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ABSTRACT

The Gemini Planet Imager (GPI) Adaptive Optics system will use a high-order MEMS deformable mirror for
phase compensation. The MEMS mirror will be used in a Woofer-Tweeter configuration, with a frequency-
domain based splitting of the phase between the two mirrors. Precise wavefront control depends on the ability
to command them MEMS to make the exact phase desired. Non-linearities in the MEMS may prevent this.
We determine that influence-function pre-compensation can remove most, but not all, open-loop error. We
use simulation and a simulation of a non-linear MEMS to address the issue of how much non-linearity can be
tolerated in closed-loop by GPI.
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1. INTRODUCTION

The Gemini Planet Imager (GPI)1 is an instrument which is designed to directly image extra-solar planets.
In order to achieve contrasts of greater than 106 between star and planet, GPI combines a high-performance
Adaptive Optics (AO) system with an Apodized Pupil Lyot Coronagraph2 to suppress starlight and a science-
path interferometer to provide calibration information.3

The GPI AO system will operate at frames rates up to 2 kHz. In order to provide high-Strehl images,
thousands of actuators are necessary for the phase correction. GPI’s design has an actuator spacing of 18
cm in the pupil, which requires a mirror with at least 45 actuators across its diameter. For GPI the high-
spatial frequency phase correction will be accomplished with a microelectricalmechanical system deformable
mirror (MEMS mirror, for short). This choice of a MEMS mirror, as opposed to a conventional piezo-electric
deformable mirror (DM), was initially driven by both actuator count and size. Though conventional mirrors
will soon be available with thousands of actuators (e.g. the high-order mirror for SPHERE4 which is being
manufactured by Cilas) for GPI size is an even bigger driver. The GPI MEMS mirror, with an actuator spacing
on the device of 400 µm, will correct a pupil of 1.76 cm, which at f/16 easily fits unfolded in the space-constrained
GPI optical design.5 By contrast, a conventional DM with actuator spacing of 1 cm would require a pupil and
an optical path 25 times larger.

The MEMS mirror for GPI is still under development by Boston Micromachines (BMC). The final mirror
will have 64 × 64 actuators and a total stroke of 4 µm. In the meantime, 32 × 32 devices from BMC have
been rigorously used and tested at the University of California, Santa Cruz’s Laboratory for Adaptive Optics.
Evans et al. have shown that the MEMS can be controlled in closed-loop to sub-nm accuracy with direct
phase measurements.6 This can also be done7 with a spatially filtered Shack-Hartmann wavefront sensor and
the Fourier reconstructor. Morzinski et al. have shown that MEMS actuator position is highly repeatable and
temporally stable.8 Further challenges to using a MEMS mirror for GPI remain, and in this paper we discuss
these problems and our progress towards solving them.

Even with 4 µm stroke, the GPI MEMS will not be able to fully compensate for high-order atmospheric
turbulence. It simply does not have enough dynamic range to prevent occasional saturations under turbulence.

Send correspondence to Lisa Poyneer: poyneer1@llnl.gov, 1 925 423 3360



GPI therefore uses a “Woofer-Tweeter” strategy where two mirrors are used in tandem. The “Woofer” is a high-
stroke, low-order conventional DM. The “Tweeter” is the MEMS. The two mirrors will control separate portions
of frequency space, with the Woofer controlling the low-order Fourier modes, and the Tweeter the high-order
modes. GPI’s Woofer has been specified to ensure that the Tweeter rarely saturates.9 A detailed discussion of
GPI’s Woofer-Tweeter strategy is in preparation by our colleagues Lavinge and Véran;10 this paper will present
a summary of the strategy and show end-to-end simulation results which verify its efficacy.

The second major challenge with the MEMS is making the surface of the mirror go exactly where the control
system wants it to go. If the MEMS mirror was a linear, shift-invariant (LSI) system, its behavior could be
completely compensated for with a filter. We apply such a filter to the problem of forming Kolmogorov-like
shapes on the MEMS and conclude that this filtering pre-compensation reduces the open-loop shaping error by a
factor of 6, to 10’s of nm. This level or error may be too much for GPI, even in closed-loop. We use a simulation
of a non-linear MEMS in our GPI end-to-end AO code to address how much non-linearity can be tolerated.

2. WOOFER-TWEETER CONTROL

Woofer-Tweeter control in general describes a system where two devices are used in tandem for wavefront
correction. One device, the Woofer, controls aberrations of a low-frequency, large-amplitude nature. The second
device, the Tweeter, controls high-frequency, small-amplitude aberrations. This designation can be used for
temporal frequency, such as Véran and Herriot’s tip-tilt control method as proposed for TMT’s NFIRAOS.11

This strategy is possible for tip-tilt because the theoretical models for atmospheric and windshake tip-tilt follow
power laws with a negative exponent of temporal frequency. The same distribution of power holds for Kolmogorov
turbulence (see, for example, the spatial frequency description of it used in phase-screen generation12) which
means that most of the power is in the lower spatial frequencies. Conan et al. are studying spatial Woofer-
Tweeter with a testbed.13 Their setup is significantly different than ours, in that their mirrors have similar ratios
of pupil diameter D to actuator spacing d of D/d = 7 for the Woofer and D/d = 9 for the Tweeter, while for
GPI we have 8 for the Woofer and 44 for the Tweeter. They are also are not using a Fourier-mode wavefront
control method.

For GPI we will be using wavefront reconstruction and control in the Fourier basis. In particular, we are using
Fourier Transform Reconstruction (FTR).14 FTR provides the computational efficiency that is necessary for GPI;
using FTR instead of a matrix multiplication requires 45 times fewer FLOPs. A second major reason to use the
Fourier modes is that they provide a useful basis set for sophisticated temporal control of the modes individually.
GPI’s baseline algorithm is Optimized-gain Fourier Control (OFC).15 This is a form of modal gain optimization,16

wherein closed-loop AO telemetry is used to estimate the optimal gain for each Fourier mode’s integral controller.
A further advancement beyond gain optimization is Predictive Fourier Control (PFC).17 Under the assumption
of frozen flow, each Fourier mode can be independently Kalman-filtered for improved atmospheric correction,
while still meeting GPI’s computational budget. Given these reasons, the Woofer-Tweeter strategy for GPI must
work with the Fourier modes, and not require excessive computation.

These requirements led to a strategy of directly splitting the Fourier modes into two groups. Low spatial
frequencies are sent to the Woofer. The remaining Fourier modes are kept for the Tweeter. This extraction is
done directly in the Fourier domain, as is illustrated in Fig. 1. The slopes are reconstructed into residual phase,
and then the temporal controller is applied. This is all done while still in the Fourier modal domain. Then
specific complex-valued Fourier modal coefficients are extracted from the signal and arranged in the vector as
real and imaginary parts of the low-order Fourier modes. This vector is multiplied by the Modes-to-Actuators
(MTA) matrix. This MTA matrix is pre-determined; for each sine or cosine is calculates the actuator commands
which will make that phase shape on the Woofer. As such, MTA includes information about the Woofer influence
function.

Those low-order Fourier modes are zeroed-out in the Tweeter signal. Then the MEMS pre-compensation
filter is applied and the inverse Fourier Transform is calculated. This produces the actuator commands for the
Tweeter. The details of the strategy, including how to determine the appropriate spatial frequencies to offload,
and if any feed-back correction is needed, will be discussed in the forthcoming paper by Lavinge and Véran.10
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Figure 1. GPI’s Woofer-Tweeter control strategy. Specific low-order Fourier modes are extracted in the frequency domain
and are converted to Woofer commands via the Modes-to-Actuators (MTA) matrix. The remaining Fourier modes are
pre-compensated for the MEMS and then converted into Tweeter commands with an inverse Fourier Transform.
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Figure 2. Phases conjugated in a noise-free simulation by either just the Tweeter, or the Woofer-Tweeter configuration.
The spatial frequency splitting, the two mirrors act just as if they were one, producing to the same correction.

This splitting strategy has been implemented in the GPI end-to-end simulation (see this paper18 for a detailed
discussion of the simulation). Fig. 2 shows mirror shapes during a closed-loop simulation run. In this case the GPI
simulation was run with no WFS noise and either an infinite-stroke tweeter or the Woofer-Tweeter configuration.
The phases conjugated by the mirror(s) are shown. The combined phase conjugated by the Woofer-Tweeter
configuration differs only slightly from the phase in the Tweeter-only configuration. For this case the Tweeter
shape in 665 nm RMS in the controllable band, and the difference between it and the shape achieved in closed-
loop with the Woofer-Tweeter algorithm is 4.5 nm RMS tip/tilt on the Woofer and 1.2 nm RMS controllable
spatial frequencies. The total difference is 4.7 nm RMS. Note that this is not just a demonstration that the same
phase can be made with two mirrors instead of one, but that in closed-loop the two mirrors behave like one.

3. LSI CONTROL STRATEGIES

A linear, shirt-invariant system can be completely described by either its impulse response or its transfer func-
tion19 (which is just the Fourier transform of the impulse response). For a LSI DM, the impulse response is
termed the influence function, which is the shape that the surface of the mirror takes when a single actuator is
moved. Fourier modes and LSI systems go together, as Fourier mode are eigenfunctions of LSI systems.19 This
means that in Fourier control the entire characterization of the LSI DM is reduced simply to a real-valued DM
gain. As shown in Fig. 1, pre-compensation for the DM is accomplished with a filter. This filter is just the
division of the phase signal by the transfer function of the DM.

In most cases it is assumed that the DM or MEMS mirror obeys linear superposition, such that the surface is
simply the sum of the responses of individual actuators. For example, see Ellerbroek, where a matrix of influence
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Figure 3. MEMS gains from the filter which produces best open-loop shaping performance. This is a slight scaling of
the Fourier transform of the normalized influence function of the MEMS as measured by the PSDI.

functions is used in the minimum-variance unbiased reconstruction approach.20 In our own work with FTR
and Fourier modal control, we assume that the DM influence function is pre-compensated. For Optimized-gain
Fourier Control, it was shown that accurate DM pre-compensation is essential (see Fig. 6 of that paper15).
Otherwise the modal gain optimization will primarily correct for the DM, not the true signal-to-noise in the
atmospheric measurement.

In our end-to-end simulation for GPI the Woofer and Tweeter are modeled as LSI and the gains are directly
available for each mirror. In an experimental system the MEMS gains must be determined empirically. In our
recent work7 we have shown that a Gaussian fit to the experimentally measured MEMS gains substantially
improves the closed-loop convergence of the LAO testbed when run with the spatially-filtered Shack Hartmann
and FTR. This MEMS gain filter was determined by placing Fourier modes on the MEMS of a specific magnitude,
then reconstructing the phase from the WFS measurement. The scaling between the desired and estimated phase
represented the necessary pre-scaling to shape the MEMS correctly. The resulting gains were very well-fit by a
Gaussian, so that model was used instead of the actual experimental gains, which had a small amount of noise.

However, because the FTR filter was based on a model, not a measurement of the physical WFS, this pre-
scaling will also incorporate any corrections necessary because the reconstruction filter is not exact. As such, it
will not be just a MEMS compensation filter, but also have a WFS-compensation component. For our experiment
here with open-loop shaping of the MEMS, no WFS or FTR was used. For this application we need the pure
MEMS gains.

To develop this filter we began with a measurement of the LAO MEMS influence function offset away from
bias. This was then matched to a numerical model (see the discussion in Section 4.1, and in particular Fig. 6).
This model was sampled with 8 pixels per actuator in a 256×256 grid. The DFT of this signal was calculated, and
the magnitude was taken to exclude any possible linear phase terms due to alignment. The center 32× 32 region
of frequency space was extracted; this contains the gains for the exact spatial frequencies which the MEMS can
make. In this method there was a slight uncertainty in normalization; it turned out that an extra normalization
by 1/1.15 was necessary. A slice across the diagonal of the final filter is shown in Fig. 3. Spatial frequencies of
sqrt(k2 + l2) < 9 are amplified by the MEMS. The highest spatial frequencies are substantially attenuated. The
MEMS pre-compensation is executed by dividing the Fourier transform of the phase by this filter.

For this initial try at a direct MEMS pre-compensation filter, we used the experience (discussed later in
Section 4.2) that a filter made with a low-stroke influence function performs best. As such, the gains at the
lowest-spatial frequencies of the filter (see Fig. 3) are lower than in the case of a maximum stroke influence
function. As the shapes tested have very little low-frequency content, it remains to be determined is this choice
is the best for the LAO MEMS.

Given this filter, we conducted an experiment to determine to what extent an LSI model can be used to
precisely control the MEMS. This is best examined through the open-loop error, in which we attempt to in a
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Figure 4. Desired phase (far left) and actual phase made by MEMS, with influence function pre-compensation. The
input signal is 530 nm peak-to-valley and 90 nm RMS, and has the spatial frequency content of a GPI Tweeter correcting
Kolmogorov turbulence. On the right are the open-loop error signals, at all frequencies (exhibiting strong actuator ripple)
and in the controllable band. The controllable open loop error is 11 nm RMS. Note different color scales.

single step drive the MEMS to a specific shape. For the desired phase shape we chose a specific realization of
phase on the Tweeter for a median r0 of 14.5 cm in the GPI simulation. Since Woofer-Tweeter control was
used, the Tweeter does not have the few lowest spatial frequencies. This signal, cropped to 32× 32, was initially
1885 nm peak-to-valley and 300 nm RMS. Two versions of this signal were used: the raw signal, and the signal
pre-compensated by the MEMS filter.

After the MEMS mirror was flattened to remove the inherent shape of the surface, that phase was added
to successive scalings of the Tweeter phase and applied to the MEMS. The PSDI was then used to measure
the phase on the MEMS. This process should allow us to directly produce the desired phase shape. The data
were analyzed using a just a few manipulations. First, the PSDI measurements, which have 10.65 pixels per
actuator, were resampled to have 8 pixels per actuator, to better agree with our ideal, sinc-interpolating MEMS
simulation. Second, the PSDI measurements had to be shifted to align correctly with our estimate of the desired
phase. With just this resampling and shifting, the actual measured phase signals can be directly compared to
the ideal phase. The difference between these signals was calculated and evaluated for error in the controllable
spatial-frequency band. An example of this is shown in Fig. 4.

For a wide range of input aberration amplitudes, the open-loop error is in the 10’s of nm when the pre-
compensation is used. The error increases linearly with the amount of input aberration. For the case shown in
Fig. 4, where the input is 530 nm peak-to-valley and 90 nm RMS, we achieve 11 nm RMS error. The results
for a wide range of input amplitudes are given in Fig. 5. For comparison, the open-loop error when no MEMS
compensation is used is also given. It is 6 times larger than the pre-compenation result, because the MEMS
amplifies spatial frequencies up to wave number 9 (see Fig. 3). For both methods the open-loop error initially
grows linearly. For the raw, uncompensated phase signal, once saturation occurs the error decreases below the
trend, as saturation is reducing the amount of excess signal. For the pre-compensated signal, the error increases
once saturation begins, as the saturation prevents the MEMS from taking the full shape. When the saturated
regions are masked, the open-loop error peaks at 34 nm RMS for an input of 300 nm RMS (which is a reasonable
input amount for GPI under median atmospheric conditions). These saturated regions represent 25% of the
pupil, however, so some uncertainty about the accuracy of this calculation does exist. The ability to shape a 300
nm RMS aberration to 34 nm (as opposed to 44 nm) will only be verified when a MEMS with adequate stroke
is available.

For comparison, Morzinski et al.21 report 15 nm RMS error for a 500 nm peak-to-valley Kolmogorov-like
shape with a non-linear shaping algorithm. Stewart et al.22 give a result of less than 15 nm RMS open-loop
error for input aberrations up to 1.5 µm peak-to-valley, but only simple modes, and not a Kolmogorov shape,
were used in those tests.

Further work remains to be done. In particular, the MEMS compensation filter can be refined. The low-
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on the LAO MEMS starts to occur past an input of 150 nm RMS, and this saturation grows to be at least half the total
open-loop error. The dashed line gives RMS error when the saturated regions are masked. For comparison, the error with
no MEMS compensation is much higher.

spatial frequency gains need to be determined exactly, as this test does not have significant power there. We
also can explore if the best filter changes as a function of total input aberration, which is a sign of non-linearity
in the MEMS. In addition, the best estimate of the open-loop error for typical Tweeter shapes will come from
trying dozens of different inputs shapes, not just the single result given here.

4. NON-LINEAR MEMS IN CLOSED-LOOP

The non-linearity of the MEMS is important when the device is used in open-loop control, as will be necessary
for such future AO applications as Multi-Object Adaptive Optics (MOAO).23 Open-loop control algorithms that
account for inherent device linearity have been proposed by Vogel and Yang,24 Morzinski et al.21 and Stewart
et al.22 among others. For GPI our primary concern is whether we will need such a non-linear compensation
algorithm, or if the non-linearity of the GPI MEMS will be small enough that use on closed-loop will not degrade
performance.

Our first step in analysis of this problem has been to implement a non-linear MEMS simulator for use with
our end-to-end AO simulation code. At least three different approaches exist for such a modeling and solution of
the MEMS surface from input voltages: the same work of Vogel and Yang as above,24 Baker,25 and the work of
Gavel26 followed by Morzinski et al.21 For both its ease of implementation and reasonable computational cost,
we have chosen the Vogel and Yang model. Though this model is incomplete (see Section 4.B of that paper for
discussion of how), it provides a reasonable starting point for a non-linear MEMS in our simulation.

4.1. Tuning the model to the LAO MEMS

The first step we took before using the non-linear MEMS was to tweak its parameters to make it similar in
character to the Boston MEMS at the LAO. It must be emphasized that our non-linear MEMS model is not
an accurate simulation of the actual LAO MEMS; it is simply a type of non-linear mirror with some similar
characteristics to the LAO MEMS. The model has two major parameters which can be adjusted. The first is
σ, which controls the stiffness of the mirror surface. This changes the width of the influence function and the
inter-actuator coupling. The second parameter is the range of possible voltages used. As the range of voltages
increases, the non-linearity of the model also increases.

As discussed above, the influence function completely characterizes an LSI mirror. Even when the mirror
has non-linear characteristics, the influence function accounts for a substantial portion of the mirror response,
as was shown in the previous section. The non-linear model parameter σ was adjusted until the shape of the
model’s influence function matched that of the LAO MEMS, as is illustrated in Fig. 6
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Figure 7. The first non-linearity calibration test, where the linear superposition of two neighboring actuators is assessed.
Slices through the controllable phase are shown. The LAO MEMS has 2% less stroke than what is predicted by a linear
superposition of the two individual pokes.

The second step in matching the model to the LAO MEMS is characterizing the non-linearity of the mirror.
As our measure of non-linearity, we consider the deviation from LSI in the case of two adjacent actuators being
poked. We term this “two-poke non-linearity” and we express it in the percent that the actual mirror deviates
from the shape predicted by linear superposition. In all cases, it is measured in the controllable spatial frequencies
only, to exclude higher-frequency effects such as actuator ripple. Determining the two-poke non-linearity requires
three measurements of the MEMS. Two directly adjacent actuators are poked individually, and then together.
For the LAO MEMS, in the controllable band the non-linearity causes the mirror shape to be 2% less than what
linear superposition predicts, as is shown in Fig. 7 for pokes at maximum stroke away from bias. The non-linear
MEMS model was tuned by adjusting the maximum voltage range to produce this same amount of non-linearity

This simple measurement is not sufficient to characterize the total non-linearity of the MEMS. In particular,
the Vogel and Yang model neglects factors which will reduce the non-linearity when many actuators are moved,
as opposed to the extreme case above where a single actuators is moved to maximum deflection while the rest are
held at bias.27 To test this, a 3× 3 region was actuated one column at a time and the displacement of the center
actuators was examined. The LAO MEMS exhibited less than 2% non-linearity, while the model exhibited 10%.
This means that the non-linear model that we use in the simulation will be pessimistic; it has more non-linearity
then the LAO MEMS.
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4.2. Influence function compensation

As discussed above, pre-compensation of the actuator commands to account for the influence function improves
performance. However, the influence function changes shape slightly as the amount of the actuation increases.
This is observed both in the LAO MEMS and in the model MEMS. This gives rise to the question of what the
best influence function pre-compensation filter is. To test this, filters were constructed based on the pokes at
20%, 40%, 60%, 80% and 100% of the maximum stroke away from bias. These filters differed primarily in the
gain on the lowest spatial frequencies. In closed-loop the filter which produced the minimum extra error was the
20% actuation filter. This is consistent with the fact that when correcting atmospheric phase, the Tweeter will
form shapes in which neighboring actuators are not at maximum stroke apart from each other.

4.3. Closed-loop simulations

To evaluate the impact of a non-linear mirror in GPI AO, we incorporated the Vogel and Yang simulator into our
existing end-to-end AO simulation. We specified several different amounts of non-linearity for the model mirror,
ranging from 0.5% to 10% two-poke non-linearity. Each model MEMS was run with the best influence function
compensation filter (see above). The simulation was run on a five-layer, median r0 atmosphere. For a set of 16
different realizations of the five-layer turbulent atmosphere, the simulation was run with the LSI Tweeter, and
with each of the various non-linear Tweeters. Each trial was run until convergence, then the RMS error was
calculated from the median variance over 25 time steps. Using the reference closed-loop residual from the LSI
mirror, the amount of extra error due to non-linearity was calculated with a RSS of the error terms.

This extra error in closed-loop is shown for 16 different random atmospheric inputs in Fig. 8. These trials
were all done with an optimized-gain filter (using OFC15) which was determined with the LSI mirror. Even
the 0.5% non-liner mirror still had a median of an extra 10 nm RMS in-band. The amount of extra error in
closed-loop increases as a linear function of the two-poke non-linearity of the MEMS model. The open-loop error
was also calculated by taking a sample Tweeter phase from each trial and shaping it on the LSI Tweeter and
the non-linear Tweeters. In this case a base level of open-loop error existed at around 25 nm RMS in-band, as
is shown in Fig. 8. For models with 3% or more two-poke non-linearity, the open-loop error also increases as a
linear function.

The exact relationship between the open-loop error and the closed-loop error is complicated and difficult to
model. The shape difference on the non-linear MEMS most likely has a temporal power spectrum similar to the
input atmosphere. But the correlation (or lack thereof) of this shape difference with the signal and noise inputs
is unknown. The specific temporal controller (uniform modal gains, optimized modal gains, predictive Kalman
filter) which is used will also affect the relationship between open-loop and closed-loop error.



5. CONCLUSIONS

We have described and investigated several remaining issues involved in using a MEMS mirror for GPI. The
64×64 MEMS mirror will be the Tweeter of the system, correcting the high-spatial frequency phase aberrations in
tandem with a low-order but high-stroke Woofer DM. We have demonstrated with our end-to-end GPI simulation
that an LSI Woofer and LSI Tweeter controlled with this frequency-splitting algorithm behave in closed-loop
just like a single, infinite stroke mirror, to within a few nm RMS.

In our closed-loop simulations, with a non-linear mirror that is similar to, but not exactly like the LAO
MEMS, we found that a 2% two-poke non-linearity mirror will produce 16 nm RMS of extra in-band error. This
mirror will have a typical open-loop error of 27 nm RMS. Knowledge of the simulation model assumptions leads
us to predict that it has more non-linearity than the LAO MEMS.

Our initial MEMS pre-compensation filtering experiment on a similar amount of Kolmogorov-shape Tweeter
phase produced an open-loop error of 34 nm RMS (44 nm RMS without masking the saturated regions). This
puts the current LAO MEMS at 21 nm RMS over the simulated open-loop error. This is contradictory with the
prediction that the simulator has more non-linearity than the LAO MEMS. Further work on refining the exact
MEMS pre-compensation filter must be done to determine the true limitation of the LSI algorithm to shape the
MEMS.

Two other uncertainties remain in the open-loop error result. First, tests with dozens of random Kolmogorov-
like Tweeter shapes much be conducted to obtain a statistical profile of open-loop errors. Second, a device with
adequate stroke, namely the new 64× 64 BMC MEMS, must be used to ensure that the saturation masking of
the residual error is not biased. It also remains to be verified if the new 64 × 64 BMC MEMS will have the
same amount of non-linearity as the current LAO MEMS. A decision on whether or not a special non-linearity
compensation algorithm must be used in GPI cannot be made until full testing of the actual GPI MEMS device
is executed.

ACKNOWLEDGMENTS

We would like to thank Bruce Macintosh for his helpful commentary and advice. This work performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. The document number is LLNL-CONF-400061. This work has been supported by the
National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of
California at Santa Cruz under cooperative agreement No. AST - 9876783. This work has been supported by
the Gordon and Betty Moore Foundation through its grant to the UCO/Lick Laboratory for Adaptive Optics.

REFERENCES
1. B. Macintosh, J. Graham, D. Palmer, R. Doyon, D. Gavel, J. Larkin, B. Oppenheimer, L. Saddlemyer, J. K.

Wallace, B. Bauman, J. Evans, D. Erikson, K. Morzinski, D. Phillion, L. Poyneer, A. Sivaramakrishnan,
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