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Abstract 

 

Metallic nanoparticles suspended in aqueous solutions, and functionalized with chemical 

and biological surface coatings, are important elements in basic and applied nanoscience 

research.  Many applications require an understanding of the electrokinetic or colloidal 

properties of such particles.  In this paper we describe the results of experiments to 

measure the zeta potential of metallic nanorod particles in aqueous saline solutions, 

including the effects of pH, ionic strength, metallic composition, and surface 

functionalization state.  Particle substrates tested include gold, silver, and palladium 

monometallic particles as well as gold/silver bimetallic particles.  Surface 

functionalization conditions included 11-mercaptoundecanoic acid (MUA), 

mercaptoethanol (ME), and mercaptoethanesulfonic acid (MESA) self-assembled 

monolayers (SAMs), as well as MUA layers subsequently derivatized with proteins.  Zeta 

potential data for typical charge-stabilized polystyrene particles are also presented for 

comparison.  Experimental data are compared with theory.  The results of these studies 

are useful in predicting and controlling the aggregation, adhesion, and transport of 

functionalized metallic nanoparticles within microfluidic devices and other systems. 

 

 

 

 

 

 



1 Introduction 

 

1.1 Nanoparticles and electrophoretic transport 

 

There is broad interest in using nanoparticles in aqueous solution as substrates for the 

attachment of various chemical and biochemical species.  Covalently functionalized 

metallic particles, such as colloidal gold, have made possible a range of new methods in 

the detection of DNA and protein targets [1-6], surface plasmon resonance and surface 

enhanced Raman spectroscopy [7-12], cellular and sub-cellular targeting for imaging and 

therapeutics [13-15], and the formation of higher-order nanostructures and nanomaterials 

by self-assembly [16-19], among other applications.  Recent work has focused on the 

enhanced capabilities provided by engineered nanorod (or nanowire) particles [20-25].  

The employment of metallic particles in aqueous solution requires the control of 

aggregation, adhesion, and transport of the particles.  These issues are of particular 

importance when the particles are used within microfluidic lab-on-a-chip systems and 

other high surface-area environments [26]. 

 

We are investigating the use of encoded metallic nanorod particles (Nanobarcodes® 

particles, Oxonica, Mountain View, CA) [20,22,23] as solution array elements for use in 

integrated multiplex biodetection systems.  The particles have a nominal diameter of 

250 nm and length of 6 µm, and are composed of alternating segments of dissimilar 

metals, as shown in Fig. 1.  In this application, the particles are functionalized with self-

assembled monolayers and affinity proteins.  In order to understand the adhesion, 



aggregation, and transport behavior of the particles, as well as their compatibility with 

other materials such as glass and polydimethylsiloxane (PDMS) used in the fabrication of 

microfluidic devices, it is desirable to have data on the electrokinetic properties of these 

particles in aqueous solution.  The present study was undertaken in order to obtain data 

on the variation of zeta potential with respect to the pH and ionic strength of the solution, 

and the material and surface functionalization state of the particles. 

    

The zeta potential, the effective surface potential at the hydrodynamic “shear surface” 

close to the solid-liquid interface, is a key parameter governing the electrokinetic 

behavior of particles in solution.  This parameter determines the electrophoretic mobility 

of the particles within an external electric field, as well as the electrostatic repulsion 

between particles (or between a particle and a bounding surface) that acts to prevent or 

promote particle attraction and adhesion.  The interaction between small colloidal 

particles in solution is described by the DLVO model [27,28], where the total energy as a 

function of separation distance is the sum of a long range electrostatic repulsive 

contribution, and a short range attractive contribution due to Van der Waals interactions.  

Large zeta potentials of like sign maximize the electrostatic repulsive force and therefore 

minimize aggregation.  

 

Because of the close relationship between zeta potential and electrophoretic mobility, 

measurements of zeta potential may be performed by imposing a known electric field 

across a suspension of particles, measuring the resulting electrophoretic velocity of the 

particles, and then calculating the zeta potential.  The electrophoretic velocity observed in 



such an experiment is equal to the applied field multiplied by the electrophoretic mobility 

νE: 

   

E Eu Eν= ⋅  (1) 

 

The electrophoretic mobility is related to the zeta potential ζ by the Helmholtz- 

Smoluchowski equation [29,30]  
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In this expression ε0 is the dielectric permittivity of free space, εr is the dielectric constant 

of the medium, and η the fluid viscosity.  This equation holds for the case where the ionic 

double layer thickness is much less than the particle radius, that is, where κa>>1, where a 

is the particle radius and 1/κ is the thickness of the double layer, a function of the ionic 

strength of the suspending medium [30]:  
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(3) 

 

Here, e is the charge on an electron, n the concentration of ions in ions/m3, z the net 

ionization of the ions, k the Boltzmann constant and, T is temperature.  For the particles 



and solutions in this study, κa varies from 42 to 130, so the Helmholtz-Smoluchowski 

equation offers a good approximation.  While the equation was originally derived for the 

case of a spherical insulating particle, it has subsequently been shown to also apply to our 

particular case of a nonspherical conducting particle, assuming 

(1/κa)exp(ze(ζ+E∞c)/2kT) << 1 where E∞ is the applied field and c is the particle half-

length [31,32].  The conducting nanorod particles exhibit increased alignment versus 

dielectric particles in an applied electric field, but this alignment does not affect the 

translational motion of the particles [Rose].   

 

1.2 Zeta potential theory 

 

Theoretical models are available to predict the zeta potential of particles as a function of 

the surface properties (e.g., surface functionalization, and striping pattern) and solution 

properties.  We briefly describe the relevant models for bare metal particles, particles 

with a self-assembled monolayer (SAM) coating or with bound proteins, and particles 

with stripes of different materials along their lengths.  In this paper we compare the 

predictions for SAM coated and striped particles to experimental results.  In all cases we 

assume the voltage drop across a particle, Vp≈E∞c, is well below the 1 to 2 V threshold 

necessary to generate electrochemical reactions at the surface.   

 

To model the zeta potential we divide the problem into three regions starting at the 

surface.  For a bare particle this describes the actual surface of the particle.  For a coated 

particle, we define the surface as the region at the boundary between the fluid and the 



coating.  Adsorbed to the surface is a layer of ions referred to as the Stern layer or inner 

Helmholtz plane (IHP).  Ions outside the Stern layer are diffuse and the boundary 

between this diffuse layer and the adsorbed layer is the outer Helmholtz plane.   

We define potentials, ψo, ψi, ψd and charge densities σo, σi, σd, at the surface and inner 

and outer Helmholtz planes, respectively.  To achieve electroneutrality, the charge in the 

IHP and OHP must fully shield the surface charge, such that 0o i dσ σ σ+ + = .  For a 

symmetric, 1-1 electrolyte, the charge density at the OHP is related to the potential at this 

plane by the Grahame equation,  
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(4) 

where κ is defined in Eq. (3).  The potential, ψd, is approximated as the zeta potential, ζ 

[Schweiss]. 

 

1.2.1 Bare metal particles 

 

For bare metal particles without an oxide layer, we assume the surface has no inherent 

charge, i.e. σo = 0.  The negative zeta potential is instead due to preferential adsorption of 

negative ions to the surface; as Hunter [Hunter] explains, this preferential adsorption may 

be due to anions not hydrating as readily as cations and therefore adsorbing more readily 

to the surface.  Assuming the adsorption is confined to anions only, the charge density at 

the IHP is calculated using a Langmuir isotherm and defined as  



 ( )exp /i s iz eNx z e kTσ ψ− − −= − +θ⎡ ⎤⎣ ⎦  
(5) 

where N is the number of adsorption sites, xs is the molar fraction of the bulk electrolyte, 

z- is the valence of the anion(s), and θ- is the adsorption potential from the.  The IHP 

potential is related to the OHP potential through the capacitance per unit area, Cin, across 

this layer, such that /i d d Cinψ ψ σ= + .  Assuming no surface charge, equations (4) and 

(5) are equated as σi = -σd to produce the following relation: 
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Eq. (6) can be solved numerically and fit to zeta potential data to determine the 

parameters, N, Cin, and θ-.  The number of adsorption sites, N, is typically 1014 to 1015 

sites/cm2, the capacitance is generally between 16 and 30 µF/cm2, and θ- is 1 to 5 times 

kT [Hunter]. 

 

1.2.2 Coated particles 

 

Two distinct approaches are taken to describe the zeta potential for a polymer SAM 

coated particle as a function of pH.  Ohshima et al. developed an equation for the 

mobility of a polymer coated particle taking into account the polymer length, flow 

penetration into the polymer layer, surface coverage, and the underlying zeta potential of 

the uncoated particle [Ohshima, Rodriguez].  They extended this work to particles with 

antigen and antibody coatings, solving for the relevant parameters using data from latex 



particles [Nakamura, Rodriguez].  While this model includes most of the electrostatic and 

hydrodynamic effects of the polymer layer, it is difficult to fit to experimental data for the 

case of an underlying zeta potential on the particle.  We therefore use the one-site 

dissociation model, described for SAMs by Schweiss et al [Schweiss].  This approach 

ignores the underlying zeta potential, and assumes the charge at the interface between the 

polymer and solution is due only to association/dissociation kinetics of the polymer.   

 

Using the one-site dissociation model, the charge at the surface (defined in this case as 

the polymer/fluid interface) is  
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where Ns is the total number of surface groups, pKa is the acid dissociation constant for 

the polymer, andψo is the potential at the polymer surface [Hunter].  We assume in this 

case that there are no adsorbed ions in the IHP so that σo = -σd and /o d d Kψ ψ σ= + , 

where K is the capacitance/area between the surface of the polymer and the OHP.   The 

resulting equation,  
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(8) 

is fit to experimental zeta potential data to determine the values for the parameters, Ns, 

pKa, and K. 

 



1.2.3 Striped particles 

 

The mobility of a nanorod with stripes of dissimilar metals along its length can be 

predicted using zeta potential data or models for homogenous particles under the same 

buffer conditions.  The mobility of a striped particle is described as  
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where ζ(z) is the nonuniform zeta potential along the particle’s length [Fair and 

Anderson, Rose].  The axial coordinate, z, is non-dimensionalized by the particle half-

length.  For a particle with two stripe materials and uniform stripe lengths the mobility is 

simply 
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(10) 

where ζ1 and ζ2 are the zeta potentials of each metal.  The mobility is only a function of 

the total amount of material for each stripe type and not the actual striping pattern.  For 

the particles in this study, quadrupole moments due to the striping generally contribute 

less than 1% to the net mobility and are therefore neglected [Fair] and [Rose]. 

 

2 Materials and Methods 

 



Particles were synthesized by electrodeposition in porous anodic alumina templates [33, 

34] using the procedure described in [20].  Particles were approximately 250 nm in 

diameter and 6 µm long.  Single-material Au, Ag, and Pd particles as well as Au/Ag 

striped particles were synthesized.  Upon dissolution of the alumina template material in 

3M NaOH, particles were pelleted and resuspended three times in either deionized water 

(in the case of bare, uncoated particles) or an aqueous solution of 20% 11-

mercaptoundecanoic acid (MUA), which spontaneously forms a thiol-linked self-

assembled monolayer (SAM) coating on the metal surface.  In addition, some particles 

were subsequently derivatized with proteins by attaching them to the carboxyl groups at 

the free ends of the MUA molecules using the process based on 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDP) and sulfo-N-

hydroxysuccinimide [35].  The proteins used included ovalbumin (Ova, Sigma, St. Louis, 

MO) and rabbit anti-Ova antibody (American Type Culture Collection, Manassas, VA).  

In addition, carboxylated 5.26 micron polystyrene beads (Spherotech, Libertyville, IL) 

were also tested for comparison and calibration purposes.  The surface functionalization 

states of the particles prepared for this study are diagrammed in Fig. 2. 

 

In addition, additional batches of Au particles were synthesized and coated by similar 

means with self-assembled monolayers of two alternative thiol molecules, 

mercaptoethanol (ME) or mercaptoethanesulfonic acid (MESA). 

 

Zeta potential measurements were performed using a ZetaPLUS zeta potential 

measurement system (Brookhaven Instruments, Holtsville, NY).  This system employs 



the electrophoretic light scattering method to measure the electrophoretic velocities of 

suspended particles in an applied electric field, yielding the zeta potential. 

 

Particles were suspended in saline solutions prepared by adding reagent-grade NaCl to 

deionized water.  The salt content was used to fix the ionic strength so that the addition of 

dilute acid or base to adjust the pH would not significantly affect the overall conductivity 

of the solution.  Solutions of 1 mM and 10 mM NaCl were prepared.  Higher 

concentrations result in a solution too conductive to be analyzed using this method. 

  

The pH of the solutions was varied by starting with a suspension of particles in pure 

saline solution, and then adding small amounts of either dilute HCl or dilute NaOH to 

adjust the pH between measurements.  The choice of acid and base was made to simplify 

the ionic content of the solution as much as possible by limiting the dissolved species to 

only the monovalent ions Na+ and Cl-, along with H+ and OH- ions.  Measurements of pH 

were taken using an electronic pH meter (Cole-Parmer, Vernon Hills, IL) prior to the zeta 

potential measurements at each new condition.  The pH of individual samples was varied 

in one direction (from neutral toward either low or high pH), in order to avoid the 

addition of acid and base to the same sample, which would have altered the saline 

concentration.  The concentration (number density) of particles was approximately 

2x107/ml in all cases. 

 

The ZetaPLUS performs a set of ten individual tests at each condition and averages the 

results to provide a final value for the zeta potential.  In order to verify repeatability, two 



to five such sets were taken and the results averaged to arrive at the final zeta potential 

value for each condition.  The data for each particle type at each saline concentration 

includes the measurements for at least two independent batches of particles, to verify 

repeatability.  The applied field for each experiment was between 10 and 15 V/cm. 

 

3 Results and Discussion 

 

3.1 Monometallic particles and general observations 

 

Zeta potential data for monometallic Au, Ag, and Pd particles with and without MUA 

coatings are shown in Fig. 3a-f.  The data are plotted against the pH of the saline solution, 

and the plots include comparative data series for solutions at 1 mM and 10 mM NaCl 

concentration. 

 

These results exhibit some general trends that were observed across all the zeta potential 

tests.  The zeta potentials are, in essentially all cases, negative.  The absolute value of the 

zeta potential is typically maximized at pH values in the neutral or slightly basic range, 

and falls off toward the acidic and basic extremes.  This is consistent with earlier results 

reported for thiolate-modified gold particles [36].  The results show that the drop is more 

pronounced toward the acid end of the range, where the values of the zeta potential 

approach zero.  The general shape of the observed zeta potential vs. pH behavior, 

particularly in the acidic range, is similar to that observed for glass and PDMS silicone 

polymer, two materials commonly used in the construction of microfluidic devices [37-



43].  Results of experiments on these materials in the literature show values ranging from 

-40 to -90 mV at moderate to high pH, trending in an almost linear fashion toward zero 

near pH 2.  This suggests that both particle-particle and particle-wall aggregation will be 

greatest in low pH solutions. 

 

While performing the tests it was observed that the measurements were less stable and 

reproducible in the 1 mM solution, and at pH values near neutral.  This variability was 

reduced for the MUA-coated particles.  This is consistent with earlier reports [36] 

suggesting greater sensitivity of the system to background contaminant species at low 

ionic strength conditions.  The SAM coating may provide a more chemically uniform 

surface that is less sensitive to contamination, by either byproducts of the synthesis 

reaction or impurity species in the solution. 

 

During tests of Ag-containing particles at low pH values, the measured zeta potential 

would often become more negative during the course of the measurement.  The more 

acidic the solution, the more pronounced this effect became, and it was more pronounced 

with bare particles than with MUA-coated particles.  This instability of the surface 

chemistry was most likely due to the time-dependent reaction of HCl with metallic Ag to 

form a AgCl layer.  

 

With specific reference to Fig. 3, the data for the various bare metallic particles appear 

similar, regardless of material.  The maximum zeta potentials observed are in the -30 to -

50 mV range.  Bare particles also do not display much change in behavior between the 



two values of ionic strength.  Theoretical studies suggest that for most of its range the 

zeta potential should vary as the negative log of the counterion concentration in M [42], 

but the effect was not clearly observable between the results for 1 and 10 mM solutions.  

The comparison results for carboxylated polystyrene beads, shown in Fig. 4, also show 

minimal observed difference in zeta potential between the two ionic strength conditions. 

 

The addition of the MUA self assembled monolayer coating had little observable effect 

on the electrokinetic properties of the Pd and Ag particles, but a dramatic effect in the 

case of Au particles.  At an ionic strength of 10 mM (Fig. 3b), the zeta potential for the 

MUA-coated Au particles can be more than twice that of the uncoated particles.  A 

similar, but much less dramatic, increase can be seen at 1 mM (Fig. 3a).  Figure 3b 

indicates that the zeta potential data for the coated and uncoated particles are similar at 

very low pH, but diverge at around pH 3.  It is likely that this divergence is due to the 

titration of the carboxylic acid end groups of the MUA molecules, which, upon the 

dissociation of H+ ions, adds a layer of additional negative charge to the particles.  The 

use of SAM coatings with different titratable end groups would be expected to produce 

changes in the zeta potential corresponding to the pKa values of the respective end 

groups. 



    

It is possible that the formation of the thiol-linked MUA coating is not as efficient on the 

Ag and Pd surfaces as on Au.  While elementary hard-soft acid-base theory [44,45] 

suggests that thiol linkages should form with all these metals, Au surfaces are more 

chemically inert than the others.  During the release of particles from the alumina 

template and subsequent washing, a few monolayers of oxide may form on the surfaces 

of the Ag and Pd particles, which could have the effect of inhibiting the attachment of a 

dense SAM coating. 

 

3.2 Alternative SAM coatings 

Comparative data for Au particles with each of the SAM coatings is given in Fig. 5a, 

showing the relative effect of the different coating chemistries.  All of the chosen 

molecules possess identical thiol linkages and carboxyl-terminated free ends, their 

differences being in the intervening hydrocarbon backbone.  All of the SAM coatings 

show a qualitatively similar zeta potential enhancement effect, but the magnitude of the 

effect is greatest for the MUA coating.  The zeta potential model in Eq. (8) is applied to 

the curves to determine the total number of surface groups, pKa, and charge layer 

capacitance for each coating type.  The theoretical curves are superimposed in Fig. 5b, 

and the resulting parameter data is shown in Table 1 below.  The difference in magnitude 

in zeta potential between the SAM types appears to be primarily due to the difference in 

the number of surface groups which corresponds to packing density.  The isoelectric 

point for the particle with a given polymer coating is directly related to the pKa of the 

polymer coating.   



 

3.3 Bimetallic particles 

 

Data for Au, Ag, and Au/Ag striped particles with MUA coatings at a constant 10mM 

ionic strength are shown in Fig. 6, demonstrating the effect of particle composition.  The 

total lengths of the Au and Ag segments in the striped particles were equal.  The net zeta 

potential for the Au/Ag particles, predicted using Eq. (5), is ζAg/Au = (ζAg+ζAu)/2.  The Au 

and Ag values are determined from the measured values for the homogenous Ag and Au 

particles.  This predicted behavior is shown with a dotted line in Fig. 6, and agrees well 

with the measured Ag/Au data across the pH range.   

  

3.4 Protein-functionalized particles 

 

The data for Au particles that have been MUA coated and subsequently derivatized with 

protein molecules are shown in Fig. 7.  These measurements were taken in 10 mM NaCl 

solution.  Here, the absolute values of zeta potential are in a favorable -30 mV or greater 

range, but the maximum otherwise seen near neutral conditions is suppressed in favor of 

a flatter and more uniform trend with pH.  The less distinct behavior may be attributed to 

the complex chemistry of the large ovalbumin (45 kD) and immunoglobulin G (146 kD) 

molecules, each of which possess a large number of titratable residues of different types.  

The scatter in this data is much greater than seen in the prior tests, a result that may be 

attributed to variation in the density of protein conjugation, particularly between different 

batches.              



 

As noted above, the addition of MUA coating, at least on Au particles, led to an 

enhancement in zeta potential.  When such coating was subsequently derivatized with 

proteins this effect was suppressed.  The zeta potential of the protein-coated particles is 

somewhat buffered against the effects of pH, and do not exhibit the sharp deviation from 

bare particle behavior in the weak acid range seen with MUA coated particles.  

Ovalbumin protein possesses a known isoelectric point pI=4.6 [46], and 

immunoglobulins typically possess isoelectric points in the 5-7 range, but the sharpness 

of the charge transition is expected to be much less than for a particle exhibiting a single 

species of titratable acid residue.    

 

4 Concluding Remarks 

 

In this work, we have studied the zeta potential of metallic nanowire particles in aqueous 

saline solution as a function of pH, ionic strength, metallic composition, and surface 

functionalization state.  The results are useful in predicting and controlling the 

aggregation, adhesion, and transport of such particles within microfluidic devices and 

other systems. 

 

While further work will be useful in understanding the different aspects of behavior seen, 

a few practical conclusions can be drawn.  In all cases, the magnitude of the zeta potential 

is greatest at moderate pH and least at very low pH; in order to minimize aggregation and 

adhesion to glass or PDMS surfaces, or to maximize electrokinetic mobility, acidic 



solutions should be avoided.  Ionic strength effects are not pronounced for these particles 

within the limited range (1-10 mM) used in the study.  Thiolated SAM coatings can have 

a dramatic effect on the zeta potential of the metallic particles, though the effect is much 

more evident for Au particles than for particles of less noble metals, which may be less 

ideal for the attachment of dense thiolated coatings.  The zeta potential enhancement 

appears to be due to the dissociation of titratable end groups, and is more pronounced at 

the higher ionic strength conditions corresponding to a thinner ionic double layer.    

 

This work was performed under the auspices of the U.S. Department of Energy by the 

University of California, Lawrence Livermore National Laboratory under Contract W-

7405-Eng-48, with funding from the Laboratory Directed Research and Development 

Program.   
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Figures 
 
 

 
 
Figure 1.  Optical reflectance microscopy image of striped Au/Ag Nanobarcodes® 
particles.  Most of the particles tested were single-metal particles of the same dimensions. 
 

 
 
Figure 2.  Diagram of the surface functionalization conditions of the particles tested.  In 
addition to bare metal surface, these included: a) thiol-linked mercaptoundecanoic acid 
(MUA, shown) or alternate self-assembled alkanethiol monolayer; and b) MUA with 
proteins conjugated at the terminal carboxyl residues. 
 

 
Fig. 3(a).   



 
Fig. 3(b).   
 
 

 
 
Fig. 3(c).   
 
 

 
Fig. 3(d).   
 



 
Fig 3(e).  
 

 
Fig. 3(f).  
 
Figure. 3(a)-(f).  Zeta potential versus pH data for MUA-coated and uncoated 
monometallic nanorod particles in NaCl solutions of different ionic strengths: (a) Au 
particles at 1 mM; (b) Au particles at 10 mM; (c) Ag particles at 1 mM; (d) Ag particles 
at 10 mM; (e) Pd particles at 1 mM; (f) Pd particles at 10 mM. 
 
 
 

 
 
Figure 4.  Data for polystyrene particles in 1 mM and 10 mM NaCl 



 
 

 
 
Figure 5.  Comparative data for Au particles in 10mM NaCl with four alternative SAM 
coatings: (a) zeta potential data alone; (b) data with theoretical curves for coated particles 
from Eq. (8) superimposed. The solid line refers to ME, the dashed to MESA, and the 
dotted to MUA. 
 
 
 

 
Figure 6.  Comparative data for MUA-coated Ag, Au, and Au/Ag striped particles in 10 
mM NaCl, with the theoretical prediction for 50% Au / 50% Ag striped particles 
indicated by the dotted line. 
 



 
Figure 7. Data for Au particles in 10 mM NaCl, conjugated with ovalbumin or anti-
ovalbumin antibody proteins. 
 
 
Table 
 
Table 1.  Parameter values for the various SAM coatings, used to generate the theoretical 
curves in Fig. 5b using Eq (8). 
 

 MUA MESA ME 
Ns

(sites/m2) 1.8x1017 1.3x1017 9.0x1016

pKa 2.3 2.0 3.4 
K 

(F/m2) 20x10-2 26x10-2 26x10-2

 
 
 
 
 


