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The temperature equilibration rate in dense hydrogen (for both Ti > Te and Ti < Te) has been
calculated with large-scale molecular dynamics simulations for temperatures between 10 and 300
eV and densities between 1020=cc to 1024=cc. Careful attention has been devoted to convergence of
the simulations, including the role of semiclassical potentials. We �nd that for Coulomb logarithms
L & 1, Brown-Preston-Singleton [Brown et al., Phys. Rep. 410, 237 (2005)] with the sub-leading
corrections and the �t of Gericke-Murillo- Schlanges [Gericke et al., PRE 65, 036418 (2003)] to the
T-matrix evaluation of the collision operator, agrees with the MD data to within the error bars of
the simulation. For more strongly-coupled plasmas where L . 1, our numerical results are consistent
with the �t of Gericke-Murillo-Schlanges.

I. INTRODUCTION

In high energy density plasmas relevant to Inertial
Con�nement Fusion (ICF) capsules, thermonuclear burn
depends on the energy exchange between the particles
making up the plasma. The ability to accurately simu-
late thermonuclear burning plasmas using a radiation-
hydrodynamic code depends on knowing the electron-ion
energy exchange due to Coulomb collisions. The reason
is the strong temperature dependance of thermonuclear
reaction rates. A small change in the electron-ion energy
exchange a¤ects the ion temperature and hence the tran-
sient burn characteristics of the plasma. Unfortunately,
complexity of the theoretical models and the limitations
of the existing experimental data means that electron-ion
coupling models are an important source of uncertainty
in ICF calculations. The experimental data that does ex-
ist comes from non-equilibrium plasmas generated using
either lasers or shocks. To date, these experiments are
very indirect and limited to the cool side of the warm
dense matter regime, which is dominated by Fermi de-
generacy [1]. Ongoing experiments at the OMEGA laser
and planned experiments on NIF will investigate the two
temperature equilibration problem for dense high energy
density plasmas undergoing thermonuclear burn. But,
until then, data is still lacking. The purpose of this pa-
per is to describe a complementary approach using an
N-body simulation of hot, dense plasmas based on mole-
cular dynamics techniques. We use this method to test
the theoretical models most commonly implemented in
ICF codes.
The theoretical electron-ion energy exchange depends

on the coupling rate (1=�ie) which can be written in the
form,

1

�ie
=
8
p
2�ni(Ze

2)2

3memic3

�
kTe
mec2

+
kTi
mic2

��3=2
L � L

JLS
(1)

JLS is de�ned as the Landau-Spitzer pre-factor and L is
a dimensionless function de�ned below. ni and ne are the

ion and electron number densities, Z is the ion charge,
and Te and Ti are the electron and ion temperatures.
The dimensionless function L incorporates correlated col-
lisions peculiar to the Coulomb potential. That is, small
impact parameters are associated with strong collisions
and large impact parameters are associated with collec-
tive phenomena. The electron-ion coupling rate was �rst
calculated for classical plasmas by Landau [2] and Spitzer
(LS) [3] in the approximation of small angle scattering.
The small angle scattering assumption has been relaxed
in subsequent classical treatments by including exact (hy-
perbolic) particle trajectories (HLS) [4].
For weakly coupled plasmas obeying (1) Full ionization

(2) No radiation (3) Static Debye screening, L takes on a
simple form. The LS formula uses two ad hoc cuto¤s, one
for short distances and the other for long distances while
the hyperbolic orbit calculation requires a cuto¤ only at
long distances. The Landau-Spitzer calculations yield the
so-called Coulomb logarithm LLS = ln bmax=bmin and the
subsequent modi�cation due to hyperbolic orbits yields

LHLS = :5 ln
 
1 +
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bmax is chosen to be the Debye length �D =p
kTe=4�e2ne and for LS models, bmin is chosen to be the

classical distance of closest approach
�
bC = Ze

2=kT
�
. At

short distances, where quantum di¤raction e¤ects are ex-
pected to play a role, the short distance scale is assumed
to be some combination of bmin and the electron thermal
deBroglie wavelength � =

p
2�}2=mekTe.

The presence of ad hoc cuto¤s led to numerous works
devoted to a rigorous derivation of kinetic equations with-
out cut-o¤s, called Convergent Kinetic Theories (CKT).
Frieman and Book [5], Gould and DeWitt [6], and re-
cently Gericke, Murillo and Schlanges (GMS) [7] have
applied these ideas to dense plasma temperature equili-
bration. They investigated the various physics approxi-
mations going into an evaluation of L, including LS, HLS
and concluding with a quantum kinetic approach. For the
latter case, GMS de�ne an e¤ective Coulomb logarithm
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LGMS that best agrees with the T-matrix evaluation of
the collision operator for static screening and the one
they recommend as the best model,

LGMS = :5 ln
�
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�
�2D +R
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��
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Where Rion = (3=4�ni)
1=3 is the ion sphere radius. We

will refer to this model as GMS-T to emphasize the T-
matrix connection.
Recently, Brown, Preston and Singleton [8] and Brown

and Singleton [9] used dimensional regularization to ob-
tain an expression for the electron-ion coupling rate
valid for fully ionized weakly coupled plasmas for non-
degenerate and degenerate electrons, respectively. Their
method gives both leading and sub-leading contributions
to L, namely, for non-degenerate electrons,

LBPS = log(�Debye=�) + (log (16�)�  � 1) =2 (4)

( is the Euler constant).
The most direct method of studying temperature

equilibration is with numerical simulations that include
strong, collective scattering at all length scales; this is
the forte of molecular dynamics (MD) methods. Hansen
and McDonald (HM) [10] explored dense hydrogen tem-
perature equilibration using MD, and found MD results
in excellent agreement with the LS approach, with a
Coulomb logarithm given by log(�Debye=�). Because MD
solves the exact classical equations of motion for the N-
body system, this agreement is persuasive. However, the
HM simulations were performed with (1) a small num-
ber of particles (N = 128), (2) no ensemble averaging,
and (3) no assessment of the sensitivity to the e¤ective
semi-classical potential that was used to prevent 3-body
recombination. Here, we employ MD methods that re-
move these constraints and �nd that for L & 1, both
BPS and GMS-T agree with the MD data to within the
error bars of the simulation. For L . 1, the MD simula-
tions are consistent with GMS-T except for the coldest,
degenerate cases.

II. MOLECULAR DYNAMICS: SIMULATION
AND RESULTS

Simulations are applied to a neutral system of pro-
tons and electrons in a cubic cell with periodic bound-
ary conditions. The MD is performed using a basic
leapfrog method in a massively parallel implementa-
tion [11]; the Coulomb interaction is incorporated by
an Ewald summation [12]. We adjust the timestep,
�t, to conserve total energy over the entire simulation�
�E=E < 10�4

�
and avoid distorting the calculated re-

laxation rate.Typical �t values range from 5 � 10�5 to
10�3 fs. Energy drift is important in such simulations
because arti�cial heating can spoil the determination of
the true relaxation rate.

Convergence with respect to particle number is tested
by employing various particles numbers N ranging from
N = 128 (the number that HM employed), to as many as
N = 64; 000. Finally, sensitivity to the initial conditions
is determined by choosing several equivalent members of
an ensemble for each case. The nonequilibrium system
is prepared using two separate Langevin thermostats for
protons and electrons. Initial con�gurations are sam-
pled from a stationary distribution obtained after up to
106 � 107 timesteps. The thermostats are then removed,
and the species allowed to undergo collisional relaxation.
Sensitivity to initial conditions is studied by sampling
multiple, independent systems from a microcanonical en-
semble and/or by discarding a portion of the initial tem-
perature evolution.
Most runs are long enough to extract a relaxation time

(typically 10% of �pe), with some of the strong-coupling
cases continued to complete equilibration. From �tting
the temperature derivatives over a brief interval, and us-
ing:

dTe
dt

=
Tp � Te
�ep

(5)

dTp
dt

=
Te � Tp
�pe

(6)

we obtain �pe. Temperature relaxation is asymmetric in
the strong-coupling cases (in contrast to the energy �ow),
but jdTe=dtj and jdTp=dtj di¤er by only about 10% and
therefore we consider only �pe.
The above expression assumes an ideal gas equation of

state for the plasma. For strongly coupled plasmas, there
is a potential energy contribution to the energy exchange
rate which would imply that the energy exchange rate is
no longer described by equations (5) and (6). However,
as Gericke and Murillo show [13], the error associated
with using the temperature evolution equations is small
in the temperature-density regimes of interest here.
Because the classical Coulomb many-body problem

is unstable for attractive interactions, we employ semi-
classical e¤ective potentials [14] that prevent the unphys-
ical formation of deeply bound states. The potentials
reduce the Coulomb interaction on short length scales,
which is consistent with the use of the thermal deBroglie
wavelength for bmin in Landau-Spitzer approaches. The
forms chosen were also used by HM, viz. the Dunn and
Broyles [15] plus Deutsch potentials [16].

V DBab (r) =
ZaZbe
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�
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The thermal deBroglie wavelengths are , �ab =p
2�~2=�abT where �ab is the reduced mass and T = Te

except when a and b are both ions and T = Ti. The
expressions are temperature-dependent, but the parame-
ters are held �xed in the simulations rather than using the
�uctuating MD values. The calculated relaxation rates
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Case ni(1=cc) Te(eV ) Ti(eV ) ne�
3 � �simpe =2 (fs) �(fs)

A 1020 10:0 20:0 10�3 :1 2:10� 104 6:5� 103

B 1020 30:0 60:0

C 1020 100:0 200:0

D 1022 10:0 20:0 10�1 .5
E 1022 30:0 60:0 2� 10�2 :2 1:78� 103 8:0� 102

F 1022 100:0 200:0 3� 10�3 :05 7:50� 103 2:7� 103

:05 2:63� 103 1:1� 102

G 1024 10:0 20:0 10 2:3 7:7� 101 2:7� 101

H 1024 30:0 60:0 2 :8 1:09� 102 2:8� 101

I 1024 100:0 200:0 3� 10�1 :23 1:59� 102 4:9� 101

J 1024 300:0 600:0 6� 10�2 :1 4:17� 102 8:0� 101

K 1:61� 1024 29:9 78:6 3 :9 7:82� 101 5:3

L 1:61� 1024 91:47 12:1 6� 10�1 2:3 1:25� 102 3:49

TABLE I: Initial density, temperature and plasma properties
of the MD simulations

are found to be insensitive to small di¤erences in the
temperature parameters in (7), and a time-independent
potential better conserves the total energy of the system.
We similarly explored the sensitivity to other potential
forms [17]. The results typically change by 10-15%, show
no systematic trends, and are generally within the sta-
tistical error bars of one another.
We performed simulations for 12 di¤erent sets of ini-

tial conditions, two of which are equivalent to the cases
considered by HM. In all cases, a pure hydrogen plasma
is simulated using the true electron-proton mass ratio of
1:1836. A range of initial conditions span the weakly
to strongly coupled regimes. Density and temperature
variations chosen span the degenerate to non-degenerate
regimes. Cases E, F, and I have degenerate electrons.
The GMS-T and BPS theories along with the MD sim-
ulations do not take into account degeneracy e¤ects and
hence comparisons between theory and simulation are
questionable. Table 1 lists the set of initial conditions
considered for this study along with the electron degen-
eracy (ne�3) and H-plasma coupling (� = e2=RionkT )
parameters. The electron-proton relaxation time � simpe
calculated by the code along with the error � (standard
deviation) are quoted in femtoseconds. Also included are
two sets of initial conditions considered by HM.

III. COMPARISON WITH THEORY

In order to make comparisons with theoretical predic-
tions easier, we de�ne a simulation prediction for L de-
�ned as Lsim = JLS=� simpe . This result is then compared
with the theoretical prediction for L coming from GMS-T
and BPS. Figure 1 shows simulation results for Lsim with
error bars and theoretical predictions for LGMS (solid)
and LBPS (dashed) as a function of initial electron tem-
perature. Numerical results and analytic expressions for

and Settings/graziani/My
Documents/LDRD/PAPER/Plot4Paper2.png

FIG. 1: Theoretical (GMS-T [solid] and BPS [dashed]) and
MD calculations of L as a function of initial Te for densi-
ties 1020=cc; 1022=cc; and 1024=cc (blue, red and blac respec-
tively).Additional detail is in the text.

L are arranged according to density; n = 1020; 1022; and
1024 (blue, red and black respectively). The lowest den-
sity, highest temperature case is specially marked with a
�lled light blue circle. It was the only simulation run with
a like charge system. That is, positron-proton. Degen-
eracy is not treated properly in either the simulations or
the theories we consider. The points that have n�3 & 1
are denoted by an un�lled marker. They are shown for
completeness but otherwise will not be discussed.
For plasmas with L > 1, the simulation results are

consistent with both the BPS and GMS-T forms of the
Coulomb logarithm. It is not too surprising that both
forms of L would agree in the weakly coupled limit where
L � 1. What is interesting is that both forms do equally
well at plasma conditions where L is relatively small (i.e
L � 1). For the high-density

�
1024

�
cases where Lsim .

1;the MD calculations are consistent with the GMS-T
calculations and show a similar downward trend as Te
decreases. There is a slight downward systematic shift
between GMS-T and the non-degenerate n = 1024 MD
results. However, the rather simple form of the e¤ective
Coulomb logarithm prposed by GMS does well over a
wide range of plasma conditions. As expected, the BPS
theory eventually becomes unstable at lower temperature
when n = 1024.
What does this discussion say about the LS model be-

ing accurate for LLS & 10 ? Li and Petrasso [18] and
GMS [7] argued that, for temperature equilibration, the
restriction is LLS & 2. The MD simulations o¤er an
alternative approach that con�rms this hypothesis. If
one shifts the BPS curves downward, by the amount of
the sub-leading correction (.679), it is seen that the LS
theory is consistent with the numerical results provided
LLS & 2:
Ignoring degeneracy, is there an explanation for the

systematic shift between simulations and LGMS at higher
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temperatures for the high-density
�
1024

�
cases? As

stated above, LGMS comes from a T-matrix evaluation
of the collision operator where it is assumed the screen-
ing is static. Given the good agreement between GMS-T
and the MD results, a sense of the importance of dy-
namic screening e¤ects can be assesed. The paper of
GMS discusses a "combined model" which contains dy-
namical screening. The e¤ect of this model occurs only
at high density and it makes the electron-ion equilibra-
tion more rapid. When dynamical e¤ects are allowed,
the screening is weaker, the interaction stronger and the
exchange rate faster. Since the rate is proportional to L,
the T-matrix result should be too low at high density.
Dynamical corrections increase the e¤ective Lsim. Al-
though not a proof, the systemtic shift could be evidence
of dynamical screening e¤ects.
The paper of HM compared MD simulations to LLS .

Even though our MD results for temperature equilibra-
tion are consistent with HM, our conclusions are di¤er-
ent. LLS does not agree with the simulation results un-
less LLS & 2 whereas the HM cases considered here have
Lsim . 1. In addition, case K starts out degenerate
which neither theory or simulation treat correctly. The
discrepency between our conclusions and HM�s can be
traced to the fact that the HM de�nition of the relax-
ation rate is actually twice the relaxation rate de�ned by
equation [1].

IV. CONCLUSIONS

We have performed large scale (105 electrons and
ions) particle simulations of temperature equilibration for
strongly and weakly coupled plasmas. For the weakly
coupled plasmas where L & 1, the simulations agree

with both the Brown-Preston-Singleton and the �t to the
T-matrix evaulation due to Gericke-Murillo-Schlanges.
This agreement is a validation of our calculations. For
plasmas with L � 1, the importance of the sub-leading
contributions of BPS become clear especially when com-
paring to MD results. For more strongly-coupled plasmas
where L . 1, we �nd that our simulations are consis-
tent with the Gericke-Murillo-Schlanges theory. In fact,
it is somewhat surprising that the rather simple form of
e¤ective Coulomb logarithm LGMS does so well over a
wide range of plasma conditions. The major di¤erences
between Gericke-Murillo-Schlanges and the MD simula-
tions typically occur where degneracy is a factor. Our
results are generally consistent with Hansen-McDonald,
while having much higher numerical accuracy (500X the
number of particles and 1/5 the time step). However,
our conclusions are di¤erent. For the HM cases consid-
ered here, LLS = ln�D=� is not consistent with the MD
results.
Looking towards the future, the simulations can be

used to prepare tables of Coulomb logarithms for vari-
ous density-temperature conditions (that work is under-
way). Finally, the simulations can now be extended by
adding high Z impurities, superthermal particles (such as
fusion alphas) and emission and absorption of radiation
to provide a �rst-principles micro-physics simulation of
thermonuclear burn.
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