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ABSTRACT 

I will review the role that Monte Carlo methods play in the 
physical sciences.  They are very widely used for a number 
of reasons: they permit the rapid and faithful transformation 
of a natural or model stochastic process into a computer 
code.  They are powerful numerical methods for treating the 
many-dimensional problems that derive from important 
physical systems.  Finally, many of the methods naturally 
permit the use of modern parallel computers in efficient 
ways.  In the presentation,  I will emphasize four aspects of 
the computations:  whether or not the computation derives 
from a natural or model stochastic process;  whether the 
system under study is highly idealized or realistic; whether 
the Monte Carlo methodology is straightforward or mathe-
matically sophisticated; and finally, the scientific role of the 
computation. 
 
1.  INTRODUCTION 

 
 Over the last four decades, numerical computation has 

played an increasingly important role in both theoretical and 
experimental science.  The reasons are not hard to under-
stand:  The increasing sophistication of our understanding of 
physical phenomena coupled with our increasing need to 
create ever more subtle processes and devices requires a 
level of analysis and prediction beyond that of traditional 
mathematical methods.  When one sets out to design a mod-
ern high-energy accelerator, any of its enormous detectors, a 
proposed experiment, or to analyze the results,  computation 
must be invoked at every stage of the process.  Inference 
from most astronomical observations is usually a matter of 
significant computer-aided analysis.  A complementary 
situation exists in theoretical science.  Serious quantitative 
prediction of a chemical reaction rate, the behavior of a 
nuclear reactor, or the energy of an atomic nucleus from 
more fundamental information require computation, often at 
very high levels.   
 Monte Carlo methods play a central role in many 
of these computations.  For example, the prediction of be-
havior of a high-energy particle detector is most easily and 
most accurately  analyzed by a Monte Carlo treatment that 
simulates the stochastic processes of the creation of particles 

in a target, the decay of those  particles into others, the 
transport of particles, and their final interactions with the 
detection process.  Such a calculation is formidable but 
straightforward on modern computers.  Because the compu-
tation deals with a succession of independent histories, it is 
easily parallelized as well.   
 It is also worth mentioning that the full descrip-
tion of the state of a particle decay process in a particle 
detector requires many dimensions—  there may be a num-
ber of particles simultaneously present in the system, and 
for each a position, time, and momentum must be speci-
fied— a total of seven dimensions for each particle.  An 
important theme of the talk is that Monte Carlo methods 
offer a natural and efficient procedure for numerical prob-
lems in many dimensions that are impossible by more tradi-
tional numerical methods. 
 The kinetic theory of gases— that is the descrip-
tion of their behavior from that of constituent atoms or 
molecules— is one of the longest-standing examples of 
statistical physics, dating to Daniel Bernoulli in 1738, with 
important progress by John Herapath in 1820,  James Max-
well in 1859, and A. Einstein in 1905.  It is a natural candi-
date for Monte Carlo, and implementations were pioneered 
by G. A. Bird (1994). 

   Kinetic Monte Carlo starts with a stochastic 
model of atomistic processes in a dense material, say a 
solid.  Simple examples are defined on a lattice in two or 
three dimensions, and assume that some of the lattice points 
are occupied by one or more species of atoms.  Rates are 
specified for the addition, deletion,  migration, or interaction 
of atoms, and a simulated stochastic process is followed on 
a computer.   We will discuss one example in greater detail 
in the talk, but this is a rich area of research:  The model can 
be highly simplified to generate insight about equilibrium 
and non-equilibrium statistical physics and chemistry, or it 
can aim for significant physical realism in support of the 
annealing of epitaxial growth, to cite one example of an 
industrially important process. 

   The applications of Monte Carlo methods extend 
far beyond the simulations of natural stochastic processes.  
Broadly speaking, they are used for the evaluation of defi-
nite integrals or  integrals derived from the solution of an 
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integral equation—that is of the density of random walkers 
obeying some abstract stochastic process. 

   One example of this is the evaluation of the 
equation of state of hard discs in two dimensions or hard 
spheres in three.  What is required is the average of some 
property of the positions discs or spheres over all possible 
non-overlapping configurations.  For an N-body system,  
this is a 2N- or 3N- dimensional integral, well suited in 
principle for Monte Carlo treatment.  The technical chal-
lenge here is to sample the distribution of positions in an 
unbiased way.  It was to treat this problem that the algo-
rithm variously called the “Metropolis” , or “Markov 
chain”, or M(RT)2 was invented.  It is an enormously versa-
tile and powerful method whose generalization has led to 
widespread developments in the applications of Monte 
Carlo.  The problem of the statistical mechanics of hard 
discs or spheres is, of course, a highly simplified physical 
system,  but the insight it brings to more realistic models is 
invaluable.  In addition, the method can— and has been—  
applied directly to systems of ever growing complexity. 

   Another broad application that does not arise 
from a physically defined stochastic process is that of inte-
grating the non-relativistic Schrödinger equation for an N-
body system.  This is a description of the fundamental phys-
ics and chemistry of ordinary matter in the form of a partial 
differential equation in a 3N-dimensional space plus time.  
A curious fact noted early in the history of quantum me-
chanics is that if the physical time variable  is made imagi-
nary, then the equation is a linear diffusion equation for a 
walker in a 3N-dimension space with a non-physical but 
readily simulated process of creation and annihilation of 
walkers. 

   Straightforward translation of this abstraction to 
a simulated random walk on a computer is inefficient, and 
grows increasingly so as N grow large.  But the mathemati-
cal transformation to an efficient form is not difficult and 
lends itself to effective computation.  Indeed for some real-
istic physical quantum many-body systems, a numerical 
solution without uncontrolled approximations is possible.  
This will be discussed in some more detail below. 
   A useful recent survey of Monte Carlo methods 
in the physical sciences is the Proceedings of the conference 
held in 2003 at Los Alamos to celebrate the fiftieth anniver-
sary of the “Metropolis Algorithm”  (Gubernatis 2003 ). 

 
       2.  PARTICLE TRANSPORT 
 
       Challenges in computing the transport of particles and 

radiation at Los Alamos during World War II led to the 
serious study of Monte Carlo methods by Ulam, von Neu-
mann, Fermi, and others.  The interaction of particles such a 
neutrons or photons with matter is, of course, a natural 
stochastic process,  but Ulam in particular recognized that it 
was also the basis of efficient computational methods for 
many problems.   

  In addition, the attention by the mathematicians 
led to significant ideas about broad ranges of applications 
and about variance reduction.  The theory of zero-variance 
Monte Carlo for linear transport was formulated in the late 
1940s and has been the guide for efficient particle computa-
tions ever since (Kalos and Whitlock . 1986). 
  Briefly, one needs approximations to the  “ad-
joint solution”, effectively the description of the stochastic 
process run backwards in time.  This is, of course, no easier  
to calculate than the “forward” solution, but qualitatively 
reasonable approximations are often easy to establish and 
very efficient in practice.  A widely used general purpose 
transport Monte Carlo program is MCNP  (Monte Carlo N-
particle code:  MCNP 2007)  from Los Alamos includes an 
option for the automatic generation of adjoint information 
from a deterministic approximation to the physical system  
(Sweezy, Brown, Booth, Chiaramonte, and Preeg 2005). 
 
3.  KINETIC THEORY OF GASES 
 
Contemporary very large computers have permitted atomis-
tic calculations of gases with billions of particles.  An inter-
esting and important application has been the study of the 
early development of instabilities in discontinuous fluids.  I 
will show results of such calculations (Kadau, Rosenblatt, 
Barber, Germann, Huang, Carlès, and Alder 2007) that 
demonstrate agreement between theory and experimental 
measurements of instability growth rates. 
 
4   KINETIC MONTE CARLO (kMC) 
 
As described above,  kMC is the realization of a class of 
diffusive models of atomistic behavior in condensed matter, 
especially in solids.  Rates for different processes, including 
the migration of atoms are specified.  Often these are as-
sumed to depend upon the temperature of the system, T,  
proportional to exp(-K/T), where K is an activation tempera-
ture.  
  The straightforward translation of such models is 
as a time-driven simulation, but is was noted (Bortz, Kalos, 
and  Lebowitz 1975) that an even-driven simulation would 
be more efficient in many applications, and this method is 
now used very widely.  Recently,  still more sophisticated 
methodology— first-passage algorithms— have been shown 
to provide speed-ups of orders of magnitude for dilute sys-
tems (Oppelstrup,  Bulatov, Gilmer, Kalos, Sadigh 2006). 
  I will show a video of the evolution of a 
process in which aluminum atoms are deposited on an alu-
minum substrate at various temperatures. This is the work of 
G. Gilmer.(2007) The computations were confirmed by 
experiments.  Simulations of this kind including many with 
realistic detail of nanoscale features are widely used for 
quality assurance in fabrication in the electronics industry. 
 
5.  CLASSICAL STATISTICAL MECHANICS 
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Although its inventors (Metropolis, Rosenbluth, Rosenbluth, 
Teller, and Teller 1953)did not follow up on the M(RT)2 
method, and although theoretical scientists at the time dis-
tained the use of computation, it proved to have a powerful 
impact on research on statistical mechanics in physics, 
chemistry, and biology. The basic idea is elegantly simple:  
A probability distribution, p(X), is to be sampled for vari-
ates X in a many-dimensional space.  A random walk is 
established whose dynamics are the following:  A move to 
position Y is generated from the pdf T(Y|X) and accepted 
with probability  max[1, p(Y)T(Y|X)/p(X)T(X|Y)].  Under 
very broad conditions, the asymptotic density is p(X).  In 
classical statistical mechanics, the function, p(X) to be sam-
pled is the Boltzmann distribution,  exp(-V(r1,r2,…rN), 
where V is the potential energy function of the coordinates 
rk 
  From a methodological point of view these 
applications have provided a wealth of generalizations, such 
as the observation that T(Y|X) does not have to be a sym-
metric distribution. 
  The method has been applied to liquids, 
alloys, magnetic systems, and polymers, yielding accurate 
numerical results for, among other parameters, critical tem-
peratures and critical exponents.  For a review, see the arti-
cle by D. P. Landau (2003) and the book by Landau and 
Binder (2000) and references therein. 
 
6. QUANTUM MONTE CARLO  
 
6.1  VARIATIONAL QUANTUM MONTE CARLO 
 
Important progress in the study of many-body quantum 
systems was made by W. L. McMillan (1965) who observed 
that the function to be sampled in M(RT)2 need not be a 
classical Boltzmann distribution.  In variational calculations 
a trial wave function,  ψT(r1,r2,…rN) is assumed, and the 
following quotient of integrals is to be computed: 
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operator.  By setting the pdf p(X) in M(RT)2 to be 2! , he 
showed that the ratio could easily be computed. Before this,  
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could only be computed by making uncontrolled approxima-
tions. The combination of unknown approximation of varia-
tional energy with unknown overestimate of the variational 
energy itself led to significant uncertainty in the validity of 
the theory. 

 Variational Monte Carlo is still widely used, but 
usually as an adjunct to the more accurate methods dis-
cussed below. 
 
6.2  SIGN PROBLEMS 
 
In a number of applications one seeks solutions that are not 
everywhere positive.  This is particularly true of “fermionic” 
systems, like many-electron systems, in which the Pauli 
principle requires that the wavefunction be “antisymmetric” 
with respect to exchange of like electrons, that is, that it be 
negative as well as positive.  Another, even greater chal-
lenge arises in treating quantum systems in physical rather 
than imaginary time.  Here the propagators are complex so 
that treatment by random walk is necessarily challenging. 
 Some of these sign problems can be dealt with in 
straightforward technical ways, say by correlating negative 
and positive estimators, but others present deep challenges 
to the methodology.  I will touch on some of these below. 

  
6.3  GREEN’S FUNCTION MONTE CARLO 
 
The treatment of many-particle quantum systems by simu-
lating the non-physical diffusion of a many-dimensional 
random walker in imaginary time is now well developed, 
and applied to many systems (Kalos 1962; Kalos, Levesque 
and Verlet 1974; Anderson 1976). For “bosonic” systems—
like a collection of  4He atoms at zero temperature, it pro-
vides a numerical method with no uncontrolled approxima-
tions (Schmidt,  Niyaz, Vaught, and Lee 2005).  The key to 
efficient sampling is an importance sampling transforma-
tion, namely recasting the random walk so that the density 
of walkers is biased by a trial function, 

T
! , and modifying 

the transition probabilities accordingly. 
 Unfortunately, most important applications involve 
fermions, and various fixes, usually approximate, have been 
applied.  The most usual for many-electron systems is the 
“fixed-node” approximation.  Here, an antisymmetric trial 
function is used, one that has nodes, i.e., subspaces of lower 
dimension on which they vanish.  It can be shown that if the 
random walk is terminated when it reaches such a point, 
then the energy calculated for the system is an upper bound.   
This is widely used, and after at least a decade of develop-
ment and optimization, very good results have been at-
tained.  Research into methods that are potentially as reli-
able as for bosonic systems continues  (Kalos and Pederiva. 
2000). 
 I will show striking results of calculations of this 
kind:  for the homogeneous electron gas, by Ceperley and 
Alder (1980); for the low-lying states of light nuclei, from 
the work of Pandharipande and collaborators (Pandhari-
pande 2003); and for some molecular dimers by Umrigar 
and Toulouse (2007). 
 The results for the electron gas are important for two 
reasons: they were the first highly reliable data for the equa-
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tion of state of a many-electron system, and they form the 
basis of a very-widely used approximation method, “den-
sity-functional theory.” 
 The calculations on the light nuclei are noteworthy in 
that the particle interactions here are extremely complex 
nuclear forces.  There are two-body forces derived from the 
study of nucleon-nucleon scattering, and which depend in 
complicated ways on the particles and their relative states. 
There are also three-body forces derived in a phenomenol-
ogical way from the interactions of pions with nuclei. This 
means that a trial function for A=8 comprises 17920 com-
plex functions. Finally, the quality of the agreement with 
experiment validates our understanding of the structure of 
nuclei at this level. 
 The last example is that of the energies of first-row 
dimers (i.e., Li2 through F2) as calculated by quantum 
Monte Carlo methods, including the fixed-node approxima-
tion.   To appreciate the nature of this achievement one must 
first understand that the energy differences that are impor-
tant for chemistry are of the order of 10-5 or less of the total 
energy of the system.  To attain this precision in a Monte 
Carlo calculation is evidence of sophisticated methodology.  
The second point is that the accuracy is very high, compara-
ble or better than the “traditional” methods based on very 
large basis sets, an indication of the quality of the trial-
function optimization now possible. 

 
6.4 QUANTUM CHROMODYNAMICS 
 
Quantum chromodynamics (QCD) is the theory of the strong   

force—that is, of how quarks interact via gluons to form heavy 
particles such as protons and neutrons (Quigg 1983).    It is a 
field theory—that is, like electrodynamics, the particles 
interact by way of fields that permeate space.  Unlike electro-
dynamics where the intermediating particle is a photon, both 
the particles (quarks) and the quanta of the field (gluons) have 
many possible states.  There are six  types of quarks and eight 
gluons and the interactions of quarks and gluons and gluons 
with themselves are mediated by matrices that couple these 
different states.  The coupling is strong so that the kind of 
perturbation theory that works well for electrodynamics does 
not converge in QCD.  Fortunately, a discretized version of 
the theory— lattice QCD— was formulated by Kenneth 
Wilson (1974) which permits a numerical treatment.  
 A four-dimensional lattice is set up and values of the 

quark fields are associated with the points. The gluon interac-
tions are represented by the links.  Here too, the computed 
result can be expressed as an average with respect to a weight-
ing function. The quarks are fermions so that the weighting 
function is not positive, but reasonable approximations 
schemes can make it so. 
 In either case, the numerical problem, for large 

enough lattices to approximate to a continuum, requires a 
Monte Carlo treatment.  Indeed, even after three decades of 
ingenious algorithmic development and more than 105 in-

crease in computer speed, the lattices sizes attainable are still 
not quite large enough. 
 Nevertheless, significant predictions are now avail-
able.  I will show results of lattice QCD calculations for the 
masses and other parameters of particles, including nucleons. 
 
7.  CONCLUSIONS 
 
  This rapid survey was intended to demonstrate the vast range 
of applicability of Monte Carlo methods to physical science, 
along with their great diversity of styles and subject matter.  
Our understanding of these powerful methods  has contributed 
enormously to the growth of our scientific understanding.  
They are a significant reason for the integration of computa-
tion into modern science. 
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