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Summary. A new stabilized nodal integration scheme is proposed and imple-
mented. In this work, focus is on the natural neighbor meshless interpolation
schemes. The approach is a modification of the stabilized conforming nodal integra-
tion (SCNI) scheme and is shown to perform well in several benchmark problems.
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1 Introduction

Nodal integration of the Galerkin weak form of the equations of motion is
often desirable due to its efficiency and applicability in large deformation
problems. For example, in the large deformation case, the stress and material
history will move with the nodes and so no re-mapping of the quantities is
required. Numerous formulations and types of meshless shape functions are
available, here, we will focus on Galerkin formulations where natural neighbor
(NN) interpolation is used; often referred to as the natural element method
(NEM) [7]. Different nodal integration approaches have been developed such
as stabilized conforming nodal integration (SCNI) [3, 10, 5] and a least squares
stabilization approach [1]. The latter approach was applied using an EFG
formulation and suggested the use of quadratic basis functions due to the
second derivatives in the least squares term. Furthermore, the least squares
formulation in [1] is not directly applicable to natural neighbor schemes since
they are not smooth at the nodes. Recently we have found that the SCNI
method applied to NN shape functions produces spurious low energy (not
zero energy) modes in some problems and these modes did not appear to
vanish with refinement. In this work, a modification to the SCNI method is
made that appears to provide stable results as demonstrated in eigenvalue
and large deformation examples provided here.

Natural neighbor (NN) shape functions have some distinct advantages over
many meshless schemes in that they interpolate the data making it simpler
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to implement essential boundary conditions and the nodal adjacency only
includes near neighbors. The NN/NEM approach has been implemented in the
context of a meshless method by exploiting the concept of alpha shapes [4, 6] to
determine/treat the free surface of cloud of points. In this work, the integration
method in [10, 5] is modified by applying an additional stabilization term. In
what follows: Section 2 introduces the global weak form, the NN interpolation
scheme and the SCNI approach with added stabilization, Section 3 presents
results demonstrating the necessity of the added stabilization and effectiveness
of the proposed approach.

2 Formulation

The formulation will be introduced in the context of linear elasticity and the
straightforward extensions to the nonlinear regime will be given at the end of
the section.

2.1 Galerkin Method

Considering a body occupying the domain {2, the governing equations of mo-
tion are given
pu=Vo+b (1)

where w is the displacement field, b is the body force and o = o(e) is the
Cauchy stress in terms of strain

e(u) = 1/2(Vu + Vu®) (2)
Employing test function v, the weak form of (1) can then be written
/pv~ﬁd(2+/E(v):a(s(v))dQ:/v-bdQ—i-/ v-tdl'  (3)
Q Q Q Iy
where applied tractions t are specified on the boundary I';.

2.2 Discrete Form

Following standard procedure, the discrete displacement field is defined

N
up = Z¢I(:c)u1 x € 2 (4)
=1

in terms of shape functions ¢; and nodal displacements u; over all nodes
I =1, N on the discretized domain {2;,. Unlike finite elements, the definition
of the domain (2, in meshless methods is not straightforward and is defined
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in what follows. Substituting (4) into the weak form (3) and applying nodal
integration, the following discrete form results

N

Zm;vpd]JrV]el(vh):a(s;(uh))—vj'sz() (5)
I=1

where m; is the nodal mass, f; is a collocated form of the applied loads, e
is the nodal strain and V7 is the nodal volume. Since the NN shape functions
interpolate the data, the nodal mass is simply m; = pV;. The body force
contribution to f; is computed similarly. Here, the traction force contribution
to f; is computed using the surface mesh but other techniques are outlined
in [1]. The &; could be the symmetric gradient of the displacement at x; or
computed using SCNI as shown in what follows. In this work, V7 represents the
volume of the Voronoi cell £2; about node I (Fig. 1(a)). The Voronoi diagram
of a set of sites P := {@xy,@9,... TN} is a partition such that all points x
within a Voronoi cell {27 are closer to the generating site I than to any other
site in P. Considering three dimensional space, this can be mathematically
stated

2 ={x R d(z,z;) < d(z,z;)V J #1} (6)

To handle arbitrary non-convex geometries, the alpha — shapes approach is
used to compute a surface mesh from the cloud of points. The Voronoi diagram
is then ”clipped” by the surface in an approach similar to that in [4] and [6]
thus producing the discretized domain §2,. Figure 1(b) illustrates this process
for two dimensions and our implementation performs the equivalent in three
dimensions. Of course, this approach may be too computationally intensive
for some applications and one may resort to simpler approaches to compute
nodal volumes (c.f. [1]).

2.3 Natural Neighbor Interpolation

The Voronoi cell for point I is formed by polygonal (usually triangular) cell
walls and the points with common cell walls are the set of natural (or nearest)
neighbors N (x;) for point I. The Laplace (or non-Sibson) form of NN inter-
polation [8] computes interpolation functions at a point z in the following
way. Consider the Voronoi diagram shown in black in Fig. 2, the interpolation
function ¢ at a point x is computed by doing a point insertion where x is
treated as an additional vertex in the set P and a new Voronoi cell is formed
(shown in blue in Fig. 2(a)). For the two dimensional case, the heights h and
cell wall lengths s are used to compute the shape functions evaluated at point

xr
SJ/hJ

¢1(@) = ZKEN(:L‘) sk /hx

VJ € N(z). (7)

In three dimensions, the quantity s is a cell wall area. The NN interpolation
functions are both linear exact and interpolative.
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(a) (b)

Figure 1. (a) Voronoi diagram about cloud of points. (b) Surface mesh and clipped
Voronoi cells.

(b)

Figure 2. (a) Point insertion at z. (b) Geometry of Voronoi cell about x

2.4 Stabilized Conforming Nodal Integration (SCNI)

If smooth shape functions are used, one could merely take derivatives at the
nodes to compute the nodal strain €; (although patch test satisfaction may
be violated). Since NN shape functions are not smooth, a different approach is
required. Here, the nodal strain is computed using the SCNI approach which
is well described in [3, 10, 5]. In short, &7 is computed from the volume average
of the strain € over the Voronoi cell domain §2; and using divergence theorem
results in the surface integral

ej(uh):i]/(m (un @ n+n @ wup)/2d0 (8)
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where n is the unit normal along the contour surface of cell I. Numerical
integration is employed in computing (8) such that one integration point at
the centroid of each Voronoi facet is used. This approach exactly satisfies patch
test and can be used without any additional stabilization in many situations as
demonstrated in [3, 10, 5]. On the other hand, it is shown here that problems
arise such that spurious low energy modes arise in some applications of SCNI
motivating the following approach.

2.5 Modified SCNI

As mentioned, the SCNI formulation produces spurious modes as seen in
Fig. 4(b). Although the SCNI approach does not have zero energy modes, a
straightforward analysis can demonstrate that the method is not V; coercive.
Referring to (3) and (5), the discrete bilinear form for linear elasticity is

written
N

a(vh,uh) = ZE}(’U}L) . C&‘[(’U,h)V] (9)
I=1

where C' is the elasticity tensor and the discrete strain energy results when
vy = uy. Considering a one dimensional BVP with evenly spaced nodes, the
appropriate saw tooth displacement field would cause the nodal strain defined
by (8) to be zero everywhere except at the boundaries. This would produce a
zero energy mode for an infinite domain and a spurious low energy mode for
a finite domain. In order to eliminate these modes the Voronoi cells at node
I are further decomposed into sub-cells {2 as shown for the two dimensional
case in Fig. 3. Here each sub-cell is a triangle/polyhedron formed from the
generating node and a Voronoi edge/facet in two/three dimensions respec-
tively. In practice, we can merge adjacent triangle/polyhedron into reduced
set of sub-cells. Examples in this work use eight sub-cells by performing this
merge process although some nodes may actually have less than eight sub-
cells since they have less than eight Voronoi facets. The same SCNI approach
is used to compute the strain over each sub-cell 2%

1

eﬁ(uh):W/BQ (upb@n+neuyp)/2dl c¢=1: Ny (10)
I 7

where N7 is the number of sub-cells used at node I and Vy is the volume of
the sub-cell. The modified SCNI weak form is now proposed

N
a(vn,un) = _[er(vn) : Cer(un)Vi +
I=1 e ~
> _afler(vn) —i(vn)) : Cles(un) — €5(un))V] (1)

c=1
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where af is a penalty parameter and C is the elasticity tensor or some modified
version. In the proceeding examples, the sub-cell penalty will be uniform i.e.
af = 1 amounting to what is sometimes referred to as ”physical stabilization”
[2, 9]. Here, the stiffness C is chosen in the following way:

Isotropic elastic material: Lamé parameters p and A:
fi=p  X:=max(), 25]) (12)
Isotropic plastic material: Lamé parameter A and plastic modulus Ep:
i:=FEr/2  X:=max(\,250) (13)

For non-isotropic materials, the choice for g and A would be less obvious
but still tractable. Using a maximum in (12) and (13) mitigates volumetric
locking. The nodal deformation gradients F';, F'{ are defined

1 1
Fl(uh):—/ up, @ndl’ F{(up) = / up,@ndl’ e=1: Ny
Vi Joo, VI a0¢
(14)
and for large deformation kinematics, the internal virtual work (11) is rede-
fined

N
a(vn,un) = Y [Fr(v) : P(Fy(up)Vr+
=1

Za?(Fz(vh) — Fi(vy)) : C(Fr(up) — Fi(un))Ve] (15)

where P is the first Piola Kirchoff stress and V; and Vf are determined in
the initial reference configuration. The numerical implementation replaces the
internal virtual work (9) with (11) or (15) in the weak form of the equations
of motion (3).

Figure 3. Subcells in the Voronoi cell formed from x;.
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2.6 Implementation Details

In our implementation, the strain displacement matrices were computed at
initialization and then stored to avoid re-computation of the Voronoi diagram
at every time step. This also applies to the nonlinear kinematics case where
the total Lagrangian approach (15) was employed.

The SCNI and the stabilization approach require the computation of shape
functions at the Voronoi cell walls and polygons separating adjacent sub-cells
for each node I. To expedite this calculation and to reduce connectivity, the
smallest set of nodes were employed in evaluating shape functions:

1. Ounly the set N(xz;) U N(x;) was used for Voronoi cell wall
shape function evaluations where the cell wall was common to
the Voronoi cells of node x; and x ;.

2. Only the set N (x1) was used for the interior sub-cell shape func-
tion evaluations.

The above almost always worked and one could probably even use less nodes.
If the approach didn’t work (i.e. the cell wasn’t closed), more nodes were
added to the set based on adjacency. Unlike changing the smoothing length
of the weight functions with RKPM or EFG to get the appropriate amount
of cover, adding nodes to the set to compute shape functions does not affect
any previous computations.

The results here used two dimensional triangular finite element interpola-
tion everywhere on the exterior boundary surface mesh to do shape function
evaluations along the boundary. We have recently implemented two dimen-
sional Laplace shape functions but have yet to compare the difference.

3 Results

The following results demonstrate the necessity and effectiveness of the addi-
tional stabilization. Furthermore, the proposed approach satisfies patch tests
to machine precision and does not appear to lock in nearly incompressible
situations. The constant pressure Q1P0 finite element is used for comparison
since it performs reasonably well for the nearly incompressible case.

Figenanalysis

This example illustrates the spurious modes using the standard SCNI ap-
proach and the improved behavior using additional stabilization. An eigen-
analysis of a nearly incompressible 1 x 1 x 1 block (E =1, v = 0.499, p = 1)
was performed and the first eigenmodes using the Q1P0 brick element, the
SCNI NN approach and the proposed approach are plotted in Fig. 4. The fre-
quency versus eigenmode is plotted in Fig. 5 and it is seen that results from
the new approach are nearly identical to that of the Q1PO for the first 100
modes. With SCNI, the frequencies for the first one hundred modes are low
due to the presence of spurious modes.
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Figure 4. First eigenmode using: (a) brick elements, (b) SCNI (¢) modified SCNI.
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Figure 5. Frequency versus eigenmode for three approaches.

Rubber Billet

In this example, the performance on a large deformation problem is evaluated.
A rubber billet 50.8 in length and diameter (Fig. 6(a)) with Neo Hookean ma-
terial parameters (E = 1, v = 0.49) was compressed to 70% strain and only
the bottom section was modeled due to symmetry. In the model, a unilateral
contact surface was used to vertically constrain the outer surface as it ex-
pands (bulges) horizontally. The sequence of deformations from the proposed
approach are shown in Fig. 6(a-c) . The SCNI analysis terminated at 41%
strain due to large oscillations (Fig. 6(d)) whereas the stress and deformation
match nicely for the proposed approach and the Q1P0 hex element results at
this strain threshold (Fig. 6(b,e)). Oscillations do become apparent in the last
state shown in Fig. 6(c) compared to the Q1P0 results Fig. 6(e). The total
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force applied to the billet versus strain is shown plotted in Fig. 7 and it seen
that the proposed approach matches the Q1P0 quite well.

VAVAVAVAVAVAY
RYAVAVAVAVAY,

SR

(@ (d)

- >
NVAVAVAVA
A%AVNAVA%K’

Figure 6. Rubber billet: (a-c) sequence of deformation of stabilized NEM (d) un-
stabilized NEM (e-f) deformed configurations of Q1P0. The vertical o. stress is
indicated in (b-f).

Taylor Bar

A standard benchmark for plasticity is the Taylor bar impact problem. Here,
a copper bar impacts a rigid wall at high velocity. The following elastoplastic
material properties were used: £ = 117 GPa, v = 0.35, 0, = 0.4 GPa, linear
hardening modulus Er = 0.1 GPa and density p = 8930kg/ m®. The initial
bar length was 32.4 mm, the initial radius was 3.2 mm and the initial velocity
was 227m/s. The final deformed states are shown in Fig. 8 where the color
indicates displacement magnitude. Again, the new stabilization compares well
with the Q1PO0 finite element result but the SCNI shows oscillations.

4 Discussion

A new stabilized nodal integration approach was developed and applied to the
natural neighbor meshless method. The approach performed well in eigenvalue
and nonlinear benchmark problems. Here, a total Lagrangian approach was
used for large deformation. Extension of the method using an ”Eulerian” type
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Figure 7. Force versus percent strain for rubber billet
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Figure 8. Final configuration and plot of displacement magnitude from (a) new

stabilized (b) SCNI and (c) Q1P0 approaches.
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kernel for extremely large deformations occurring in penetration will be inves-
tigated. The method appeared to perform well for the nearly incompressible
case but would require modifications to treat the fully incompressible case.
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