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Abstract 
 

 Using a simple set of poloidal field coils, one can reach the situation where the null of the poloidal 
magnetic field in the divertor region is of a second order, not of the first order as in the usual X-point 
divertor. Then, the separatrix in the vicinity of the null-point splits the poloidal plane not into four sectors, 
but into six sectors, making the whole structure looking like a snow-flake (whence a name, [1]). This 
arrangement allows one to spread the heat load over much broader area than in the case of a standard 
divertor. A disadvantage of this configuration is in that it is topologically unstable, and, with the current in 
the plasma varying with time, it would switch either to the standard X-point mode, or to the mode with two 
X-points close to each other. To avoid this problem, it is suggested to have a current in the divertor coils by 
roughly 5% higher than in an “optimum” regime (the one where a snow-flake separatrix is formed). In this 
mode, the configuration becomes stable and can be controlled by varying the current in the divertor coils in 
concert with the plasma current; on the other hand, a stron flaring of the scrape-off layer still remains in 
force. Geometrical properties of this configurations are analyzed for a simple model. Potential advantages 
and disadvantages of this scheme are discussed.  
 
 Reducing heat loads on the divertor plates would improve the overall performance 
of a future reactor-tokamak (e.g. [1]). There are various ideas regarding the means for 
reaching this goal [1]. We here concentrate on the approach that would use geometrical 
effects for a stronger flaring of the poloidal field in the divertor. An elegant solution of 
this type has been recently proposed by M. Kotschenreuther et al [2], in the form of what 
they call the X-divertor, where the poloidal flux experiences an additional expansion 
already after entering the divertor zone. In our brief communication, we consider an 
approach where the null of the poloidal magnetic field in the divertor region is second 
order, not first order as in the usual X-point divertor (the term X-divertor should not be 
confused with the X-point divertor; by the latter we mean a standard X-point 
configuration as used in a number of tokamaks, e.g., [3-6]). Then, as we show below, the 
separatrix in the vicinity of the null-point splits the poloidal plane not into four sectors, 
but into six sectors (Fig. 1 a), making the whole structure look like a snow-flake (whence 
the name). Because the null of the poloidal field is now of a higher order than in a 
standard X-point configuration, the magnetic flux threading the scrape-off-layer (SOL) 
expands near the null-point much stronger than in a standard situation. This gives a hope 
that a snow-flake divertor may indeed be helpful in reducing the heat load either on its 
own, or in combination with other techniques.  
 To quantify the properties of this divertor, we use a simple model where we 
consider a “rectified” (i.e., straight) tokamak and where the plasma current is imitated 
just by a single straight conductor (Fig. 1). This allows us to make a quick scoping study 
and identify key advantages and disadvantages of the proposed configuration. Later in the 
paper, we show that the basic properties of the divertor remain intact when one considers 
an arbitrary distribution of the plasma current and includes the toroidicity effect. 
 It turns out that the desired result can be reached by using just two divertor coils 
properly spaced and with a properly chosen current (Fig. 1). Let us denote the plasma 
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current by I, whereas the total current in two identical “divertor” conductors by Id. Let the 
distance between the null-point (which, we assume, is situated in the origin, x=z=0)  and 
the “plasma” conductor be a, the distance between the symmetrically-situated divertor 
conductors be d, and both of them  being below the null-point by b (Fig. 1).  
 It is easy to check that the field is indeed zero at x=z=0 if the condition 
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holds. The condition that the linear terms in the expansion of Bx and Bz over x and z near 
the null-point are also zero, with the total current in two conductors determined from (1), 
leads to the constraint  
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this, in turn, meaning (by virtue of Eq. (1)) that the total current in the divertor coils must 
be equal to  
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 The shape of the separatrix and two nearby flux surfaces for b=0.3a, is shown in 
Fig. 1. Note a very strong expansion of SOL near the null-point. This is due to the fact 
that the magnetic field in this zone scales as square of the distance from the null-point 
(not linearly as in a standard divertor). If one denotes the SOL thickness near the 
equatorial plane by Δ0, then the SOL thickness in the snow-flake divertor near the null-
point, Δ,  will scale as Δ∼Δ0(b/Δ0)

1/3, whereas in a usual X-point divertor one would have 
Δ∼Δ0ln(b/Δ0).    
 According to Eq. (2), the coils are situated at a distance 

! 

b 2a /(a " b)  from the 
null-point. In a reactor, the divertor coils should be placed outside the radiation shield, 
i.e., they cannot be situated too close to the plasma. As a representative value of b, we 
take b=0.3a; then the coils will be situated at a distance ~ 0.5a ~2.5 m from the null-
point. This seems to be sufficiently far, given that the shield thickness is ~ 1 m (e.g., [6]). 
The current per divertor coil, according to Eq. (3) will be ~ 0.45I, with the total current ~ 
0.9I. For non-radioactive experimental facilities one can, of course, consider much more 
compact snow-flake divertors, with a smaller ratio b/a.  
 A disadvantage of a snow-flake configuration is its topological instability: if the 
plasma (or divertor) current do not exactly satisfy Eq. (3), the configuration in the 
vicinity of the X-point becomes either an X-point configuration (Fig. 2a), for the divertor 
current higher than needed, or a double-X-point configuration (Fig. 2b) for the divertor 
current smaller than needed. The position of the strike point and the overall structure of 
the divertor plasma change substantially for a small variation of a plasma current if the 
initial current is exactly Id0.   

We suggest making the configuration more robust by operating at a divertor 
current  somewhat higher than Eq. (3). As we show below, in this case, minor variations 
of the plasma current and divertor current do not cause any substantial changes of the 
configuration and, at the same time, a strong flux expansion still occurs (if the current 
mismatch is modest).  

The opposite possibility, namely, running the divertor at the current that is 
somewhat smaller than optimum, also provides the robustness to the configuration and 
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significant flux expansion. However, as one can see from Fig. 2b, in this case the divertor 
region contacts the plasma core not in one point but rather along a line (CD, Fig. 2b). 
Although the possible effect of the line contact is at present not quite clear, we prefer to 
stay within a more customary geometry of Fig. 2a. One obvious concern regarding the 
configuration of Fig. 2b is that the line contact may have an adverse effect on impurity 
penetration from divertor to the plasma core. We will call the configuration of Fig. 2a  
(with the divertor current somewhat higher than Id0) “snow-flake-plus”, and the 
configuration of Fig. 2b “snow-flake-minus.”   

For a more detailed analysis of the magnetic field structure in the divertor region, 
one can use an expansion of the magnetic field near the point x=z=0. Some rather lengthy 
algebra leads one to the following result for the normalized magnetic field 
(
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If the parameters exactly correspond to the snow-flake configuration, i.e., conditions (2) 
and (3) hold, only quadratic terms survive, and we recover a configuration shown in the 
inset in Fig. 1. If, however, as we are now assuming, the divertor current is somewhat 
higher than Id0,  

Id=Id0(1+ε),                 (6) 
whereas the position of the current rods remains untouched (i.e., condition (2) still holds), 
a switch to configuration of Fig. 2a occurs. Indeed, Eqs. (5), (6), with only dominant 
terms retained, become: 
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One can show that, for 

! 

" # 0 , the separation AB (Fig 2a) between the null and the lower 
branch of the separatrix scales as ε1/2, 

! 

AB " 2.7ab # /(a + b) . The ε1/2 scaling is favorable 
in the sense that, as soon as we have chosen some value of ε, say ε=0.05, the further 
variations with respect to this value (say, to ε=0.07 or to ε=0.03) do not lead to a 
significant change of the geometry in the vicinity of the null-point. This conclusion is 
illustrated by Fig. 3.   

Compare now the flux expansion properties of the snow-flake-plus divertor, Fig. 
2a, where a null-point is “almost” the second order point, and of a more “canonical” 
divertor, where the null point is decisively of the first order. For the first of them we use 
the following parameters: b=0.3, Id=1.05Id0. For a “canonical” divertor, we use a 
configuration shown by light line in Fig. 2a. It corresponds to a single divertor conductor 
situated at a distance b=0.6a below the null point, with the current Id=0.65I. In the zone 
above the X-point the two look quite similar.  In Fig. 4 a blow-up of the zone near the 
null-point is shown. Thin lines show the position of flux surfaces corresponding to the 
SOL boundary, which in both cases is assumed to be situated at the distance of 0.002a 
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from the separatrix at the equatorial plane (i.e., at the distance 1 cm for a = 500 cm). One 
sees that, indeed, in the case of a snow-flake divertor the width of the SOL near the X-
point is approximately 2.5 times greater than in the case of a “standard” divertor.  

Because of a larger flux expansion, the connection length between the equatorial 
plane and the vicinity of the null-point becomes larger than for the “standard” divertors. 
For the flux surfaces not-too-close to the separatrix,  
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the connection length scales as 
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, where BT and BP  are the 
toroidal and poloidal field near the equatorial plane.  For smaller Δ0,, the standard 
logarithmic dependence takes over. The larger connection length means the longer 
plasma transit time between the equatorial plane and the divertor thereby allowing for a 
stronger plasma cooling by radiative losses.  

Also, for the flux surfaces satisfying condition (9) the squeezing of the flux tubes 
on their way from the equatorial plane to the plane where the null-point is situated (see 
Ref. [7]), becomes stronger than for the canonical X-point divertor. The squeezing can be 
conveniently characterized by the parameter called elongation E, the ratio of the major 
semi-axis of a flux-tube in the vicinity of the null-point, to the initial flux-tube radius near 
the equator. In the snow-flake-plus divertor, for the flux surfaces satisfying Eq. (9), the 
elongation is ~
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squeezing causes a more complete decoupling of the plasma perturbations in the divertor 
and the main SOL. Therefore, the operation space for the techniques based on the 
artificial stirring of the plasma in the divertor legs [8] (for the purpose of stronger 
spreading of the heat flux) becomes wider.  

Now we show that the formation of the second-order null-point is compatible with 
a general toroidal geometry, and with an arbitrary distribution of the plasma current. The 
only assumption that we make is that the plasma in the divertor region has a low beta, and 
the magnetic field there can be considered as curl-free. We use a cylindrical coordinate 
system, r, θ, z, with the radius r directed along the major radius, θ directed along the 
toroidal angle, and z directed along the geometrical axis. The poloidal magnetic field can 
be conveniently characterized by the function 
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The condition divB=0 is automatically satisified. In the curl-free area which the divertor 
is to a high accuracy, the function satisfies also the equation: 
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The equation of the poloidal field line is, obviously, Ψ=const.  
Assume that we are interested in creating a second-order null at some specific 

point. We choose the origin of z in this point, and denote its radial coordinate by r0. 
Instead of radius r, it is convenient to introduce a new variable x, via r=r0+x.  Let the 
poloidal magnetic field created at this point by the plasma current be Br0 and Bz0. In the 
expansion of Ψ over x and y, we need to retain the terms up to the third order. The zeroth 
order term can be dropped because Br and Bz depend only on the derivatives of Ψ. The 
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terms linear in x and z determine the magnetic field strength at x=z=0. We want both 
components of the magnetic field be zero and therefore, the linear terms in the expansion 
must be identically zero. As there are two of them, this requires adjustment of the two 
parameters of the external current system.  For Bz(x=0, z=0)=0, the linear terms satisfy 
Eq. (11) identically, and it does not impose any additional constraints. Consider now 
quadratic terms. There are three of them, 
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into Eq. (11), and taking into account that Bz(x=0, z=0)=0, we find that α3=−α1, so that 
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null point, we must put both α1 and α2  to be zero. This imposes two more constraints on 
the parameters of the external current loops. On the other hand, as has been mentioned 
above, two external current loops are characterized by six parameters. Thus far, we have 
imposed four constraints, two on the linear terms, and two on the quadratic terms, and, 
therefore, the system of two external loops is sufficient to reach the desired effect, with 
two parameters allowing for further manipulations of the field distribution (which is 
already made a second-order null).   

To see the freedom that two remaining free parameters provide,  consider the 
cubic terms on the expansion. There are four of them, 

! 

"
3

= #
1
x
3

+ #
2
x
2
z + #

3
xz

2
+ #

4
z
3 . As 

both linear and quadratic terms in Ψ are zero, substitution of this expression into Eq. (11) 
yields: 
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The ratio of two remaining free parameters, γ1 and γ4 , determines the orientation of the 
snow-flake separatrix in the vicinity of the null-point. For example, if γ1=0, then the 
separatrix is oriented as in the inset in Fig. 1a; if, on the other hand, γ4=0, then the snow-
flake turns by 30 degrees, with other values of the ratio corresponding to the intermediate 
turns. The magnitude of the coefficients characterizes the strength of the hexapole 
component of the field.  
 Therefore, we have shown that creating a second-order null by a simple set of 
currents remains feasible in the toroidal geometry. Making it topologically stable can be 
reached by driving a somewhat higher current through the divertor coils, in the same way 
as discussed above for a “rectified” torus.  
 In summary: The snow-flake divertor can be realized by a simple set of coils 
situated at a significant distance from the null-point. It provides a much stronger 
expansion of the magnetic flux than the standard X-point divertor. Its magnetic 
configuration can be made topologically-stable by operating at the divertor currents 
slightly higher than those providing an exact second-order null. The connection length 
increases substantially compared to the X-point divertor. The magnetic field shearing 
near the null-point also becomes much higher. Potentially, all these properties may lead 
to a more efficient divertor, with substantially reduced heat loads on the divertor plates.  

A disadvantage of this configuration is related to the somewhat higher (than 
standard) current in the divertor coils. Another problem is associated with that the flux 
becomes strongly broadened well above the null-point, making the geometrical 
connectivity of the snow-flake divertor with the main SOL easier than in the standard 
divertor. This may lead to the increased impurities flow to the main SOL. 

The author is grateful to R.H. Cohen for helpful comments. Work performed for 
Department of Energy by UC LLNL under contract No. W-7405-Eng-48. 
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Fig. 1 A snow-flake divertor. The separatrix near the null point forms a characteristic 
hexagonal structure (an inset) reminiscent of a snow-flake. The distances are measured in 
the units of a (which is the distance between the null-point and the conductor imitating 
the plasma current). The thick line represents the separatrix; a thin lines outside and 
inside the separatrix represent flux surfaces whose distance is 0.002a from the separatrix 
in the equatorial plane (i.e., 1 cm for the device with a=5 m). At the scale of the figure, 
the 1 cm of distance in the main SOL is too small to be resolved, whereas the distance of 
the outer flux surface from the null-point is approximately 80 cm. In other words, the 
broadening of the scrape-off-layer near the null-point is very large.  
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Fig. 2. The shape of the separatrix and two nearby flux surfaces for the case where the 
divertor current is five percent higher (a) and five percent lower (b) than the current Id0, 
Eq.(3). We call the first of them “snow-flake-plus” and the second “snow-flake-minus.” 
Shown in light line in (a) is the separatrix of a “standard” X-point divertor with the upper 
part of the separatrix not much different from that of the snow-flake-plus divertor with 
ε=0.05.  We compare these two configurations in terms of the flux expansion properties 
in Fig. 4.  
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Fig. 3 Change of the separatrix shape in the vicinity of the null point with the 
change of the divertor current. The central (bold) line corresponds to a reference 
case of ε=0.05.  The upper thin line corresponds to ε=0.07, whereas the lower 
thin curve corresponds to ε=0.03.  With this variation, the motion of the 
separatrix is insignificant.  
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Fig. 4. The comparison of the SOL width near the null point in the modified snow-flake 
divertor and a standard X-point divertor.  
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