs terminated by x-point shear to blobs that extend over both the main SOL and
divertor legs. We find that, for a main-SOL blob, this transition occurs without a
free-acceleration period as previously thought, with x-point termination conditions
applying until the blob has expanded to reach the divertor plate. We also derive
propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the
C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL
blob structures with similar spatial characteristics to those observed in the experiemnt,
and also simulations which illlustrate the possibility of fluctuations confined to divertor
legs.

PACS numbers: 52.35.Kt,52.30.Ex,52.35.Mw,52.65.-y,52.40.Kh

1. Introduction

Turbulent transport in the boundary plasma of tokamaks play an essential role in

establishing the boundary conditions for core-plasma transport and in establishing the

pattern of power and particle loss to bounding material surfaces. While such transport

has been the subject of theoretical, computational, and analytic studies for many years,

the description of the turbulence has been heavily shaped by two major developments:
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the recognition of the role of magnetic shear in the vicinity of the separatrix X-point, and

the emergence of the importance of large-amplitude intermittent structures, or ”blobs”.

X-point magnetic shear squeezes magnetic flux tubes, mixing poloidal/toroidal

and radial potential variations, thereby raising the effective radial mode number of

fluctuations passing near the x point [1]. The radial wavelength of moderate-toroidal-

mode-number perturbations can shrink to less than a gyroradius on passing the x-

point region. Various mechanisms – resistive current flow [2], polarization [3, 4, 5], and

viscosity [6] can lead to current closure in this region, thereby terminating fluctuations

present on one side or the other of the x point, and isolating instabilities in the main

SOL from those in the divertor leg. This current closure can be approximated as a

lumped boundary condition; this was done for resistive closure in Ref. [2] , and for

polarization in Ref. [3, 4, 5]. The effective boundary condition can then be used to

analyze the effect of x-point shear on instabilities. This was done for curvature-driven

modes in the main SOL [7], and for sheath-driven modes in the divertor leg [2].

A number of experiments (e.g.,, Refs. [8, 9, 10]) have observed large-amplitude,

intermittent, strongly elongated (along the magnetic field) structures, or “blobs”. They

are of considerable importance, since they propagate radially and can be a significant

transport mechanism to the main chamber walls. These can be viewed as a nonlinear

state of instabilities in the SOL. A simple model was proposed in Ref. [12]; more recent

treatments have introduced the braking effect of contact with external walls [11, 13],

and more quantitative analyses based on the vorticity equation [13, 14].

In the past few years the interaction of the above two phenomena has come under

investigation. It has been recognized that blobs (like lower-amplitude fluctuations in the

edge) can be strongly impacted by the presence of X-point shear, and the effects can be

analyzed using the “heuristic boundary condition” described in above. Ref. [11] derived

the terminal velocity of an isolated blob in the main scrape-off layer contact with the

X-point region. Recently we pointed out [15, 16] a number of further consequences of

X points and wall contact (or lack thereof) for blob dynamics.

In the present paper we extend the above lines of investigation in several ways.

First, we note that the X-point current-clsoure mechanisms can be combined to a

generalized heuristic boundary condition (Sec. 2). We then apply (Sec. 3) the heuristic

boundary condition to the analysis of low-β, flute-like, divertor-leg instabilities, under

the combined influence of curvature, sheath impedance, and radial tilt of divertor plates.

In Sec. 4 we gather our previously derived results on the effect of X point effects on blob

propagation, and examine the reconnection of a main-SOL blob to the divertor plate as

it radially propagates. We also in this section derive results for the propagation of blobs

in divertor legs. Sec. 5 is devoted to numerical simulation of the above phenomena

using the BOUT two-fluid code: main-SOL blobby structures and comparisons with

experimental data for the C-MOD tokamak, and simulations indicating the presence of

fluctuations in divertor legs uncorrelated with fluctuations in the main SOL. Sec. 6 is a

discussion and summary of the results.
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2. X-Point Boundary Conditions

2. X-point boundary conditions

As has been mentioned in the Introduction, in a number of cases the magnetic

shearing of perturbations near the X point is so strong that it causes a complete

decoupling of perturbations at two sides of the x point. In particular, perturbations

in the common flux region of the divertor get decoupled from perturbations in the main

SOL, and perturbations in the outer private flux region in divertor are decoupled from

perturbations in the inner region. What happens to perturbations in the transition zone

is that the cross-field current becomes non-negligible because of a rapid increase of a

perpendicular wave number along the field line and the corresponding increase of a cross-

field current. The cross-field wave number grows, roughly, as exp(s/L∗) [1], with s being

the distance along the field line, and L∗ being some characteristic length determined

by the details of the divertor design and being of order of a few meters for most of

the medium-size tokamaks [17]. So, a potential perturbation of the form exp(ik⊥ · r)
imposed on the one side of the X-point decays when one moves into the X-point region

because of the finite parallel plasma resistance. The situation here is similar to that of

the “leaky circuit,” where the voltage applied between two conductors decreases with

the distance from the terminal if there is a current leak from one conductor to another.

As a rough way for describing this situation, one can impose a resistive boundary

condition at a “control surface” situated at some distance from the X-point. In

particular, when one deals with instabilities in the private flux region, the location

of the control surfaces for the outer and inner legs are shown in Fig. .. The exact

location of this surfaces is not very important if the divertor legs are long enough,

so that the SOL width at the divertor plate is much less than the distance from the

divertor plate to the X-point. The structure of the boundary condition at this surface

is: j‖ = Σδφ, where Σ is some coefficient that, generally speaking, depends on the wave

number and the frequency of perturbations. The form for σ depends on the assumption

of the mechanism leading to the cross-field “leak.”

In Ref. [18] it was noted that, when the perpendicular wave number of perturbations

exceeds ρi − 1, a cross-field conductivity by electrons becomes possible. This leads to

the BC of the form:

j‖ = σH |k⊥| δφ , σH = ω2
pe/4πωce . (1)

The parameter σH has the dimension of electrical conductivity and was called in Ref.

[18] a “heuristic conductivity.”

In Ref. [6], a closure mechanism associated with the cross-field ion shear viscosity

was considered. It leads to the following BC:

j‖ = σH |k⊥| δφ
(

me

me

)1/4

(|k⊥| ρi)
1/2 . (2)

[We find it convenient to express the BC in terms of the heuristic resistivity, which

allows an easy comparison between various models.]
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In Refs. [3, 4, 5], the closure by the ion polarization current was considered. This

yields the following BC:

j‖ = σH |k⊥| δφ
(

me

me

|ω|
νei

)1/2

(3)

The last two mechanisms are based on the assumption that the cross-field length scale

of the perturbation in the sheared region remains greater than the ion gyro-radius all

over the zone where the closure of the currents occurs. If, formally, the closure does not

occur up to the point where the length scale becomes less than ρi , then the mechanism

described by Eq. (1) takes over.

The BC condition for a specific set of parameters is determined by the mechanism

that yields the highest current. One can qualitatively take this circumstance into account

by introducing a “generalized boundary condition” that can be obtained simply by

summing up Eqs. (1)-(3). The result is

j‖ = σH |k⊥| δφ

[
1 + α1(k)

(
me

me

)1/4

(kρi)
1/2 + α2(k)

(
me

me

|ω|
νei

)1/2
]

(4)

The coefficients α1, α2 < 1 account for the aforementioned possibility that the length-

scale reaches the ion gyroradius before the substantial shortening of the current by a

particular mechanism occurs. The values of these coefficients depend on the specifics of

the divertor geometry. For the plasma parameters chosen in Sec. 3, 4 all the mechanisms

yield the same contribution, within a factor of 2-3. In order not to overload our largely

conceptual analysis by the unnecessary details we use in Sec. 3, 4 simply the heuristic

boundary condition (1). Possible uncertainties are taken into account by introducing

the adjustment factor G in the r.h.s. of Eq. (1).

3. Divertor-Leg and Private-Flux Instabilities

The plasma in the divertor is in direct contact with the divertor plates and, therefore,

may be strongly affected by the sheath boundary conditions. In the private flux region

there is obviously no connection with the main SOL along magnetic-field lines. In the

common flux region the connection is present but may be strongly reduced by the shear

near the X-point. As noted in Refs. [19, 2, 15] these features can be used to reduce the

divertor heat load by exploiting various instabilities specific to the divertor plasma so

that the plasma cross-field diffusion in the divertor legs would be maximized and lead to

a broadening of the wetted area. On the other hand, the possibility of confining these

instabilities within divertor, without inducing additional transport in the main SOL,

would eliminate any adverse effect of these instabilities on the pedestal formation and

bulk plasma confinement. This approach generally favors divertors with “long legs” and

can therefore improve performance of the X divertor [20].

In this paper we present an analysis of divertor-leg instabilities that consistently

includes curvature, X-point shear and sheath boundary conditions (BC); we discuss the

consequences for instabilities in the private flux region. We use the generic divertor
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Figure 1. Schematic of the private flux region Dashed lines represent the “control
planes”. The major axis is to the left.

geometry shown in Fig. 1. The angle α is considered positive when the tilt of the

divertor plate is as shown in Fig. 1. We assume that the distance `d from the X-point

to the divertor plate is ∼ 20 cm, BT ∼ 5 T, BP ∼ 0.3 T at the divertor floor, Te ∼ 25 eV,

the plasma cross-field length-scale ∆ ∼ 1 cm in the private-flux region at the divertor

plate, and n ∼ 1013 cm−3. These parameters roughly correspond to those of a high-field

compact tokamak like C-Mod, although they do not reflect details of any particular

tokamak. We assume also that the plasma fills the whole flux-tube connecting the inner

end outer strike points, neglecting variation of the parameters along the flux tube.

We consider unstable modes satisfying ∆−1 < k⊥ < ρ−1
i , where ρi = cs/ωci with

cs = (2Te/m)1/2. As the private flux plasma has very low beta, electrostatics is sufficient.

(We can verify a posteriori that resistive ballooning is insignificant). The modes are

flute-like, with k‖ � k⊥. For the set of parameters mentioned above, ρi ∼ 0.02 cm

(deuterium). An important factor is the squeezing of the flux tubes on their way from

one strike point to the other, caused by strong shear near the X point [1, 17]. A flux

tube that is circular at one strike point and centered a distance ∆0 from the separatrix

ends up having a highly stretched elliptical cross-section, with ellipticity E ≈ (`d/∆0)
2.

Hence a perturbation with wavenumber k⊥ at the outer strike point has a scale length

k−1
⊥ E−1/2 ∼ k−1

⊥ ∆0/`d near the inner strike-point. If this scale-length becomes less than

ρi, the perturbation is “dissolved” in the ambient plasma. In this case perturbations in

the two legs are disconnected and the effect of the X-point shear can be approximated

by the “heuristic boundary condition” [2] on control planes situated somewhat below

the X-point (dashed lines in Fig. 1). Conversely, if ∆0/k⊥`d > ρi, the perturbation

connects the two strike points. Estimating ∆0 ≈ ∆/2, one finds that the disconnection

occurs for the perturbations with k⊥ρi > ∆/2`d ∼ 1/40, i.e., even for perturbations

with the cross-field length-scale approaching the plasma thickness ∆. Therefore, we

consider only disconnected perturbations.

We apply a sheath BC at the divertor plate, with the effects of tilt (sin α 6= 0)

and plasma drifts included, and the heuristic BC at the control surface. We assume

T−1
e ∇⊥Te � n−1∇⊥n and neglect the latter. In the eikonal approximation, we arrive at
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Figure 2. Growth rate versus wavenumber for the private flux region in the outer
leg, for L‖ = 3 m, R = 0.5 m, G = 2, and other parameters as indicated in the text.
At zero tilt, there is only a weak instability. Negative tilt makes the plasma strongly
unstable.

the following dispersion relation:

Ω2 + Ω(iΩ1 + Ω2 + iΩ3)− iΓ2
1 − Γ2

2 − Γ2
3 = 0 (5)

with

Ω1 =
ω2

cimics

L‖k
2
⊥Te

, Ω2 =
ωci

k⊥L‖

B

Bp

tan α, Ω3 =
BωciG

Bpk⊥L‖
,

Γ2
1 =

Λ̂ωcics

k⊥L‖∆
, Γ2

2 = ± Te

miL‖∆
tan α, Γ2

3 = ± TeB

miR∆Bp

with L‖ the distance along a field line from the divertor plate to the control surface, and

the constant Λ̂ =∼ (1/2)(1 + ln me/2πmi) ∼ 4. Here G is an adjustment factor of order

one that enters the heuristic boundary condition [2], and R is evaluated at the strike

point. The “plus” (“minus”) sign corresponds to the outer (inner) leg.

The first term in the left hand side (LHS) of Eq. (5) describes plasma inertia.

The last term describes curvature stabilization (destabilization) of perturbations: in

the private flux region, for the outer leg, it is stabilizing, whereas for the inner leg it is

de-stabilizing. The second to the last term describes the stabilizing/destabilizing effect

the divertor-plate tilt. In order to have stronger turbulent broadening of the private flux

region it is desirable to have α < 0(> 0) in the outer (inner) leg. The Ω3 term describes

the effect of the X-point-shear boundary condition. The rest of the terms come from the

sheath boundary condition (Cf. [2]). As shown in Fig. 2, the real part of the frequency

at moderate k’s is of the order of the growth rate, i.e., f = ReΩ/2π ∼ ImΩ/2π ∼ 100

kHz. The diffusion coefficient evaluated by a mixing length estimate is quite high,

approaching 1.5 m2/s (i.e., significantly higher than Bohm). At the non-linear stage of

the instability, one can expect formation of blobs [12] moving away from the separatrix,

deeper into the private flux region. This is discussed in the next section.
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4. Blobs

In the past few years it has been recognized that blobs (like lower-amplitude fluctuations

in the edge) can be strongly impacted by the presence of X-point shear, and the effects

can be analyzed using the “heuristic boundary condition” described in Sec. 2 Ref. [11]

derived the terminal velocity of an isolated blob in contact with the X-point region.

Recently we pointed out [15, 16] a number of further consequences of X points and

wall contact (or lack thereof) for blob dynamics. Here we collect these results, and

then examine two aspects that were not explicitly treated previously: the process by

which a blob loses contact with the X-point region, and the condition for resistive

ballooning isolating a blob from the end walls. We then consider the implications for

blob propagation in C-Mod, where some rather detailed studies of blob propagation have

been performed. Finally we discuss properties of blobs that follow from the divertor-leg

instabilities discussed in the preceding section.

The salient results from Refs. [15, 16] are: (1) The X points decouple blobs and blob

dynamics in the main SOL and in the divertor legs. Blobs born close to the separatrix

in either the main SOL or the divertor leg will be confined to that region until they have

propagated out far enough that the X-point shearing is sufficiently weak. The terminal

velocity of a blob confined to the main-SOL region is of order

Ṙx ∼ vtiLxρ/GRa (6)

where Lx is the field line connection length (half the field line length) to the X

point region, a is the blob radius, ρ is the gyroradius, and G is the order-unity

phenomenological constant in the X-point heuristic boundary condition. (2) Divertor

leg instabilities, such as are discussed in Sec. 3, can grow into blobs localized to the

divertor legs. These move slower than main-SOL-localized blobs because of contact

with the divertor (see discussion below). (3) Blobs which may from birth extend all

the way from the main SOL to the divertor floor, will in effect move independently in

the man SOL and divertor. (4) when a blob has propagated sufficiently far from the

separatrix that X-point shear is insufficient to bring the blob thickness down to the

gyroradius, it ceases to be confined poloidally to one side or the other of the X-point

region. (We examine below just where and how this occurs). We had argued previously

that the blob would then enter a period of acceleration while simultaneously expanding

along the magnetic field at thermal speed until a material surface is reached, but the

discussion below indicates this period is of zero length. (5) A blob in contact with

a material surface, and for which the pressure or density distribution within the blob

cross section is non-symmetric, experiences a conducting-wall drive in addition to the

better-known curvature drive. These blobs are the nonlinear limit of the conducting-

wall temperature-gradient modes described in Ref. [21]. The terminal velocity in the

case where this drive dominates over curvature drive (valid for ΛaRFa/ρiLc > 1, where

Λ = Λ̂− 1/2 ∼ 3, Lc is the connection length (∼ half the field-line length) and Fa < 1
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is a measure of the degree of asymmetry of the pressure and density distributions) is

Ṙcw ∼ FaΛcTe,wall/eBa (7)

(neglecting modifications, analagous to those discussed in the preceding section, when

there is a significant tilt of the bounding surface); in the opposite limit, it is

Ṙκ ∼ (cTe/eBa)(ρsLc/Ra)(1 + Ti/Te) (8)

The question of how a blob, initially confined to the main SOL plasma, re-

establishes connection through the divertor leg to the divertor plates, and the associated

question of how far from the separatrix the X point is effective in isolating a blob has

not been explicitly dealt with in the previous literature. An estimate for the critical

distance from the separatrix ∆c proceeds as follows: as noted in Ref. [1], a flux tube

that is initially circular far above the X point, with radius a and distance from the

separatrix ∆, is elliptically distorted to have a thickness (minor radius) δR ≈ a∆/yD

at a poloidal distance yD toward the divertor, measured from the separatrix (up to the

limit where the quadrupolar approximate for the poloidal field breaks down, i.e. up to

yD ∼ rd, where rd ∼ minor radius is the poloidal distance over which the poloidal field

projected from the quadrupolar approximation is equal to the main-SOL poloidal field);

yD is measured in the same way as `d in Fig. 1. The blob effectively terminates at the

“control surface” defined by where δR becomes ∼ ρi, which occurs at y ≈ a∆/ρ. This

increases with ∆.

One might be concerned that this point would recede toward the divertor faster than

the material in the blob can catch up. However, within the context of the quadrupolar

model, the toroidal distance between the position where a flux tube is circular with

a specified radius r0 and the position where it is elliptical with minor radius ρi is

independent of the distance from the separatrix, and is just ∆z = (B0/B
′
p) ln(r0/ρi),

where B0 is the toroidal field strength and B′
p is the (constant) derivative of the poloidal

magnetic field with respect to distance from the X point. Hence as a blob propagates

outward, this poloidal distance doesn’t change. As a first approximation, one might

argue that to leading order in Bp/Bt, purely transverse displacement of a flux tube

consists of purely poloidal motion and so preserves the toroidal length. But this is not

quite correct; transverse displacement necessarily involves some toroidal motion as well.

To estimate the effect, consider X-point geometry with x, y coordinates chosen as

in Fig. 1 (whereby, along a field line, x > y is in the main SOL and y > x is in

the divertor leg), and consider a flux tube with circular cross section of radius a0 at

position x0, y0 (where x0 ∼ the tokamak minor radius, and y0 ∼ the SOL width).

This flux tube is squeezed to a radial extent δx ∼ ρi at position yf ≈ y0(a0/ρi),

xf = x0y0/yf . Note that the flux tube is extended in the poloidal (y) direction here,

δy a2
0/ρi. We consider a purely transverse displacement of the flux tube which is purely in

the poloidal plane at x0, y0; for a radial displacement ξ0y, there is a poloidal displacement

ξ0x ∼ −ξ0yBy/Bx = ξ0yy0/x0, and by construction zero toroidal displacement. We

look for the point on the displaced field line which is reached by a purely transverse

(to B) displacement from the point xf , yf , zf , That is, ξf · B = 0, from which it
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follows that ξfz = (B′
p/B0)(xfξfx − yfξfy). Just as the shear results in the flux tube

being elongated in the y direction, the displacement ξyf is enhanced over the main-

SOL displacement ξy0 by the same factor ∼ a0/ρi. Hence we find, approximately,

ξfz ∼ −ξy0B
′
py

2
F /B0y0 ξy0(Bp/B0)a/ρ. Hence, as a blob moves outward with velocity Ṙ,

there must be a toroidal flow (approximately equal to the toroidal flow) of magnitude

v‖ ∼ Ṙ(Bp/Bt)(a/ρi) in order to preserve ∆z and so stay up with the receding control

surface. For typical parameters (Bp/Bt)(a/ρi) ∼ 1; the required parallel flow velocity

is of the same order as the blob radial expansion velocity, which must be sub-sonic in

order for the derived expressions to apply. So, the blob can keep up with the receding

control surface; the X-point boundary condition will continue to apply until the control

surface reaches the divertor plate. The limit of applicability of the X-point boundary

condition is then simply given by ∆c ≈ ρ`d/a. A blob propagating past this point will

transition from a terminal velocity set by X-point shear to a terminal velocity set by

contact with the divertor plate.

correlation pattern lies at the center position of the dipole
pattern from Fig. 4. This feature is made more apparent when
the respective correlation amplitudes of C!ñ , ñ" and C!ñ ,!̃"
are averaged over the intervals of time lag " where the cor-
relation patterns are observed. Figure 6 shows the average
correlation amplitudes over the interval "= #−25 #s ,50 #s$
during inward probe plunge. This corresponds to the time
interval t= #0.73 s ,0.75 s$ of Figs. 4 and 5. Based on the
mapping calculation !Fig. 3" the radial probe position $ in
Fig. 6 is translated into its vertical position z. It is clearly
seen that the monopole correlation pattern is located at the
center of the dipole pattern. The relative spatial positions of
the correlation maxima and minima indicate that the density
correlation pattern is phase shifted by % /2 relative to the
potential pattern. The spatial orientation of the dipole is such
that the resulting electric field causes a radially outward ori-
ented E&B drift of the density-fluctuation pattern. This find-
ing is consistent with basic models for radial blob propaga-
tion, in which the self-consistent potential associated with
the plasma pressure perturbation is phase shifted by % /2 and
also forms a poloidally oriented dipole.

IV. PROPAGATION SPEED OF FLUCTUATION
STRUCTURES

A straightforward approach to measure the radial propa-
gation speed of fluctuations is to inspect the signals from the
radial array of D' diode views. In Fig. 7 the cross-correlation

functions of a single diode view located at 13.8 mm from the
separatrix position in the SOL with four other diode views at
different locations within the SOL are shown. A relatively
large radial correlation length, i.e., the radial distance over
which the correlation amplitude decreases to 1/e, of
($%15 mm is found. It is clearly visible from Fig. 7 that the
peak values of the respective cross-correlation functions are
time shifted. Correlated fluctuations occur consistently ear-
lier at views closer to the separatrix than those located fur-
ther in the SOL, which corresponds to a radial propagation of
fluctuations. From the time shift of the maximum correlation
amplitudes, (", and the radial separation of the diode views
($, radial velocities of fluctuations )r=($ /(" can be de-
duced. The results for neighboring diode views are shown in
Fig. 8. Close to the separatrix, $*10 mm, a high velocity up
to )r=2 km/s is found, which may be an artifact of the one-
dimensional measurement !see Sec. V". The velocity drops
quickly and remains approximately constant over the rest of
the SOL with values )r%500 m/s, which corresponds to
)r%1%Cs, where Cs is the ion sound speed in the SOL. We
note that this result is based on a one-dimensional diagnostic,
but it is generally observed that the propagation of fluctua-
tions has also a poloidal component.11,23

The radial and poloidal components of propagation can
be determined simultaneously using the two-dimensional tur-
bulence imaging camera frames. These frames are particu-
larly good at tracking the motion of turbulent structures. In
Fig. 9 four consecutive camera frames of D' intensity

FIG. 6. Cross-correlation amplitudes, time averaged over the correlation
time lag interval "= #−25 #s ,50 #s$, vs the vertical probe position on the
SOL z.

FIG. 7. Cross-correlation functions between different
D' diode time series with the one of a fixed view at $
=13.8 mm. For reference the auto-correlation function
is also shown as solid black line.

FIG. 8. Radial velocities )r as calculated from the time shift of the peak
correlations (" and the separation of the diode views ($.

012306-4 Grulke et al. Phys. Plasmas 13, 012306 !2006"
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Figure 3. Blob propagation speed in C-Mod, from Ref. [9].

Another useful criterion that can be extracted from Ref. [16] is the criterion that

resistive ballooning isolate a blob from material endwalls. Eqs. (42) and (43) of Ref. [16]

are coupled partial differential equations for the evolution of the normal and geodesic

component of displacement for a blob derived in the approximation of resistive MHD,

and are of the form:

C1ξ̈g +
B2

c2

∂

∂s

[
Cgg

(
B

Bp

ξg

)
+ Cgn (BpRξn)

]
+ Sg = 0 (9)

and

C1ξ̈n +
B2

c2

∂

∂s

[
Cnn

(
B

Bp

ξn

)
+ Cng (BpRξg)

]
+ Sn = 0 (10)

where C1 =
∫

ρdS, Cjg = (
∫

σdS)DjgBp/B
2, Cjn = (

∫
σdS)Dnj/BBpR, and Sj =

[2(∇B)n/B]
∫

pdS for j = g, n,
∫

dS denotes an integral over the cross section of the

blob, Dij = 〈xixj〉 − 〈xi〉〈xj〉, σ is ithe electrical conductivity, and the 〈 〉 denotes a

σ-weighted average over the blob cross section. The resistive ballooning limit prevails
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when the parallel derivative terms in these equations are negligible compared to the

remaining terms, from which we obtain the following criterion:

Ṙ � Ṙb = βc2L2
c/πa2σR (11)

where σ is the parallel conductivity.

We now consider application of these considerations to C-Mod. Ref. [9] contains

a plot of blob velocity versus radius for a representative discharge, reproduced here

as Fig. 3. A striking feature is that, apart from the large velocity shown at the

smallest radius (which the authors regard as an instrumental artifact), the velocity

is nearly constant, and does not show much structure. One is then led to ask how to

reconcile this with theoretical predictions of blob speeds that depend on what surfaces

the blob contacts and whether it passes close to the X point. Appeals to ballooning

don’t help: blobs in C-Mod are observed to have radii ∼ 1 cm (see e.g. Fig. 9 of

ref. [9]); hence taking B = 5T, R = 0.9m, the ballooning criterion, Eq. (11), becomes

Ṙ � Ṙb ∼ 94 m/s×(n/5 × 1013cm−3)(Lc/5 m)2(1 cm/a)2(T/20 ev)−1/2, which, for

the observed blob velocity from Fig. 3 and typical C-Mod parameters, is not satisfied

except possibly very close to the separatrix where the field lines become very long.

So indeed we must consider where blobs end. The criterion that they “end” at the

X-point control surface rather than at the divertor plate, ∆ < ∆c = ρ`d/a, becomes

∆ < 0.4cm ×(Te,wall/10eV)(`d/20 cm). (Because of the shape of the C-Mod divertor,

`d varies appreciably). Thus only the left-most data point in Fig. 3 is possibly subject

to the X-point boundary condition. For all other data points the blobs are in contact

with either the horizontal leg of the divertor structure or the antenna limiter. For C-

Mod conditions with the asymmetry parameter Fa ∼ 1, the criterion for dominance

of conducting-wall drive for blobs is strongly satisifed; hence for all blobs that end

on a wall (limiter or divertor), we estimate Ṙ = Ṙcw ∼ 640 m/s ×(Te,wall/10 ev)(1

cm/a)Fa. This is of the right order of magnitude and could plausibly be consistent with

a constant blob velocity if the asymmetry parameter Fa compensates for a decrease in

blob temperature as it propagates. For a blob that terminates in the X-point shearing

region (possibly, marginally, the left-most data point), we obtain Ṙ = Ṙx ∼ 4400m/s

×(T/20 eV)(2/G)(1cm/a); a blob that just misses termination by X-point shearing

would instead terminate on the vertical surface of the C-Mod divertor structure, which

would also have an elevated propagation speed because of the tilt of the surface relative

to poloidal field lines. The change in velocity between the first and second data points

in Fig. 3 is plausibly the slowing-down of the blob as it transitions from ending in the

X-point region or the vertical divertor surface to terminating on the horizontal divertor

or limiter surfaces.

We return to the discussion of divertor-leg blobs, noted in Sec. 3 If the electron

temperature in the blob is uniform, the drive is associated with the curvature and the

tilt of the divertor plates. The contact with the conducting divertor plate partially

reduces the polarization field and gives rise to a constant-velocity motion. The x-

point “heuristic boundary condition” turns out to be high resistance compared to the
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sheath, and so is effectively insulating. This leads to the estimate for the blob velocity,

Ṙdl = (ρ2
i cs/a

2)[(L‖/R) ± (B/Bp) tan α], where + (-) corresponds to the inner(outer)

divertor leg in the private flux region, and opposite for the common flux. If the tilt term

dominates over the curvature term by O(1), blob motion is strong enough to strongly

affect transport; the ion parallel transit time is longer than the blob propagation time

over the SOL width ∆ even for blobs with size ∆ for the parameters of Sec. 3 If the

broadening is sufficient to result in reconnection of the inner and outer strike points

in the private flux region, and there is enough tilt with favorable signs at both plates,

further broadening is possible. Finally, we note a preliminary report of an observation

on the MAST spherical tokamak suggestive of the existence of a divertor-leg blob; fast

camera observations in visible light during ELM-free periods following an L-H transition

appear to sho continued presence of field-line-following filaments in the divertor region

but an absence of filaments in the main SOL [22].

5. BOUT Simulations

We present in this section simulations of edge turbulence using the BOUT code [23],

that illustrate the concepts discussed in the preceding sections. Specifically we address

simulations of blobby turbulence in C-Mod, and present simulations showing divertor-leg

turbulence uncorrelated with main-SOL turbulence for DIII-D.

We present first simulations of edge turbulence for the MIT Alcator C-Mod

tokamak. Edge plasma in C-Mod is relatively dense (ni ∼ 0.5×1020 m−3) and cold

(Te ∼ 30 eV) that makes it a particularly good choice for application of the collisional

Braginski-based plasma model. A particular C-Mod shot 1031204007, t=740 ms is

modeled with the magnetic geometry based on an EFIT reconstruction. For the profiles

of background plasma density Ni0 and temperature Te0 a fit is constructed to match

the scanning Langmuir probe measurements at the outer midplane location, with no

poloidal variation. In divertor legs the radial profile is taken symmetric with respect to

the separatrix, see Fig. (4). The background ion temperature, Ti0, is taken identical to

Te0, and no background equilibrium flow and no equilibrium electric potential is used.

In the calculation the toroidally average components of fluctuating fields are subtracted

out, thus keeping the toroidally average components unchanged.

Two simulation cases are considered, one treating the magnetic equilibrium as a

lower single-null (LSN), and the other extending the domain to include the secondary X-

point resulting in an unbalanced double-null (UDN).This C-Mod discharge is nominally

considered a LSN, and the first simulation is done for that geometry.

As usual, the simulation is initiated with a small seed perturbation, which evolves

through linear instability to a saturated turbulent state, see Fig. (5). The amplitudes

of calculated Ni fluctuations are quite high: more than 50% at the separatrix and

more than 100% further out, see Fig. (5). That is by a factor 2-3 larger than the

experimentally measured fluctuations of the ion saturation current normalized to the

mean value of the ion saturation current see Fig. (6), that can serve as an estimate of
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Figure 4. Background plasma profiles for C-Mod simulations
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Figure 5. Growth and saturation of fluctutations C-Mod simulations

The evolution of turbulent plasma is followed for 500 µs, spanning many dozens

of eddy turn-over times. The appearance of turbulent eddies is qualitatively similar to

that typically observed in the experiment with the fast cameras.To make a quantitative

comparison with the experiment a statistical analysis is performed yielding basic

parameters such as the auto-correlation time, τ , and auto-correlation lengths in the

radial, Lrad,and poloidal,Lpol, directions. The value of Lpol is found to be in the range of

typical experimental values, 0.5-1.0 cm, while Lrad is smaller than experimental values
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Figure 6. Fluctuations of the saturation current from scanning probe in C-Mod

0.5-1.5 cm. However the radial domain size for the LSN case is just 2 cm, constrained

by the location of the secondary separatrix, which suggests that the outer boundary

condition (zero fluctuation amplitude) may be affecting the solution.This LSN domain

limitation is overcome by running the same case as a UDN, thereby allowing access to

the more distant radial plasma region.Comparison of the two cases is shown in Fig. (7)

where the UDN case yields more radially extended turbulent structures than the LSN

case. That is confirmed by Fig. (8) where Lrad and Lpol are plotted vs. the poloidal

and radial coordinates respectively.The corresponding range of experimental correlations

lengths averaged over all radii are shown by the shaded areas. One can see in Fig. (8)

thatLpol is quite similar for the two cases, as expected,while Lrad is considerably larger

for the UDN case. Comparison of the correlation time (to 1/2 of the autocorrelation

peak) is less satisfactory. The BOUT values for both cases is about 2 µs, whereas C-

Mod measurements indicate a value about 5 times larger. Reasons for this difference

are being investigated.

In a separate series of BOUT simulations a study of plasma turbulence in divertor

leg region is conducted. The basic magnetic geometry is based on a DIII-D magnetic

reconstruction. The background plasma is modeled using a set of simulated toroidally-

symmetric background plasma profiles that qualitatively and quantitatively approximate

the equilibrium state of edge plasma as known from experimental data. In saturated

turbulence fluctuations exist not only at outer midplane but in divertor legs as well,

see Fig. (9). However the leg turbulence appears to be uncoupled from the upstream

turbulence as shown in the cross-correlation analysis. The cross-correlation function is

defined as follows:

C(φ̃, φ̃) =
< φ̃(r0, θ, ζ + ∆ζ, t + τ)φ̃(r0, θref , ζ, t) >ζ,t

< |φ̃(r0, θref , ζ, t)|2 >ζ,t

(12)

Here r0 is the radial index of the chosen flux surface, ζ is the toroidal grid index, and θ
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Figure 9. Distribution of rms 〈Ni〉 fluctuations in divertor leg turbulence simulations

is the poloidal index. Also, τ is the time lag, θref is the reference poloidal index.

If the reference location is taken at the outer mid-plane then large values of the

cross-correlation function correspond to locations between the lower x-point and the

upper virtual x-point, see Fig. (10,A). If, however, the reference location is in the outer

leg then large values of the cross-correlation function correspond to locations within the

leg itself, see Fig. (10,B). This analysis shows that turbulence upstream and turbulence

in the legs are uncoupled. We attribute this decorrelation to the strong shearing of

magnetic field near the X-point discussed in preceding sections. It is noteworthy that

decorrelated fluctuations are observed in both the linear (not shown) and nonlinear

(shown) phases; hence we can attribute the divertor-leg turbulence to instabilities in

the divertor leg, as discussed in Sec. 3.

6. Conclusion

From the studies presented here, we can draw the following conclusions: (1) The

“heuristic boundary condition” previously developed to describe resistive closure of

currents resulting from X-point shear is straightforwardly extended to simultaneously
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Figure 10. Cross-correlation of fluctuations in divertor leg turbulence simulations:
(A) reference location at outer midplane, and (B) reference location in outer divertor
leg

include polarization and viscous (as well as resistive) channels for current closure. (2)

Curvature- and sheath-driven instabilities can exist in the private- as well as common-

flux regions of divertor legs, isolated from the main SOL; these offer the possibility

of broadening the SOL without impacting the main plasma. Divertor-plate tilt can

significantly increase the growth rate. Nonlinearly these can develop into divertor-leg

blobs; (3) X-point effects can isolate blobs in the main SOL from divertor legs, and

non-symmetric blobs in contact with material surfaces can be dominated by sheath-

impedance drive. As a main-SOL blob propagates outward, the region where X-point

current closure occurs (the location of the “control surface”) recedes down the divertor

leg, but the propagating blob maintains contact with this region, and so propagates as

a speed determined by X-point termination, until the control surface reaches a material

surface. The blob propagation rate then transitions to the (lower) speed determined by

contact with material walls. These results are consistent with the magnitude and relative

constancy of C-Mod blob velocities reported in Ref. [9]. The X-point effects would be

expected to have an impact only at the left-most data point in Fig. 3. (1) Analytic
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results are qualitatively confirmed by BOUT fluid simulations. Simulations of C-MOD

find blob-like structures with amplitudes and spatial correlation lengths comparable to

those observed experimentally. BOUT simulations also provide evidence of instability

and fluctuations in divertor legs that is incorrelated with activity in the main SOL.
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7. APPENDIX: Basic equations for divertor-leg instabilities

We assume that unperturbed plasma parameters do not vary along the field lines.

Because of the toroidal symmetry of the unperturbed plasma, this means that the

variation occurs only in the direction normal to the flux surfaces. To avoid excessively

long equations, we assume that the only quantity that varies in the normal direction is

the electron temperature Te. This assumption can also be justified by the observation

that the radial scale-length of Te in the vicinity of the separatrix is usually shorter than

that of the plasma density and ion temperature; also, as it turns out in the subsequent

analysis, the instability drive associated with the electron temperature gradient contains

a significant numerical multiplier ∼ 3− 4.

Figure 11. Simplified geometry for perturbation analysis.

Perturbations that are most unstable have a ballooning nature, with a slow

variation along the field lines; in a number of cases they become essentially pure

flute perturbations. For strong magnetic shear near the X-point, the perturbations

in the inner and outer divertor legs are uncoupled form each other; similarly, if we

consider the common flux region, we assume that perturbations are decoupled from

the main SOL [1]. As shown in Ref. [2] and Sec. 2 of this paper, the presence of the

X-point is folded into the analysis by introducing a boundary condition set on some

“control” surface situated somewhat below the X-point. In this way, we come to the

simplified geometry shown in Fig. 11. In this geometry, our earlier assumption that

the unperturbed plasma parameters are constant along the field lines means that these

parameters vary only in the x direction, so that the perturbations can be represented

as f(x) exp(−iωt + kKyy + iKzz) . Following Refs. [24, 25], we represent the two-

dimensional (2D) vector K in the form:

Ky = Ky + q , Kz = kz , (A-1)

with ky defined as

ky = −kzBz/By (A-2)
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In other words, the perturbation becomes f(x) exp(iqy) exp(−iωt + ik · r, with the 2D

vector k being perpendicular to the magnetic field. The factor exp(iqy) describes (a

slow) variation of perturbations along the field line, whereas the factor exp(ik · r) does

not vary along the field line due to condition k ·B = 0, Eq. (A-2).

We assume that the poloidal magnetic field in Fig. 11 is directed towards the

divertor plate, and that the toroidal component is directed towards the viewer. In other

words, we assume that By ≡ −Bp < 0, and that Bz ≡ Bt > 0, with both

Bp > 0, Bt > 0. (A-3)

We will be using the eikonal approximation, assuming that perturbation length-scale in

the x direction is much less than the thickness ∆ of the SOL plasma. We will also assume

that the x-component of the wave number is small compared to k, i.e, kx � k. This

assumption is based on the results of the earlier works [2, 24, 25], which showed that

usually the fastest-growing perturbations are of this type. The other natural assumption

is that the popoidal (y) component of the magnetic field is small compared to the toroidal

component: this is certainly true in a divertor with not very long legs, where the poloidal

distance from the plate to the X point is significantly smaller than the plasma radius a.

We will retain only the lowest-order terms in the parameters

kx/k � 1 , Bp/Bt � 1 . (A-4)

The second of these inequalities, when combined with condition (A-2), shows also that

kz � ky . (A-5)

As the plasma is in contact with the equipotential surface of the divertor plate, the

variation of the electron temperature leads to the variation of the unperturbed plasma

potential (as the sheath potential scales as Te [26]), and, accordingly, to the E × B

drift in the unperturbed state. The drift causes the Doppler shift of the perturbation

frequency in the (local) plasma rest-frame from Ω to

Ω = ω − k · vD . (A-6)

One can check a posteriori that the frequency shift caused by the parallel plasma flow

is negligible because of the smallness of q.

The instability that we find has an e-folding time much shorter than the ion transit

time from the control surface to the divertor plate. Therefore, the ion thermal spread

is unimportant; it is also unimportant whether the ion mean free path is shorter or

longer than the connection length L‖ between the control surface and the divertor plane:

the ions enter the problem just via their cross-field inertia. With regard to electrons,

we assume that their collision frequency is higher than the growth rate. Under such

conditions, the momentum equation can be written as:

−Ω2minξ = −∇δp + fracδj⊥ ×Bc (A-7)

Here ξ is the displacement vector of a plasma element, related to the velocity

perturbation by:

δv = −iΩξ . (A-8)
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The pressure perturbation in Eq. (A-6) can be found from the electron thermal balance

equation, which yields:

δp = −nT ′
eξx . (A-9)

We have used the fact that the perturbations are essentially divergence-free and that the

only unperturbed quantity that depends on x is Te. The prime here and below means

differentiation with respect to x.

One can find the perpendicular current perturbation from Eq. (A-7):

δj⊥ =
c

B2

{
−Ω2min [B× ξ] + [B×∇δp]

}
(A-10)

To find the perturbation of the parallel current, one has to take the divergence of Eq.

(A-10) and use the current-continuity equation, which yields:

Bp

Bt

qδj‖ = −∇ · δj⊥ = −icΩ2min

B2
k · [B× ξ] +

2icδp

B3
k · [B×∇B] (A-11)

Here we have taken into account the fact that, at the edge, the magnetic field is close

to the vacuum field and, therefore, |∇ × B| � |∇B|. The last term in Eq. (A-11)

describes the curvature drive. Note also that the current continuity equation shows

that |δj‖| � |δj⊥| (because of the large parallel wavelength of perturbations).

Using inequalities (A-4), (A-5), one finds, to the lowest order,

Bp

Bt

qδj‖ = −ikycΩ
2minξx

Bt

+
2ickyδp)(∇B)x

B2
t

(A-12)

The divertor legs typically form a 45-degree angle with the horizontal plane; as

∇B ≈ −eRBt/R, where eR is the unit vector in the direction of the major radius

R, one has (∇B)x ≈ −Bt/2
1/2R. Using Eq. (A-4), one finally obtains:

Bp

Bt

qδj‖ = −ikyncξx

(
Ω2mi

Bt

+
w1/2T ′

e

BtR

)
(A-13)

In the case where the plasma is limited at both ends by non-conducting plates (so that

at these surfaces δj‖ = 0), and displacement ξx is constant along the field line, this

equation yields a dispersion relation for the flute instability, Ω2 = −21/2T ′
e. In our case,

however, the limiting surfaces are conducting, and the situation becomes more complex.

Consider now the parallel structure of perturbations. To do that, we use Maxwell

equations and the Ohms law:

∇× δB =
4π

c
δj , (A-14)

∇× δE =
iΩ

c
δB , (A-15)

δE = iΩ
ξ ×B

c
+ ηb (b · j) , (A-16)

where b = B/B, and η is the parallel resistivity: based on the observation that , we

retained only the parallel component of the current in the Ohms law. From Eqs. (A-14)

and (A-16) one finds:

δE = iΩ
ξ ×B

c
+

ηcb

4π
(b · ∇ × δB) . (A-17)
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Substituting this result into Eq. (A-15), one obtains:

δBx = −iBpqξx − iDMk2
yδBx/Ω (A-18)

where

DM = ηc2/4π) (A-19)

is the magnetic diffusivity. In other words,

δBx =
−iBpqξx

1 + i
Dmk2

y

Ω

. (A-20)

Using

ikδBx = 4πδj‖/c (A-21)

and Eq. (A-10) we then find:

Ω2 =
q2v2

AB2
p

B2
(
1 + i

Dmk2
y

Ω

) − 21/2T ′
e

Rmi

. (A-22)

We have used here inequalities (A-4) and (A-5). We have also assumed that, in the Ohms

law, the parallel electron inertia can be neglected. This requires that the wave-number

be smaller than ωpe/c (note that in Ref. [25] this condition is written “upside-down” ).

When considered as an equation for q, equation (A-22) has two roots, q±:

q± = ±q0 ; q0 ≡
Bt

BpvA

[(
1 + i

Dmk2
y

Ω

) (
Ω2 +

21/2T ′
e

Rmi

)]
. (A-23)

This shows that the spatial structure of the perturbation in the poloidal direction is:

ξx = A exp(iq+y) + B exp(iq−y) = A exp(iq0y) + B exp(−iq0y)) (A-24)

where A and B are arbitrary constants. By imposing boundary conditions at the divertor

plate and the control surface, and imposing the solvability condition, one can eliminate

A and B and obtain the linear dispersion relation.

For the case of perfect line-tying at both ends, for which q = π/`d, where

`d = L‖(Bp/Bt) (A-25)

is the distance between the divertor plate and control surface (Fig. 1), Eq. (A-22)

describes various regimes of a curvature-driven instability. In particular, if the plasma is

perfectly conducting, we recover a standard ballooning instability for sufficiently small

magnetic field (sufficiently high plasma β); at higher field (lower β), the instability

is stabilized. If, on the other hand, the resistivity is high enough, the first term is

significantly reduced (DM is large), and the instability is recovered even at low betas:

this is the resistive-ballooning mode. One can write down the corresponding criteria

and see that, for the case of the C-Mod private flux region, β is too small to make the

system unstable for perfect line tying. However, we will see below that accounting for

more realistic boundary conditions at the divertor plate and control surface makes the

system strongly unstable.
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The boundary conditions can be cast in the form of conditions on the current

flowing through the two limiting surfaces. For the solution of the form (A-21), the

expressions for the parallel and perpendicular currents, to significant leading order in

the small parameters Bp/Bt, kz/ky andkx/ky is (see Eqs. (A-4) and (A-5)):

δj‖ = −Bky

Bq0

(
cminΩ2

Bp

+
21/2cnT ′

e

RBp

)
[A exp(iq0y)−B exp(−iq0y)] (A-26)

δj⊥ =
cΩBt

B2ky

(
Ωmink +

inT ′
eky

ΩBt

)
[A exp(iq0y) + B exp(−iq0y)] . (A-27)

The component of the plasma current normal to the end surface is (also to the lowest

required order in small parameters):

δjn|y=0 = cos α
Bp

Bt

δj‖ + sin α (δj⊥)x

= − cnky cos α

q0Bt

(
miΩ

2 +
21/2T ′

e

R

)
(A−B)

+
ickynT ′

e sin α

Bt

(A + B) (A-28)

δjn|y=`d
=

Bp

Bt

δj‖ + (δj⊥)y −
cnky

q0Bt

(
miΩ

2 +
21/2T ′

e

R

)
×

[A exp(iq0`d)−B exp(−iq0`d)] (A-29)

We assume that the length of the divertor leg is not too small, namely that ky`d >

Bt/Bp, tan α.

We now match these currents to the currents flowing through the sheath (at y = 0)

and the current flowing to the X-point region (at y = `d). To find these currents, we

have to find the potential perturbations near these surfaces. Proceeding as in Ref. [25],

we find that

δφ =
ΩBt

cky

(A + B) (A-30)

near the lower boundary and

δφ =
ΩBt

cky

(A exp(iq0`d) + B exp(−iq0`d)) (A-31)

near the upper boundary.

Using the boundary conditions relating the currents and potential perturbations,

one can obtain the dispersion relation. At the lower boundary (y = 0) we have from the

sheath CVC (Cf. Eq. (33) of Ref. [25]):

δjn|y=0= −en(A + B)

{
u
Bp

Bt

cos α

[(
Λ +

1

2

)
T ′

e

Te

+
eΩBt

cTeky

]
+ iΩ sin α

}
(A-32)

The parameter Λ is the logarithm of the ratio of electron thermal velocity to the ion

thermal velocity and is typically ∼ 3 − 3.5. So, there is a significant numerical factor
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in front of T ′
e. As mentioned at the beginning of the Appendix, this makes the T ′

e drive

more important than the drive associated with, say, T ′
i . From Eqs. (A-28) and (A-32),

we obtain the following equation:

cky cos α

q0Bt

(
miΩ

2 +
21/2T ′

e

R

)
(A−B) =

− e(A + B)

{
u
Bp

Bt

cos α

[(
Λ +

1

2

)
T ′

e

Te

+
eΩBt

cTeky

]
+ iΩ sin α

+
ickyT

′
e sin α

eBt

}
(A-33)

At the control surface (y = `d), we use the “heuristic” boundary condition (see Sec. 2)

which can be represented as

δjn =
Bp

Bt

|ky|σHδφ (A-34)

or, accounting for Eqs. (A-29) and (A-31),

ckyn

q0Bp

(
miΩ

2 +
21/2T ′

e

R

)
(A exp(iq0`d)−B exp(−iq0`d))

=
|ky|σHΩBt

cky

(A exp(iq0`d) + B exp(−iq0`d)) (A-35)

From the solubility condition of the set (A-33), (A-35), one can obtain a dispersion

relation which covers, in a unified manner, a number of effects that have been considered

previously in a piecemeal manner: the drive, associated with the temperature gradient

and sheath BC, the flute instability in the presence of current leaks to the end surfaces,

the role of the boundary condition at the control surface, the effect of a tilt of the divertor

plate, and possible finite-beta modes. It covers also effect of resistive ballooning.

We concentrate here on the case of a low-β plasma. We first derive a simplified

dispersion relation for this case by taking the limit of vA → ∞ and then formulate

applicability conditions for such an approximation.

In the limit of a large Alfven velocity, one has

q0`d � 1 . (A-36)

In this case, it is convenient to introduce, instead of A and B, the coefficients a and b,

according to:

a =
A−B

q0

, b = (A + B)`d , (A-37)

One then has, for small q0:

A exp(iq0`d)−B exp(−iq0`d)

q0

≈ a + b ;

A exp(iq0`d) + B exp(−iq0`d) ≈ b/`d , (A-38)
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so that Eqs. (A-33) and (A-35) are reduced to:

cky cos α

Bt

(
miΩ

2 +
21/2T ′

e

R

)
a`d =

− eb

{
u
Bp

Bt

cos α

[(
Λ +

1

2

)
T ′

e

Te

+
eΩBt

cTeky

]
+ iΩ sin α

+
ickyT

′
e sin α

eBt

}
(A-39)

and

ckyn

Bp

(
miΩ

2 +
21/2T ′

e

R

)
a`d =

b

[
|ky|σHΩBt

cky

− ckyn

Bp

(
miΩ

2 +
21/2T ′

e

R

)
`d

]
, (A-40)

wherefrom dispersion relation () of the main body of the paper immediately follows.

We formulate now conditions under which the flute approximation (A-36) holds.

As we are interested in modes whose growth rate is comparable to or greater than

the growth rate of a curvature-driven mode, i.e., |Ω|2 > T ′
e/Rmi , one can rewrite the

condition (A-36) as:

|q0| `d ≈
Bt`d |Ω|
BpvA

∣∣∣∣1 + i
DMk2

y

Ω

∣∣∣∣1/2

� 1 . (A-41)

If the plasma electrical conductivity is high, so that the second term under the

square root is small, the validity of the flute approximation becomes

BT `d |Ω|
BpvA

� 1 (A-42)

[Note that in the opposite limiting case, there may exist unstable modes localized near

the divertor plate; these modes have been considered in Ref. [25]. The general dispersion

relation based on Eqs. (A-33), (A-35) allows one to consider various intermediate cases.]

If the electrical conductivity is low, so that

DMk2
y � |Ω| , (A-43)

the applicability condition of the flute approximation becomes more stringent:

Bt`d

BpvA

(
|Ω|DMk2

y

)
� 1 . (A-44)

If this condition breaks down, the unstable modes localized near the divertor plates by

the effect of resistive ballooning may appear.
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